Science.gov

Sample records for zoonotic pathogen causing

  1. The common zoonotic protozoal diseases causing abortion.

    PubMed

    Shaapan, Raafat Mohamed

    2016-12-01

    Toxoplasmosis, neosporosis, sarcosporidiosis (sarcocystosis) and trypanosomiasis are the common zoonotic protozoal diseases causing abortion which caused by single-celled protozoan parasites; Toxoplasma gondii, Neospora caninum , Sarcocystis spp and Trypanosoma evansi, respectively. Toxoplasmosis is generally considered the most important disease that causing abortion of both pregnant women and different female animals throughout the world, about third of human being population had antibodies against T. gondii . The infection can pass via placenta, causing encephalitis, chorio-retinitis, mental retardation and loss of vision in congenitally-infected children and stillbirth or mummification of the aborted fetuses of livestock. Neosporosis is recognized as a major cause of serious abortion in varieties of wild and domestic animals around the world particularly cattle, the disease cause serious economic losses among dairy and beef cattle due to decrease in milk and meat production. While unlike toxoplasmosis, neosporosis is not recognized as a human pathogen and evidence to date shows that neosporosis is only detected by serology in the human population. Sarcosporidiosis also can cause abortion in animals particularly cattle, buffaloes and sheep with acute infection through high dose of infection with sarcocysts. On the other hand, humans have been reported as final and intermediate host for sarcosporidiosis but not represent a serious health problem. Trypanosomiasis by T. evansi cause dangerous infection among domestic animals in tropical and subtropical areas. Several cases of abortion had been recorded in cattle and buffaloes infected with T. evansi while, a single case of human infection was reported in India. Trichomoniasis and babesiosis abortion occurs with non-zoonotic Trichomonas and Babesia species while the zoonotic species had not been incriminated in induction of abortion in both animals and man. The current review article concluded that there is still

  2. Disease ecology and the global emergence of zoonotic pathogens.

    PubMed

    Wilcox, Bruce A; Gubler, Duane J

    2005-09-01

    The incidence and frequency of epidemic transmission of zoonotic diseases, both known and newly recognized, has increased dramatically in the past 30 years. It is thought that this dramatic disease emergence is primarily the result of the social, demographic, and environmental transformation that has occurred globally since World War II. However, the causal linkages have not been elucidated. Investigating emerging zoonotic pathogens as an ecological phenomenon can provide significant insights as to why some of these pathogens have jumped species and caused major epidemics in humans. A review of concepts and theory from biological ecology and of causal factors in disease emergence previously described suggests a general model of global zoonotic disease emergence. The model links demographic and societal factors to land use and land cover change whose associated ecological factors help explain disease emergence. The scale and magnitude of these changes are more significant than those associated with climate change, the effects of which are largely not yet understood. Unfortunately, the complex character and non-linear behavior of the human-natural systems in which host-pathogen systems are embedded makes specific incidences of disease emergence or epidemics inherently difficult to predict. Employing a complex systems analytical approach, however, may show how a few key ecological variables and system properties, including the adaptive capacity of institutions, explains the emergence of infectious diseases and how an integrated, multi-level approach to zoonotic disease control can reduce risk.

  3. Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen.

    PubMed

    Vázquez, Roberto; Domenech, Mirian; Iglesias-Bexiga, Manuel; Menéndez, Margarita; García, Pedro

    2017-11-28

    Streptococcus suis is a Gram-positive bacterium that infects humans and various animals, causing human mortality rates ranging from 5 to 20%, as well as important losses for the swine industry. In addition, there is no effective vaccine for S. suis and isolates with increasing antibiotic multiresistance are emerging worldwide. Facing this situation, wild type or engineered bacteriophage lysins constitute a promising alternative to conventional antibiotics. In this study, we have constructed a new chimeric lysin, Csl2, by fusing the catalytic domain of Cpl-7 lysozyme to the CW_7 repeats of LySMP lysin from an S. suis phage. Csl2 efficiently kills different S. suis strains and shows noticeable activity against a few streptococci of the mitis group. Specifically, 15 µg/ml Csl2 killed 4.3 logs of S. suis serotype 2 S735 strain in 60 min, in a buffer containing 150 mM NaCl and 10 mM CaCl 2 , at pH 6.0. We have set up a protocol to form a good biofilm with the non-encapsulated S. suis mutant strain BD101, and the use of 30 µg/ml Csl2 was enough for dispersing such biofilms and reducing 1-2 logs the number of planktonic bacteria. In vitro results have been validated in an adult zebrafish model of infection.

  4. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Environmental Factors and Zoonotic Pathogen Ecology in Urban Exploiter Species.

    PubMed

    Rothenburger, Jamie L; Himsworth, Chelsea H; Nemeth, Nicole M; Pearl, David L; Jardine, Claire M

    2017-09-01

    Knowledge of pathogen ecology, including the impacts of environmental factors on pathogen and host dynamics, is essential for determining the risk that zoonotic pathogens pose to people. This review synthesizes the scientific literature on environmental factors that influence the ecology and epidemiology of zoonotic microparasites (bacteria, viruses and protozoa) in globally invasive urban exploiter wildlife species (i.e., rock doves [Columba livia domestica], European starlings [Sturnus vulgaris], house sparrows [Passer domesticus], Norway rats [Rattus norvegicus], black rats [R. rattus] and house mice [Mus musculus]). Pathogen ecology, including prevalence and pathogen characteristics, is influenced by geographical location, habitat, season and weather. The prevalence of zoonotic pathogens in mice and rats varies markedly over short geographical distances, but tends to be highest in ports, disadvantaged (e.g., low income) and residential areas. Future research should use epidemiological approaches, including random sampling and robust statistical analyses, to evaluate a range of biotic and abiotic environmental factors at spatial scales suitable for host home range sizes. Moving beyond descriptive studies to uncover the causal factors contributing to uneven pathogen distribution among wildlife hosts in urban environments may lead to targeted surveillance and intervention strategies. Application of this knowledge to urban maintenance and planning may reduce the potential impacts of urban wildlife-associated zoonotic diseases on people.

  6. [New insight into bacterial zoonotic pathogens posing health hazards to humans].

    PubMed

    Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria

    2014-01-01

    This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.

  7. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  8. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  9. Decontamination of High-risk Animal and Zoonotic Pathogens

    PubMed Central

    Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-01-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents. PMID:23971795

  10. Decontamination of high-risk animal and zoonotic pathogens.

    PubMed

    Frentzel, Hendrik; Menrath, Andrea; Tomuzia, Katharina; Braeunig, Juliane; Appel, Bernd

    2013-09-01

    Preparedness for the decontamination of affected environments, premises, facilities, and products is one prerequisite for an immediate response to an animal disease outbreak. Various information sources provide recommendations on how to proceed in an outbreak situation to eliminate biological contaminants and to stop the spread of the disease. In order to facilitate the identification of the right decontamination strategy, we present an overview of relevant references for a collection of pathogenic agents. The choice of pathogens is based on a survey of lists containing highly pathogenic agents and/or biological agents considered to be potential vehicles for deliberate contamination of food, feed, or farm animals. European legislation and guidelines from national and international institutions were screened to find decontamination protocols for each of the agents. Identified recommendations were evaluated with regard to their area of application, which could be facilities and equipment, wastes, food, and other animal products. The requirements of a disinfectant for large-scale incidents were gathered, and important characteristics (eg, inactivating spectrum, temperature range, toxicity to environment) of the main recommended disinfectants were summarized to assist in the choice of a suitable and efficient approach in a crisis situation induced by a specific high-risk animal or zoonotic pathogen. The literature search revealed numerous relevant recommendations but also legal gaps for certain diseases, such as Q fever or brucellosis, and legal difficulties for the use of recommended disinfectants. A lack of information about effective disinfectants was identified for some agents.

  11. Update on Baylisascariasis, a Highly Pathogenic Zoonotic Infection

    PubMed Central

    Morassutti, Alessandra Loureiro; Kazacos, Kevin R.

    2016-01-01

    SUMMARY Baylisascaris procyonis, the raccoon roundworm, infects a wide range of vertebrate animals, including humans, in which it causes a particularly severe type of larva migrans. It is an important cause of severe neurologic disease (neural larva migrans [NLM]) but also causes ocular disease (OLM; diffuse unilateral subacute neuroretinitis [DUSN]), visceral larva migrans (VLM), and covert/asymptomatic infections. B. procyonis is common and widespread in raccoons, and there is increasing recognition of human disease, making a clinical consideration of baylisascariasis important. This review provides an update for this disease, especially its clinical relevance and diagnosis, and summarizes the clinical cases of human NLM and VLM known to date. Most diagnosed patients have been young children less than 2 years of age, although the number of older patients diagnosed in recent years has been increasing. The recent development of recombinant antigen-based serodiagnostic assays has aided greatly in the early diagnosis of this infection. Patients recovering with fewer severe sequelae have been reported in recent years, reinforcing the current recommendation that early treatment with albendazole and corticosteroids should be initiated at the earliest suspicion of baylisascariasis. Considering the seriousness of this zoonotic infection, greater public and medical awareness is critical for the prevention and early treatment of human cases. PMID:26960940

  12. Genetic blueprint of the zoonotic pathogen Toxocara canis

    PubMed Central

    Zhu, Xing-Quan; Korhonen, Pasi K.; Cai, Huimin; Young, Neil D.; Nejsum, Peter; von Samson-Himmelstjerna, Georg; Boag, Peter R.; Tan, Patrick; Li, Qiye; Min, Jiumeng; Yang, Yulan; Wang, Xiuhua; Fang, Xiaodong; Hall, Ross S.; Hofmann, Andreas; Sternberg, Paul W.; Jex, Aaron R.; Gasser, Robin B.

    2015-01-01

    Toxocara canis is a zoonotic parasite of major socioeconomic importance worldwide. In humans, this nematode causes disease (toxocariasis) mainly in the under-privileged communities in developed and developing countries. Although relatively well studied from clinical and epidemiological perspectives, to date, there has been no global investigation of the molecular biology of this parasite. Here we use next-generation sequencing to produce a draft genome and transcriptome of T. canis to support future biological and biotechnological investigations. This genome is 317 Mb in size, has a repeat content of 13.5% and encodes at least 18,596 protein-coding genes. We study transcription in a larval, as well as adult female and male stages, characterize the parasite’s gene-silencing machinery, explore molecules involved in development or host–parasite interactions and predict intervention targets. The draft genome of T. canis should provide a useful resource for future molecular studies of this and other, related parasites. PMID:25649139

  13. Detecting the emergence of novel, zoonotic viruses pathogenic to humans.

    PubMed

    Rosenberg, Ronald

    2015-03-01

    RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.

  14. Serosurvey for Zoonotic Viral and Bacterial Pathogens Among Slaughtered Livestock in Egypt

    PubMed Central

    Horton, Katherine C.; Wasfy, Momtaz; Samaha, Hamed; Abdel-Rahman, Bassem; Safwat, Sameh; Abdel Fadeel, Moustafa; Mohareb, Emad; Dueger, Erica

    2015-01-01

    Introduction Zoonotic diseases are an important cause of human morbidity and mortality. Animal populations at locations with high risk of transmission of zoonotic pathogens offer an opportunity to study viral and bacterial pathogens of veterinary and public health concern. Methods Blood samples were collected from domestic and imported livestock slaughtered at the Muneeb abattoir in central Egypt in 2009. Samples were collected from cattle (n = 161), buffalo (n = 153), sheep (n = 174), and camels (n = 10). Samples were tested for antibodies against Leptospira spp. by a microscopy agglutination test, Coxiella burnetii by enzyme immunoassay, Brucella spp. by standard tube agglutination, and Rift Valley Fever virus (RVFV), Crimean–Congo hemorrhagic fever virus (CCHFV), sandfly fever Sicilian virus (SFSV), and sandfly fever Naples virus (SFNV) by enzyme-linked immunosorbent assay. Results Antibodies against Leptospira spp. were identified in 64 (40%) cattle, 45 (29%) buffalo, 71 (41%) sheep, and five (50%) camels; antibodies against C. burnetii in six (4%) buffalo, 14 (8%) sheep, and seven (70%) camels; and antibodies against Brucella spp. in 12 (8%) cattle, one (1%) buffalo, seven (4%) sheep, and one (10%) camel. Antibodies against RVFV were detected in two (1%) cattle and five (3%) buffalo, and antibodies against CCHFV in one (1%) cow. No antibodies against SFSV or SFNV were detected in any species. Discussion Results indicate that livestock have been exposed to a number of pathogens, although care must be taken with interpretation. It is not possible to determine whether antibodies against Leptospira spp. and RVFV in cattle and buffalo are due to prior vaccination or natural exposure. Similarly, antibodies identified in animals less than 6 months of age may be maternal antibodies transferred through colostrum rather than evidence of prior exposure. Results provide baseline evidence to indicate that surveillance within animal populations may be a useful tool to

  15. Quantifying climate change impacts on runoff of zoonotic pathogens from land

    NASA Astrophysics Data System (ADS)

    Sterk, Ankie; de Roda Husman, Ana Maria; Stergiadi, Maria; de Nijs, Ton; Schijven, Jack

    2013-04-01

    Several studies have shown a correlation between rainfall and waterborne disease outbreaks. One of the mechanisms whereby rainfall may cause outbreaks is through an increase in runoff of animal faeces from fields to surface waters. Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by water recreation or drinking-water consumption. Climate changes affect runoff because of increasing winter precipitation and more extreme precipitation events, as well as changes in evaporation. Furthermore, drier summers are leading to longer periods of high soil moisture deficits, increasing the hydrophobicity of soil and consequently changing infiltration capacities. A conceptual model is designed to describe the impacts of climate changes on the terrestrial and aquatic ecosystems, which are both directly and indirectly affecting pathogen loads in the environment and subsequent public health risks. One of the major outcomes was the lack of quantitative data and limited qualitative analyses of impacts of climate changes on pathogen runoff. Quantifying the processes by which micro-organisms are transported from fields to waters is important to be able to estimate such impacts to enable targeted implementation of effective intervention measures. A quantitative model using Mathematica software will be developed to estimate concentrations of pathogens originating from overland flow during runoff events. Different input sources will be included by applying different land-use scenarios, including point source faecal pollution from dairy cows and geese and diffuse source pollution by fertilization. Zoonotic pathogens, i.e. Cryptosporidium and Campylobacter, were selected based on transport properties, faecal loads and disease burden. Transport and survival rates of these pathogens are determined including effects of changes in precipitation but also temperature induced

  16. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives.

    PubMed

    Schwind, Jessica S; Goldstein, Tracey; Thomas, Kate; Mazet, Jonna A K; Smith, Woutrina A

    2014-07-04

    The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development's Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global 'hot spot' regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of project scientists). A One

  17. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    PubMed Central

    2012-01-01

    urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen. PMID:23244770

  18. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces from nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs each were weaned and randomly assigned to one of 24 pens in either a nursery...

  19. Effect of lysozyme or antibiotics on fecal zoonotic pathogens in nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Lysozyme is a 1,4-ß-N-acetylmuramidase that has antimicrobial properties. The objective of this study was to determine the effect of lysozyme and antibiotics on zoonotic pathogen shedding in feces in nursery pigs housed without and with an indirect disease challenge. Two replicates of 600 pigs eac...

  20. Zoonotic pathogens isolated from wild animals and environmental samples at two California wildlife hospitals.

    PubMed

    Siembieda, Jennifer L; Miller, Woutrina A; Byrne, Barbara A; Ziccardi, Michael H; Anderson, Nancy; Chouicha, Nadira; Sandrock, Christian E; Johnson, Christine K

    2011-03-15

    To determine types and estimate prevalence of potentially zoonotic enteric pathogens shed by wild animals admitted to either of 2 wildlife hospitals and to characterize distribution of these pathogens and of aerobic bacteria in a hospital environment. Cross-sectional study. Fecal samples from 338 animals in 2 wildlife hospitals and environmental samples from 1 wildlife hospital. Fecal samples were collected within 24 hours of hospital admission. Environmental samples were collected from air and surfaces. Samples were tested for zoonotic pathogens via culture techniques and biochemical analyses. Prevalence of pathogen shedding was compared among species groups, ages, sexes, and seasons. Bacterial counts were determined for environmental samples. Campylobacter spp, Vibrio spp, Salmonella spp, Giardia spp, and Cryptosporidium spp (alone or in combination) were detected in 105 of 338 (31%) fecal samples. Campylobacter spp were isolated only from birds. Juvenile passerines were more likely to shed Campylobacter spp than were adults; prevalence increased among juvenile passerines during summer. Non-O1 serotypes of Vibrio cholerae were isolated from birds; during an oil-spill response, 9 of 10 seabirds screened were shedding this pathogen, which was also detected in environmental samples. Salmonella spp and Giardia spp were isolated from birds and mammals; Cryptosporidium spp were isolated from mammals only. Floors of animal rooms had higher bacterial counts than did floors with only human traffic. Potentially zoonotic enteric pathogens were identified in samples from several species admitted to wildlife hospitals, indicating potential for transmission if prevention is not practiced.

  1. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico–US Border Along the Rio Grande

    PubMed Central

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A.; Romero-Salas, Dora; Feria-Arroyo, Teresa P.; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas–Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico–US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders. PMID:25453027

  2. Pathogenic Landscape of Transboundary Zoonotic Diseases in the Mexico-US Border Along the Rio Grande.

    PubMed

    Esteve-Gassent, Maria Dolores; Pérez de León, Adalberto A; Romero-Salas, Dora; Feria-Arroyo, Teresa P; Patino, Ramiro; Castro-Arellano, Ivan; Gordillo-Pérez, Guadalupe; Auclair, Allan; Goolsby, John; Rodriguez-Vivas, Roger Ivan; Estrada-Franco, Jose Guillermo

    2014-01-01

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and incidence of zoonotic diseases. The complexity of these challenges can be greater in areas where rivers delineate international boundaries and encompass transitions between ecozones. The Rio Grande serves as a natural border between the US State of Texas and the Mexican States of Chihuahua, Coahuila, Nuevo León, and Tamaulipas. Not only do millions of people live in this transboundary region, but also a substantial amount of goods and people pass through it everyday. Moreover, it occurs over a region that functions as a corridor for animal migrations, and thus links the Neotropic and Nearctic biogeographic zones, with the latter being a known foci of zoonotic diseases. However, the pathogenic landscape of important zoonotic diseases in the south Texas-Mexico transboundary region remains to be fully understood. An international perspective on the interplay between disease systems, ecosystem processes, land use, and human behaviors is applied here to analyze landscape and spatial features of Venezuelan equine encephalitis, Hantavirus disease, Lyme Borreliosis, Leptospirosis, Bartonellosis, Chagas disease, human Babesiosis, and Leishmaniasis. Surveillance systems following the One Health approach with a regional perspective will help identifying opportunities to mitigate the health burden of those diseases on human and animal populations. It is proposed that the Mexico-US border along the Rio Grande region be viewed as a continuum landscape where zoonotic pathogens circulate regardless of national borders.

  3. Zoonotic intestinal parasites and vector-borne pathogens in Italian shelter and kennel dogs.

    PubMed

    Traversa, Donato; Di Cesare, Angela; Simonato, Giulia; Cassini, Rudi; Merola, Carmine; Diakou, Anastasia; Halos, Lénaïg; Beugnet, Frederic; Frangipane di Regalbono, Antonio

    2017-04-01

    This study investigated the presence of zoonotic parasites and vector-borne pathogens in dogs housed in kennels and shelters from four sites of Italy. A total of 150 adoptable dogs was examined with different microscopic, serological and molecular methods. Overall 129 dogs (86%) were positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-eight (32%) were positive for one infection, while 81 (54%) for more than one pathogen. The most common zoonotic helminths recorded were hookworms, roundworms and Capillaria aerophila, followed by mosquito-borne Dirofilaria spp. and Dipylidium caninum. One hundred and thirteen (77.9%), 6 (4.1%) and 2 (1.4%) dogs were positive for Rickettsia spp., Leishmania infantum and Anaplasma spp., respectively. The results show that dogs living in rescue facilities from the studied areas may be infected by many zoonotic internal parasites and vector-borne pathogens, and that control measures should be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Zebrafish as a useful model for zoonotic Vibrio parahaemolyticus pathogenicity in fish and human.

    PubMed

    Zhang, Qinghua; Dong, Xuehong; Chen, Biao; Zhang, Yonghua; Zu, Yao; Li, Weiming

    2016-02-01

    Vibrio parahaemolyticus is an important aquatic zoonotic pathogen worldwide that causes vibriosis in many marine fish, and sepsis, gastroenteritis and wound infection in humans. However, the pathogenesis of different sources of V. parahaemolyticus is not fully understood. Here, we examined the pathogenicity and histopathology of fish (V. parahaemolyticus 1.2164) and human (V. parahaemolyticus 17) strains in a zebrafish (Danio rerio). We found that different infection routes resulted in different mortality in zebrafish. Moreover, death due to V. parahaemolyticus 1.2164 infection occurred quicker than that caused by V. parahaemolyticus 17 infection. Hematoxylin-eosin staining of liver, kidney and intestine sections showed histological lesions in all three organs after infection with either strain. V. parahaemolyticus 1.2164 caused more severe damage than V. parahaemolyticus 17. In particular, V. parahaemolyticus 1.2164 treatment induced more serious hydropic degeneration and venous sinus necrosis in the liver than V. parahaemolyticus 17 treatment. The expression levels of three proinflammatory cytokines, interleukin 1β (il1β), interferon phi 1 (ifnϕ1) and tumor necrosis factor α (tnfα), as determined by quantitative real-time PCR, were upregulated in all examined tissues of infected fish. Notably, the peak levels of tnfα were significantly higher than those of il1β and ifnϕ1, suggesting, together with pathological results, that tnfα and il1β play an important role in acute sepsis. High amounts of tnfα may be related to acute liver necrosis, while ifnϕ1 may respond to V. parahaemolyticus and play an antibacterial role for chronically infected adult zebrafish. Taken together, our results suggest that the zebrafish model of V. parahaemolyticus infection is useful for studying strain differences in V. parahaemolyticus pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than Smooth Zoonotic Counterparts

    PubMed Central

    Chacón-Díaz, Carlos; Altamirano-Silva, Pamela; González-Espinoza, Gabriela; Medina, María-Concepción; Alfaro-Alarcón, Alejandro; Bouza-Mora, Laura; Jiménez-Rojas, César; Wong, Melissa; Barquero-Calvo, Elías; Rojas, Norman; Guzmán-Verri, Caterina

    2015-01-01

    Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly. PMID:26438796

  6. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans.

    PubMed

    Ruiz-Fons, F

    2017-02-01

    Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.

  7. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends

    PubMed Central

    2013-01-01

    Abstract Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health. PMID:23962019

  8. Pathogenic landscape of transboundary zoonotic diseases in the Mexico-U.S. border along the Rio Grande

    USDA-ARS?s Scientific Manuscript database

    Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and inc...

  9. Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2.

    PubMed

    Segura, Mariela; Zheng, Han; de Greeff, Astrid; Gao, George F; Grenier, Daniel; Jiang, Yongqiang; Lu, Chengping; Maskell, Duncan; Oishi, Kazunori; Okura, Masatoshi; Osawa, Ro; Schultsz, Constance; Schwerk, Christian; Sekizaki, Tsutomu; Smith, Hilde; Srimanote, Potjanee; Takamatsu, Daisuke; Tang, Jiaqi; Tenenbaum, Tobias; Tharavichitkul, Prasit; Hoa, Ngo Thi; Valentin-Weigand, Peter; Wells, Jerry M; Wertheim, Heiman; Zhu, Baoli; Xu, Jianguo; Gottschalk, Marcelo

    2014-01-01

    First International Workshop on Streptococcus suis, Beijing, China, 12-13 August 2013. This second and final chapter of the report on the First International Workshop on Streptococcus suis follows on from Part 1, published in the April 2014, volume 9, issue 4 of Future Microbiology. S. suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Although sporadic cases of human infections had been reported worldwide, deadly S. suis outbreaks emerged in Asia. The severity of the disease underscores the lack of knowledge on the virulence and zoonotic evolution of this human-infecting agent. The pathogenesis of the infection, interactions with host cells and new avenues for treatments were among the topics discussed during the First International Workshop on S. suis (China 2013).

  10. Rapid Evolution of Virulence and Drug Resistance in the Emerging Zoonotic Pathogen Streptococcus suis

    PubMed Central

    Holden, Matthew T. G.; Hauser, Heidi; Sanders, Mandy; Ngo, Thi Hoa; Cherevach, Inna; Cronin, Ann; Goodhead, Ian; Mungall, Karen; Quail, Michael A.; Price, Claire; Rabbinowitsch, Ester; Sharp, Sarah; Croucher, Nicholas J.; Chieu, Tran Bich; Thi Hoang Mai, Nguyen; Diep, To Song; Chinh, Nguyen Tran; Kehoe, Michael; Leigh, James A.; Ward, Philip N.; Dowson, Christopher G.; Whatmore, Adrian M.; Chanter, Neil; Iversen, Pernille; Gottschalk, Marcelo; Slater, Josh D.; Smith, Hilde E.; Spratt, Brian G.; Xu, Jianguo; Ye, Changyun; Bentley, Stephen; Barrell, Barclay G.; Schultsz, Constance; Maskell, Duncan J.; Parkhill, Julian

    2009-01-01

    Background Streptococcus suis is a zoonotic pathogen that infects pigs and can occasionally cause serious infections in humans. S. suis infections occur sporadically in human Europe and North America, but a recent major outbreak has been described in China with high levels of mortality. The mechanisms of S. suis pathogenesis in humans and pigs are poorly understood. Methodology/Principal Findings The sequencing of whole genomes of S. suis isolates provides opportunities to investigate the genetic basis of infection. Here we describe whole genome sequences of three S. suis strains from the same lineage: one from European pigs, and two from human cases from China and Vietnam. Comparative genomic analysis was used to investigate the variability of these strains. S. suis is phylogenetically distinct from other Streptococcus species for which genome sequences are currently available. Accordingly, ∼40% of the ∼2 Mb genome is unique in comparison to other Streptococcus species. Finer genomic comparisons within the species showed a high level of sequence conservation; virtually all of the genome is common to the S. suis strains. The only exceptions are three ∼90 kb regions, present in the two isolates from humans, composed of integrative conjugative elements and transposons. Carried in these regions are coding sequences associated with drug resistance. In addition, small-scale sequence variation has generated pseudogenes in putative virulence and colonization factors. Conclusions/Significance The genomic inventories of genetically related S. suis strains, isolated from distinct hosts and diseases, exhibit high levels of conservation. However, the genomes provide evidence that horizontal gene transfer has contributed to the evolution of drug resistance. PMID:19603075

  11. Tracking zoonotic pathogens using blood-sucking flies as 'flying syringes'

    PubMed Central

    Bitome-Essono, Paul-Yannick; Ollomo, Benjamin; Arnathau, Céline; Durand, Patrick; Mokoudoum, Nancy Diamella; Yacka-Mouele, Lauriane; Okouga, Alain-Prince; Boundenga, Larson; Mve-Ondo, Bertrand; Obame-Nkoghe, Judicaël; Mbehang-Nguema, Philippe; Njiokou, Flobert; Makanga, Boris; Wattier, Rémi; Ayala, Diego; Ayala, Francisco J; Renaud, Francois; Rougeron, Virginie; Bretagnolle, Francois; Prugnolle, Franck; Paupy, Christophe

    2017-01-01

    About 60% of emerging infectious diseases in humans are of zoonotic origin. Their increasing number requires the development of new methods for early detection and monitoring of infectious agents in wildlife. Here, we investigated whether blood meals from hematophagous flies could be used to identify the infectious agents circulating in wild vertebrates. To this aim, 1230 blood-engorged flies were caught in the forests of Gabon. Identified blood meals (30%) were from 20 vertebrate species including mammals, birds and reptiles. Among them, 9% were infected by different extant malaria parasites among which some belonged to known parasite species, others to new parasite species or to parasite lineages for which only the vector was known. This study demonstrates that using hematophagous flies as ‘flying syringes’ constitutes an interesting approach to investigate blood-borne pathogen diversity in wild vertebrates and could be used as an early detection tool of zoonotic pathogens. DOI: http://dx.doi.org/10.7554/eLife.22069.001 PMID:28347401

  12. Sustainable control of zoonotic pathogens in wildlife: how to be fair to wild animals?

    PubMed

    Artois, M; Blancou, J; Dupeyroux, O; Gilot-Fromont, E

    2011-12-01

    Wildlife may harbour infectious pathogens that are of zoonotic concern. However, culling such reservoir populations to mitigate or control the transmission of these pathogens to humans has proved disappointingly inefficient. Alternatives are still in an experimental stage of development. They include vaccination, medication, contraception and environmental manipulation, including fencing and biosecurity measures. This review examines the general concepts involved in the control of wildlife diseases and presents relevant case studies. Since wildlife disease control inevitably involves interfering with wildlife ecology, this is a complex goal whose attempts at realisation should be supervised by a scientific organisation. Most approaches within natural ecosystems should first be carefully tested in trials that are progressively extended to a larger scale. Finally, all measures that aim to prevent infection in humans (such as personal hygiene or vaccination) or that encourage us to avoid infectious contacts with wildlife should be recommended.

  13. Co-Infection Dynamics of a Major Food-Borne Zoonotic Pathogen in Chicken

    PubMed Central

    Skånseng, Beate; Trosvik, Pål; Zimonja, Monika; Johnsen, Gro; Bjerrum, Lotte; Pedersen, Karl; Wallin, Nina; Rudi, Knut

    2007-01-01

    A major bottleneck in understanding zoonotic pathogens has been the analysis of pathogen co-infection dynamics. We have addressed this challenge using a novel direct sequencing approach for pathogen quantification in mixed infections. The major zoonotic food-borne pathogen Campylobacter jejuni, with an important reservoir in the gastrointestinal (GI) tract of chickens, was used as a model. We investigated the co-colonisation dynamics of seven C. jejuni strains in a chicken GI infection trial. The seven strains were isolated from an epidemiological study showing multiple strain infections at the farm level. We analysed time-series data, following the Campylobacter colonisation, as well as the dominant background flora of chickens. Data were collected from the infection at day 16 until the last sampling point at day 36. Chickens with two different background floras were studied, mature (treated with Broilact, which is a product consisting of bacteria from the intestinal flora of healthy hens) and spontaneous. The two treatments resulted in completely different background floras, yet similar Campylobacter colonisation patterns were detected in both groups. This suggests that it is the chicken host and not the background flora that is important in determining the Campylobacter colonisation pattern. Our results showed that mainly two of the seven C. jejuni strains dominated the Campylobacter flora in the chickens, with a shift of the dominating strain during the infection period. We propose a model in which multiple C. jejuni strains can colonise a single host, with the dominant strains being replaced as a consequence of strain-specific immune responses. This model represents a new understanding of C. jejuni epidemiology, with future implications for the development of novel intervention strategies. PMID:18020703

  14. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Detection of Zoonotic Pathogens and Characterization of Novel Viruses Carried by Commensal Rattus norvegicus in New York City

    PubMed Central

    Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian

    2014-01-01

    ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698

  16. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen.

    PubMed

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Read, Timothy D; Dean, Deborah

    2016-09-02

    Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Zoonotic pathogens from feral swine that pose a significant threat to public health.

    PubMed

    Brown, V R; Bowen, R A; Bosco-Lauth, A M

    2018-06-01

    The natural fecundity of suids, great ability to adapt to new habitats and desire for local hunting opportunities leading to translocation of feral pigs to regions where they are not yet established have all been instrumental in the home range expansion of feral swine. Feral swine populations in the United States continue to expand, wreaking havoc on agricultural lands, further compromising threatened and endangered species, and posing a microbiological threat to humans, domestic livestock and companion animals. This manuscript thoroughly reviews zoonotic diseases of concern including brucellosis, bovine tuberculosis, leptospirosis, enteric pathogens, both Salmonella spp. and shiga toxin-producing Escherichia coli, and hepatitis E. These pathogens are not a comprehensive list of microbes that are capable of infecting both humans and feral swine, but rather have been selected as they are known to infect US feral swine, direct transmission between wild suids and humans has previously been documented, or they have been shown to be readily transmitted during processing or consumption of feral swine pork. Humans that interact directly or indirectly with feral swine are at much higher risk for the development of a number of zoonotic pathogens. Numerous case reports document transmission events from feral swine and wild boar to humans, and the resulting diseases may be mild and self-limiting, chronic or fatal. Individuals that interact with feral swine should take preventative measures to minimize the risk of disease transmission and all meat should be thoroughly cooked. Additionally, public health campaigns to increase knowledge of the risks associated with feral swine are imperative. © 2018 Blackwell Verlag GmbH.

  18. Use of Bioclimatic Factors to Determine Potential Niche of Vaccinia Virus, an Emerging and Zoonotic Pathogen

    NASA Astrophysics Data System (ADS)

    Quiner, C. A.; Nakazawa, Y.

    2017-12-01

    Emerging and understudied pathogens often lack information that most commonly used analytical tools require, such as negative controls or baseline data making public health control of emerging pathogens challenging. In lieu of opportunities to collect more data from larger outbreaks or formal epidemiological studies, new analytical strategies, merging case data with publically available datasets, can be used to understand transmission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly available bioclimatic data we demonstrate one such approach. Using an Ecological Niche Model (ENM), we identify the environmental conditions under which VACV outbreaks have occurred, and determine additional locations in two affected South American countries that may be susceptible to transmission. Further, we show how suitability for the virus responds to different levels of various environmental factors and highlight the most important climatic factors in determining its transmission. The final ENM predicted all areas where Brazilian outbreaks occurred, two out of five Colombian outbreaks and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, annual precipitation, mean temperature of the coldest quarter and mean diurnal range. The analyses here provide a means by which to study patterns of an emerging infectious disease, and regions that are potentially at risk for it, in spite of the paucity of critical data. Policy

  19. Antibodies to Various Zoonotic Pathogens Detected in Feral Swine (Sus scrofa) at Abattoirs in Texas, USA.

    PubMed

    Pedersen, Kerri; Bauer, Nathan E; Rodgers, Sandra; Bazan, Luis R; Mesenbrink, Brian T; Gidlewski, Thomas

    2017-08-01

    The zoonotic risk posed to employees by slaughtering feral swine (Sus scrofa) at two abattoirs in Texas was assessed by testing feral swine serum samples for exposure to influenza A virus, Leptospira, Trichinella spiralis, and Toxoplasma gondii. Blood was collected from a total of 376 feral swine between the two facilities during six separate collection periods in 2015. Antibodies to one or more serovars of Leptospira were identified in 48.9% of feral swine tested, with Bratislava and Pomona as the most commonly detected serovars, and antibodies to influenza A virus were detected in 14.1% of feral swine. Antibodies to T. gondii and T. spiralis were identified in 9.0 and 3.5%, respectively, of feral swine tested. Our results suggest that abattoir employees should be aware of the potential for exposure to various zoonotic pathogens when slaughtering feral swine, wear appropriate personal protective equipment, and participate in medical monitoring programs to ensure detection and prompt treatment. In addition, consumers of feral swine should cook the meat to the appropriate temperature and wash hands and kitchen surfaces thoroughly after preparing meat.

  20. DETECTION OF ZOONOTIC PATHOGENS IN WILD BIRDS IN THE CROSS-BORDER REGION AUSTRIA - CZECH REPUBLIC.

    PubMed

    Konicek, Cornelia; Vodrážka, Pavel; Barták, Pavel; Knotek, Zdenek; Hess, Claudia; Račka, Karol; Hess, Michael; Troxler, Salome

    2016-10-01

    To assess the importance of wild birds as a reservoir of zoonotic pathogens in Austria and the Czech Republic, we sampled 1,325 wild birds representing 13 orders, 32 families, and 81 species. The majority belonged to orders Columbiformes (43%), Passeriformes (25%), and to birds of prey: Accipitriformes, Strigiformes, and Falconiformes (15%). We collected cloacal swabs from 1,191 birds for bacterial culture and 1,214 triple swabs (conjunctiva, choana, cloaca) for DNA and RNA isolation. The cloacal swabs were processed by classical bacteriologic methods for isolation of Escherichia coli , Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), and thermophilic Campylobacter spp. Nucleic acids isolated from triple swabs were investigated by PCR for West Nile virus, avian influenza viruses, and Chlamydia spp. We also tested tissue samples from 110 fresh carcasses for Mycobacterium spp. by PCR and we cultured fresh droppings from 114 birds for Cryptococcus spp. The most-frequently detected zoonotic bacteria were thermophilic Campylobacter spp. (12.5%) and Chlamydia spp. (10.3%). From 79.2% of the sampled birds we isolated E. coli , while 8.7% and 0.2% of E. coli isolates possessed the virulence genes for intimin (eaeA) and Shiga toxins (stx 1 and stx 2 ), respectively. Salmonella spp. were rarely found in the sampled birds (2.2%), similar to findings of MRSA (0.3%). None of the samples were positive for Cryptococcus neoformans , Mycobacterium spp., avian influenza viruses, or West Nile virus.

  1. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health.

  2. Molecular Evidence for Zoonotic Transmission of an Emergent, Highly Pathogenic Campylobacter jejuni Clone in the United States

    PubMed Central

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J.; Kwan, Patrick; Plummer, Paul J.; Han, Jing; Yaeger, Michael J.

    2012-01-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  3. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic E. coli O157 by long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic Escherichia Coli (EHEC) is a zoonotic pathogen known to be potentially lethal in humans. Its main animal reservoir is ruminants, specifically cattle, and yearly outbreaks occur worldwide with the most prevalent serotype being EHEC O157:H7. Most virulence factors of EHEC O157, incl...

  4. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing

    USDA-ARS?s Scientific Manuscript database

    Enterohaemorrhagic E. coli 0157 is a zoonotic pathogen for which colonisation of cattle and virulence in humans is associated with the expression of multiple horizontally acquired genes, the majority present in active or cryptic prophages. Our understanding of the evolution and phylogeny of E. coli ...

  5. Emerging zoonotic viral diseases.

    PubMed

    Wang, L-F; Crameri, G

    2014-08-01

    Zoonotic diseases are infectious diseases that are naturally transmitted from vertebrate animals to humans and vice versa. They are caused by all types of pathogenic agents, including bacteria, parasites, fungi, viruses and prions. Although they have been recognised for many centuries, their impact on public health has increased in the last few decades due to a combination of the success in reducing the spread of human infectious diseases through vaccination and effective therapies and the emergence of novel zoonotic diseases. It is being increasingly recognised that a One Health approach at the human-animal-ecosystem interface is needed for effective investigation, prevention and control of any emerging zoonotic disease. Here, the authors will review the drivers for emergence, highlight some of the high-impact emerging zoonotic diseases of the last two decades and provide examples of novel One Health approaches for disease investigation, prevention and control. Although this review focuses on emerging zoonotic viral diseases, the authors consider that the discussions presented in this paper will be equally applicable to emerging zoonotic diseases of other pathogen types.

  6. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and Coxiella infections.

    PubMed

    Rozental, Tatiana; Ferreira, Michelle Santos; Guterres, Alexandro; Mares-Guia, Maria Angélica; Teixeira, Bernardo R; Gonçalves, Jonathan; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2017-04-01

    Zoonotic pathogens comprise a significant and increasing fraction of all emerging and re-emerging infectious diseases that plague humans. Identifying host species is one of the keys to controlling emerging infectious diseases. From March 2007 until April 2012, we collected a total of 131 wild rodents in eight municipalities of Rio de Janeiro, Brazil. We investigated these rodents for infection with Coxiella burnetii, Bartonella spp. and Rickettsia spp. In total, 22.1% (29/131) of the rodents were infected by at least one pathogen; co-infection was detected in 1.5% (2/131) of rodents. Coxiella burnetii was detected in 4.6% (6/131) of the wild animals, 17.6% of the rodents harbored Bartonella spp. No cases of Rickettsia were identified. Bartonella doshiae and Bartonella vinsonii were the species found on the wild mammals. This report is the first to note C. burnetii, B. doshiae and B. vinsonii natural infections in Atlantic Forest wild rodents in Brazil. Our work highlights the potential risk of transmission to humans, since most of the infected specimens belong to generalist species that live near human dwellings. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses

    PubMed Central

    Balasuriya, Udeni B. R.; Lee, Chong-kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics. PMID:24427764

  8. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses.

    PubMed

    Go, Yun Young; Balasuriya, Udeni B R; Lee, Chong-Kyo

    2014-01-01

    In this review, we mainly focus on zoonotic encephalitides caused by arthropod-borne viruses (arboviruses) of the families Flaviviridae (genus Flavivirus) and Togaviridae (genus Alphavirus) that are important in both humans and domestic animals. Specifically, we will focus on alphaviruses (Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus) and flaviviruses (Japanese encephalitis virus and West Nile virus). Most of these viruses were originally found in tropical regions such as Africa and South America or in some regions in Asia. However, they have dispersed widely and currently cause diseases around the world. Global warming, increasing urbanization and population size in tropical regions, faster transportation and rapid spread of arthropod vectors contribute in continuous spreading of arboviruses into new geographic areas causing reemerging or resurging diseases. Most of the reemerging arboviruses also have emerged as zoonotic disease agents and created major public health issues and disease epidemics.

  9. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces.

    PubMed

    Mtshali, Khethiwe; Khumalo, Zth; Nakao, Ryo; Grab, Dennis J; Sugimoto, Chihiro; Thekisoe, Omm

    2016-01-01

    Ticks carry and transmit a remarkable array of pathogens including bacteria, protozoa and viruses, which may be of veterinary and/or of medical significance. With little to no information regarding the presence of tick-borne zoonotic pathogens or their known vectors in southern Africa, the aim of our study was to screen for Anaplasma phagocytophilum, Borrelia burgdorferi, Coxiella burnetii, Rickettsia species and Ehrlichia ruminantium in ticks collected and identified from ruminants in the Eastern Cape, Free State, KwaZulu-Natal and Mpumalanga Provinces of South Africa. The most abundant tick species identified in this study were Rhipicephalus evertsi evertsi (40%), Rhipicephalus species (35%), Amblyomma hebraeum (10%) and Rhipicephalus decoloratus (14%). A total of 1634 ticks were collected. DNA was extracted, and samples were subjected to PCR amplification and sequencing. The overall infection rates of ticks with the target pathogens in the four Provinces were as follows: A. phagocytophilum, 7%; C. burnetii, 7%; E. ruminantium, 28%; and Rickettsia spp., 27%. The presence of B. burgdorferi could not be confirmed. The findings of this study show that zoonotic pathogens are present in ticks in the studied South African provinces. This information will aid in the epidemiology of tick-borne zoonotic diseases in the country as well as in raising awareness about such diseases in the veterinary, medical and tourism sectors, as they may be the most affected.

  10. Transmission of foodborne zoonotic pathogens to riparian areas by grazing sheep

    PubMed Central

    Sutherland, Sara J.; Gray, Jeffrey T.; Menzies, Paula I.; Hook, Sarah E.; Millman, Suzanne T.

    2009-01-01

    The objective of this study was to determine if sheep grazing near riparian areas on pasture in Ontario are an important risk factor for the contamination of water with specific foodborne pathogens. Ten Ontario sheep farms were visited weekly for 12 wk during the summer of 2005. Samples of feces, soil, and water were collected and analyzed for the presence of Escherichia coli O157:H7, Salmonella spp., Campylobacter jejuni and C. coli, and Yersinia enterocolitica, by bacteriological identification and polymerase chain reaction (PCR). The data was analyzed as repeated measures over time using mixed models. No samples were positive for Salmonella, and no samples were confirmed positive for E. coli O157:H7 after PCR. Levels of Campylobacter were highest in the soil, but did not differ between soil where sheep grazed or camped and roadside soil that had never been grazed (P = 0.85). Levels of Yersinia were highest in water samples and were higher in soil where sheep had access (P = 0.01). The prevalence of positive Campylobacter and Yersinia samples were not associated with locations where sheep spent more time (Campylobacter P = 0.46, Yersinia P = 0.99). There was no effect of stocking density on the prevalence of Campylobacter (P = 0.30), but as the stocking density increased the levels of Yersinia increased (P = 0.04). It was concluded that although sheep transmit Yersinia to their environment, pastured sheep flocks are not major risk factors for the transmission of zoonotic pathogens into water. PMID:19436581

  11. Coxiella burnetii and Rickettsia conorii: Two zoonotic pathogens in peridomestic rodents and their ectoparasites in Nigeria.

    PubMed

    Kamani, Joshua; Baneth, Gad; Gutiérrez, Ricardo; Nachum-Biala, Yaarit; Mumcuoglu, Kosta Y; Harrus, Shimon

    2018-01-01

    Rodents are hosts of numerous pathogenic agents of public health importance globally. Their ability to harbor these pathogens without showing overt clinical signs of disease has epidemiologic consequences. In some rural settings in Nigeria, humans and rodents do not only share feeds and abode, but the latter may end up on the table of the former as a source of protein, thereby increasing the risks of disease transmission. Molecular assays were used to detect and characterize two agents of zoonotic importance, Coxiella burnetii and Rickettsia spp. in 194 peridomestic rodents captured in a peri-urban setting in Nigeria, and 32 pools of ectoparasites removed from them, to determine their possible role in the epidemiology of these diseases in this country. Targeting and characterizing the insertion sequence IS1111, C. burnetii DNA was detected in 4 out of 194 (2.1%) rodents comprising 3 out of 121 (2.5%) Rattus norvegicus and 1 out of 48 (2.1%) Rattus rattus screened in this study. Rickettsia spp. DNA was detected in two Rhipicephalus sanginueus sensu lato pools (i.e. RT1 and RT4) using the citrate synthase (gltA) gene and further characterized by amplification and sequence analysis of six genes to determine their identity. The RT1 sample consistently gave 98-100% identity to Rickettsia conorii str. Malish 7 for the various genes and loci studied. However, the identity of RT4 could not be definitively determined due to variable identities to different Rickettsia spp. according to the gene or loci under consideration. Further isolation study to determine if the RT4 characterized is a new variant or a mixture of sequences of different rickettsiae within the pool will be worthwhile. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Surveillance for zoonotic and selected pathogens in harbor seals Phoca vitulina from central California

    USGS Publications Warehouse

    Greig, Denise J.; Ip, Hon S.; Gulland, Frances M. D.; Miller, Woutrina A.; Conrad, Patricia A.; Field, Cara L.; Fleetwood, Michelle; Harvey, James T.; Jang, Spencer; Packham, Andrea; Wheeler, Elizabeth; Hall, Ailsa J.

    2014-01-01

    The infection status of harbor seals Phoca vitulina in central California, USA, was evaluated through broad surveillance for pathogens in stranded and wild-caught animals from 2001 to 2008, with most samples collected in 2007 and 2008. Stranded animals from Mendocino County to San Luis Obispo County were sampled at a rehabilitation facility: The Marine Mammal Center (TMMC, n = 175); wild-caught animals were sampled at 2 locations: San Francisco Bay (SF, n = 78) and Tomales Bay (TB, n = 97), that differed in degree of urbanization. Low prevalences of Salmonella, Campylobacter, Giardia, and Cryptosporidium were detected in the feces of stranded and wild-caught seals. Clostridium perfringens and Escherichia coli were more prevalent in the feces of stranded (58% [78 out of 135] and 76% [102 out of 135]) than wild-caught (42% [45 out of 106] and 66% [68 out of 106]) seals, whereas Vibrio spp. were 16 times more likely to be cultured from the feces of seals from SF than TB or TMMC (p < 0.005). Brucella DNA was detected in 3.4% of dead stranded harbor seals (2 out of 58). Type A influenza was isolated from feces of 1 out of 96 wild-caught seals. Exposure to Toxoplasma gondii, Sarcocystis neurona, and type A influenza was only detected in the wild-caught harbor seals (post-weaning age classes), whereas antibody titers to Leptospira spp. were detected in stranded and wild-caught seals. No stranded (n = 109) or wild-caught (n = 217) harbor seals had antibodies to phocine distemper virus, although a single low titer to canine distemper virus was detected. These results highlight the role of harbor seals as sentinel species for zoonotic and terrestrial pathogens in the marine environment.

  13. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations

    PubMed Central

    Allocati, N; Petrucci, A G; Di Giovanni, P; Masulli, M; Di Ilio, C; De Laurenzi, V

    2016-01-01

    Bats are natural reservoir hosts and sources of infection of several microorganisms, many of which cause severe human diseases. Because of contact between bats and other animals, including humans, the possibility exists for additional interspecies transmissions and resulting disease outbreaks. The purpose of this article is to supply an overview on the main pathogens isolated from bats that have the potential to cause disease in humans. PMID:27551536

  15. Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing

    PubMed Central

    Goyette-Desjardins, Guillaume; Auger, Jean-Philippe; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo

    2014-01-01

    Streptococcus suis is an important pathogen causing economic problems in the pig industry. Moreover, it is a zoonotic agent causing severe infections to people in close contact with infected pigs or pork-derived products. Although considered sporadic in the past, human S. suis infections have been reported during the last 45 years, with two large outbreaks recorded in China. In fact, the number of reported human cases has significantly increased in recent years. In this review, we present the worldwide distribution of serotypes and sequence types (STs), as determined by multilocus sequence typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods employed for S. suis identification and typing, the current epidemiological knowledge regarding serotypes and STs and the zoonotic potential of S. suis are discussed. Increased awareness of S. suis in both human and veterinary diagnostic laboratories and further establishment of typing methods will contribute to our knowledge of this pathogen, especially in regions where complete and/or recent data is lacking. More research is required to understand differences in virulence that occur among S. suis strains and if these differences can be associated with specific serotypes or STs. PMID:26038745

  16. [Zoonotic diseases caused by bacteria of the genus Bartonella genus: new reservoirs ? New vectors?].

    PubMed

    Chomel, Bruno B; Boulouis, Henri-Jean

    2005-03-01

    Domestic animals and wildlife represent a large reservoir for bartonellae, at least eight species or subspecies of which have been reported to cause zoonotic infections. In addition, numerous orphan clinical syndromes are now being attributed to Bartonella henselae infection. Many mammalian species, including cats, dogs, rodents and ruminants are the main bartonellae reservoirs. Cats are the main reservoir for B. henselae. It appears that domestic dogs, at least in non tropical regions, are more likely to be accidental hosts than reservoirs, and constitute excellent sentinels for human infections. Bartonellae are vector-borne bacteria. The mode of B. henselae transmission by cat fleas is now better understood, but new potential vectors have recently been identified, including ticks and biting flies. This articles summarizes current knowledge of the etiology, new clinical features and epidemiological characteristics of these emerging zoonoses.

  17. Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Fogarty, Lisa R.; Johnson, Heather E.; Gibson, Kristen E.; Focazio, Michael J.; Schwab, Kellogg J.; Hubbard, Laura E.; Foreman, William T.

    2015-01-01

    Manure spills to streams are relatively frequent, but no studies have characterized stream contamination with zoonotic and veterinary pathogens, or fecal chemicals, following a spill. We tested stream water and sediment over 25 days and downstream for 7.6 km for: fecal indicator bacteria (FIB); the fecal indicator chemicals cholesterol and coprostanol; 20 genes for zoonotic and swine-specific bacterial pathogens by presence/absence polymerase chain reaction (PCR) for viable cells; one swine-specific Escherichia coli toxin gene (STII) by quantitative PCR (qPCR); and nine human and animal viruses by qPCR, or reverse-transcriptase qPCR. Twelve days post-spill, and 4.2 km downstream, water concentrations of FIB, cholesterol, and coprostanol were 1-2 orders of magnitude greater than those detected before, or above, the spill, and genes indicating viable zoonotic or swine-infectious Escherichia coli, were detected in water or sediment. STII increased from undetectable before, or above the spill, to 105 copies/100 mL water 12 days post-spill. Thirteen of 14 water (8/9 sediment) samples had viable STII-carrying cells post-spill. Eighteen days post-spill porcine adenovirus and teschovirus were detected 5.6 km downstream. Sediment FIB concentrations (per gram wet weight) were greater than in water, and sediment was a continuous reservoir of genes and chemicals post-spill. Constituent concentrations were much lower, and detections less frequent, in a runoff event (200 days post-spill) following manure application, although the swine-associated STII and stx2e genes were detected. Manure spills are an underappreciated pathway for livestock-derived contaminants to enter streams, with persistent environmental outcomes, and the potential for human and veterinary health consequences.

  18. A framework for the study of zoonotic disease emergence and its drivers: spillover of bat pathogens as a case study

    PubMed Central

    Wood, James L. N.; Leach, Melissa; Waldman, Linda; MacGregor, Hayley; Fooks, Anthony R.; Jones, Kate E.; Restif, Olivier; Dechmann, Dina; Hayman, David T. S.; Baker, Kate S.; Peel, Alison J.; Kamins, Alexandra O.; Fahr, Jakob; Ntiamoa-Baidu, Yaa; Suu-Ire, Richard; Breiman, Robert F.; Epstein, Jonathan H.; Field, Hume E.; Cunningham, Andrew A.

    2012-01-01

    Many serious emerging zoonotic infections have recently arisen from bats, including Ebola, Marburg, SARS-coronavirus, Hendra, Nipah, and a number of rabies and rabies-related viruses, consistent with the overall observation that wildlife are an important source of emerging zoonoses for the human population. Mechanisms underlying the recognized association between ecosystem health and human health remain poorly understood and responding appropriately to the ecological, social and economic conditions that facilitate disease emergence and transmission represents a substantial societal challenge. In the context of disease emergence from wildlife, wildlife and habitat should be conserved, which in turn will preserve vital ecosystem structure and function, which has broader implications for human wellbeing and environmental sustainability, while simultaneously minimizing the spillover of pathogens from wild animals into human beings. In this review, we propose a novel framework for the holistic and interdisciplinary investigation of zoonotic disease emergence and its drivers, using the spillover of bat pathogens as a case study. This study has been developed to gain a detailed interdisciplinary understanding, and it combines cutting-edge perspectives from both natural and social sciences, linked to policy impacts on public health, land use and conservation. PMID:22966143

  19. Zoonotic bacterial meningitis in human adults.

    PubMed

    van Samkar, Anusha; Brouwer, Matthijs C; van der Ende, Arie; van de Beek, Diederik

    2016-09-13

    To describe the epidemiology, etiology, clinical characteristics, treatment, outcome, and prevention of zoonotic bacterial meningitis in human adults. We identified 16 zoonotic bacteria causing meningitis in adults. Zoonotic bacterial meningitis is uncommon compared to bacterial meningitis caused by human pathogens, and the incidence has a strong regional distribution. Zoonotic bacterial meningitis is mainly associated with animal contact, consumption of animal products, and an immunocompromised state of the patient. In a high proportion of zoonotic bacterial meningitis cases, CSF analysis showed only a mildly elevated leukocyte count. The recommended antibiotic therapy differs per pathogen, and the overall mortality is low. Zoonotic bacterial meningitis is uncommon but is associated with specific complications. The suspicion should be raised in patients with bacterial meningitis who have recreational or professional contact with animals and in patients living in regions endemic for specific zoonotic pathogens. An immunocompromised state is associated with a worse prognosis. Identification of risk factors and underlying disease is necessary to improve treatment. © 2016 American Academy of Neurology.

  20. West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa.

    PubMed

    Venter, Marietjie; Swanepoel, Robert

    2010-10-01

    West Nile virus (WNV) is widely distributed in South Africa, but since a few cases of neurological disease have been reported from this region, endemic lineage 2 strains were postulated to be of low virulence. Several cases of nonfatal encephalitis in humans as well as fatal cases in a foal, dog, and ostrich chicks have, however, been associated with lineage 2 WNV in South Africa. The pathogenesis of lineage 2 WNV strains was investigated using mouse neuroinvasive experiments, gene expression experiments, and genome sequence comparisons which indicated that lineage 2 strains that are highly pathogenic exist. To determine whether cases of WNV were being missed in South Africa, horses with fever and neurological disease were investigated. Several cases of WNV were identified, all associated with severe neurological disease, 85% of which had to be euthanized or died. All cases positive by RT-PCR were shown to belong to lineage 2 WNV by DNA sequencing and phylogenetic analysis. Two cases of occupational infection were investigated, including a case of zoonotic transmission to a veterinarian who performed an autopsy on one of the horses as well as a laboratory infection after a needle stick injury with a neuroinvasive lineage 2 strain. Both resulted in neurological disease. Cytokine expression was investigated in the second case to assess the immunopathogenesis of WNV. Collectively, these studies suggest that lineage 2 WNV may be significantly under estimated as a cause of neurological disease in South Africa.

  1. Epidemiological survey of zoonotic pathogens in feral pigeons (Columba livia var. domestica) and sympatric zoo species in Southern Spain.

    PubMed

    Cano-Terriza, David; Guerra, Rafael; Lecollinet, Sylvie; Cerdà-Cuéllar, Marta; Cabezón, Oscar; Almería, Sonia; García-Bocanegra, Ignacio

    2015-12-01

    A cross-sectional study was carried out to determine the prevalence of pathogenic zoonotic agents (flaviviruses, avian influenza viruses (AIVs), Salmonella spp. and Toxoplasma gondii) in feral pigeons and sympatric zoo animals from Córdoba (Southern Spain) between 2013 and 2014. Antibodies against flaviviruses were detected in 7.8% out of 142 (CI95%: 3.7-11.8) pigeons, and 8.2% of 49 (CI95%: 0.9-15.4) of zoo animals tested. Antibodies with specificity against West Nile virus (WNV) and Usutu virus (USUV) were confirmed both in pigeons and in zoo birds. Even though seropositivity to AIVs was not detected in any of the analyzed pigeons, 17.9% of 28 (CI95%: 3.7-32.0) zoo birds tested showed positive results. Salmonella spp. was not isolated in any of 152 fecal samples collected from pigeons, while 6.8% of 44 zoo animals were positive. Antibodies against T. gondii were found in 9.2% of 142 (CI95%: 4.8-13.6) feral pigeons and 26.9% of 108 (CI95%: 19.6-34.1) zoo animals. This is the first study on flaviviruses and T. gondii in feral pigeons and captive zoo species in Spain. Antibodies against WNV and USUV detected in non-migratory pigeons and captive zoo animals indicate local circulation of these emerging pathogens in the study area. T. gondii was widespread in species analyzed. This finding could be of importance for Public Health and Conservation of endangered species present in zoo parks. Pigeons and zoo animals may be included as sentinel species for monitoring zoonotic pathogens in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review.

    PubMed

    Dhama, K; Rajagunalan, S; Chakraborty, S; Verma, A K; Kumar, A; Tiwari, R; Kapoor, S

    2013-10-15

    The term food borne diseases or food-borne illnesses or more commonly food poisoning are used to denote gastrointestinal complications that occur following recent consumption of a particular food or drink. Millions of people suffer worldwide every year and the situation is quiet grave in developing nations creating social and economic strain. The food borne pathogens include various bacteria viz., Salmonella, Campylobacter, Escherichia coli, Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus, Arcobacter, Clostridium perfringens, Cl. botulinum and Bacillus cereus and helminths viz., Taenia. They also include protozoa viz., Trichinella, Sarcocystis, Toxoplasma gondii and Cryptosporidium parvum. The zoonotic potential and the ability to elaborate toxins by many of the microbes causing fatal intoxication are sufficient to understand the seriousness of the situation. The viral agents being host specific their transmission to humans through food of animal origin is not yet confirmed although these animal viruses are similar to that of viruses infecting human. Food-borne bacteria; protozoa and helminthes have complex distribution pattern in the environment and inside the host system. This along with complexity of the maintenance chain and life cycle (of parasites) has made it difficult for epidemiologist and diagnostician to undertake any immediate safety measures against them. Serological and molecular diagnostic tests viz. ELISA, Latex agglutination test, Lateral flow assays, Immunomagnetic separation assays, molecular assays viz. Polymerase Chain Reaction (PCR), multiplex PCR, immuno-PCR, Realtime PCR, Random Amplified Polymorphic DNA (RAPD)-PCR, DNA microarrays and probes are widely used. Along with these LAMP assays, Capillary Electrophoresis-Single Strand Confirmation polymorphism (CE-SSCP); Flow cytometry, FISH, Biosensors, Direct epifluorescent filter technique, nanotechnology based methods and sophisticated tools (ultrasonography, magnetic resonance

  3. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen?

    PubMed

    Gottschalk, Marcelo; Xu, Jianguo; Calzas, Cynthia; Segura, Mariela

    2010-03-01

    Infections caused by Streptococcus suis are considered a global and an economical problem in the swine industry. Moreover, S. suis is an agent of zoonosis that afflicts people in close contact with infected pigs or pork-derived products. Although sporadic cases of S. suis infections in humans (mainly meningitis) have been reported during the last 40 years, a large outbreak due to this pathogen emerged in the summer of 2005 in China. The severity of the infection in humans during the outbreak, such as a shorter incubation time, more rapid disease progression and higher rate of mortality, attracted a lot of attention from the scientific community and the general press. In fact, the number of publications on S. suis (including the number of reported human cases) has significantly increased during recent years. In this article we critically review the present knowledge on S. suis infection in humans, we discuss the hypotheses that may explain the 2005 outbreak and the repercussion of such an episode on the scientific community.

  4. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens

    USDA-ARS?s Scientific Manuscript database

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group or genus, for example viruses or Cryptosporidium, requiring multiple methods if the sampling program is targeting more than on...

  5. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic.

    PubMed

    Salkeld, Daniel J; Padgett, Kerry A; Jones, James Holland

    2013-05-01

    Zoonotic pathogens are significant burdens on global public health. Because they are transmitted to humans from non-human animals, the transmission dynamics of zoonoses are necessarily influenced by the ecology of their animal hosts and vectors. The 'dilution effect' proposes that increased species diversity reduces disease risk, suggesting that conservation and public health initiatives can work synergistically to improve human health and wildlife biodiversity. However, the meta-analysis that we present here indicates a weak and highly heterogeneous relationship between host biodiversity and disease. Our results suggest that disease risk is more likely a local phenomenon that relies on the specific composition of reservoir hosts and vectors, and their ecology, rather than patterns of species biodiversity. © 2013 Blackwell Publishing Ltd/CNRS.

  6. Fecal Indicators and Zoonotic Pathogens in Household Drinking Water Taps Fed from Rainwater Tanks in Southeast Queensland, Australia

    PubMed Central

    Hodgers, L.; Sidhu, J. P. S.; Toze, S.

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  7. Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia.

    PubMed

    Ahmed, W; Hodgers, L; Sidhu, J P S; Toze, S

    2012-01-01

    In this study, the microbiological quality of household tap water samples fed from rainwater tanks was assessed by monitoring the numbers of Escherichia coli bacteria and enterococci from 24 households in Southeast Queensland (SEQ), Australia. Quantitative PCR (qPCR) was also used for the quantitative detection of zoonotic pathogens in water samples from rainwater tanks and connected household taps. The numbers of zoonotic pathogens were also estimated in fecal samples from possums and various species of birds by using qPCR, as possums and birds are considered to be the potential sources of fecal contamination in roof-harvested rainwater (RHRW). Among the 24 households, 63% of rainwater tank and 58% of connected household tap water (CHTW) samples contained E. coli and exceeded Australian drinking water guidelines of <1 CFU E. coli per 100 ml water. Similarly, 92% of rainwater tanks and 83% of CHTW samples also contained enterococci. In all, 21%, 4%, and 13% of rainwater tank samples contained Campylobacter spp., Salmonella spp., and Giardia lamblia, respectively. Similarly, 21% of rainwater tank and 13% of CHTW samples contained Campylobacter spp. and G. lamblia, respectively. The number of E. coli (P = 0.78), Enterococcus (P = 0.64), Campylobacter (P = 0.44), and G. lamblia (P = 0.50) cells in rainwater tanks did not differ significantly from the numbers observed in the CHTW samples. Among the 40 possum fecal samples tested, Campylobacter spp., Cryptosporidium parvum, and G. lamblia were detected in 60%, 13%, and 30% of samples, respectively. Among the 38 bird fecal samples tested, Campylobacter spp., Salmonella spp., C. parvum, and G. lamblia were detected in 24%, 11%, 5%, and 13% of the samples, respectively. Household tap water samples fed from rainwater tanks tested in the study appeared to be highly variable. Regular cleaning of roofs and gutters, along with pruning of overhanging tree branches, might also prove effective in reducing animal fecal

  8. Common occurrence of zoonotic pathogen Cryptosporidium meleagridis in broiler chickens and turkeys in Algeria.

    PubMed

    Baroudi, Djamel; Khelef, Djamel; Goucem, Rachid; Adjou, Karim T; Adamu, Haileeyesus; Zhang, Hongwei; Xiao, Lihua

    2013-09-23

    Only a small number of birds have been identified by molecular techniques as having Cryptosporidium meleagridis, the third most important species for human cryptosporidiosis. In this study, using PCR-RFLP analysis of the small subunit (SSU) rRNA gene, we examined the ileum of 90 dead chickens from 23 farms and 57 dead turkeys from 16 farms in Algeria for Cryptosporidium spp. C. meleagridis-positive specimens were subtyped by sequence analysis of the 60 kDa glycoprotein gene. Cryptosporidium infection rates were 34% and 44% in chickens and turkeys, respectively, with all positive turkeys (25) and most positive chickens (26/31) having C. meleagridis. All C. meleagridis specimens belonged to a new subtype family. The frequent occurrence of C. meleagridis in chickens and turkeys illustrates the potential for zoonotic transmission of cryptosporidiosis in Algeria. Published by Elsevier B.V.

  9. Screening food-borne and zoonotic pathogens associated with livestock practices in the Sumapaz region, Cundinamarca, Colombia.

    PubMed

    Arenas, Nelson E; Abril, Diego A; Valencia, Paola; Khandige, Surabhi; Soto, Carlos Yesid; Moreno-Melo, Vilma

    2017-04-01

    Hazardous practices regarding antibiotics misuse, unsanitary milking procedures, and the commercial sales of raw milk and unpasteurized dairy products are currently being practiced by livestock farmers in the Sumapaz region (Colombia). The purpose of this study was to screen for food-borne and zoonotic pathogens associated with local livestock practices. We evaluated 1098 cows from 46 livestock farms in the Sumapaz region that were selected by random. Of the total population of cattle, 962 animals (88%) were tested for bovine TB using a caudal-fold tuberculin test and 546 (50%) for brucellosis by a competitive ELISA. In the population tested, 23 cows were positive for Brucella sp. representing a 4.2% seroprevalence and no cases of bovine tuberculosis were found. In addition, food-borne contamination with Escherichia coli and Staphylococcus aureus was assessed together with antibiotic susceptibility for ten different antibiotics in milk samples from 16 livestock farms. We found that 12 of the farms (75%) were contaminated with these food-borne pathogens. Noteworthy, all of the isolated pathogenic strains were resistant to multiple antibiotics, primarily to oxytetracycline and erythromycin. Our findings suggest that livestock products could be a source of exposure to Brucella and multidrug-resistant E. coli and S. aureus strains as a result of unhygienic livestock practices in the Sumapaz region. Training in good farming practices is the key to improving safety in food production.

  10. Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario

    PubMed Central

    Murphy, Colleen P.; Reid-Smith, Richard J.; Boerlin, Patrick; Weese, J. Scott; Prescott, John F.; Janecko, Nicol; Hassard, Lori; McEwen, Scott A.

    2010-01-01

    Hospital-based infection control in veterinary medicine is emerging and the role of the environment in hospital-acquired infections (HAI) in veterinary hospitals is largely unknown. This study was initiated to determine the recovery of Escherichia coli and selected veterinary and zoonotic pathogens from the environments of 101 community veterinary hospitals. The proportion of hospitals with positive environmental swabs were: E. coli — 92%, Clostridium difficile — 58%, methicillin-resistant Staphylococcus aureus (MRSA) — 9%, CMY-2 producing E. coli — 9%, methicillin-resistant Staphylococcus pseudintermedius — 7%, and Salmonella — 2%. Vancomycin-resistant Enterococcus spp., canine parvovirus, and feline calicivirus were not isolated. Prevalence of antimicrobial resistance in E. coli isolates was low. Important potential veterinary and human pathogens were recovered including Canadian epidemic strains MRSA-2 and MRSA-5, and C. difficile ribotype 027. There is an environmental reservoir of pathogens in veterinary hospitals; therefore, additional studies are required to characterize risk factors associated with HAI in companion animals, including the role of the environment. PMID:21119862

  11. Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario.

    PubMed

    Murphy, Colleen P; Reid-Smith, Richard J; Boerlin, Patrick; Weese, J Scott; Prescott, John F; Janecko, Nicol; Hassard, Lori; McEwen, Scott A

    2010-09-01

    Hospital-based infection control in veterinary medicine is emerging and the role of the environment in hospital-acquired infections (HAI) in veterinary hospitals is largely unknown. This study was initiated to determine the recovery of Escherichia coli and selected veterinary and zoonotic pathogens from the environments of 101 community veterinary hospitals. The proportion of hospitals with positive environmental swabs were: E. coli--92%, Clostridium difficile--58%, methicillin-resistant Staphylococcus aureus (MRSA)--9%, CMY-2 producing E. coli--9%, methicillin-resistant Staphylococcus pseudintermedius--7%, and Salmonella--2%. Vancomycin-resistant Enterococcus spp., canine parvovirus, and feline calicivirus were not isolated. Prevalence of antimicrobial resistance in E. coli isolates was low. Important potential veterinary and human pathogens were recovered including Canadian epidemic strains MRSA-2 and MRSA-5, and C. difficile ribotype 027. There is an environmental reservoir of pathogens in veterinary hospitals; therefore, additional studies are required to characterize risk factors associated with HAI in companion animals, including the role of the environment.

  12. Risk for interspecies transmission of zoonotic pathogens during poultry processing and pork production in Peru: A qualitative study.

    PubMed

    Carnero, A M; Kitayama, K; Diaz, D A; Garvich, M; Angulo, N; Cama, V A; Gilman, R H; Bayer, A M

    2018-03-30

    Interspecies transmission of pathogens is an unfrequent but naturally occurring event and human activities may favour opportunities not previously reported. Reassortment of zoonotic pathogens like influenza A virus can result from these activities. Recently, swine and birds have played a central role as "mixing vessels" for epidemic and pandemic events related to strains like H1N1 and H5N1. Unsafe practices in poultry markets and swine farms can lead to interspecies transmission, favouring the emergence of novel strains. Thus, understanding practices that lead to interspecies interactions is crucial. This qualitative study aimed to evaluate poultry processing practices in formal and informal markets and the use of leftovers by swine farmers in three Peruvian cities: Lima (capital), Tumbes (coastal) and Tarapoto (jungle). We conducted 80 direct observations at formal and informal markets and interviewed 15 swine farmers. Processors slaughter and pluck chickens and vendors and/or processors eviscerate chickens. Food safety and hygiene practices were suboptimal or absent, although some heterogeneity was observed between cities and chicken vendors versus processors. Both vendors (76%) and processors (100%) sold the chicken viscera leftovers to swine farmers, representing the main source of chicken viscera for swine farms (53%). Swine farmers fed the chicken viscera to their swine. Chicken viscera cooking times varied widely and were insufficient in some cases. Non-abattoired poultry leads to the sale of poultry leftovers to small-scale swine farms, resulting in indirect but frequent interspecies contacts that can lead to interspecies transmission of bacterial pathogens or the reassortment of influenza A viruses. These interactions are exacerbated by suboptimal safety and hygiene conditions. People involved in these activities constitute an at-risk population who could play a central role in preventing the transmission of pathogens between species. Educational

  13. Glass Wool Filters for Concentrating Waterborne Viruses and Agricultural Zoonotic Pathogens

    PubMed Central

    Millen, Hana T.; Gonnering, Jordan C.; Berg, Ryan K.; Spencer, Susan K.; Jokela, William E.; Pearce, John M.; Borchardt, Jackson S.; Borchardt, Mark A.

    2012-01-01

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group, for example US Environmental Protection Agency Method 1623 for Giardia and Cryptosporidium1, which means multiple methods are required if the sampling program is targeting more than one pathogen group. Another drawback of current methods is the equipment can be complicated and expensive, for example the VIRADEL method with the 1MDS cartridge filter for concentrating viruses2. In this article we describe how to construct glass wool filters for concentrating waterborne pathogens. After filter elution, the concentrate is amenable to a second concentration step, such as centrifugation, followed by pathogen detection and enumeration by cultural or molecular methods. The filters have several advantages. Construction is easy and the filters can be built to any size for meeting specific sampling requirements. The filter parts are inexpensive, making it possible to collect a large number of samples without severely impacting a project budget. Large sample volumes (100s to 1,000s L) can be concentrated depending on the rate of clogging from sample turbidity. The filters are highly portable and with minimal equipment, such as a pump and flow meter, they can be implemented in the field for sampling finished drinking water, surface water, groundwater, and agricultural runoff. Lastly, glass wool filtration is effective for concentrating a variety of pathogen types so only one method is necessary. Here we report on filter effectiveness in concentrating waterborne human enterovirus, Salmonella enterica, Cryptosporidium parvum, and avian influenza virus. PMID:22415031

  14. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens

    USGS Publications Warehouse

    Millen, Hana T.; Gonnering, Jordan C.; Berg, Ryan K.; Spencer, Susan K.; Jokela, William E.; Pearce, John M.; Borchardt, Jackson S.; Borchardt, Mark A.

    2012-01-01

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group, for example US Environmental Protection Agency Method 1623 for Giardia and Cryptosporidium1, which means multiple methods are required if the sampling program is targeting more than one pathogen group. Another drawback of current methods is the equipment can be complicated and expensive, for example the VIRADEL method with the 1MDS cartridge filter for concentrating viruses2. In this article we describe how to construct glass wool filters for concentrating waterborne pathogens. After filter elution, the concentrate is amenable to a second concentration step, such as centrifugation, followed by pathogen detection and enumeration by cultural or molecular methods. The filters have several advantages. Construction is easy and the filters can be built to any size for meeting specific sampling requirements. The filter parts are inexpensive, making it possible to collect a large number of samples without severely impacting a project budget. Large sample volumes (100s to 1,000s L) can be concentrated depending on the rate of clogging from sample turbidity. The filters are highly portable and with minimal equipment, such as a pump and flow meter, they can be implemented in the field for sampling finished drinking water, surface water, groundwater, and agricultural runoff. Lastly, glass wool filtration is effective for concentrating a variety of pathogen types so only one method is necessary. Here we report on filter effectiveness in concentrating waterborne human enterovirus, Salmonella enterica, Cryptosporidium parvum, and avian influenza virus.

  15. Ticks are more suitable than red foxes for monitoring zoonotic tick-borne pathogens in northeastern Italy.

    PubMed

    Da Rold, Graziana; Ravagnan, Silvia; Soppelsa, Fabio; Porcellato, Elena; Soppelsa, Mauro; Obber, Federica; Citterio, Carlo Vittorio; Carlin, Sara; Danesi, Patrizia; Montarsi, Fabrizio; Capelli, Gioia

    2018-03-20

    Northeastern Italy is a hotspot for several tick-borne pathogens, transmitted to animals and humans mainly by Ixodes ricinus. Here we compare the results of molecular monitoring of ticks and zoonotic TBPs over a six-year period, with the monitoring of red foxes (Vulpes vulpes) in an endemic area. In the period 2011-2016, 2,578 ticks were collected in 38 sites of 20 municipalities of Belluno Province. Individual adults (264), pooled larvae (n = 330) and nymphs (n = 1984) were screened for tick-borne encephalitis virus, Borrelia burgdorferi (s.l.), Rickettsia spp., Babesia spp., Anaplasma phagocytophilum and "Candidatus Neoehrlichia mikurensis" by specific SYBR green real-time PCR assays and sequencing. The spleens of 97 foxes, culled in the period 2015-2017 during sport hunting or population control programs, were also screened. Overall, nine different pathogens were found in I. ricinus nymph and adult ticks: Rickettsia helvetica (3.69%); R. monacensis (0.49%); four species of the B. burgdorferi (s.l.) complex [B. afzelii (1.51%); B. burgdorferi (s.s.) (1.25%); B. garinii (0.18%); and B. valaisiana (0.18%)]; A. phagocytophilum (3.29%); "Candidatus N. mikurensis" (1.73%); and Babesia venatorum (0.04%). Larvae were collected and screened in the first year only and two pools (0.6%) were positive for R. helvetica. Tick-borne encephalitis virus was not found in ticks although human cases do occur in the area. The rate of infection in ticks varied widely according to tick developmental stage, site and year of collection. As expected, adults were the most infected, with 27.6% harboring at least one pathogen compared to 7.3% of nymphs. Pathogens with a minimum infection rate above 1% were recorded every year. None of the pathogens found in ticks were detectable in the foxes, 52 (54%) of which were instead positive for Babesia cf. microti (also referred to as Babesia microti-like, "Theileria annae", "Babesia annae" and "Babesia vulpes"). The results show that foxes

  16. Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria.

    PubMed

    Staley, Zachery R; Senkbeil, Jacob K; Rohr, Jason R; Harwood, Valerie J

    2012-11-01

    Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect.

  17. Lack of Direct Effects of Agrochemicals on Zoonotic Pathogens and Fecal Indicator Bacteria

    PubMed Central

    Staley, Zachery R.; Senkbeil, Jacob K.; Rohr, Jason R.

    2012-01-01

    Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect. PMID:22961900

  18. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    PubMed Central

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  19. An assessment of zoonotic and production limiting pathogens in rusa deer (Cervus timorensis rusa) from Mauritius.

    PubMed

    Jori, F; Godfroid, J; Michel, A L; Potts, A D; Jaumally, M R; Sauzier, J; Roger, M

    2014-08-01

    A population of approximately 70,000 rusa deer (Cervus timorensis russa) represents the most important mammal species reared for food on the island of Mauritius, being the main source of red meat for the local population. However, very limited information is available on the circulation of pathogens affecting the productivity and health of this species. To produce baseline data on the circulation of infectious pathogens in rusa deer under production, a serological survey and/or direct pathogen detection for six selected infectious diseases was undertaken in 2007 in a sample of 53% of the herds reared in semi-free-ranging conditions in hunting estates. Seropositive results were recorded for Johne's disease with an indirect ELISA test (1.7%, n = 351), heartwater with an immunofluorescence antibody test (IFAT) (95.5%, n = 178) and leptospirosis with a Microscopic Agglutination Test (MAT) (25.9%, n = 363). Significant associations were found between seroprevalence to some of the leptospiral serogroups detected (Tarassovi, Pomona, Sejroe and Mini) and age of the animals, animal density or location of the estates (being more prevalent in hotter and more humid areas). In addition, Mycobacterium bovis and M. avium subspecies paratuberculosis were confirmed in two deer carcasses by culture and PCR, respectively. No antibodies against Brucella spp. nor Rift Valley Fever virus were detected with the use of respective indirect ELISA's. The results obtained suggest that the population of rusa deer from Mauritius is exposed to a wide range of pathogens which may affect their productivity. In addition, the results highlight the potential public health risks incurred by deer industry workers and consumers. This survey fills an important gap in knowledge regarding the health of tropical deer meat in Mauritius and justifies the need to implement more regular surveys of selected pathogens in the deer population. © 2013 Blackwell Verlag GmbH.

  20. Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.

    PubMed

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K

    2016-01-01

    Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.

  1. Brucellosis caused by the wood rat pathogen Brucella neotomae: two case reports.

    PubMed

    Villalobos-Vindas, Juan M; Amuy, Ernesto; Barquero-Calvo, Elías; Rojas, Norman; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzman-Verri, Caterina; Moreno, Edgardo

    2017-12-19

    Brucellosis is a chronic bacterial disease caused by members of the genus Brucella. Among the classical species stands Brucella neotomae, until now, a pathogen limited to wood rats. However, we have identified two brucellosis human cases caused by B. neotomae, demonstrating that this species has zoonotic potential. Within almost 4 years of each other, a 64-year-old Costa Rican white Hispanic man and a 51-year-old Costa Rican white Hispanic man required medical care at public hospitals of Costa Rica. Their hematological and biochemical parameters were within normal limits. No adenopathies or visceral abnormalities were found. Both patients showed intermittent fever, disorientation, and general malaise and a positive Rose Bengal test compatible with Brucella infection. Blood and cerebrospinal fluid cultures rendered Gram-negative coccobacilli identified by genomic analysis as B. neotomae. After antibiotic treatment, the patients recovered with normal mental activities. This is the first report describing in detail the clinical disease caused by B. neotomae in two unrelated patients. In spite of previous claims, this bacterium keeps zoonotic potential. Proposals to generate vaccines by using B. neotomae as an immunogen must be reexamined and countries housing the natural reservoir must consider the zoonotic risk.

  2. Molecular Detection and Characterization of Zoonotic and Veterinary Pathogens in Ticks from Northeastern China

    PubMed Central

    Wei, Feng; Song, Mingxin; Liu, Huanhuan; Wang, Bo; Wang, Shuchao; Wang, Zedong; Ma, Hongyu; Li, Zhongyu; Zeng, Zheng; Qian, Jun; Liu, Quan

    2016-01-01

    Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n = 1699), Haemaphysalis concinna (n = 412), Haemaphysalis longicornis (n = 390), Dermacentor nuttalli (n = 253), and Dermacentor silvarum (n = 204) ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. Anaplasma phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%), H. longicornis (1.9%), H. concinna (6.5%), D. nuttalli (1.7%), and D. silvarum (2.3%); Anaplasma bovis was detected in H. longicornis (0.3%) and H. concinna (0.2%); Ehrlichia muris was detected in I. persulcatus (2.5%) and H. concinna (0.2%); Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%). The Ehrlichia variant (GenBank access number KU921424), closely related to Ehrlichia ewingii, was found in H. longicornis (0.8%) and H. concinna (0.2%). I. persulcatus was infected with Babesia venatorum (1.2%), Babesia microti (0.6%), and Babesia divergens (0.6%). Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306) were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep, and cattle (B. gibsoni, B. motasi, and B. crassa). Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029) associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%). These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases. PMID:27965644

  3. Isolation of a zoonotic pathogen Kluyvera ascorbata from Egyptian fruit-bat Rousettus aegyptiacus.

    PubMed

    Han, Jee Eun; Gomez, Dennis K; Kim, Ji Hyung; Choresca, Casiano H; Shin, Sang Phil; Park, Se Chang

    2010-01-01

    The Egyptian fruit-bat Rousettus aegyptiacus which had been raised at the private commercial aquarium in Seoul, Korea for indoor exhibition was found dead and submitted to College of Veterinary Medicine, Seoul National University for postmortem examination. A pure bacterium of Kluyvera ascorbata was isolated from the blood specimen. The isolation of K. ascorbata from fruit bat is very important, because it is the most infectious agent of the genus Kluyvera that cause serious diseases to animals and human. Fruit-bats which are distributed in pet shops through black-market in Korea although unproven become popular pet nowadays. This situation enhances chance of zoonosis. This paper describes the first isolation of K. ascorbata from the Egyptian fruit-bat.

  4. Zoonotic ocular onchocercosis caused by Onchocerca lupi in dogs in Romania.

    PubMed

    Tudor, Poliana; Turcitu, Mihai; Mateescu, Cosmin; Dantas-Torres, Filipe; Tudor, Niculae; Bărbuceanu, Florica; Ciuca, Lavinia; Burcoveanu, Ioana; Acatrinei, Dumitru; Rinaldi, Laura; Mateescu, Romanița; Bădicu, Adina; Ionașcu, Iuliana; Otranto, Domenico

    2016-02-01

    Onchocerca lupi is a filarial nematode, which infects the scleral conjunctival tissue of dogs, wolves and cats. Whilst adult nematodes localize in the conjunctive tissue of sclera or in the retrobulbar, microfilariae are found in the skin, and they are rarely diagnosed in asymptomatic animals. Since the first report of human ocular infection 5 years ago, up to 10 zoonotic cases have been identified in patients worldwide. We report, for the first time in Romania, three cases of canine ocular onchocercosis in dogs. Fragments of the harvested worms were characterized morphologically and molecularly. This article expands knowledge on the distribution of this parasite in Eastern Europe and sounds an alarm bell for ophthalmologists about the possible occurrence of human cases of O. lupi infection.

  5. Investigation for zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in Duhok region of Northern Iraq by molecular methods

    NASA Astrophysics Data System (ADS)

    Mohammed, Kamiran Abdulrahman; Arabacı, Muhammed; Önalan, Şükrü

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in Duhok region of the Northern Iraq. Carp is the main fish species cultured in the Duhok region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 20 carp farms in the Duhok Region of the Northern Iraq. Six carp samples were collected from each carp farm. Head kidney tissue samples and intestine tissue samples were collected from each carp sample. Than head kidney and intestine tissue samples were pooled. The total bacterial DNA extraction from the pooled each 20 head kidney tissue samples and pooled each 20 intestinal tissue samples. Primers for pathogens were originally designed from 16S Ribosomal gene region. Zoonotic bacteria were scanned in all tissue samples by absent / present analysis in the RT-PCR. After RT-PCR, Capillary gel electrophoresis bands were used for the confirmation of the size of amplicon which was planned during primer designing stage. As a result, one sample was positive in respect to Aeromonas hydrophila, from intestine and one carp farm was positive in respect to Pseudomonas fluorescens from intestine and two carp farms were positive in respect to Streptococcus iniae. Totally 17 of 20 carp farms were negative in respect to the zoonotic bacteria. In conclusion the zoonotic bacteria were very low (15 %) in carp farms from the Duhok Region in the Northern Iraq. Only in one Carp farms, both Aeromonas hydrophila and Pseudomonas fluorescens were positive. Also Streptococcus inia were positive in two carp farms.

  6. Investigation of zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in the Northern Iraq-Erbil region by molecular methods

    NASA Astrophysics Data System (ADS)

    Ibraheem, Azad Saber; Önalan, Şükrü; Arabacı, Muhammed

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in the Northern Iraq-Erbil region. Carp is the main fish species cultured in Erbil region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 25 carp farms in the Northern Iraq-Erbil region. Six carp samples were collected from each carp farm. Head kidney and intestine tissue samples were collected from each carp sample. Then head kidney and intestine tissue samples were pooled separately from each carp farm. Total bacterial DNA had been extracted from the 25 pooled head kidney and 25 intestinal tissue samples. The pathogen Primers were originally designed from 16S RNA gene region. Zoonotic bacteria were scanned in all tissue samples with absent/present analysis by RT-PCR. Furthermore, the capillary gel electrophoresis bands were used for confirmation of amplicon size which was planned during primer designing stage. As a result, thirteen carp farms were positive in the respect to Aeromonas hydrophila, eight carp farms were positive from head kidney and six carp farms were positive from the intestine, only one carp farm was positive from both head kidney and the intestine tissue samples. In the respect to Streptococcus iniae, four carp farms were positive from head kidney and two carp farms were positive from the intestine. Only one carp farm was positive in the respect to Pseudomonas fluorescens from the intestine. Totally, 9 of 25 carp farms were cleared (negative) the zoonotic bacteria. In conclusion, the zoonotic bacteria were high (64 %) in carp farms in the Northern Iraq-Erbil region.

  7. Disturbance in forest ecosystems caused by pathogens and insects

    Treesearch

    Philip M. Wargo; Philip M. Wargo

    1995-01-01

    Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...

  8. Spatiotemporal Analysis of Cryptosporidium Species/Genotypes and Relationships with Other Zoonotic Pathogens in Surface Water from Mixed-Use Watersheds

    PubMed Central

    Wilkes, Graham; Ruecker, Norma J.; Neumann, Norman F.; Gannon, Victor P. J.; Jokinen, Cassandra; Sunohara, Mark; Topp, Edward; Pintar, Katarina D. M.; Edge, Thomas A.

    2013-01-01

    Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e

  9. Integrated cluster- and case-based surveillance for detecting stage III zoonotic pathogens: an example of Nipah virus surveillance in Bangladesh.

    PubMed

    Naser, A M; Hossain, M J; Sazzad, H M S; Homaira, N; Gurley, E S; Podder, G; Afroj, S; Banu, S; Rollin, P E; Daszak, P; Ahmed, B-N; Rahman, M; Luby, S P

    2015-07-01

    This paper explores the utility of cluster- and case-based surveillance established in government hospitals in Bangladesh to detect Nipah virus, a stage III zoonotic pathogen. Physicians listed meningo-encephalitis cases in the 10 surveillance hospitals and identified a cluster when ⩾2 cases who lived within 30 min walking distance of one another developed symptoms within 3 weeks of each other. Physicians collected blood samples from the clustered cases. As part of case-based surveillance, blood was collected from all listed meningo-encephalitis cases in three hospitals during the Nipah season (January-March). An investigation team visited clustered cases' communities to collect epidemiological information and blood from the living cases. We tested serum using Nipah-specific IgM ELISA. Up to September 2011, in 5887 listed cases, we identified 62 clusters comprising 176 encephalitis cases. We collected blood from 127 of these cases. In 10 clusters, we identified a total of 62 Nipah cases: 18 laboratory-confirmed and 34 probable. We identified person-to-person transmission of Nipah virus in four clusters. From case-based surveillance, we identified 23 (4%) Nipah cases. Faced with thousands of encephalitis cases, integrated cluster surveillance allows targeted deployment of investigative resources to detect outbreaks by stage III zoonotic pathogens in resource-limited settings.

  10. Photodynamic inactivation of pathogens causing infectious keratitis

    NASA Astrophysics Data System (ADS)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations < 1 mM were sufficient to reach a penetration depth of 500 μm. Liquid cultures of microorganisms were irradiated using a specially constructed illumination chamber made of Spectralon(R) (reflectance: 99 %), which was equipped with high power light emitting diodes (λ = 670 nm). Clinical isolates of Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) from keratitis patients were tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  11. Hantavirus infection: a global zoonotic challenge.

    PubMed

    Jiang, Hong; Zheng, Xuyang; Wang, Limei; Du, Hong; Wang, Pingzhong; Bai, Xuefan

    2017-02-01

    Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.

  12. A Survey of Zoonotic Pathogens Carried by Non-Indigenous Rodents at the Interface of the Wet Tropics of North Queensland, Australia.

    PubMed

    Chakma, S; Picard, J; Duffy, R; Constantinoiu, C; Gummow, B

    2017-02-01

    In 1964, Brucella was isolated from rodents trapped in Wooroonooran National Park (WNP), in Northern Queensland, Australia. Genotyping of bacterial isolates in 2008 determined that they were a novel Brucella species. This study attempted to reisolate this species of Brucella from rodents living in the boundary area adjacent to WNP and to establish which endo- and ecto-parasites and bacterial agents were being carried by non-indigenous rodents at this interface. Seventy non-indigenous rodents were trapped [Mus musculus (52), Rattus rattus (17) and Rattus norvegicus (1)], euthanized and sampled on four properties adjacent to the WNP in July 2012. Organ pools were screened by culture for Salmonella, Leptospira and Brucella species, real-time PCR for Coxiella burnetii and conventional PCR for Leptospira. Collected ecto- and endo-parasites were identified using morphological criteria. The percentage of rodents carrying pathogens were Leptospira (40%), Salmonella choleraesuis ssp. arizonae (14.29%), ectoparasites (21.42%) and endoparasites (87%). Brucella and C. burnetii were not identified, and it was concluded that their prevalences were below 12%. Two rodent-specific helminthic species, namely Syphacia obvelata (2.86%) and Nippostrongylus brasiliensis (85.71%), were identified. The most prevalent ectoparasites belonged to Laelaps spp. (41.17%) followed by Polyplax spp. (23.53%), Hoplopleura spp. (17.65%), Ixodes holocyclus (17.64%) and Stephanocircus harrisoni (5.88%), respectively. These ectoparasites, except S. harrisoni, are known to transmit zoonotic pathogens such as Rickettsia spp. from rat to rat and could be transmitted to humans by other arthropods that bite humans. The high prevalence of pathogenic Leptospira species is of significant public health concern. This is the first known study of zoonotic agents carried by non-indigenous rodents living in the Australian wet-tropical forest interface. © 2015 Blackwell Verlag GmbH.

  13. Fatal septicemia caused by the zoonotic bacterium Streptococcus iniae during an outbreak in Caribbean reef fish.

    PubMed

    Keirstead, N D; Brake, J W; Griffin, M J; Halliday-Simmonds, I; Thrall, M A; Soto, E

    2014-09-01

    An outbreak of Streptococcus iniae occurred in the early months of 2008 among wild reef fish in the waters of the Federation of St Kitts and Nevis, lasting almost 2 months. Moribund and dead fish were collected for gross, histological, bacteriological, and molecular analysis. Necropsy findings included diffuse fibrinous pericarditis, pale friable livers, and serosal petechiation. Cytological and histological analysis revealed granulocytic and granulomatous inflammation with abundant coccoid bacterial organisms forming long chains. Necrosis, inflammation, and vasculitis were most severe in the pericardium, meninges, liver, kidneys, and gills. Bacterial isolates revealed β-hemolytic, Gram-positive coccoid bacteria identified as S. iniae by amplification and 16S ribosomal RNA gene sequencing. Results from biochemical and antimicrobial susceptibility analysis, together with repetitive element palindromic polymerase chain reaction fingerprinting, suggest that a single strain was responsible for the outbreak. The inciting cause for this S. iniae-associated cluster of mortalities is unknown. © The Author(s) 2013.

  14. Testing of human specimens for the presence of highly pathogenic zoonotic avian influenza virus A(H5N1) in Poland in 2006-2008 - justified or unnecessary steps?

    PubMed

    Romanowska, Magdalena; Nowak, Iwona; Brydak, Lidia; Wojtyla, Andrzej

    2009-01-01

    Since 1997, human infections with highly pathogenic zoonotic avian influenza viruses have shown that the risk of influenza pandemic is significant. In Europe, infections caused by the highly pathogenic avian influenza A(H7N7) virus were confirmed in the human population in 2003 in the Netherlands. Moreover, outbreaks of A(H5N1) infections were observed in wild and farm birds in different European regions, including Poland in 2006-2008. This study presents 16 patients in Poland from whom clinical specimens were collected and tested for A(H5N1) highly pathogenic avian influenza. This article shows the results of laboratory tests and discusses the legitimacy of the collection and testing of the specimens. All patients were negative for A(H5N1) infection. Nevertheless, only two patients met clinical and epidemiological criteria from the avian influenza case definition. The conclusion is that there is still a strong necessity for increasing the awareness of medical and laboratory staff, as well as the awareness of some occupational groups about human infections with avian influenza viruses, including the importance of seasonal influenza vaccination. It should also be emphasized that in the case of patients suspected of being infected with avian influenza, the information about clinical symptoms is insufficient and must be accompanied by a wide epidemiological investigation.

  15. Molecular, biochemical, and morphometric characterization of Fasciola species potentially causing zoonotic disease in Egypt.

    PubMed

    El-Rahimy, Hoda H; Mahgoub, Abeer M A; El-Gebaly, Naglaa Saad M; Mousa, Wahid M A; Antably, Abeer S A E

    2012-09-01

    Fascioliasis is an important disease caused by Fasciola hepatica and Fasciola gigantica. The distributions of both species overlap in many areas of Asia and Africa including Egypt. Fifty adult Fasciola worms were collected from livers of cattle and sheep slaughtered in abattoirs, Cairo, Egypt. They were subjected to morphological and metric assessment of external features of fresh adults, morphological and metric assessment of internal anatomy of stained mounted worms, determination of electrophorezed bands of crude adult homogenates using SDS-PAGE, and molecular characterization of species-specific DNA segments using RFLP-PCR. It was found that the correlation between conventional morphology and its morphotype was statistically significant (P value = 0.00). Using SDS-PAGE, 13 bands were detected among both genotypes of Fasciola (35.7, 33.6, 32.4, 29.3, 27.5, 26, 24.4, 23, 21.45, 19, 16.75, 12.5, and 9.1 kDa).The most prevalent bands were that with a molecular weight of 29.3, 26, and 19 kDa. Bands detected were common for both species, but protein bands could not distinguish between F. hepatica and F. gigantica. The result of PCR for the amplification of the selected 28S rDNA fragment with the designed primer set yielded 618 bp long PCR products for F. hepatica and F. gigantica. Different band patterns generated after digestion of the 618 bp segment by the enzyme AvaII obtained with F. hepatica showed segments of the length 529, 62, 27 bp, while with F. gigantica 322, 269, 27 bp bands were obtained. Genotyping revealed no equivocal results. The conventional morphological parameters for species determination of Fasciola spp. endemic in Egypt were evaluated versus protein bands characterization and genotyping. It was concluded that conventional morphological and metric assessments were not useful for differentiation between F. gigantica and F. hepatica due to extensive overlap in the relative ranges. Similar conclusion was reached concerning protein band

  16. Evaluation of Bovine Feces-Associated Microbial Source Tracking Markers and Their Correlations with Fecal Indicators and Zoonotic Pathogens in a Brisbane, Australia, Reservoir

    PubMed Central

    Sritharan, T.; Palmer, A.; Sidhu, J. P. S.; Toze, S.

    2013-01-01

    This study was aimed at evaluating the host specificity and host sensitivity of two bovine feces-associated bacterial (BacCow-UCD and cowM3) and one viral [bovine adenovirus (B-AVs)] microbial source tracking (MST) markers by screening 130 fecal and wastewater samples from 10 target and nontarget host groups in southeast Queensland, Australia. In addition, 36 water samples were collected from a reservoir and tested for the occurrence of all three bovine feces-associated markers along with fecal indicator bacteria (FIB), Campylobacter spp., Escherichia coli O157, and Salmonella spp. The overall host specificity values of the BacCow-UCD, cowM3, and B-AVs markers to differentiate between bovine and other nontarget host groups were 0.66, 0.88, and 1.00, respectively (maximum value of 1.00). The overall host sensitivity values of these markers, however, in composite bovine wastewater and individual bovine fecal DNA samples were 0.93, 0.90, and 0.60, respectively (maximum value of 1.00). Among the 36 water samples tested, 56%, 22%, and 6% samples were PCR positive for the BacCow-UCD, cowM3, and B-AVs markers, respectively. Among the 36 samples tested, 50% and 14% samples were PCR positive for the Campylobacter 16S rRNA and E. coli O157 rfbE genes, respectively. Based on the results, we recommend that multiple bovine feces-associated markers be used if possible for bovine fecal pollution tracking. Nonetheless, the presence of the multiple bovine feces-associated markers along with the presence of potential zoonotic pathogens indicates bovine fecal pollution in the reservoir water samples. Further research is required to understand the decay rates of these markers in relation to FIB and zoonotic pathogens. PMID:23417003

  17. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential

    PubMed Central

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-01-01

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. PMID:28277218

  18. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential.

    PubMed

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-03-02

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein - with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses - or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. This article is copyright of The Authors, 2017.

  19. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture.

    PubMed

    Haack, Sheridan K; Duris, Joseph W; Kolpin, Dana W; Focazio, Michael J; Meyer, Michael T; Johnson, Heather E; Oster, Ryan J; Foreman, William T

    2016-09-01

    Animal waste, stream water, and streambed sediment from 19 small (<32km(2)) watersheds in 12U.S. states having either no major animal agriculture (control, n=4), or predominantly beef (n=4), dairy (n=3), swine (n=5), or poultry (n=3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural

  20. Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.; Kolpin, Dana W.; Focazio, Michael J.; Meyer, Michael T.; Johnson, Heather E.; Oster, Ryan J.; Foreman, William T.

    2016-01-01

    Animal waste, stream water, and streambed sediment from 19 small (< 32 km2) watersheds in 12 U.S. states having either no major animal agriculture (control, n = 4), or predominantly beef (n = 4), dairy (n = 3), swine (n = 5), or poultry (n = 3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under

  1. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  2. Cultural Practices Shaping Zoonotic Diseases Surveillance: The Case of Highly Pathogenic Avian Influenza and Thailand Native Chicken Farmers.

    PubMed

    Delabouglise, A; Antoine-Moussiaux, N; Tatong, D; Chumkaeo, A; Binot, A; Fournié, G; Pilot, E; Phimpraphi, W; Kasemsuwan, S; Paul, M C; Duboz, R; Salem, G; Peyre, M

    2017-08-01

    Effectiveness of current passive zoonotic disease surveillance systems is limited by the under-reporting of disease outbreaks in the domestic animal population. Evaluating the acceptability of passive surveillance and its economic, social and cultural determinants appears a critical step for improving it. A participatory rural appraisal was implemented in a rural subdistrict of Thailand. Focus group interviews were used to identify sanitary risks perceived by native chicken farmers and describe the structure of their value chain. Qualitative individual interviews with a large diversity of actors enabled to identify perceived costs and benefits associated with the reporting of HPAI suspicions to sanitary authorities. Besides, flows of information on HPAI suspected cases were assessed using network analysis, based on data collected through individual questionnaires. Results show that the presence of cockfighting activities in the area negatively affected the willingness of all chicken farmers and other actors to report suspected HPAI cases. The high financial and affective value of fighting cocks contradicted the HPAI control policy based on mass culling. However, the importance of product quality in the native chicken meat value chain and the free veterinary services and products delivered by veterinary officers had a positive impact on suspected case reporting. Besides, cockfighting practitioners had a significantly higher centrality than other actors in the information network and they facilitated the spatial diffusion of information. Social ties built in cockfighting activities and the shared purpose of protecting valuable cocks were at the basis of the diffusion of information and the informal collective management of diseases. Building bridges with this informal network would greatly improve the effectiveness of passive surveillance. © 2016 Blackwell Verlag GmbH.

  3. The Vietnam Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying Emerging Zoonotic Infectious Diseases.

    PubMed

    Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen

    2015-12-01

    The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to

  4. Prevalence and impact of water-borne zoonotic pathogens in water, cattle and humans in selected villages in Dodoma Rural and Bagamoyo districts, Tanzania

    NASA Astrophysics Data System (ADS)

    Kusiluka, L. J. M.; Karimuribo, E. D.; Mdegela, R. H.; Luoga, E. J.; Munishi, P. K. T.; Mlozi, M. R. S.; Kambarage, D. M.

    A study on the prevalence of water-borne zoonotic pathogens in water, cattle and humans was conducted in six villages in Dodoma Rural (5) and Bagamoyo (1) districts, Tanzania. Water sources were screened for faecal coliform organisms, thermophilic Campylobacter, Salmonella, Cryptosporidium and Giardia. Faecal samples from cattle and humans were also analysed for the above specific pathogens. Results indicate that 70.8% ( n = 48) of the water sources screened were contaminated with faecal coliform organisms. Water sources in two villages, one each in Dodoma Rural and Bagamoyo districts were also contaminated with Giardia lamblia. The overall prevalence of Campylobacter jejuni in cattle in the two study areas was 2.3% ( n = 942) and at least one animal in each village was infected with C. jejuni. Cryptosporidium parvum was detected in 0.5% ( n = 942) of the cattle examined in three villages in Dodoma district. Salmonella spp. was demonstrated in only 1.4% ( n = 144) of the cattle in Chalinze village in Dodoma Rural district while G. lamblia was only detected in 1.5% ( n = 202) of the animals examined in Chamakweza village in Bagamoyo district. Nine (1.9%) of the people screened at three heath centres in the study areas were infected with C. jejuni while 3.7% ( n = 484) of the people had C. parvum oocysts. G. lamblia was detected in 2.5% of the 202 people screened at the Chalinze health centre in Bagamoyo district. Analysis of the secondary data revealed that clinical complaints related to enteric diseases were prevalent in humans in the two areas throughout the year and the prevalence varied from about 1% to 25% in both <5 years and ⩾5 years patients. In conclusion, this study has highlighted the possible public health risks, which may be associated with keeping of animals and sharing of water sources between humans and animals.

  5. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease.

    PubMed

    Tivendale, Kelly A; Logue, Catherine M; Kariyawasam, Subhashinie; Jordan, Dianna; Hussein, Ashraf; Li, Ganwu; Wannemuehler, Yvonne; Nolan, Lisa K

    2010-08-01

    Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APEC's ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.

  6. Rodent reservoirs of future zoonotic diseases

    PubMed Central

    Han, Barbara A.; Schmidt, John Paul; Bowden, Sarah E.; Drake, John M.

    2015-01-01

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States. PMID:26038558

  7. Clonality of Bacterial Pathogens Causing Hospital-Acquired Pneumonia.

    PubMed

    Pudová, V; Htoutou Sedláková, M; Kolář, M

    2016-09-01

    Hospital-acquired pneumonia (HAP) is one of the most serious complications in patients staying in intensive care units. This multicenter study of Czech patients with HAP aimed at assessing the clonality of bacterial pathogens causing the condition. Bacterial isolates were compared using pulsed-field gel electrophoresis. Included in this study were 330 patients hospitalized between May 1, 2013 and December 31, 2014 at departments of anesthesiology and intensive care medicine of four big hospitals in the Czech Republic. A total of 531 bacterial isolates were obtained, of which 267 were classified as etiological agents causing HAP. Similarity or identity was assessed in 231 bacterial isolates most frequently obtained from HAP patients. Over the study period, no significant clonal spread was noted. Most isolates were unique strains, and the included HAP cases may therefore be characterized as mostly endogenous. Yet there were differences in species and potential identical isolates between the participating centers. In three hospitals, Gram-negative bacteria (Enterobacteriaceae and Pseudomonas aeruginosa) prevailed as etiological agents, and Staphylococcus aureus was most prevalent in the fourth center.

  8. Zoonotic risks from small ruminants.

    PubMed

    Ganter, M

    2015-12-14

    Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific

  9. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems

    USGS Publications Warehouse

    Krusor, Colin; Smith, Woutrina A.; Tinker, M. Tim; Silver, Mary; Conrad, Patricia A.; Shapiro, Karen

    2015-01-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondiiwas not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates.

  10. Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease

    PubMed Central

    Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.

    2005-01-01

    Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465

  11. Rheumatoid arthritis is an autoimmune disease caused by periodontal pathogens

    PubMed Central

    Ogrendik, Mesut

    2013-01-01

    A statistically significant association between periodontal disease (PD) and systemic diseases has been identified. Rheumatoid arthritis (RA), which is a chronic inflammatory joint disease, exhibits similar characteristics and pathogenesis to PD. The association between RA and PD has been investigated, and numerous publications on this subject exist. Approximately 20 bacterial species have been identified as periodontal pathogens, and these organisms are linked to various types of PD. The most analyzed species of periodontopathic bacteria are Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans. Antibodies and DNA from these oral pathogens have been isolated from the sera and synovial fluids of RA patients. This rapid communication describes the role of periodontal pathogens in the etiopathogenesis of RA. PMID:23737674

  12. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    PubMed

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  13. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets

    PubMed Central

    Naguib, Mahmoud M.; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L. P.; Hoffmann, Donata; Grund, Christian; Beer, Martin

    2017-01-01

    ABSTRACT The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo. Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been

  14. Kyasanur Forest Disease (KFD): Rare Disease of Zoonotic Origin.

    PubMed

    Muraleedharan, M

    2016-09-01

    Kyasanur forest disease (KFD) is a rare tick borne zoonotic disease that causes acute febrile hemorrhagic illness in humans and monkeys especially in southern part of India. The disease is caused by highly pathogenic KFD virus (KFDV) which belongs to member of the genus Flavivirus and family Flaviviridae. The disease is transmitted to monkeys and humans by infective tick Haemaphysalisspinigera. Seasonal outbreaks are expected to occur during the months of January to June. The aim of this paper is to briefly summarize the epidemiology, mode of transmission of KFD virus, clinical findings, diagnosis, treatment, control and prevention of the disease..

  15. Bat Flight and Zoonotic Viruses

    PubMed Central

    Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts. PMID:24750692

  16. Bat flight and zoonotic viruses

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  17. [Sphingolipids, vehicle for pathogenic agents and cause of genetic diseases].

    PubMed

    Fasano, Caroline; Hiol, Abel; Miolan, Jean-Pierre; Niel, Jean-Pierre

    2006-04-01

    Sphingolipids are present in all eukaryotic cells and share a sphingoid base : sphingosine. They were first discovered in 1884 and for a long time they were thought to participate to membrane structure only. Recently it has been established that they are mainly located in particular areas of the membrane called rafts which are signalling platforms. It has also been demonstrated that sphingolipids are receptors and second messengers. They play a crucial role in cellular functioning and are necessary to maintenance and developing of living organisms. However due to their receptor properties, they are also gateway for penetration of pathogenic agents such as virus (Ebola, HIV) or toxins (botulinium, tetanus). These agents first bind to glycosphingolipids or proteins mainly located in rafts. The complex so formed is required for the crossing of the membrane by the pathogenic agent. Sphingolipids metabolism is regulated by numerous enzymes. A failure in the activity of one of them induces an accumulation of sphingolipids known as sphingolipidoses. These are genetic diseases having severe consequences for the survival of the organism. The precise mechanisms of the sphingolipidoses are still mainly unknown which explains why few therapeutic strategies are available. These particular properties of lipids rafts and sphingolipids explain why a growing number of studies in the medical and scientific fields are devoted to them.

  18. Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases.

    PubMed

    Agunos, Agnes; Pierson, F William; Lungu, Bwalya; Dunn, Patricia A; Tablante, Nathaniel

    2016-09-01

    Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and

  19. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  20. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats

    Treesearch

    Jonathan M. Palmer; Kevin P. Drees; Jeffrey T. Foster; Daniel L. Lindner

    2018-01-01

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species....

  1. Epidemiology of infections caused by polymyxin-resistant pathogens.

    PubMed

    Giamarellou, Helen

    2016-12-01

    Confronting the storm of carbapenemase-producing Gram-negative pathogens and thus facing the threat of untreatable infections, the medical community revived colistin. Not long since its re-introduction and despite the fact that resistance to colistin at least in Escherichia coli is rare, chromosomally-mediated colistin resistance in metallo-β-lactamase-producing Klebsiella pneumoniae strains was reported in 2004 from Greece. Subsequent studies revealed the highest predominance in Italy (38%) and Greece (26%), with colistin-resistant (Col-R) strains frequently carrying a carbapenemase. On the other hand, the international prevalence of Col-R Acinetobacter baumannii varied, predominantly in Southern Europe and Southeast Asia, with rates exceeding 80% in Italy and Greece. Risk factors have mainly incriminated the selective pressure of excess consumption of colistin both in animals and humans. In November 2015, emergence of plasmid-mediated colistin resistance due to the mcr-1 gene was reported from China, mostly in community-derived E. coli strains. As of 1 September 2016, the mcr-1 gene was detected in 35 countries worldwide in livestock/retail meat and in human sources from 29 and 22 countries, respectively. Heavy usage of polymyxins in animals has been incriminated as the reservoir of the mcr-1 gene. Therefore, it is imperative that: (i) polymyxins are banned as growth promoters and for prophylaxis in animals; (ii) targeted surveillance plus molecular epidemiology is performed in hospitals; (iii) carriers or patients infected with isolates harbouring both mcr-1 and carbapenemase genes are strictly isolated; (iv) susceptibilities are based on exact colistin minimum inhibitory concentration (MIC) determination; and (v) rational use of colistin is audited in hospitals. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. White Band Disease (type I) of endangered caribbean acroporid corals is caused by pathogenic bacteria.

    PubMed

    Kline, David I; Vollmer, Steven V

    2011-01-01

    Diseases affecting coral reefs have increased exponentially over the last three decades and contributed to their decline, particularly in the Caribbean. In most cases, the responsible pathogens have not been isolated, often due to the difficulty in isolating and culturing marine bacteria. White Band Disease (WBD) has caused unprecedented declines in the Caribbean acroporid corals, resulting in their listings as threatened on the US Threatened and Endangered Species List and critically endangered on the IUCN Red List. Yet, despite the importance of WBD, the probable pathogen(s) have not yet been determined. Here we present in situ transmission data from a series of filtrate and antibiotic treatments of disease tissue that indicate that WBD is contagious and caused by bacterial pathogen(s). Additionally our data suggest that Ampicillin could be considered as a treatment for WBD (type I).

  3. Waterborne zoonotic helminthiases.

    PubMed

    Nithiuthai, Suwannee; Anantaphruti, Malinee T; Waikagul, Jitra; Gajadhar, Alvin

    2004-12-09

    This review deals with waterborne zoonotic helminths, many of which are opportunistic parasites spreading directly from animals to man or man to animals through water that is either ingested or that contains forms capable of skin penetration. Disease severity ranges from being rapidly fatal to low-grade chronic infections that may be asymptomatic for many years. The most significant zoonotic waterborne helminthic diseases are either snail-mediated, copepod-mediated or transmitted by faecal-contaminated water. Snail-mediated helminthiases described here are caused by digenetic trematodes that undergo complex life cycles involving various species of aquatic snails. These diseases include schistosomiasis, cercarial dermatitis, fascioliasis and fasciolopsiasis. The primary copepod-mediated helminthiases are sparganosis, gnathostomiasis and dracunculiasis, and the major faecal-contaminated water helminthiases are cysticercosis, hydatid disease and larva migrans. Generally, only parasites whose infective stages can be transmitted directly by water are discussed in this article. Although many do not require a water environment in which to complete their life cycle, their infective stages can certainly be distributed and acquired directly through water. Transmission via the external environment is necessary for many helminth parasites, with water and faecal contamination being important considerations. Human behaviour, particularly poor hygiene, is a major factor in the re-emergence, and spread of parasitic infections. Also important in assessing the risk of infection by water transmission are human habits and population density, the prevalence of infection in them and in alternate animal hosts, methods of treating sewage and drinking water, and climate. Disease prevention methods, including disease surveillance, education and improved drinking water treatment are described.

  4. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens.

    PubMed

    Wells, J E; Berry, E D; Guerini, M N; Varel, V H

    2015-02-01

    To evaluate natural terpene compounds for antimicrobial activities and determine whether these compounds could be used to control microbial activities and pathogens in production animal facilities. Thymol, geraniol, glydox, linalool, pine oil, plinol and terpineol were tested in laboratory studies for ability to control the production of odorous volatile fatty acid compounds and reduce pathogen levels in manure slurry preparations. Thymol is a terpene phenolic compound and was most effective for reducing fermentation products and pathogen levels (P < 0.05), followed by the extracts linalool, pine oil and terpineol, which are terpene alcohols. Select compounds thymol, linalool and pine oil were further evaluated in two separate studies by applying the agents to feedlot surfaces in cattle pens. Feedlot surface material (FSM; manure and soil) was collected and analysed for fermentation products, levels of coliforms and total Escherichia coli, and the presence of E. coli O157:H7, Campylobacter, Salmonella, Listeria and L. monocytogenes. The reduction in fermentation products but not pathogens was dependent on the moisture present in the FSM. Treatment with 2000 ppm thymol reduced the prevalence of E. coli O157:H7 but not Listeria. In a separate study, treatment with 4000 ppm pine oil reduced E. coli O157:H7, Listeria and Campylobacter (P < 0.05). Linalool was tested at two levels (2000 and 4000 ppm) and did not affect pathogen levels at either concentration. Natural compounds bearing terpenes can control pathogenic bacteria in treated manures and when applied to the feedlot surface in production cattle systems. Pine oil is a cheaper alternative to thymol and may be a useful treatment for controlling pathogens. The control of bacterial pathogens in animal productions systems is an important step in preharvest food safety. Waste products, such as pine oil extract, from the pulp wood industry may have application for treating feedlot pens and manures to reduce the

  5. Zoonotic aspects of vector-borne infections.

    PubMed

    Failloux, A-B; Moutailler, S

    2015-04-01

    Vector-borne diseases are principally zoonotic diseases transmitted to humans by animals. Pathogens such as bacteria, parasites and viruses are primarily maintained within an enzootic cycle between populations of non-human primates or other mammals and largely non-anthropophilic vectors. This 'wild' cycle sometimes spills over in the form of occasional infections of humans and domestic animals. Lifestyle changes, incursions by humans into natural habitats and changes in agropastoral practices create opportunities that make the borders between wildlife and humans more permeable. Some vector-borne diseases have dispensed with the need for amplification in wild or domestic animals and they can now be directly transmitted to humans. This applies to some viruses (dengue and chikungunya) that have caused major epidemics. Bacteria of the genus Bartonella have reduced their transmission cycle to the minimum, with humans acting as reservoir, amplifier and disseminator. The design of control strategies for vector-borne diseases should be guided by research into emergence mechanisms in order to understand how a wild cycle can produce a pathogen that goes on to cause devastating urban epidemics.

  6. Assessment of community awareness and risk perceptions of zoonotic causes of abortion in cattle at three selected livestock-wildlife interface areas of Zimbabwe.

    PubMed

    Ndengu, M; DE Garine-Wichatitsky, M; Pfukenyi, D M; Tivapasi, M; Mukamuri, B; Matope, G

    2017-05-01

    A study was conducted to assess the awareness of cattle abortions due to brucellosis, Rift Valley fever (RVF) and leptospirosis, and to compare frequencies of reported abortions in communities living at the periphery of the Great Limpopo Transfrontier Conservation Area in southeastern Zimbabwe. Three study sites were selected based on the type of livestock-wildlife interface: porous livestock-wildlife interface (unrestricted); non-porous livestock-wildlife interface (restricted by fencing); and livestock-wildlife non-interface (totally absent or control). Respondents randomly selected from a list of potential cattle farmers (N = 379) distributed at porous (40·1%), non-interface (35·5%) and non-porous (26·4%), were interviewed using a combined close- and open-ended questionnaire. Focus group discussions were conducted with 10-12 members of each community. More abortions in the last 5 years were reported from the porous interface (52%) and a significantly higher per cent of respondents from the porous interface (P < 0·05) perceived wildlife as playing a role in livestock abortions compared with the other interface types. The odds of reporting abortions in cattle were higher in large herd sizes (odds ratio (OR) = 2·6; 95% confidence interval (CI) 1·5-4·3), porous (OR = 1·9; 95% CI 1·0-3·5) and non-porous interface (OR = 2·2; 95% CI 1·1-4·3) compared with livestock-wildlife non-interface areas. About 21·6% of the respondents knew brucellosis as a cause of abortion, compared with RVF (9·8%) and leptospirosis (3·7%). These results explain to some extent, the existence of human/wildlife conflict in the studied livestock-wildlife interface areas of Zimbabwe, which militates against biodiversity conservation efforts. The low awareness of zoonoses means the public is at risk of contracting some of these infections. Thus, further studies should focus on livestock-wildlife interface areas to assess if the increased rates of abortions reported in cattle may be

  7. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes

    USDA-ARS?s Scientific Manuscript database

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bo...

  8. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens

    USDA-ARS?s Scientific Manuscript database

    Aims: To evaluate natural terpene compounds for antimicrobial activities and determine if these compounds could be used to control microbial activities and pathogens in production animal facilities. Methods and Results: Thymol, geraniol, glydox, linalool, pine oil, plinol, and terpineol were teste...

  9. Persistence of Mycobacterium avium subsp. paratuberculosis and Other Zoonotic Pathogens during Simulated Composting, Manure Packing, and Liquid Storage of Dairy Manure

    PubMed Central

    Grewal, Sukhbir K.; Rajeev, Sreekumari; Sreevatsan, Srinand; Michel, Frederick C.

    2006-01-01

    Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55°C, manure packing at 25°C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 106 CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55°C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M

  10. Fate of naturally occurring Escherichia coli O157:H7 and other zoonotic pathogens during minimally managed bovine feedlot manure composting processes.

    PubMed

    Berry, Elaine D; Millner, Patricia D; Wells, James E; Kalchayanand, Norasak; Guerini, Michael N

    2013-08-01

    Reducing Escherichia coli O157:H7 in livestock manures before application to cropland is critical for reducing the risk of foodborne illness associated with produce. Our objective was to determine the fate of naturally occurring E. coli O157:H7 and other pathogens during minimally managed on-farm bovine manure composting processes. Feedlot pen samples were screened to identify E. coli O157:H7-positive manure. Using this manure, four piles of each of three different composting formats were constructed in each of two replicate trials. Composting formats were (i) turned piles of manure plus hay and straw, (ii) static stockpiles of manure, and (iii) static piles of covered manure plus hay and straw. Temperatures in the tops, toes, and centers of the conical piles (ca. 6.0 m(3) each) were monitored. Compost piles that were turned every 2 weeks achieved higher temperatures for longer periods in the tops and centers than did piles that were left static. E. coli O157:H7 was not recovered from top samples of turned piles of manure plus hay and straw at day 28 and beyond, but top samples from static piles were positive for the pathogen up to day 42 (static manure stockpiles) and day 56 (static covered piles of manure plus hay and straw). Salmonella, Campylobacter spp., and Listeria monocytogenes were not found in top or toe samples at the end of the composting period, but E. coli O157:H7 and Listeria spp. were recovered from toe samples at day 84. Our findings indicate that some minimally managed composting processes can reduce E. coli O157:H7 and other pathogens in bovine manure but may be affected by season and/or initial levels of indigenous thermophilic bacteria. Our results also highlight the importance of adequate C:N formulation of initial mixtures for the production of high temperatures and rapid composting, and the need for periodic turning of the piles to increase the likelihood that all parts of the mass are subjected to high temperatures.

  11. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    PubMed

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    PubMed

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  13. Clinical characterisation of pneumonia caused by atypical pathogens combining classic and novel predictors.

    PubMed

    Masiá, M; Gutiérrez, F; Padilla, S; Soldán, B; Mirete, C; Shum, C; Hernández, I; Royo, G; Martin-Hidalgo, A

    2007-02-01

    The aim of this study was to characterise community-acquired pneumonia (CAP) caused by atypical pathogens by combining distinctive clinical and epidemiological features and novel biological markers. A population-based prospective study of consecutive patients with CAP included investigation of biomarkers of bacterial infection, e.g., procalcitonin, C-reactive protein and lipopolysaccharide-binding protein (LBP) levels. Clinical, radiological and laboratory data for patients with CAP caused by atypical pathogens were compared by univariate and multivariate analysis with data for patients with typical pathogens and patients from whom no organisms were identified. Two predictive scoring models were developed with the most discriminatory variables from multivariate analysis. Of 493 patients, 94 had CAP caused by atypical pathogens. According to multivariate analysis, patients with atypical pneumonia were more likely to have normal white blood cell counts, have repetitive air-conditioning exposure, be aged <65 years, have elevated aspartate aminotransferase levels, have been exposed to birds, and have lower serum levels of LBP. Two different scoring systems were developed that predicted atypical pathogens with sensitivities of 35.2% and 48.8%, and specificities of 93% and 91%, respectively. The combination of selected patient characteristics and laboratory data identified up to half of the cases of atypical pneumonia with high specificity, which should help clinicians to optimise initial empirical therapy for CAP.

  14. Mortalities of eastern and pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii

    USDA-ARS?s Scientific Manuscript database

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio cora...

  15. Schizophrenia: A Pathogenetic Autoimmune Disease Caused by Viruses and Pathogens and Dependent on Genes

    PubMed Central

    Carter, C. J.

    2011-01-01

    Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens. PMID:22567321

  16. Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes.

    PubMed

    Beres, Stephen B; Kachroo, Priyanka; Nasser, Waleed; Olsen, Randall J; Zhu, Luchang; Flores, Anthony R; de la Riva, Ivan; Paez-Mayorga, Jesus; Jimenez, Francisco E; Cantu, Concepcion; Vuopio, Jaana; Jalava, Jari; Kristinsson, Karl G; Gottfredsson, Magnus; Corander, Jukka; Fittipaldi, Nahuel; Di Luca, Maria Chiara; Petrelli, Dezemona; Vitali, Luca A; Raiford, Annessa; Jenkins, Leslie; Musser, James M

    2016-05-31

    For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that

  17. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016

    PubMed Central

    Heutink, Rene; Bergervoet, Saskia A.; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-01-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential. PMID:29148396

  18. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016.

    PubMed

    Beerens, Nancy; Heutink, Rene; Bergervoet, Saskia A; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-12-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential.

  19. DIAGNOSIS AND SUCCESSFUL TREATMENT OF A POTENTIALLY ZOONOTIC DERMATOPHYTOSIS CAUSED BY MICROSPORUM GYPSEUM IN A ZOO-HOUSED NORTH AMERICAN PORCUPINE (ERETHIZON DORSATUM).

    PubMed

    Hackworth, Christine E; Eshar, David; Nau, Melissa; Bagladi-Swanson, Mary; Andrews, Gordon A; Carpenter, James W

    2017-06-01

    A female North American porcupine ( Erethizon dorsatum ) was evaluated for a unilateral pedal crusting and alopecic dermatopathy. Fungal culture and histopathology testing revealed Microsporum gypseum dermatophytosis. Treatment with topical miconazole was initiated and then discontinued after 9 days and changed to oral terbinafine. Twenty-eight days after initial examination, clinical signs were improving, and fungal cultures of the front foot, muzzle, and noninfected area along the dorsum were negative for M. gypseum. Visual exams were conducted on a regular basis. Eighty-three days after initial evaluation, clinical signs had completely resolved and repeat fungal cultures were negative. One of the animal's keepers was suspected to have acquired a dermal fungal infection 3 days after contact with this porcupine, and lesions had resolved after treatment with topical ketoconazole. To the authors' knowledge, this is the first report of M. gypseum diagnosed and treated in a captive North American porcupine. Veterinary staff and zookeepers should be aware of this potentially zoonotic infection.

  20. A cross-sectional study examining Campylobacter and other zoonotic enteric pathogens in dogs that frequent dog parks in three cities in south-western Ontario and risk factors for shedding of Campylobacter spp.

    PubMed

    Procter, T D; Pearl, D L; Finley, R L; Leonard, E K; Janecko, N; Reid-Smith, R J; Weese, J S; Peregrine, A S; Sargeant, J M

    2014-05-01

    An estimated 6 million pet dogs live in Canadian households with the potential to transmit zoonotic pathogens to humans. Dogs have been identified as carriers of Salmonella, Giardia and Campylobacter spp., particularly Campylobacter upsaliensis, but little is known about the prevalence and risk factors for these pathogens in pet dogs that visit dog parks. This study examined the prevalence of these organisms in the faeces of dogs visiting dog parks in three cities in south-western Ontario, as well as risk factors for shedding Campylobacter spp. and C. upsaliensis. From May to August 2009, canine faecal samples were collected at ten dog parks in the cities of Guelph and Kitchener-Waterloo, Ontario, Canada. Owners were asked to complete a questionnaire related to pet characteristics and management factors including age, diet and activities in which the dog participates. Faecal samples were collected from 251 dogs, and 189 questionnaires were completed. Salmonella, Giardia and Campylobacter spp. were present in 1.2%, 6.4% and 43.0% of faecal samples, respectively. Of the Campylobacter spp. detected, 86.1% were C. upsaliensis, 13% were C. jejuni and 0.9% were C. coli. Statistically significant sparing factors associated with the shedding of Campylobacter spp. included the feeding of a commercial dry diet and the dog's exposure to compost. Age of dog had a quadratic effect, with young dogs and senior dogs having an increased probability of shedding Campylobacter spp. compared with adult dogs. The only statistically significant risk factor for shedding C. upsaliensis was outdoor water access including lakes and ditches, while dogs >1 year old were at a lower risk than young dogs. Understanding the pet-related risk factors for Campylobacter spp. and C. upsaliensis shedding in dogs may help in the development of awareness and management strategies to potentially reduce the risk of transmitting this pathogen from dogs to humans. © 2013 Blackwell Verlag GmbH.

  1. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Coxsackievirus A6: a new emerging pathogen causing hand, foot and mouth disease outbreaks worldwide.

    PubMed

    Bian, Lianlian; Wang, Yiping; Yao, Xin; Mao, Qunying; Xu, Miao; Liang, Zhenglun

    2015-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the predominant pathogens causing outbreaks of hand, foot and mouth disease (HFMD) worldwide. Other human enterovirus A (HEV-A) serotypes tend to cause only sporadic HFMD cases. However, since a HFMD caused by coxsackievirus A6 broke out in Finland in 2008, CA6 has been identified as the responsible pathogen for a series of HFMD outbreaks in Europe, North America and Asia. Because of the severity of the clinical manifestations and the underestimated public health burden, the epidemic of CA6-associated HFMD presents a new challenge to the control of HFMD. This article reviewed the epidemic characteristics, molecular epidemiology, clinical features and laboratory diagnosis of CA6 infection. The genetic evolution of CA6 strains associated with HFMD was also analyzed. It indicated that the development of a multivalent vaccine combining EV71, CA16 and CA6 is an urgent necessity to control HFMD.

  3. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    PubMed

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  4. Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    PubMed Central

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132

  5. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC).

    PubMed

    Antão, Esther-Maria; Glodde, Susanne; Li, Ganwu; Sharifi, Reza; Homeier, Timo; Laturnus, Claudia; Diehl, Ines; Bethe, Astrid; Philipp, Hans-C; Preisinger, Rudolf; Wieler, Lothar H; Ewers, Christa

    2008-01-01

    E. coli infections in avian species have become an economic threat to the poultry industry worldwide. Several factors have been associated with the virulence of E. coli in avian hosts, but no specific virulence gene has been identified as being entirely responsible for the pathogenicity of avian pathogenic E. coli (APEC). Needless to say, the chicken would serve as the best model organism for unravelling the pathogenic mechanisms of APEC, an extraintestinal pathogen. Five-week-old white leghorn SPF chickens were infected intra-tracheally with a well characterized APEC field strain IMT5155 (O2:K1:H5) using different doses corresponding to the respective models of infection established, that is, the lung colonization model allowing re-isolation of bacteria only from the lung but not from other internal organs, and the systemic infection model. These two models represent the crucial steps in the pathogenesis of APEC infections, including the colonization of the lung epithelium and the spread of bacteria throughout the bloodstream. The read-out system includes a clinical score, pathomorphological changes and bacterial load determination. The lung colonization model has been established and described for the first time in this study, in addition to a comprehensive account of a systemic infection model which enables the study of severe extraintestinal pathogenic E. coli (ExPEC) infections. These in vivo models enable the application of various molecular approaches to study host-pathogen interactions more closely. The most important application of such genetic manipulation techniques is the identification of genes required for extraintestinal virulence, as well as host genes involved in immunity in vivo. The knowledge obtained from these studies serves the dual purpose of shedding light on the nature of virulence itself, as well as providing a route for rational attenuation of the pathogen for vaccine construction, a measure by which extraintestinal infections, including

  6. Pandemic extra-intestinal pathogenic Escherichia coli (ExPEC) clonal group O6-B2-ST73 as a cause of avian colibacillosis in Brazil.

    PubMed

    Cunha, Marcos Paulo Vieira; Saidenberg, Andre Becker; Moreno, Andrea Micke; Ferreira, Antonio José Piantino; Vieira, Mônica Aparecida Midolli; Gomes, Tânia Aparecida Tardelli; Knöbl, Terezinha

    2017-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) represent an emerging pathogen, with pandemic strains increasingly involved in cases of urinary tract infections (UTIs), bacteremia, and meningitis. In addition to affecting humans, the avian pathotype of ExPEC, avian pathogenic E. coli (APEC), causes severe economic losses to the poultry industry. Several studies have revealed overlapping characteristics between APEC and human ExPEC, leading to the hypothesis of a zoonotic potential of poultry strains. However, the description of certain important pandemic clones, such as Sequence Type 73 (ST73), has not been reported in food sources. We characterized 27 temporally matched APEC strains from diverse poultry farms in Brazil belonging to the O6 serogroup because this serogroup is frequently described as a causal factor in UTI and septicemia in humans in Brazil and worldwide. The isolates were genotypically characterized by identifying ExPEC virulence factors, phylogenetically tested by phylogrouping and multilocus sequence type (MLST) analysis, and compared to determine their similarity employing the pulsed field gel electrophoresis (PFGE) technique. The strains harbored a large number of virulence determinants that are commonly described in uropathogenic E. coli (UPEC) and sepsis associated E. coli (SEPEC) strains and, to a lesser extent in neonatal meningitis associated E. coli (NMEC), such as pap (85%), sfa (100%), usp (100%), cnf1 (22%), kpsMTII (66%), hlyA (52%), and ibeA (4%). These isolates also yielded a low prevalence of some genes that are frequently described in APEC, such as iss (37%), tsh, ompT, and hlyF (8% each), and cvi/cva (0%). All strains were classified as part of the B2 phylogroup and sequence type 73 (ST73), with a cluster of 25 strains showing a clonal profile by PFGE. These results further suggest the zoonotic potential of some APEC clonal lineages and their possible role in the epidemiology of human ExPEC, in addition to providing the first

  7. Zoonotic Hookworm FAQs

    MedlinePlus

    ... when exposed skin comes in contact with contaminated soil or sand. The larvae in the contaminated soil or sand will burrow into the skin and ... measures to avoid skin contact with sand or soil will prevent infection with zoonotic hookworms. Travelers to ...

  8. Zoonotic diseases associated with reptiles and amphibians: an update.

    PubMed

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  9. Prioritization of Zoonotic Diseases in Kenya, 2015

    PubMed Central

    Bitek, Austine; Osoro, Eric; Pieracci, Emily G.; Muema, Josephat; Mwatondo, Athman; Kungu, Mathew; Nanyingi, Mark; Gharpure, Radhika; Njenga, Kariuki; Thumbi, Samuel M.

    2016-01-01

    Introduction Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. Methods A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. Results In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. Conclusion Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya. PMID:27557120

  10. Retrospective and prospective perspectives on zoonotic brucellosis

    PubMed Central

    Moreno, Edgardo

    2014-01-01

    Members of the genus Brucella are pathogenic bacteria exceedingly well adapted to their hosts. The bacterium is transmitted by direct contact within the same host species or accidentally to secondary hosts, such as humans. Human brucellosis is strongly linked to the management of domesticated animals and ingestion of their products. Since the domestication of ungulates and dogs in the Fertile Crescent and Asia in 12000 and 33000 ya, respectively, a steady supply of well adapted emergent Brucella pathogens causing zoonotic disease has been provided. Likewise, anthropogenic modification of wild life may have also impacted host susceptibility and Brucella selection. Domestication and human influence on wild life animals are not neutral phenomena. Consequently, Brucella organisms have followed their hosts’ fate and have been selected under conditions that favor high transmission rate. The “arm race” between Brucella and their preferred hosts has been driven by genetic adaptation of the bacterium confronted with the evolving immune defenses of the host. Management conditions, such as clustering, selection, culling, and vaccination of Brucella preferred hosts have profound influences in the outcome of brucellosis and in the selection of Brucella organisms. Countries that have controlled brucellosis systematically used reliable smooth live vaccines, consistent immunization protocols, adequate diagnostic tests, broad vaccination coverage and sustained removal of the infected animals. To ignore and misuse tools and strategies already available for the control of brucellosis may promote the emergence of new Brucella variants. The unrestricted use of low-efficacy vaccines may promote a “false sense of security” and works towards selection of Brucella with higher virulence and transmission potential. PMID:24860561

  11. Study on characterization, pathogenicity and histopathology of disease caused by Aeromonas hydrophila in gourami (Osphronemus gouramy)

    NASA Astrophysics Data System (ADS)

    Rozi; Rahayu, K.; Daruti, D. N.; Stella, M. S. P.

    2018-04-01

    This study aims to determine the bacterial pathogens that cause disease of the gourami in Blitar (East Java) and Yogyakarta (Central Java), Indonesia. A total of 50 fish samples taken randomly gourami in pond farmers in seventh different locations. There were 18 isolates were isolated and then test Koch’s postulates were injected 0.1 ml/fish intraperitoneally to gourami. Characterization is done by using the biochemical tests. Pathogenicity test carried out on 3 isolates of Aeromonas spp. with intraperitoneal injection at a dose of 104-108 CFU/fish, the value of Lethal Dosage 50 (LD50) using the method Dragstedt Behrens. After the treatment, spleen and kidney samples were processed for histopathological analysis. The all of identified bacteria were 5 isolates Aeromonas hydrophila. Isolates of A. hydrophila in a row AH3 was virulen to gourami with LD50 (4.53 x 106 CFU/fish), while isolate AH4 and AH5 (2.903 x 108, 1.319 x 109 CFU/fish) not be avirulen. Koch’s postulates; 3 isolates are pathogenic with mortality of 40-100 % and 2 are non-pathogenic isolates with a mortality of 0 %. Clinically; ulcers, haemorhagic at the base of the fins, body, mouth and exophthalmia. Histopathologically indecated spleen necrosis, piknosis, necrosis and inflammatory cells in kidney.

  12. A case of transfusion-transmitted hepatitis E caused by blood from a donor infected with hepatitis E virus via zoonotic food-borne route.

    PubMed

    Matsubayashi, Keiji; Kang, Jong-Hon; Sakata, Hidekatsu; Takahashi, Kazuaki; Shindo, Motohiro; Kato, Masaru; Sato, Shinichiro; Kato, Toshiaki; Nishimori, Hiroyuki; Tsuji, Kunihiko; Maguchi, Hiroyuki; Yoshida, Jun-Ichi; Maekubo, Hiroshi; Mishiro, Shunji; Ikeda, Hisami

    2008-07-01

    Five cases of transfusion transmission of hepatitis E virus (HEV) have been reported so far. The infection routes of the causative donors remain unclear, however. Also, the progress of virus markers in the entire course of HEV infection has not been well documented. Nucleic acid testing was performed by real-time reverse transcription-polymerase chain reaction targeting the open reading frame 2 region of HEV. Full-length nucleotide sequences of HEV RNA were detected by direct sequencing. Lookback study of a HEV-positive donor revealed that the platelets (PLTs) donated from him 2 weeks previously contained HEV RNA and were transfused to a patient. Thirteen relatives including the donor were ascertained to enjoy grilled pork meats together in a barbecue restaurant 23 days before the donation. Thereafter, his father died of fulminant hepatitis E and the other 6 members showed serum markers of HEV infection. In the recipient, HEV was detected in serum on Day 22 and reached the peak of 7.2 log copies per mL on Day 44 followed by the steep increase of alanine aminotransferase. Immunoglobulin G anti-HEV emerged on Day 67; subsequently, hepatitis was resolved. HEV RNA sequences from the donor and recipient were an identical, Japan-indigenous strain of genotype 4. HEV RNA was detectable up to Day 97 in serum, Day 85 in feces, and Day 71 in saliva. A transfusion-transmitted hepatitis E case by blood from a donor infected via the zoonotic food-borne route and the progress of HEV markers in the entire course are demonstrated. Further studies are needed to clarify the epidemiology and the transfusion-related risks for HEV even in industrialized countries.

  13. Plant-based oral vaccines against zoonotic and non-zoonotic diseases.

    PubMed

    Shahid, Naila; Daniell, Henry

    2016-11-01

    The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts

    PubMed Central

    Longdon, Ben; Hadfield, Jarrod D.; Day, Jonathan P.; Smith, Sophia C. L.; McGonigle, John E.; Cogni, Rodrigo; Cao, Chuan; Jiggins, Francis M.

    2015-01-01

    Emerging infectious diseases are often the result of a host shift, where the pathogen originates from a different host species. Virulence—the harm a pathogen does to its host—can be extremely high following a host shift (for example Ebola, HIV, and SARs), while other host shifts may go undetected as they cause few symptoms in the new host. Here we examine how virulence varies across host species by carrying out a large cross infection experiment using 48 species of Drosophilidae and an RNA virus. Host shifts resulted in dramatic variation in virulence, with benign infections in some species and rapid death in others. The change in virulence was highly predictable from the host phylogeny, with hosts clustering together in distinct clades displaying high or low virulence. High levels of virulence are associated with high viral loads, and this may determine the transmission rate of the virus. PMID:25774803

  15. New Rust Disease of Korean Willow (Salix koreensis) Caused by Melampsora yezoensis, Unrecorded Pathogen in Korea.

    PubMed

    Yun, Yeo Hong; Ahn, Geum Ran; Yoon, Seong Kwon; Kim, Hoo Hyun; Son, Seung Yeol; Kim, Seong Hwan

    2016-12-01

    During the growing season of 2015, leaf specimens with yellow rust spots were collected from Salix koreensis Andersson, known as Korean willow, in riverine areas in Cheonan, Korea. The fungus on S. koreensis was identified as the rust species, Melampsora yezoensis , based on the morphology of urediniospores observed by light and scanning electron microscopy, and the molecular properties of the internal transcribed spacer rDNA region. Pathogenicity tests confirmed that the urediniospores are the causal agent of the rust symptoms on the leaves and young stems of S. koreensis . Here, we report a new rust disease of S. koreensis caused by the rust fungus, M. yezoensis , a previously unrecorded rust pathogen in Korea.

  16. Biocontrol of Pathogens in the Meat Chain

    NASA Astrophysics Data System (ADS)

    Burgess, Catherine M.; Rivas, Lucia; McDonnell, Mary J.; Duffy, Geraldine

    Bacterial foodborne zoonotic diseases are of major concern, impacting public health and causing economic losses for the agricultural-food sector and the wider society. In the United States (US) alone foodborne illness from pathogens is responsible for 76 million cases of illnesses each year (Mead et al., 1999). Salmonella, Campylobacter jejuni and Enterohaemorraghic Escherichia coli (EHEC; predominately serotype O157:H7) and Listeria monocytogenes are the most predominant foodborne bacterial pathogens reported in the developed world (United States Department of Agriculture, 2001). The importance of meat and meat products as a vehicle of foodborne zoonotic pathogens cannot be underestimated (Center for Disease Control, 2006; Gillespie, O’Brien, Adak, Cheasty, & Willshaw, 2005; Mazick, Ethelberg, Nielsen, Molbak, & Lisby, 2006; Mead et al., 2006).

  17. Transmission and epidemiology of zoonotic protozoal diseases of companion animals.

    PubMed

    Esch, Kevin J; Petersen, Christine A

    2013-01-01

    Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States.

  18. Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals

    PubMed Central

    Esch, Kevin J.

    2013-01-01

    Over 77 million dogs and 93 million cats share our households in the United States. Multiple studies have demonstrated the importance of pets in their owners' physical and mental health. Given the large number of companion animals in the United States and the proximity and bond of these animals with their owners, understanding and preventing the diseases that these companions bring with them are of paramount importance. Zoonotic protozoal parasites, including toxoplasmosis, Chagas' disease, babesiosis, giardiasis, and leishmaniasis, can cause insidious infections, with asymptomatic animals being capable of transmitting disease. Giardia and Toxoplasma gondii, endemic to the United States, have high prevalences in companion animals. Leishmania and Trypanosoma cruzi are found regionally within the United States. These diseases have lower prevalences but are significant sources of human disease globally and are expanding their companion animal distribution. Thankfully, healthy individuals in the United States are protected by intact immune systems and bolstered by good nutrition, sanitation, and hygiene. Immunocompromised individuals, including the growing number of obese and/or diabetic people, are at a much higher risk of developing zoonoses. Awareness of these often neglected diseases in all health communities is important for protecting pets and owners. To provide this awareness, this review is focused on zoonotic protozoal mechanisms of virulence, epidemiology, and the transmission of pathogens of consequence to pet owners in the United States. PMID:23297259

  19. Mortalities of Eastern and Pacific oyster Larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii.

    PubMed

    Richards, Gary P; Watson, Michael A; Needleman, David S; Church, Karlee M; Häse, Claudia C

    2015-01-01

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 10(4) to 3.0 × 10(4) CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 10(4) and 4.0 × 10(4) CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 10(4) CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Serum inflammatory biomarkers and clinical outcomes of COPD exacerbation caused by different pathogens.

    PubMed

    Kawamatawong, Theerasuk; Apiwattanaporn, Apitch; Siricharoonwong, Warisara

    2017-01-01

    COPD exacerbation is characterized by worsening of symptoms, warranting change in treatment. Systemic and airway inflammation play roles in the pathogenesis of COPD exacerbation. We hypothesized whether increased serum inflammatory biomarkers are associated with the clinical outcomes of COPD exacerbation caused by different infectious pathogens. COPD patients with exacerbation were recruited from a hospital emergency department during 2014-2015. Serum procalcitonin (PCT) and C-reactive protein (CRP) were measured. Dyspnea, eosinopenia, consolidation, acidemia, and atrial fibrillation (DECAF) score was calculated for predicting mortality. Multiplex polymerase chain reaction was carried out for respiratory viral assay from nasopharyngeal swabs, and sputum bacterial culture was also performed. Hospital mortality, invasive mechanical ventilation requirement, and length of hospital stay (LOS) were evaluated, and their associations with clinical characteristics, DECAF score, and serum biomarkers were examined. A total of 62 COPD patients were enrolled. These patients were classified as Global Initiative for Obstructive Lung Disease (GOLD) stage 2, 3, and 4 in 12.9%, 6.4%, and 80.7% of cases, respectively. Isolated bacterial exacerbation was recovered in 30.6% of exacerbation episodes: Klebsiella pneumoniae was the most commonly identified bacteria. Viral pathogens and coinfections were noted in 9.6% and 16.1% of exacerbated patients, respectively. Influenza was the most commonly detected viral pathogen. Serum biomarkers and DECAF score for viruses, bacteria, coinfection, and noninfectious causes of exacerbations were similar. Neither DECAF score nor serum biomarkers were able to differentiate patients with and without mortality or requiring mechanical ventilation. Increased serum PCT was noted in patients with LOS ≥7 days when compared with those with LOS <7 days (0.38 ng/mL vs 0.1 ng/mL; P =0.035). Increased serum PCT is associated with longer LOS in COPD exacerbation

  1. Predictors of Antimicrobial Resistance among Pathogens Causing Urinary Tract Infection in Children

    PubMed Central

    Shaikh, Nader; Hoberman, Alejandro; Keren, Ron; Ivanova, Anastasia; Gotman, Nathan; Chesney, Russell W.; Carpenter, Myra A.; Moxey-Mims, Marva; Wald, Ellen R.

    2015-01-01

    Objective To determine which children with urinary tract infection (UTI) are likely to have pathogens resistant to narrow-spectrum antimicrobials. Study design Children, 2 to 71 months of age (n=769) enrolled in the RIVUR or CUTIE studies were included. We used logistic regression models to test the associations between demographic and clinical characteristics and resistance to narrow-spectrum antimicrobials. Results Of the included patients, 91% were female and 76% had vesicoureteral reflux. The risk of resistance to narrow-spectrum antibiotics in uncircumcised males was approximately 3 times that of females (OR=3.1; 95% CI: 1.4—6.7); in children with bladder bowel dysfunction (BBD) the risk was 2 times that of children with normal function (OR=2.2; 95% CI: 1.2—4.1). Children who had received one course of antibiotics during the past 6 months also had higher odds of harboring resistant organisms (OR=1.6; 95% CI: 1.1—2.3). Hispanic children had higher odds of harboring pathogens resistant to some narrow-spectrum antimicrobials. Conclusions Uncircumcised males, Hispanic children, children with BBD, and children who received one course of antibiotics in the past 6 months were more likely to have a UTI caused by pathogens resistant to one or more narrow-spectrum antimicrobials. PMID:26794472

  2. Predictors of Antimicrobial Resistance among Pathogens Causing Urinary Tract Infection in Children.

    PubMed

    Shaikh, Nader; Hoberman, Alejandro; Keren, Ron; Ivanova, Anastasia; Gotman, Nathan; Chesney, Russell W; Carpenter, Myra A; Moxey-Mims, Marva; Wald, Ellen R

    2016-04-01

    To determine which children with urinary tract infection are likely to have pathogens resistant to narrow-spectrum antimicrobials. Children, 2-71 months of age (n = 769) enrolled in the Randomized Intervention for Children with Vesicoureteral Reflux or Careful Urinary Tract Infection Evaluation studies were included. We used logistic regression models to test the associations between demographic and clinical characteristics and resistance to narrow-spectrum antimicrobials. Of the included patients, 91% were female and 76% had vesicoureteral reflux. The risk of resistance to narrow-spectrum antibiotics in uncircumcised males was approximately 3 times that of females (OR 3.1; 95% CI 1.4-6.7); in children with bladder bowel dysfunction, the risk was 2 times that of children with normal function (OR 2.2; 95% CI 1.2-4.1). Children who had received 1 course of antibiotics during the past 6 months also had higher odds of harboring resistant organisms (OR 1.6; 95% CI 1.1-2.3). Hispanic children had higher odds of harboring pathogens resistant to some narrow-spectrum antimicrobials. Uncircumcised males, Hispanic children, children with bladder bowel dysfunction, and children who received 1 course of antibiotics in the past 6 months were more likely to have a urinary tract infection caused by pathogens resistant to 1 or more narrow-spectrum antimicrobials. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pathogen-specific risk of chronic gastrointestinal disorders following bacterial causes of foodborne illness

    PubMed Central

    2013-01-01

    Background The US CDC estimates over 2 million foodborne illnesses are annually caused by 4 major enteropathogens: non-typhoid Salmonella spp., Campylobacter spp., Shigella spp. and Yersinia enterocoltica. While data suggest a number of costly and morbid chronic sequelae associated with these infections, pathogen-specific risk estimates are lacking. We utilized a US Department of Defense medical encounter database to evaluate the risk of several gastrointestinal disorders following select foodborne infections. Methods We identified subjects with acute gastroenteritis between 1998 to 2009 attributed to Salmonella (nontyphoidal) spp., Shigella spp., Campylobacter spp. or Yersinia enterocolitica and matched each with up to 4 unexposed subjects. Medical history was analyzed for the duration of military service time (or a minimum of 1 year) to assess for incident chronic gastrointestinal disorders. Relative risks were calculated using modified Poisson regression while controlling for the effect of covariates. Results A total of 1,753 pathogen-specific gastroenteritis cases (Campylobacter: 738, Salmonella: 624, Shigella: 376, Yersinia: 17) were identified and followed for a median of 3.8 years. The incidence (per 100,000 person-years) of PI sequelae among exposed was as follows: irritable bowel syndrome (IBS), 3.0; dyspepsia, 1.8; constipation, 3.9; gastroesophageal reflux disease (GERD), 9.7. In multivariate analyses, we found pathogen-specific increased risk of IBS, dyspepsia, constipation and GERD. Conclusions These data confirm previous studies demonstrating risk of chronic gastrointestinal sequelae following bacterial enteric infections and highlight additional preventable burden of disease which may inform better food security policies and practices, and prompt further research into pathogenic mechanisms. PMID:23510245

  4. A seed bank pathogen causes seedborne disease: Pyrenophora semeniperda on undispersed grass seeds in western North America

    Treesearch

    Susan E. Meyer; Julie Beckstead; Phil S. Allen; Duane C. Smith

    2008-01-01

    The generalist pathogen Pyrenophora semeniperda is abundant in seed banks of the exotic winter annual grass Bromus tectorum in semiarid western North America and is also found in the seed banks of co-occurring native grasses. In this study, we examined natural incidence of disease caused by this pathogen on undispersed host seeds,...

  5. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection.

    PubMed

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee Jeong; Ahn, Jae Sung; Lee, Taehoon; Ahn, Jong Joon

    2017-10-01

    Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. Copyright©2017. The Korean Academy of Tuberculosis and Respiratory Diseases

  6. Elucidation of Bacterial Pneumonia-Causing Pathogens in Patients with Respiratory Viral Infection

    PubMed Central

    Jung, Hwa Sik; Kang, Byung Ju; Ra, Seung Won; Seo, Kwang Won; Jegal, Yangjin; Jun, Jae-Bum; Jung, Jiwon; Jeong, Joseph; Jeon, Hee-Jeong; Ahn, Jae-Sung

    2017-01-01

    Background Bacterial pneumonia occurring after respiratory viral infection is common. However, the predominant bacterial species causing pneumonia secondary to respiratory viral infections other than influenza remain unknown. The purpose of this study was to know whether the pathogens causing post-viral bacterial pneumonia vary according to the type of respiratory virus. Methods Study subjects were 5,298 patients, who underwent multiplex real-time polymerase chain reaction for simultaneous detection of respiratory viruses, among who visited the emergency department or outpatient clinic with respiratory symptoms at Ulsan University Hospital between April 2013 and March 2016. The patients' medical records were retrospectively reviewed. Results A total of 251 clinically significant bacteria were identified in 233 patients with post-viral bacterial pneumonia. Mycoplasma pneumoniae was the most frequent bacterium in patients aged <16 years, regardless of the preceding virus type (p=0.630). In patients aged ≥16 years, the isolated bacteria varied according to the preceding virus type. The major results were as follows (p<0.001): pneumonia in patients with influenza virus (type A/B), rhinovirus, and human metapneumovirus infections was caused by similar bacteria, and the findings indicated that Staphylococcus aureus pneumonia was very common in these patients. In contrast, coronavirus, parainfluenza virus, and respiratory syncytial virus infections were associated with pneumonia caused by gram-negative bacteria. Conclusion The pathogens causing post-viral bacterial pneumonia vary according to the type of preceding respiratory virus. This information could help in selecting empirical antibiotics in patients with post-viral pneumonia. PMID:28905531

  7. Delimiting cryptic pathogen species causing apple Valsa canker with multilocus data

    PubMed Central

    Wang, Xuli; Zang, Rui; Yin, Zhiyuan; Kang, Zhensheng; Huang, Lili

    2014-01-01

    Fungal diseases are posing tremendous threats to global economy and food safety. Among them, Valsa canker, caused by fungi of Valsa and their Cytospora anamorphs, has been a serious threat to fruit and forest trees and is one of the most destructive diseases of apple in East Asia, particularly. Accurate and robust delimitation of pathogen species is not only essential for the development of effective disease control programs, but also will advance our understanding of the emergence of plant diseases. However, species delimitation is especially difficult in Valsa because of the high variability of morphological traits and in many cases the lack of the teleomorph. In this study, we delimitated species boundary for pathogens causing apple Valsa canker with a multifaceted approach. Based on three independent loci, the internal transcribed spacer (ITS), β-tubulin (Btu), and translation elongation factor-1 alpha (EF1α), we inferred gene trees with both maximum likelihood and Bayesian methods, estimated species tree with Bayesian multispecies coalescent approaches, and validated species tree with Bayesian species delimitation. Through divergence time estimation and ancestral host reconstruction, we tested the possible underlying mechanisms for fungal speciation and host-range change. Our results proved that two varieties of the former morphological species V. mali represented two distinct species, V. mali and V. pyri, which diverged about 5 million years ago, much later than the divergence of their preferred hosts, excluding a scenario of fungi–host co-speciation. The marked different thermal preferences and contrasting pathogenicity in cross-inoculation suggest ecological divergences between the two species. Apple was the most likely ancestral host for both V. mali and V. pyri. Host-range expansion led to the occurrence of V. pyri on both pear and apple. Our results also represent an example in which ITS data might underestimate species diversity. PMID:24834333

  8. Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.

    PubMed

    Loor, Juan J; Moyes, Kasey M; Bionaz, Massimo

    2011-12-01

    Application of microarrays to the study of intramammary infections in recent years has provided a wealth of fundamental information on the transcriptomics adaptation of tissue/cells to the disease. Due to its heavy toll on productivity and health of the animal, in vivo and in vitro transcriptomics works involving different mastitis-causing pathogens have been conducted on the mammary gland, primarily on livestock species such as cow and sheep, with few studies in non-ruminants. However, the response to an infectious challenge originating in the mammary gland elicits systemic responses in the animal and encompasses tissues such as liver and immune cells in the circulation, with also potential effects on other tissues such as adipose. The susceptibility of the animal to develop mastitis likely is affected by factors beyond the mammary gland, e.g. negative energy balance as it occurs around parturition. Objectives of this review are to discuss the use of systems biology concepts for the holistic study of animal responses to intramammary infection; providing an update of recent work using transcriptomics to study mammary and peripheral tissue (i.e. liver) as well as neutrophils and macrophage responses to mastitis-causing pathogens; discuss the effect of negative energy balance on mastitis predisposition; and analyze the bovine and murine mammary innate-immune responses during lactation and involution using a novel functional analysis approach to uncover potential predisposing factors to mastitis throughout an animal's productive life.

  9. Stem rots of oil palm caused by Ganoderma boninense: pathogen biology and epidemiology.

    PubMed

    Pilotti, C A

    2005-01-01

    Oil palm (Elaeis guineensis Jacq.) has been grown in Papua New Guinea since the early 1960s. The most important disease of oil palm in PNG is a stem rot of the palm base. This is the same disease that constitutes a major threat to sustainable oil palm production in SE Asia. Investigations into the causal pathogen have revealed that the stem rots in PNG are caused predominantly by the basidiomycete Ganoderma boninense, with a minor pathogen identified as G. tornatum G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms. The population structure of G. boninense was investigated using inter-fertility studies between isolates collected from basal stem rots on oil palm. Although the G. boninense field populations are predominantly comprised of distinct individuals, a number of isolates were found that share single mating alleles. This indicates that out-crossing had occurred over several generations in the resident or wild population of G. boninense prior to colonization of oil palm. No direct hereditary relationship between isolates on neighbouring diseased palms was found, although an indirect link between isolates causing upper stem rot and basal stem rot was detected.

  10. Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding

    PubMed Central

    Johnson, Colin P.; Gaetani, Massimiliano; Ortiz, Vanessa; Bhasin, Nishant; Harper, Sandy

    2007-01-01

    Pathogenic mutations in α and β spectrin result in a variety of syndromes, including hereditary elliptocytosis (HE), hereditary pyropoikilocytosis (HPP), and hereditary spherocytosis (HS). Although some mutations clearly lie at sites of interaction, such as the sites of spectrin α-βtetramer formation, a surprising number of HE-causing mutations have been identified within linker regions between distal spectrin repeats. Here we apply solution structural and single molecule methods to the folding and stability of recombinant proteins consisting of the first 5 spectrin repeats of α-spectrin, comparing normal spectrin with a pathogenic linker mutation, Q471P, between repeats R4 and R5. Results show that the linker mutation destabilizes a significant fraction of the 5-repeat construct at 37°C, whereas the WT remains fully folded well above body temperature. In WT protein, helical linkers propagate stability from one repeat to the next, but the mutation disrupts the stabilizing influence of adjacent repeats. The results suggest a molecular mechanism for the high frequency of disease caused by proline mutations in spectrin linkers. PMID:17192394

  11. IL-12 is required for differentiation of pathogenic CD8+ T cell effectors that cause myocarditis

    PubMed Central

    Grabie, Nir; Delfs, Michael W.; Westrich, Jason R.; Love, Victoria A.; Stavrakis, George; Ahmad, Ferhaan; Seidman, Christine E.; Seidman, Jonathan G.; Lichtman, Andrew H.

    2003-01-01

    Cardiac antigen–specific CD8+ T cells are involved in the autoimmune component of human myocarditis. Here, we studied the differentiation and migration of pathogenic CD8+ T cell effector cells in a new mouse model of autoimmune myocarditis. A transgenic mouse line was derived that expresses cardiac myocyte restricted membrane-bound ovalbumin (CMy-mOva). The endogenous adaptive immune system of CMy-mOva mice displays tolerance to ovalbumin. Adoptive transfer of naive CD8+ T cells from the ovalbumin-specific T cell receptor–transgenic (TCR-transgenic) OT-I strain induces myocarditis in CMy-mOva mice only after subsequent inoculation with ovalbumin-expressing vesicular stomatitis virus (VSV-Ova). OT-I effector T cells derived in vitro in the presence or absence of IL-12 were adoptively transferred into CMy-mOva mice, and the consequences were compared. Although IL-12 was not required for the generation of cytolytic and IFN-γ–producing effector T cells, only effectors primed in the presence of IL-12 infiltrated CMy-mOva hearts in significant numbers, causing lethal myocarditis. Furthermore, analysis of OT-I effectors collected from a mediastinal draining lymph node indicated that only effectors primed in vitro in the presence of IL-12 proliferated in vivo. These data demonstrate the importance of IL-12 in the differentiation of pathogenic CD8+ T cells that can cause myocarditis. PMID:12618521

  12. Lentiginous phenotypes caused by diverse pathogenic genes (SASH1 and PTPN11): clinical and molecular discrimination.

    PubMed

    Zhang, J; Cheng, R; Liang, J; Ni, C; Li, M; Yao, Z

    2016-10-01

    Pathogenic mutations in genes (SASH1 and PTPN11) can cause a rare genetic disorder associated with pigmentation defects and the well-known LEOPARD syndrome, respectively. Both conditions presented with lentiginous phenotypes. The aim of this study was to arrive at definite diagnoses of three Chinese boys with clinically suspected lentigines-related syndromes. ADAR1, ABCB6, SASH1 and PTPN11 were candidate genes for mutational screening. Sanger sequencing was performed to identify the mutations, whereas bioinformatic analysis was used to predict the pathogenicity of novel missense mutations. Two novel mutations c.1537A>C (p.Ser513Arg) and 1527_1530dupAAGT (p.Leu511Lysfs*21) in SASH1 and a common p.Thr468Met mutation in PTPN11 were detected in three pediatric patients with lentiginous phenotypes, respectively. Comparisons between clinical presentations showed that SASH1-related phenotypes can exhibit hyper- and hypopigmentation on the trunk and extremities, similar to dyschromatosis, while scattered café au-lait spots usually appeared in PTPN11-related LEOPARD syndrome. Furthermore, the similarity in the clinical presentations of Peutz-Jeghers syndrome, Laugier-Hunziker syndrome, xeroderma pigmentosum, neurofibromatosis type I, suggesting that these conditions should be added into the differential diagnoses of lentiginous phenotypes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia

    PubMed Central

    Makrythanasis, Periklis; Kato, Mitsuhiro; Zaki, Maha S.; Saitsu, Hirotomo; Nakamura, Kazuyuki; Santoni, Federico A.; Miyatake, Satoko; Nakashima, Mitsuko; Issa, Mahmoud Y.; Guipponi, Michel; Letourneau, Audrey; Logan, Clare V.; Roberts, Nicola; Parry, David A.; Johnson, Colin A.; Matsumoto, Naomichi; Hamamy, Hanan; Sheridan, Eamonn; Kinoshita, Taroh; Antonarakis, Stylianos E.; Murakami, Yoshiko

    2016-01-01

    Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 various proteins to the cell surface. At least 27 genes are involved in biosynthesis and transport of GPI-anchored proteins (GPI-APs). To date, mutations in 13 of these genes are known to cause inherited GPI deficiencies (IGDs), and all are inherited as recessive traits. IGDs mainly manifest as intellectual disability, epilepsy, coarse facial features, and multiple organ anomalies. These symptoms are caused by the decreased surface expression of GPI-APs or by structural abnormalities of GPI. Here, we present five affected individuals (from two consanguineous families from Egypt and Pakistan and one non-consanguineous family from Japan) who show intellectual disability, hypotonia, and early-onset seizures. We identified pathogenic variants in PIGG, a gene in the GPI pathway. In the consanguineous families, homozygous variants c.928C>T (p.Gln310∗) and c.2261+1G>C were found, whereas the Japanese individual was compound heterozygous for c.2005C>T (p.Arg669Cys) and a 2.4 Mb deletion involving PIGG. PIGG is the enzyme that modifies the second mannose with ethanolamine phosphate, which is removed soon after GPI is attached to the protein. Physiological significance of this transient modification has been unclear. Using B lymphoblasts from affected individuals of the Egyptian and Japanese families, we revealed that PIGG activity was almost completely abolished; however, the GPI-APs had normal surface levels and normal structure, indicating that the pathogenesis of PIGG deficiency is not yet fully understood. The discovery of pathogenic variants in PIGG expands the spectrum of IGDs and further enhances our understanding of this etiopathogenic class of intellectual disability. PMID:26996948

  14. Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia.

    PubMed

    Makrythanasis, Periklis; Kato, Mitsuhiro; Zaki, Maha S; Saitsu, Hirotomo; Nakamura, Kazuyuki; Santoni, Federico A; Miyatake, Satoko; Nakashima, Mitsuko; Issa, Mahmoud Y; Guipponi, Michel; Letourneau, Audrey; Logan, Clare V; Roberts, Nicola; Parry, David A; Johnson, Colin A; Matsumoto, Naomichi; Hamamy, Hanan; Sheridan, Eamonn; Kinoshita, Taroh; Antonarakis, Stylianos E; Murakami, Yoshiko

    2016-04-07

    Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors >150 various proteins to the cell surface. At least 27 genes are involved in biosynthesis and transport of GPI-anchored proteins (GPI-APs). To date, mutations in 13 of these genes are known to cause inherited GPI deficiencies (IGDs), and all are inherited as recessive traits. IGDs mainly manifest as intellectual disability, epilepsy, coarse facial features, and multiple organ anomalies. These symptoms are caused by the decreased surface expression of GPI-APs or by structural abnormalities of GPI. Here, we present five affected individuals (from two consanguineous families from Egypt and Pakistan and one non-consanguineous family from Japan) who show intellectual disability, hypotonia, and early-onset seizures. We identified pathogenic variants in PIGG, a gene in the GPI pathway. In the consanguineous families, homozygous variants c.928C>T (p.Gln310(∗)) and c.2261+1G>C were found, whereas the Japanese individual was compound heterozygous for c.2005C>T (p.Arg669Cys) and a 2.4 Mb deletion involving PIGG. PIGG is the enzyme that modifies the second mannose with ethanolamine phosphate, which is removed soon after GPI is attached to the protein. Physiological significance of this transient modification has been unclear. Using B lymphoblasts from affected individuals of the Egyptian and Japanese families, we revealed that PIGG activity was almost completely abolished; however, the GPI-APs had normal surface levels and normal structure, indicating that the pathogenesis of PIGG deficiency is not yet fully understood. The discovery of pathogenic variants in PIGG expands the spectrum of IGDs and further enhances our understanding of this etiopathogenic class of intellectual disability. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of a culture-based pathogen identification kit for bacterial causes of bovine mastitis.

    PubMed

    Viora, L; Graham, E M; Mellor, D J; Reynolds, K; Simoes, P B A; Geraghty, T E

    2014-07-26

    Accurate identification of mastitis-causing bacteria supports effective management and can be used to implement selective use of antimicrobials for treatment. The objectives of this study were to compare the results from a culture-based mastitis pathogen detection test kit ('VetoRapid', Vétoquinol) with standard laboratory culture and to evaluate the potential suitability of the test kit to inform a selective treatment programme. Overall 231 quarter milk samples from five UK dairy farms were collected. The sensitivity and specificity of the test kit for the identification of Escherichia coli, Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis and Enterococcus spp. ranged from 17 per cent to 84 per cent and 92 per cent to 98 per cent, respectively. In total, 23 of 68 clinical samples were assigned as meeting the requirement for antimicrobial treatment (Gram-positive organism cultured) according to standard culture results, with the test kit results having sensitivity and specificity of 91 per cent and 78 per cent, respectively. Several occurrences of misidentification are reported, including S. aureus being misidentified as coagulase-negative staphylococci and vice versa. The test kit provides rapid preliminary identification of five common causes of bovine mastitis under UK field conditions and is likely to be suitable for informing selective treatment of clinical mastitis caused by Gram-positive organisms. British Veterinary Association.

  16. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs.

    PubMed

    Mitchell, Natalie M; Johnson, James R; Johnston, Brian; Curtiss, Roy; Mellata, Melha

    2015-02-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

    PubMed Central

    Mitchell, Natalie M.; Johnson, James R.; Johnston, Brian; Curtiss, Roy

    2014-01-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  18. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management.

    PubMed

    Zahedi, Alireza; Paparini, Andrea; Jian, Fuchun; Robertson, Ian; Ryan, Una

    2016-04-01

    Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.

  19. Beyond bushmeat: Animal contact, injury, and zoonotic disease risk in western Uganda

    PubMed Central

    Paige, Sarah B.; Frost, Simon D.W.; Gibson, Mhairi A.; Holland, James; Shankar, Anupama; Switzer, William M.; Ting, Nelson

    2014-01-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/ 1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where “bushmeat hunting” is the predominant paradigm for human-wildlife contact and zoonotic disease transmission. PMID:24845574

  20. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges.

    PubMed

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection.

  1. Vaccine Development against Zoonotic Hepatitis E Virus: Open Questions and Remaining Challenges

    PubMed Central

    Nan, Yuchen; Wu, Chunyan; Zhao, Qin; Sun, Yani; Zhang, Yan-Jin; Zhou, En-Min

    2018-01-01

    Hepatitis E virus (HEV) is a fecal-orally transmitted foodborne viral pathogen that causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the discovery of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. Recently, a subunit HEV vaccine developed for the prevention of human disease was approved in China, but is not yet available to the rest of the world. Meanwhile, notable progress and knowledge has been made and revealed in recent years to better understand HEV biology and infection, including discoveries of quasi-enveloped HEV virions and of a new function of the HEV-ORF3 product. However, the impact of these new findings on the development of a protective vaccine against zoonotic HEV infection requires further discussion. In this review, hallmark characteristics of HEV zoonosis, the history of HEV vaccine development, and recent discoveries in HEV virology are described. Moreover, special attention is focused on quasi-enveloped HEV virions and the potential role of the HEV-ORF3 product as antibody-neutralization target on the surface of quasi-enveloped HEV virions to provide new insights for the future development of improved vaccines against zoonotic HEV infection. PMID:29520257

  2. Beyond bushmeat: animal contact, injury, and zoonotic disease risk in Western Uganda.

    PubMed

    Paige, Sarah B; Frost, Simon D W; Gibson, Mhairi A; Jones, James Holland; Shankar, Anupama; Switzer, William M; Ting, Nelson; Goldberg, Tony L

    2014-12-01

    Zoonotic pathogens cause an estimated 70% of emerging and re-emerging infectious diseases in humans. In sub-Saharan Africa, bushmeat hunting and butchering is considered the primary risk factor for human-wildlife contact and zoonotic disease transmission, particularly for the transmission of simian retroviruses. However, hunting is only one of many activities in sub-Saharan Africa that bring people and wildlife into contact. Here, we examine human-animal interaction in western Uganda, identifying patterns of injuries from animals and contact with nonhuman primates. Additionally, we identify individual-level risk factors associated with contact. Nearly 20% (246/1,240) of participants reported either being injured by an animal or having contact with a primate over their lifetimes. The majority (51.7%) of injuries were dog bites that healed with no long-term medical consequences. The majority (76.8%) of 125 total primate contacts involved touching a carcass; however, butchering (20%), hunting (10%), and touching a live primate (10%) were also reported. Red colobus (Piliocolobus rufomitratus tephrosceles) accounted for most primate contact events. Multivariate logistic regression indicated that men who live adjacent to forest fragments are at elevated risk of animal contact and specifically primate contact. Our results provide a useful comparison to West and Central Africa where "bushmeat hunting" is the predominant paradigm for human-wildlife contact and zoonotic disease transmission.

  3. Interdisciplinary approaches to zoonotic disease

    PubMed Central

    Goodwin, Robin; Schley, David; Lai, Ka-Man; Ceddia, Graziano M.; Barnett, Julie; Cook, Nigel

    2012-01-01

    Zoonotic infections are on the increase worldwide, but most research into the biological, environmental and life science aspects of these infections has been conducted in separation. In this review we bring together contemporary research in these areas to suggest a new, symbiotic framework which recognises the interaction of biological, economic, psychological, and natural and built environmental drivers in zoonotic infection and transmission. In doing so, we propose that some contemporary debates in zoonotic research could be resolved using an expanded framework which explicitly takes into account the combination of motivated and habitual human behaviour, environmental and biological constraints, and their interactions. PMID:24470951

  4. Pathogenic leptospires modulate protein expression and post-translational modifications in response to mammalian host signals

    USDA-ARS?s Scientific Manuscript database

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs and cattle, exhibit little to no signs of disease but shed large numbers of organisms in...

  5. Identification of Novel Pathogenicity Loci in Clostridium perfringens Strains That Cause Avian Necrotic Enteritis

    PubMed Central

    Parreira, Valeria R.; Marri, Pradeep R.; Rosey, Everett L.; Gong, Joshua; Songer, J. Glenn; Vedantam, Gayatri; Prescott, John F.

    2010-01-01

    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes ∼85 and ∼70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne. PMID:20532244

  6. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis.

    PubMed

    Lepp, Dion; Roxas, Bryan; Parreira, Valeria R; Marri, Pradeep R; Rosey, Everett L; Gong, Joshua; Songer, J Glenn; Vedantam, Gayatri; Prescott, John F

    2010-05-24

    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes approximately 85 and approximately 70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne.

  7. Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model

    PubMed Central

    Zanin, Mark; Koçer, Zeynep A.; Poulson, Rebecca L.; Gabbard, Jon D.; Howerth, Elizabeth W.; Jones, Cheryl A.; Friedman, Kimberly; Seiler, Jon; Danner, Angela; Kercher, Lisa; McBride, Ryan; Paulson, James C.; Wentworth, David E.; Krauss, Scott; Tompkins, Stephen M.; Stallknecht, David E.

    2016-01-01

    ABSTRACT H7 subtype influenza A viruses are widely distributed and have been responsible for human infections and numerous outbreaks in poultry with significant impact. Despite this, the disease-causing potential of the precursor low-pathogenic (LP) H7 viruses from the wild bird reservoir has not been investigated. Our objective was to assess the disease-causing potential of 30 LP H7 viruses isolated from wild avian species in the United States and Canada using the DBA/2J mouse model. Without prior mammalian adaptation, the majority of viruses, 27 (90%), caused mortality in mice. Of these, 17 (56.7%) caused 100% mortality and 24 were of pathogenicity similar to that of A/Anhui/1/2013 (H7N9), which is highly pathogenic in mice. Viruses of duck origin were more pathogenic than those of shorebird origin, as 13 of 18 (72.2%) duck origin viruses caused 100% mortality while 4 of 12 (33.3%) shorebird origin viruses caused 100% mortality, despite there being no difference in mean lung viral titers between the groups. Replication beyond the respiratory tract was also evident, particularly in the heart and brain. Of the 16 viruses studied for fecal shedding, 11 were detected in fecal samples. These viruses exhibited a strong preference for avian-type α2,3-linked sialic acids; however, binding to mammalian-type α2,6-linked sialic acids was also detected. These findings indicate that LP avian H7 influenza A viruses are able to infect and cause disease in mammals without prior adaptation and therefore pose a potential public health risk. IMPORTANCE Low-pathogenic (LP) avian H7 influenza A viruses are widely distributed in the avian reservoir and are the precursors of numerous outbreaks of highly pathogenic avian influenza viruses in commercial poultry farms. However, unlike highly pathogenic H7 viruses, the disease-causing potential of LP H7 viruses from the wild bird reservoir has not been investigated. To address this, we studied 30 LP avian H7 viruses isolated from wild

  8. Necrotizing Pneumonia Caused by Chromobacterium violaceum Soil Bacterium: Report of a Rare Human Pathogen Causing Disease in a Previously Undiagnosed Immunodeficient Child.

    PubMed

    Frawley, Alean; Powell, Lauren; McQuiston, John R; Gulvik, Christopher A; Bégué, Rodolfo E

    2018-04-23

    Chromobacterium violaceum is a rare, potentially serious pathogen. Most clinicians have no experience with its clinical appearance or treatment. We describe a case of a child presenting with necrotizing pneumonia caused by C. violaceum . We describe case complexities, including the need for a multidisciplinary approach to diagnosis and treatment.

  9. [Bacterial biofilm as a cause of urinary tract infection--pathogens, methods of prevention and eradication].

    PubMed

    Ostrowska, Kinga; Strzelczyk, Aleksandra; Różalski, Antoni; Stączek, Paweł

    2013-10-25

    Urinary tract infections (UTI) are one of the common chronic and recurrent bacterial infections. Uropathogens which are able to form biofilm constitute a major etiological factor in UTI, especially among elder patients who are subject to long-term catheterization. It is caused by the capacity of the microorganisms for efficient and permanent colonization of tissues and also adhesion to diverse polymers used for urological catheter production such as propylene, polystyrene, silicone, polyvinyl chloride or silicone coated latex. Antibiotic therapy is the most common treatment for UTI. Fluoroquinolones, nitrofurans, beta-lactams, aminoglycosides, trimethoprim and sulfonamides are used predominantly. However, the biofilm due to its complex structure constitutes an effective barrier to the antibiotics used in the treatment of urinary tract infections. In addition, the growing number of multidrug resistant strains limits the usage of many of the currently available chemotherapeutic agents. Therefore, it seems important to search for new methods of treatment such as coating of catheters with non-pathogenic E. coli strains, the design of vaccines against fimbrial adhesive proteins of the bacterial cells or the use of bacteriophages.

  10. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Potential Mycotoxin Production in China

    PubMed Central

    Duan, Canxing; Qin, Zihui; Yang, Zhihuan; Li, Weixi; Sun, Suli; Zhu, Zhendong; Wang, Xiaoming

    2016-01-01

    Ear rot is a serious disease that affects maize yield and grain quality worldwide. The mycotoxins are often hazardous to humans and livestock. In samples collected in China between 2009 and 2014, Fusarium verticillioides and F. graminearum species complex were the dominant fungi causing ear rot. According to the TEF-1α gene sequence, F. graminearum species complex in China included three independent species: F. graminearum, F. meridionale, and F. boothii. The key gene FUM1 responsible for the biosynthesis of fumonisin was detected in all 82 F. verticillioides isolates. Among these, 57 isolates mainly produced fumonisin B1, ranging from 2.52 to 18,416.44 µg/g for each gram of dry hyphal weight, in vitro. Three different toxigenic chemotypes were detected among 78 F. graminearum species complex: 15-ADON, NIV and 15-ADON+NIV. Sixty and 16 isolates represented the 15-ADON and NIV chemotypes, respectively; two isolates carried both 15-ADON and NIV-producing segments. All the isolates carrying NIV-specific segment were F. meridionale. The in vitro production of 15-ADON, 3-ADON, DON, and ZEN varied from 5.43 to 81,539.49; 6.04 to 19,590.61; 13.35 to 19,795.33; and 1.77 to 430.24 µg/g of dry hyphal weight, respectively. Altogether, our present data demonstrate potential main mycotoxin production of dominant pathogenic Fusarium in China. PMID:27338476

  11. Biochemical characterization of a catalase from Vibrio vulnificus, a pathogen that causes gastroenteritis.

    PubMed

    Pei, Jihua; Wang, Haijun; Wu, Limin; Xia, Shenglong; Xu, Changlong; Zheng, Bo; Li, Tianya; Jiang, Yi

    2017-01-01

    Vibrio vulnificus is a virulent human pathogen causing gastroenteritis and possibly life threatening septicemia in patients. Most V. vulnificus are catalase positive and can deactivate peroxides, thus allowing them to survive within the host. In the study presented here, a catalase from V. vulnificus (CAT-Vv) was purified to homogeneity after expression in Escherichia coli. The kinetics and function of CAT-Vv were examined. CAT-Vv catalyzed the reduction of H 2 O 2 at an optimal pH of 7.5 and temperature of 35°C. The V max and K m values were 65.8±1.2 U/mg and 10.5±0.7 mM for H 2 O 2 , respectively. Mutational analysis suggests that amino acids involved in heme binding play a key role in the catalysis. Quantitative reverse transcription-PCR revealed that in V. vulnificus, transcription of CAT-Vv was upregulated by low salinity, heat, and oxidative stresses. This research gives new clues to help inhibit the growth of, and infection by V. vulnificus.

  12. Pathogens causing blood stream infections and their drug susceptibility profile in immunocompromised patients.

    PubMed

    Fayyaz, Muhammad; Mirza, Irfan Ali; Ikram, Aamer; Hussain, Aamir; Ghafoor, Tahir; Shujat, Umer

    2013-12-01

    To determine the types of pathogens causing blood stream infections and their drug susceptibility profile in immunocompromised patients. Cross-sectional, observational study. Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from January to September 2012. Blood culture bottles received from immunocompromised patients were dealt by two methods, brain heart infusion (BHI) broth based manual method and automated BACTEC system. The samples yielding positive growth from either of two methods were further analyzed. The identification of isolates was done with the help of biochemical reactions and rapid tests. Antimicrobial susceptibility of the isolates was carried out as per recommendations of Clinical and Laboratory Standards Institute (CLSI). Out of the 938 blood culture specimens received from immunocompromised patients, 188 (20%) yielded positive growth. Out of these, 89 (47.3%) isolates were Gram positive and Gram negative each, while 10 (5.3%) isolates were fungi (Candida spp.). In case of Gram positive isolates, 75 (84.3%) were Staphylococcus spp. and 51 (67%) were Methicillin resistant. Amongst Gram negative group 49 (55.1%) isolates were of enterobacteriaceae family, while 40 (44.9%) were non-lactose fermenters (NLF). In vitro antimicrobial susceptibility of Staphylococci revealed 100% susceptibility to vancomycin and linezolid. The enterobacteriaceae isolates had better susceptibility against amikacin 85.7% compared to tigecycline 61.2% and imipenem 59.2%. For NLF, the in vitro efficacy of aminoglycosides was 72.5%. The frequency of Gram positive and Gram negative organisms causing blood stream infections in immunocompromised patients was equal. Vancomycin in case of Gram positive and amikacin for Gram negative organisms revealed better in vitro efficacy as compared to other antibiotics.

  13. Status of the effectiveness of contact lens solutions against keratitis-causing pathogens.

    PubMed

    Siddiqui, Ruqaiyyah; Lakhundi, Sahreena; Khan, Naveed Ahmed

    2015-02-01

    The aim of this study was to assess the antimicrobial effects of marketed contact lens disinfecting solutions. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal, fungicidal and amoebicidal assays of eight different contact lens solutions including: ReNu MultiPlus, DuraPlus, Ultimate Plus, OptiFree Express, Kontex Clean, Kontex Normal, Kontex Multisol extra(+), Kontex Soak were performed. The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Fusarium solani and Acanthamoeba castellanii. The results revealed that ReNu MultiPlus, DuraPlus and OptiFree Express were effective in killing bacterial and fungal pathogens as per manufacturer's minimum recommended disinfection time. Ultimate Plus was effective against F. solani and MRSA but ineffective against P. aeruginosa, S. marcescens and S. aureus. Of concern however, is that none of the locally formulated contact lens disinfecting solutions from Pakistan, i.e., Kontex Clean, Kontex Normal, Kontex Multisol extra(+) and Kontex Soak were effective against any of the keratitis-causing organisms tested. All eight contact lens disinfecting solutions were unable to destroy Acanthamoeba cysts. Because such ineffective contact lens disinfection solutions present a major risk to public health, these findings are of great concern to the health officials and to the manufacturers of the contact lens disinfection solutions and effective solutions are needed, along with emphasis on proper hygiene for contact lens care and special guidelines for developing countries regarding the manufacture and storage of contact lens disinfecting solutions. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest

    PubMed Central

    Eng, Christine L. P.; Tong, Joo Chuan; Tan, Tin Wee

    2017-01-01

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak. PMID:28587080

  15. Predicting Zoonotic Risk of Influenza A Viruses from Host Tropism Protein Signature Using Random Forest.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2017-05-25

    Influenza A viruses remain a significant health problem, especially when a novel subtype emerges from the avian population to cause severe outbreaks in humans. Zoonotic viruses arise from the animal population as a result of mutations and reassortments, giving rise to novel strains with the capability to evade the host species barrier and cause human infections. Despite progress in understanding interspecies transmission of influenza viruses, we are no closer to predicting zoonotic strains that can lead to an outbreak. We have previously discovered distinct host tropism protein signatures of avian, human and zoonotic influenza strains obtained from host tropism predictions on individual protein sequences. Here, we apply machine learning approaches on the signatures to build a computational model capable of predicting zoonotic strains. The zoonotic strain prediction model can classify avian, human or zoonotic strains with high accuracy, as well as providing an estimated zoonotic risk. This would therefore allow us to quickly determine if an influenza virus strain has the potential to be zoonotic using only protein sequences. The swift identification of potential zoonotic strains in the animal population using the zoonotic strain prediction model could provide us with an early indication of an imminent influenza outbreak.

  16. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses

    USDA-ARS?s Scientific Manuscript database

    We demonstrated that honey bee viruses, including Deformed Wing Virus (DWV), Black Queen Cell Virus (BQCV) and Isreali Acute Paralysis Virus (IAPV), could infect and replicate in the fungal pathogen Ascosphaera apis, which causes honey bee chalkbrood disease, uncovering a novel biological feature of...

  17. Analysis of the genome sequence of Phomopsis longicolla: A fungal pathogen causing Phomopsis seed decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is a seed-borne fungus causing Phomopsis seed decay in soybean. This disease is one of the most devastating diseases reducing soybean seed quality worldwide. To facilitate investigation of the genomic basis of pathogenicity and to understa...

  18. Characterization and Pathogenicity of New Record of Anthracnose on Various Chili Varieties Caused by Colletotrichum scovillei in Korea.

    PubMed

    Oo, May Moe; Lim, GiTaek; Jang, Hyun A; Oh, Sang-Keun

    2017-09-01

    The anthracnose disease caused by Colletotrichum species is well-known as a major plant pathogen that primarily causes fruit rot in pepper and reduces its marketability. Thirty-five isolates representing species of Colletotrichum were obtained from chili fruits showing anthracnose disease symptoms in Chungcheongnam-do and Chungcheongbuk-do, South Korea. These 35 isolates were characterized according to morphological characteristics and nucleotide sequence data of internal transcribed spacer, glyceraldehyde-3-phosphate-dehydrogenase, and β-tubulin. The combined dataset shows that all of these 35 isolates were identified as C. scovillei and morphological characteristics were directly correlated with the nucleotide sequence data. Notably, these isolates were recorded for the first time as the causes of anthracnose caused by C. scovillei on pepper in Korea. Forty cultivars were used to investigate the pathogenicity and to identify the possible source of resistance. The result reveals that all of chili cultivars used in this study are susceptible to C. scovillei .

  19. Characterization and Pathogenicity of New Record of Anthracnose on Various Chili Varieties Caused by Colletotrichum scovillei in Korea

    PubMed Central

    Oo, May Moe; Lim, GiTaek; Jang, Hyun A

    2017-01-01

    The anthracnose disease caused by Colletotrichum species is well-known as a major plant pathogen that primarily causes fruit rot in pepper and reduces its marketability. Thirty-five isolates representing species of Colletotrichum were obtained from chili fruits showing anthracnose disease symptoms in Chungcheongnam-do and Chungcheongbuk-do, South Korea. These 35 isolates were characterized according to morphological characteristics and nucleotide sequence data of internal transcribed spacer, glyceraldehyde-3-phosphate-dehydrogenase, and β-tubulin. The combined dataset shows that all of these 35 isolates were identified as C. scovillei and morphological characteristics were directly correlated with the nucleotide sequence data. Notably, these isolates were recorded for the first time as the causes of anthracnose caused by C. scovillei on pepper in Korea. Forty cultivars were used to investigate the pathogenicity and to identify the possible source of resistance. The result reveals that all of chili cultivars used in this study are susceptible to C. scovillei. PMID:29138623

  20. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    PubMed Central

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  1. Role of viral and bacterial pathogens in causing pneumonia among Western Australian children: a case–control study protocol

    PubMed Central

    Bhuiyan, Mejbah Uddin; Snelling, Thomas L; West, Rachel; Lang, Jurissa; Rahman, Tasmina; Borland, Meredith L; Thornton, Ruth; Kirkham, Lea-Ann; Sikazwe, Chisha; Martin, Andrew C; Richmond, Peter C; Smith, David W; Jaffe, Adam; Blyth, Christopher C

    2018-01-01

    Introduction Pneumonia is the leading cause of childhood morbidity and mortality globally. Introduction of the conjugate Haemophilus influenzae B and multivalent pneumococcal vaccines in developed countries including Australia has significantly reduced the overall burden of bacterial pneumonia. With the availability of molecular diagnostics, viruses are frequently detected in children with pneumonia either as primary pathogens or predispose to secondary bacterial infection. Many respiratory pathogens that are known to cause pneumonia are also identified in asymptomatic children, so the true contribution of these pathogens to childhood community-acquired pneumonia (CAP) remains unclear. Since the introduction of pneumococcal vaccines, very few comprehensive studies from developed countries have attempted to determine the bacterial and viral aetiology of pneumonia. We aim to determine the contribution of bacteria and viruses to childhood CAP to inform further development of effective diagnosis, treatment and preventive strategies. Methods and analysis We are conducting a prospective case–control study (PneumoWA) where cases are children with radiologically confirmed pneumonia admitted to Princess Margaret Hospital for Children (PMH) and controls are healthy children identified from PMH outpatient clinics and from local community immunisation clinics. The case–control ratio is 1:1 with 250 children to be recruited in each arm. Nasopharyngeal swabs are collected from both cases and controls to detect the presence of viruses and bacteria by PCR; pathogen load will be assessed by quantitative PCR. The prevalence of pathogens detected in cases and controls will be compared, the OR of detection and population attributable fraction to CAP for each pathogen will be determined; relationships between pathogen load and disease status and severity will be explored. Ethics and dissemination This study has been approved by the human research ethics committees of PMH, Perth

  2. Status of the effectiveness of contact lens disinfectants in Malaysia against keratitis-causing pathogens.

    PubMed

    Abjani, Farhat; Khan, Naveed Ahmed; Jung, Suk Yul; Siddiqui, Ruqaiyyah

    2017-12-01

    The aim of this study was (i) to assess the antimicrobial effects of contact lens disinfecting solutions marketed in Malaysia against common bacterial eye pathogens and as well as eye parasite, Acanthamoeba castellanii, and (ii) to determine whether targeting cyst wall would improve the efficacy of contact lens disinfectants. Using ISO 14729 Stand-Alone Test for disinfecting solutions, bactericidal and amoebicidal assays of six different contact lens solutions including Oxysept ® , AO SEPT PLUS, OPTI-FREE ® pure moist ® , Renu ® fresh™, FreshKon ® CLEAR and COMPLETE RevitaLens™ were performed using Manufacturers Minimum recommended disinfection time (MRDT). The efficacy of contact lens solutions was determined against keratitis-causing microbes, namely: Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, and Acanthamoeba castellanii. In addition, using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, we determined whether combination of both agents can enhance efficacy of marketed contact lens disinfectants against A. castellanii trophozoites and cysts, in vitro. The results revealed that all contact lens disinfectants tested showed potent bactericidal effects exhibiting 100% kill against all bacterial species tested. In contrast, none of the contact lens disinfectants had potent effects against Acanthamoeba cysts viability. When tested against trophozoites, two disinfectants, Oxysept Multipurpose and AO-sept Multipurpose showed partial amoebicidal effects. Using chlorhexidine as an antiamoebic compound and cellulase enzyme to disrupt cyst wall structure, the findings revealed that combination of both agents in contact lens disinfectants abolished viability of A. castellanii cysts and trophozoites. Given the inefficacy of contact lens disinfectants tested in this study, these findings present a significant concern to public health. These

  3. Early detection of emerging zoonotic diseases with animal morbidity and mortality monitoring.

    PubMed

    Bisson, Isabelle-Anne; Ssebide, Benard J; Marra, Peter P

    2015-03-01

    Diseases transmitted between animals and people have made up more than 50% of emerging infectious diseases in humans over the last 60 years and have continued to arise in recent months. Yet, public health and animal disease surveillance programs continue to operate independently. Here, we assessed whether recent emerging zoonotic pathogens (n = 143) are known to cause morbidity or mortality in their animal host and if so, whether they were first detected with an animal morbidity/mortality event. We show that although sick or dead animals are often associated with these pathogens (52%), only 9% were first detected from an animal morbidity or mortality event prior to or concurrent with signs of illness in humans. We propose that an animal morbidity and mortality reporting program will improve detection and should be an essential component of early warning systems for zoonotic diseases. With the use of widespread low-cost technology, such a program could engage both the public and professionals and be easily tested and further incorporated as part of surveillance efforts by public health officials.

  4. [A sepsis case caused by a rare opportunistic pathogen: Bacillus pumilus].

    PubMed

    Borsa, Barış Ata; Aldağ, Mehmet Ersoy; Tunalı, Birsen; Dinç, Uğur; Güngördü Dalar, Zeynep; Özalp, Veli Cengiz

    2016-07-01

    The high prevalence of Bacillus species in nature and the detection of these bacteria as contaminant in cultures may lead diagnostic dilemma, however they should still be considered as a pathogen particularly in case of repeated positive cultures from patients with risk factors. Bacillus pumilus is a bacteria, though rarely, been reported as the causative agent of various infections such as sepsis, endocarditis, skin infections and food poisoning in human. In this report, a sepsis case in an immunocompetent patient caused by B.pumilus was presented. A 38-year-old female patient was admitted to emergency service of our hospital with the complaints of headache, dizziness and diarrhea. She had not any risk factors except a history of heart valve replacement operation two years ago. In physical examination, she had abdominal retention, high fever and hypotension, together with the high levels of sedimentation rate (ESR) and C-reactive protein (CRP). The patient was hospitalized with the preliminary diagnosis of sepsis. Three sets of blood samples at two different periods were taken for the culture. All blood culture vials had a positive signal at the second day of incubation in BD BACTEC™ 9050 system, therefore subcultures were performed in sheep blood agar, chocolate agar and MacConkey agar, and incubated in aerobic and anaerobic conditions. Beta-haemolytic, gray-colored large colonies were isolated from anaerobic culture at the end of 18-24 hours incubation, and Gram staining from colonies showed gram-positive rods. The isolate was identified as B.pumilus with 99% accuracy rate by using BD Phoenix™ 100 identification system. This result was also confirmed by MALDI-TOF based VITEK® MS system and 16S rRNA sequencing by Illumina MiSeq® platform. Antibiotic susceptibility test performed by BD Phoenix™ 100 system and the isolate was found to be resistant against penicillin, while it was susceptible to vancomycin, erythromycin, clindamycin, levofloxacin, and

  5. [Current situation of endemic status, prevention and control of neglected zoonotic diseases in China].

    PubMed

    Liu, Lu; Zhu, Hong-Run; Yang, Guo-Jing

    2013-06-01

    Neglected zoonotic diseases not only threaten the health of human, especially to the livestock keepers in poverty-stricken areas but also cause great economic losses to the animal husbandry. This paper reviews the current situation of the endemic status, prevention and control of neglected zoonotic diseases existing in China including rabies, bovine tuberculosis, brucellosis, anthrax, leptospirosis, echinococcosis, cysticercosis, leishmaniasis and fascioliasis, so as to provide the basic information for better controlling, even eliminating, the neglected zoonotic diseases in China.

  6. Overview of zoonotic infections from fish and shellfish

    USDA-ARS?s Scientific Manuscript database

    Zoonosis refers to diseases that can be transferred from animals, whether wild or domesticated, to humans. Zoonotic infections can be divided into: 1) topically acquired infection caused by contact with aquatic animals or their products and 2) food borne infection caused by eating raw or undercooked...

  7. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii

    PubMed Central

    Batra, Dhwani; Replogle, Adam; Rowe, Lori A.; Pritt, Bobbi S.; Petersen, Jeannine M.

    2016-01-01

    Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp in size (26.9% average GC content) and is comprised of a linear chromosome, 8 linear and 7 circular plasmids. Consistent with its taxonomic designation as a new Bbsl genospecies, the B. mayonii linear chromosome shares only 93.83% average nucleotide identity with other genospecies. Both B. mayonii genomes contain plasmids similar to B. burgdorferi sensu stricto lp54, lp36, lp28-3, lp28-4, lp25, lp17, lp5, 5 cp32s, cp26, and cp9. The vls locus present on lp28-10 of B. mayonii MN14-1420 is remarkably long, being comprised of 24 silent vls cassettes. Genetic differences between the two B. mayonii genomes are limited and include 15 single nucleotide variations as well as 7 fewer silent vls cassettes and a lack of the lp5 plasmid in MN14-1539. Notably, 68 homologs to proteins present in B. burgdorferi sensu stricto appear to be lacking from the B. mayonii genomes. These include the complement inhibitor, CspZ (BB_H06), the fibronectin binding protein, BB_K32, as well as multiple lipoproteins and proteins of unknown function. This study shows the utility of long read sequencing for full genome assembly of Bbsl genomes, identifies putative genome regions of B. mayonii that may be linked to clinical manifestation or tissue tropism, and provides a valuable resource for pathogenicity, diagnostic and

  8. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii.

    PubMed

    Kingry, Luke C; Batra, Dhwani; Replogle, Adam; Rowe, Lori A; Pritt, Bobbi S; Petersen, Jeannine M

    2016-01-01

    Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp in size (26.9% average GC content) and is comprised of a linear chromosome, 8 linear and 7 circular plasmids. Consistent with its taxonomic designation as a new Bbsl genospecies, the B. mayonii linear chromosome shares only 93.83% average nucleotide identity with other genospecies. Both B. mayonii genomes contain plasmids similar to B. burgdorferi sensu stricto lp54, lp36, lp28-3, lp28-4, lp25, lp17, lp5, 5 cp32s, cp26, and cp9. The vls locus present on lp28-10 of B. mayonii MN14-1420 is remarkably long, being comprised of 24 silent vls cassettes. Genetic differences between the two B. mayonii genomes are limited and include 15 single nucleotide variations as well as 7 fewer silent vls cassettes and a lack of the lp5 plasmid in MN14-1539. Notably, 68 homologs to proteins present in B. burgdorferi sensu stricto appear to be lacking from the B. mayonii genomes. These include the complement inhibitor, CspZ (BB_H06), the fibronectin binding protein, BB_K32, as well as multiple lipoproteins and proteins of unknown function. This study shows the utility of long read sequencing for full genome assembly of Bbsl genomes, identifies putative genome regions of B. mayonii that may be linked to clinical manifestation or tissue tropism, and provides a valuable resource for pathogenicity, diagnostic and

  9. Genomes and Virulence Factors of Novel Bacterial Pathogens Causing Bleaching Disease in the Marine Red Alga Delisea pulchra

    PubMed Central

    Fernandes, Neil; Case, Rebecca J.; Longford, Sharon R.; Seyedsayamdost, Mohammad R.; Steinberg, Peter D.; Kjelleberg, Staffan; Thomas, Torsten

    2011-01-01

    Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS) dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised. PMID:22162749

  10. Zoonotic Focus of Plague, Algeria

    PubMed Central

    Bitam, Idir; Baziz, Belkacem; Rolain, Jean-Marc; Belkaid, Miloud

    2006-01-01

    After an outbreak of human plague, 95 Xenopsylla cheopis fleas from Algeria were tested for Yersinia pestis with PCR methods. Nine fleas were definitively confirmed to be infected with Y. pestis biovar orientalis. Our results demonstrate the persistence of a zoonotic focus of Y. pestis in Algeria. PMID:17326957

  11. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China

    USDA-ARS?s Scientific Manuscript database

    Soybean is an important edible legume cultivated around the world. However, soybean production is seriously impacted by the widespread occurrence of root rot disease. In this study, genetic diversity and pathogenicity of Fusarium oxysporum associated with root rot of soybean in Heilongjiang province...

  12. Are seed and cone pathogens causing significant losses in Pacific Northwest seed orchards?

    Treesearch

    E.E. Nelson; W.G. Thies; C.Y. Li

    1986-01-01

    Cones systematically collected in 1983 from eight Douglas-fir seed orchards in western Washington and Oregon yielded large numbers of common molds. Fungi isolated from apparently healthy, developing cones were similar to those from necrotic cones. Necrosis in cones aborted in early stages of development was apparently not associated with pathogenic fungi or bacteria....

  13. Antimicrobials for mastitis causing pathogens that are refractory to resistance development

    USDA-ARS?s Scientific Manuscript database

    Staphylococci and streptococci are both human and agricultural pathogens responsible for >50% of clinical mastitis incidents (resulting in losses to the dairy industry greater than $2 billion annually). The rise in bacterial resistance to antibiotics world-wide has precipitated the search for alter...

  14. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction.

    PubMed

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-06-01

    Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians' orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs.

  15. Detection of common diarrhea-causing pathogens in Northern Taiwan by multiplex polymerase chain reaction

    PubMed Central

    Huang, Shu-Huan; Lin, Yi-Fang; Tsai, Ming-Han; Yang, Shuan; Liao, Mei-Ling; Chao, Shao-Wen; Hwang, Cheng-Cheng

    2018-01-01

    Abstract Conventional methods for identifying gastroenteritis pathogens are time consuming, more likely to result in a false-negative, rely on personnel with diagnostic expertise, and are dependent on the specimen status. Alternatively, molecular diagnostic methods permit the rapid, simultaneous detection of multiple pathogens with high sensitivity and specificity. The present study compared conventional methods with the Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for the diagnosis of infectious gastroenteritis in northern Taiwan. From July 2015 to April 2016, 217 clinical fecal samples were collected from patients with suspected infectious gastroenteritis. All specimens were tested using conventional diagnostic techniques following physicians’ orders as well as with the xTAG GPP. The multiplex polymerase chain reaction (PCR) approach detected significantly more positive samples with bacterial, viral, and/or parasitic infections as compared to conventional analysis (55.8% vs 40.1%, respectively; P < .001). Moreover, multiplex PCR could detect Escherichia coli O157, enterotoxigenic E coli, Shiga-like toxin-producing E coli, Cryptosporidium, and Giardia, which were undetectable by conventional methods. Furthermore, 48 pathogens in 23 patients (10.6%) with coinfections were identified only using the multiplex PCR approach. Of which, 82.6% were from pediatric patients. Because the detection rates using multiplex PCR are higher than conventional methods, and some pediatric pathogens could only be detected by multiplex PCR, this approach may be useful in rapidly diagnosing diarrheal disease in children and facilitating treatment initiation. Further studies are necessary to determine if multiplex PCR improves patient outcomes and reduces costs. PMID:29879060

  16. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens.

    PubMed

    Armas, Federica; Camperio, Cristina; Marianelli, Cinzia

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions.

  17. In Vitro Assessment of the Probiotic Potential of Lactococcus lactis LMG 7930 against Ruminant Mastitis-Causing Pathogens

    PubMed Central

    Armas, Federica; Camperio, Cristina

    2017-01-01

    Mastitis in dairy ruminants is considered to be the most expensive disease to farmers worldwide. Recently, the intramammary infusion of lactic acid bacteria has emerged as a potential new alternative to antibiotics for preventing and treating bovine mastitis. In this study we have investigated in vitro the probiotic potential of Lactococcus lactis LMG 7930, a food-grade and nisin-producing strain, against mastitis-causing pathogens. We have characterized its carbohydrate fermentation and antibiotic susceptibility profiles, cell surface properties and antimicrobial activity, as well as its capabilities to adhere to and inhibit the invasion of pathogens into the bovine mammary epithelial cell line BME-UV1d. We found that L. lactis LMG 7930 was sensitive to tested drugs, according to the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), and showed an improved carbohydrate fermentation capacity compared to starter strains. Moreover, the strain exhibited antagonistic properties towards many of the pathogens tested. It presented medium surface hydrophobicity, a low basic property and no electron acceptor capability. It showed low auto-aggregation and no co-aggregation abilities towards any of the tested pathogens. The strain was one of the most adhesive to bovine mammary epithelial cells among tested bacteria, but its internalisation was low. The strain did not affect significantly pathogen invasion; however, a trend to decrease internalization of some pathogens tested was observed. In conclusion, our results suggest that this strain might be a promising candidate for the development of new strategies of mastitis control in ruminants. Future investigations are needed to evaluate its safety and efficacy under field conditions. PMID:28068371

  18. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni. PMID:25715048

  19. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part I: Overview, vaccines for enteric viruses and Vibrio cholerae.

    PubMed

    O'Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Salazar, Juan Carlos; Montero, David

    2015-01-01

    Efforts to develop vaccines for prevention of acute diarrhea have been going on for more than 40 y with partial success. The myriad of pathogens, more than 20, that have been identified as a cause of acute diarrhea throughout the years pose a significant challenge for selecting and further developing the most relevant vaccine candidates. Based on pathogen distribution as identified in epidemiological studies performed mostly in low-resource countries, rotavirus, Cryptosporidium, Shigella, diarrheogenic E. coli and V. cholerae are predominant, and thus the main targets for vaccine development and implementation. Vaccination against norovirus is most relevant in middle/high-income countries and possibly in resource-deprived countries, pending a more precise characterization of disease impact. Only a few licensed vaccines are currently available, of which rotavirus vaccines have been the most outstanding in demonstrating a significant impact in a short time period. This is a comprehensive review, divided into 2 articles, of nearly 50 vaccine candidates against the most relevant viral and bacterial pathogens that cause acute gastroenteritis. In order to facilitate reading, sections for each pathogen are organized as follows: i) a discussion of the main epidemiological and pathogenic features; and ii) a discussion of vaccines based on their stage of development, moving from current licensed vaccines to vaccines in advanced stage of development (in phase IIb or III trials) to vaccines in early stages of clinical development (in phase I/II) or preclinical development in animal models. In this first article we discuss rotavirus, norovirus and Vibrio cholerae. In the following article we will discuss Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic), and Campylobacter jejuni.

  20. Zoonotic Poxviruses Associated with Companion Animals

    PubMed Central

    Tack, Danielle M.; Reynolds, Mary G.

    2011-01-01

    Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622

  1. The Sugarcane Defense Protein SUGARWIN2 Causes Cell Death in Colletotrichum falcatum but Not in Non-Pathogenic Fungi

    PubMed Central

    Franco, Flávia P.; Santiago, Adelita C.; Henrique-Silva, Flávio; de Castro, Patrícia Alves; Goldman, Gustavo H.; Moura, Daniel S.; Silva-Filho, Marcio C.

    2014-01-01

    Plants respond to pathogens and insect attacks by inducing and accumulating a large set of defense-related proteins. Two homologues of a barley wound-inducible protein (BARWIN) have been characterized in sugarcane, SUGARWIN1 and SUGARWIN2 (sugarcane wound-inducible proteins). Induction of SUGARWINs occurs in response to Diatraea saccharalis damage but not to pathogen infection. In addition, the protein itself does not show any effect on insect development; instead, it has antimicrobial activities toward Fusarium verticillioides, an opportunistic fungus that usually occurs after D. saccharalis borer attacks on sugarcane. In this study, we sought to evaluate the specificity of SUGARWIN2 to better understand its mechanism of action against phytopathogens and the associations between fungi and insects that affect plants. We used Colletotrichum falcatum, a fungus that causes red rot disease in sugarcane fields infested by D. saccharalis, and Ceratocystis paradoxa, which causes pineapple disease in sugarcane. We also tested whether SUGARWIN2 is able to cause cell death in Aspergillus nidulans, a fungus that does not infect sugarcane, and in the model yeast Saccharomyces cerevisiae, which is used for bioethanol production. Recombinant SUGARWIN2 altered C. falcatum morphology by increasing vacuolization, points of fractures and a leak of intracellular material, leading to germling apoptosis. In C. paradoxa, SUGARWIN2 showed increased vacuolization in hyphae but did not kill the fungi. Neither the non-pathogenic fungus A. nidulans nor the yeast S. cerevisiae was affected by recombinant SUGARWIN2, suggesting that the protein is specific to sugarcane opportunistic fungal pathogens. PMID:24608349

  2. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection.

    PubMed

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-09-01

    To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.

  3. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection

    PubMed Central

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-01-01

    Objective To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. Methods The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. Results All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. Conclusions The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp. PMID:23998016

  4. Heart failure and sudden cardiac death in heritable thoracic aortic disease caused by pathogenic variants in the SMAD3 gene.

    PubMed

    Backer, Julie De; Braverman, Alan C

    2018-05-01

    Predominant cardiovascular manifestations in the spectrum of Heritable Thoracic Aortic Disease include by default aortic root aneurysms- and dissections, which may be associated with aortic valve disease. Mitral- and tricuspid valve prolapse are other commonly recognized features. Myocardial disease, characterized by heart failure and/or malignant arrhythmias has been reported in humans and in animal models harboring pathogenic variants in the Fibrillin1 gene. Description of clinical history of three cases from one family in Ghent (Belgium) and one family in St. Louis (US). We report on three cases from two families presenting end-stage heart failure (in two) and lethal arrhythmias associated with moderate left ventricular dilatation (in one). All three cases harbor a pathogenic variant in the SMAD3 gene, known to cause aneurysm osteoarthritis syndrome, Loeys-Dietz syndrome type 3 or isolated Heritable Thoracic Aortic Disease. These unusual presentations warrant awareness for myocardial disease in patients harboring pathogenic variants in genes causing Heritable Thoracic Aortic Disease and indicate the need for prospective studies in larger cohorts. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  5. Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism.

    PubMed

    Tang, Chengyuan; Chen, Xiang; Chi, Jingwei; Yang, Dawei; Liu, Shu; Liu, Mujun; Pan, Qian; Fan, Jianbing; Wang, Danling; Zhang, Zhuohua

    2015-11-01

    Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

    PubMed Central

    Zeng, Huicai; Fan, Dingding; Zhu, Yabin; Feng, Yue; Wang, Guofen; Peng, Chunfang; Jiang, Xuanting; Zhou, Dajie; Ni, Peixiang; Liang, Changcong; Liu, Lei; Wang, Jun; Mao, Chao

    2014-01-01

    Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance

  7. Epidemiology, antibiotic therapy and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in cancer patients.

    PubMed

    Bodro, Marta; Gudiol, Carlota; Garcia-Vidal, Carolina; Tubau, Fe; Contra, Anna; Boix, Lucía; Domingo-Domenech, Eva; Calvo, Mariona; Carratalà, Jordi

    2014-03-01

    Infection due to the six ESKAPE pathogens has recently been identified as a serious emerging problem. However, there is still a lack of information on bacteremia caused by these organisms in cancer patients. We aimed to assess the epidemiology, antibiotic therapy and outcomes of bacteremia due to drug-resistant ESKAPE pathogens (rESKAPE) in patients with cancer. All episodes of bacteremia prospectively documented in hospitalized adults with cancer from 2006 to 2011 were analyzed. Of 1,148 episodes of bacteremia, 392 (34 %) were caused by ESKAPE pathogens. Fifty-four episodes (4.7 %) were due to rESKAPE strains (vancomycin-resistant Enterococcus faecium 0, methicillin-resistant Staphylococcus aureus (MRSA) 13, extended-spectrum beta-lactamase (ESLB)-producing Klebsiella pneumoniae 7, carbapenem-resistant Acinetobacter baumannii 4, carbapenem- and quinolone-resistant Pseudomonas aeruginosa 18 and derepression chromosomic ß-lactam and ESBL-producing Enterobacter species 12. Risk factors independently associated with rESKAPE bacteremia were comorbidities, prior antibiotic therapy, urinary catheter and urinary tract source. Inappropriate empirical antibiotic therapy was more frequent in patients with rESKAPE bacteremia than in the other cases (55.6 % vs. 21.5 %, p < 0.001). Persistence of bacteremia (25 % vs. 9.7 %), septic metastasis (8 % vs. 4 %) and early case-fatality rate (23 % vs. 11 %) were more frequent in patients with rESKAPE bacteremia than in patients with other etiologies (p < 0.05). Bacteremia due to rESKAPE pathogens in cancer patients occurs mainly among those with comorbidities who have received prior antibiotic therapy and have a urinary tract source. These patients often receive inappropriate empirical antibiotic therapy and have a poor outcome.

  8. Bacteriophages: the possible solution to treat infections caused by pathogenic bacteria.

    PubMed

    El-Shibiny, Ayman; El-Sahhar, Salma

    2017-11-01

    Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.

  9. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia.

    PubMed

    Cantlay, Jennifer Caroline; Ingram, Daniel J; Meredith, Anna L

    2017-06-01

    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.

  10. Pythium species causing damping-off of alfalfa in Minnesota: Identification, pathogenicity and fungicide sensitivity

    USDA-ARS?s Scientific Manuscript database

    Damping-off and seed rot is an important disease of alfalfa, severely affecting stand establishment when conditions favor the disease. Globally, 15 Pythium species are reported to cause damping-off and seed rot of alfalfa, although surveys of species causing disease on alfalfa in Minnesota are lacki...

  11. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens

    PubMed Central

    2012-01-01

    Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection. PMID:22691598

  12. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens.

    PubMed

    Cortés-Vieyra, Ricarda; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J; Juárez, Marcos Cajero; Finlay, B Brett; Baizabal-Aguirre, Víctor M

    2012-06-12

    Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.

  13. Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.

    PubMed

    Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn

    2017-01-01

    The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.

  14. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages.

    PubMed

    Ali, Sajid; Rodriguez-Algaba, Julian; Thach, Tine; Sørensen, Chris K; Hansen, Jens G; Lassen, Poul; Nazari, Kumarse; Hodson, David P; Justesen, Annemarie F; Hovmøller, Mogens S

    2017-01-01

    We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009-2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales.

  15. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    PubMed Central

    Ali, Sajid; Rodriguez-Algaba, Julian; Thach, Tine; Sørensen, Chris K.; Hansen, Jens G.; Lassen, Poul; Nazari, Kumarse; Hodson, David P.; Justesen, Annemarie F.; Hovmøller, Mogens S.

    2017-01-01

    We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009–2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales. PMID:28676811

  16. The ability to cause infection in a pathogenic fungus uncovers a new biological feature of honey bee viruses.

    PubMed

    Li, Zhiguo; Su, Songkun; Hamilton, Michele; Yan, Limin; Chen, Yanping

    2014-07-01

    We demonstrated that honey bee viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) could infect and replicate in the fungal pathogen Ascosphaera apis that causes honey bee chalkbrood disease, revealing a novel biological feature of honey bee viruses. The phylogenetic analysis show that viruses of fungal and honey bee origins form two clusters in the phylogenetic trees distinctly and that host range of honey bee viruses is dynamic. Further studies are warranted to investigate the impact of the viruses on the fitness of their fungal host and phenotypic effects the virus-fungus combination has on honey bee hosts. Published by Elsevier Inc.

  17. European bats as carriers of viruses with zoonotic potential.

    PubMed

    Kohl, Claudia; Kurth, Andreas

    2014-08-13

    Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.

  18. The Causes of Post-Operative Meningitis: The Comparison Of Gram-Negative and Gram-Positive Pathogens.

    PubMed

    Kurtaran, Behice; Kuscu, Ferit; Ulu, Aslihan; Inal, Ayse Seza; Komur, Suheyla; Kibar, Filiz; Cetinalp, Nuri Eralp; Ozsoy, Kerem Mazhar; Arslan, Yusuf Kemal; Aksu, Hasan Salih; Tasova, Yesim

    2017-06-20

    In this study, we aim to determine the microbiological etiology in critically ill neurosurgical patients with nosocomial meningitis (NM) and show the impact of Gram-negative rods and differences of patient's characteristics, clinical and prognostic measures between Gram-negative and Gram-positive meningitis. In this prospective, one center study we reviewed all adult patients hospitalized during a 12-year period and identified pathogens isolated from post-neurosurgical cases of NM. Demographic, clinical, and treatment characteristics were noted from the medical records. Of the 134 bacterial NM patients, 78 were male and 56 were female, with a mean age of 46±15.9 and median age of 50 (18-80) years. 141 strains isolated; 82 (58.2%) were Gram negative, 59 (41.8%) were Gram positive. Most common isolated microorganism was Acinetobacter baumannii (%34.8). In comparison of mortality data shows that the patients who have meningitis with Gram-negative pathogens have higher mortality than with Gram positives (p=0.034). The duration between surgery and meningitis was shorter in Gram negative meningitis cases compared to others (p=0.045) but the duration between the diagnosis and death was shorter in Gram-positive meningitis cases compared to Gram negatives (p= 0.017). CSF protein and lactate level were higher and glucose level was lower in cases of NM with Gram negatives (p value were respectively, 0.022, 0.039 and 0.049). As conclusions; in NM, Gram-negative pathogens were seen more frequently; A.baumanni was the predominant pathogen; and NM caused by Gram negatives had worse clinical and laboratory characteristic and prognostic outcome than Gram positives.

  19. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.

    PubMed

    Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan

    2018-06-22

    Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.

  20. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  1. Bacteremia caused by a rare pathogen - Chromobacterium violaceum: a case report from Nepal.

    PubMed

    Parajuli, Narayan Prasad; Bhetwal, Anjeela; Ghimire, Sumitra; Maharjan, Anjila; Shakya, Shreena; Satyal, Deepa; Pandit, Roshan; Khanal, Puspa Raj

    2016-01-01

    Chromobacterium violaceum is a gram negative saprophytic bacterium, prevalent in tropical and subtropical climates. Infections caused by C. violaceum are very uncommon, yet it can cause severe systemic infections with higher mortality when entered into the bloodstream through open wound. A case of symptomatic bacteremia in a woman caused by C. violaceum was identified recently at a tertiary care teaching hospital in Nepal. Timely diagnosis by microbiological methods and rapid administration of antimicrobials led to a successful treatment of this life-threatening infection in this case. From this experience, we suggest to include this bacterium in the differential diagnosis of sepsis, especially when abraded skin is exposed to soil or stagnant water in tropical areas. The precise antimicrobial selection and timely administration should be considered when this infection is suspected.

  2. Infections caused by pathogenic free-living amebas (Balamuthia mandrillaris and Acanthamoeba sp.) in horses.

    PubMed

    Kinde, Hailu; Read, Deryck H; Daft, Barbara M; Manzer, Michael; Nordhausen, Robert W; Kelly, Daryl J; Fuerst, Paul A; Booton, Gregory; Visvesvara, Govinda S

    2007-05-01

    This article describes amebic infections in 4 horses: granulomatous amebic encephalitis caused by Balamuthia mandrillaris and Acanthamoeba culbertsoni and systemic infections caused by Acanthamoeba sp. The former infection occurred in 1 of 4 horses spontaneously without any underlying conditions; the latter amebic infection was perhaps "opportunistic" considering the visceral involvement by this protozoan in association with Aspergillus sp. and/or Escherichia coli and Pseudomonas sp. The clinicopathologic findings and demonstration of the amebic organisms using immunohistochemical techniques, culture, polymerase chain reactions, and electron microscopy are presented.

  3. ANIMAL PATHOGENS THAT MAY CAUSE HUMAN DISEASE THAT ORIGINATE FROM FARM OPERATIONS

    EPA Science Inventory

    The recent increase in concentrated animal feeding operations in the United States has caused renewed concern regarding the infectious diseases that may be passed from farm animals to humans via the environment. It is also known that more than 20 recent epidemics among humans cou...

  4. Molecules that inhibit growth of Fusarium graminearum, a pathogen causing disease in wheat and corn

    USDA-ARS?s Scientific Manuscript database

    Fusarium graminearum can cause head blight in wheat and stalk or ear rot in corn, which results in crop losses. Discovery of novel antifungal resistance proteins are crucial to mitigating crop losses. We found, via in vitro studies, a small cationic peptide was capable of inhibiting the growth of th...

  5. Genomic and pathogenic analysis of a Muscovy duck parvovirus strain causing short beak and dwarfism syndrome without tongue protrusion.

    PubMed

    Fu, Qiuling; Huang, Yu; Wan, Chunhe; Fu, Guanghua; Qi, Baomin; Cheng, Longfei; Shi, Shaohua; Chen, Hongmei; Liu, Rongchang; Chen, Zhenhai

    2017-12-01

    In 2008, clinical cases of short beak and dwarfism syndrome (SBDS) caused by Muscovy duck parvovirus (MDPV) infection were found in mule duck and Taiwan white duck farms in Fujian, China. A MDPV LH strain causing duck SBDS without tongue protrusion was isolated in this study. Phylogenetic analysis show that the MDPV LH strain was clustered together with other MDPV strains, but divergent from GPV isolates. Two major fragment deletions were found in the inverted terminal repeats (ITR) of MDPV LH similar to the ones in the ITR of MDPV GX5, YY and SAAS-SHNH strains. To investigate the pathogenicity of the MDPV LH strain, virus infection of young mule ducks was performed. The infected ducks showed SBDS symptoms including retard growth and shorten beaks without tongue protrusion. Atrophy of thymus, spleen and bursa of Fabricius was identified in the infected ducks. The results show that MDPV LH strain is moderately pathogenic to mule duck, leading to occurrence of SBDS. As far as we know, it is the first study showing that SBDS without tongue protrusion, and atrophy of thymus, spleen and bursa of Fabricius possibly associated with immunosuppression were found in the MDPV-infected ducks. The established duck-MDPV-SBDS system will help us to further work on the virus pathogenesis and develop efficacious vaccine against MDPV infection. Copyright © 2017. Published by Elsevier Ltd.

  6. Nipah virus: transmission of a zoonotic paramyxovirus.

    PubMed

    Clayton, Bronwyn Anne

    2017-02-01

    Nipah virus is a recently-recognised, zoonotic paramyxovirus that causes severe disease and high fatality rates in people. Outbreaks have occurred in Malaysia, Singapore, India and Bangladesh, and a putative Nipah virus was also recently associated with human disease in the Philippines. Worryingly, human-to-human transmission is common in Bangladesh, where outbreaks occur with near-annual frequency. Onward human transmission of Nipah virus in Bangladesh is associated with close contact with clinically-unwell patients or their infectious secretions. While Nipah virus isolates associated with outbreaks of human infection have not resulted in sustained transmission to date, specific exposures carry a high risk of person-to-person transmission, an observation which is supported by recent findings in animal models. Novel paramyxoviruses continue to emerge from wildlife hosts, and represent an ongoing threat to human health globally. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Meningitis Outbreak Caused by Vaccine-Preventable Bacterial Pathogens - Northern Ghana, 2016.

    PubMed

    Aku, Fortress Y; Lessa, Fernanda C; Asiedu-Bekoe, Franklin; Balagumyetime, Phoebe; Ofosu, Winfred; Farrar, Jennifer; Ouattara, Mahamoudou; Vuong, Jeni T; Issah, Kofi; Opare, Joseph; Ohene, Sally-Ann; Okot, Charles; Kenu, Ernest; Ameme, Donne K; Opare, David; Abdul-Karim, Abass

    2017-08-04

    Bacterial meningitis is a severe, acute infection of the fluid surrounding the brain and spinal cord that can rapidly lead to death. Even with recommended antibiotic treatment, up to 25% of infected persons in Africa might experience neurologic sequelae (1). Three regions in northern Ghana (Upper East, Northern, and Upper West), located in the sub-Saharan "meningitis belt" that extends from Senegal to Ethiopia, experienced periodic outbreaks of meningitis before introduction of serogroup A meningococcal conjugate vaccine (MenAfriVac) in 2012 (2,3). During December 9, 2015-February 16, 2016, a total of 432 suspected meningitis cases were reported to health authorities in these three regions. The Ghana Ministry of Health, with assistance from CDC and other partners, tested cerebrospinal fluid (CSF) specimens from 286 patients. In the first 4 weeks of the outbreak, a high percentage of cases were caused by Streptococcus pneumoniae; followed by an increase in cases caused by Neisseria meningitidis, predominantly serogroup W. These data facilitated Ghana's request to the International Coordinating Group* for meningococcal polysaccharide ACW vaccine, which was delivered to persons in the most affected districts. Rapid identification of the etiologic agent causing meningitis outbreaks is critical to inform targeted public health and clinical interventions, including vaccination, clinical management, and contact precautions.

  8. Zoonotic viruses associated with illegally imported wildlife products

    USGS Publications Warehouse

    Smith, Kristine M.; Anthony, Simon J.; Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence.

  9. Zoonotic Viruses Associated with Illegally Imported Wildlife Products

    PubMed Central

    Switzer, William M.; Epstein, Jonathan H.; Seimon, Tracie; Jia, Hongwei; Sanchez, Maria D.; Huynh, Thanh Thao; Galland, G. Gale; Shapiro, Sheryl E.; Sleeman, Jonathan M.; McAloose, Denise; Stuchin, Margot; Amato, George; Kolokotronis, Sergios-Orestis; Lipkin, W. Ian; Karesh, William B.; Daszak, Peter; Marano, Nina

    2012-01-01

    The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence. PMID:22253731

  10. The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.

    PubMed

    Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui

    2018-01-01

    Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.

  11. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens.

    PubMed

    Sándor, Attila D; Kalmár, Zsuzsa; Matei, Ioana; Ionică, Angela Monica; Mărcuţan, Ioan-Daniel

    2017-02-01

    Crows (Corvidae) are common city dwellers worldwide and are increasingly important subjects of epidemiology studies. Although their importance as hosts and transmitters of a number of zoonotic parasites and pathogens is well known, there are no studies on their importance as tick hosts. After mosquitoes, ticks are the most important vectors of zoonotic pathogens, especially for those causing emerging zoonotic diseases. Pathogenic bacteria, especially Borrelia spp., Rickettsia spp., and Anaplasma spp., vectored by ticks, are the cause for most vector-borne diseases in Europe. Here we report on ticks and tick-borne pathogens harbored by urban breeding crows. A total of 36 birds (33.33%, n = 108) hosted ticks, with 91 individual ticks belonging to 6 species (Haemaphysalis concinna, Haemaphysalis parva, Haemaphysalis punctata, Hyalomma marginatum, Ixodes arboricola, and Ixodes ricinus). Rickettsia spp. DNA was found in 6.6% of ticks and 1.9% of bird tissues, whereas Anaplasma phagocytophilum was found in 5.9% of ticks and 0.9% of birds. Two rickettsial genospecies were located, Rickettsia helvetica and Rickettsia monacensis. This is the first study to determine such a diverse tick spectrum feeding on urban corvids, while highlighting their importance as tick hosts and raising concerns about their potential risk to human health.

  12. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility.

    PubMed

    Poeschl, Paul W; Crepaz, Valentina; Russmueller, Guenter; Seemann, Rudolf; Hirschl, Alexander M; Ewers, Rolf

    2011-09-01

    The aims of the present study were to compare microbial populations in patients suffering from deep neck space abscesses caused by primary endodontic infections by sampling the infections with aspiration or swabbing techniques and to determine the susceptibility rates of the isolated bacteria to commonly used antibiotics. A total of 89 patients with deep neck space abscesses caused by primary endodontic infections requiring extraoral incision and drainage under general anesthesia were included. Either aspiration or swabbing was used to sample microbial pus specimens. The culture of the microbial specimens and susceptibility testing were performed following standard procedures. A total of 142 strains were recovered from 76 patients. In 13 patients, no bacteria were found. The predominant bacteria observed were streptococci (36%), staphylococci (13%), Prevotella (8%), and Peptostreptococcus (6%). A statistically significant greater number of obligate anaerobes were found in the aspiration group. The majority of patients presented a mixed aerobic-anaerobic population of bacterial flora (62%). The antibiotic resistance rates for the predominant bacteria were 10% for penicillin G, 9% for amoxicillin, 0% for amoxicillin clavulanate, 24% for clindamycin, and 24% for erythromycin. The results of our study indicated that a greater number of anaerobes were found when sampling using the aspiration technique. Penicillin G and aminopenicillins alone are not always sufficient for the treatment of severe deep neck space abscesses; beta-lactamase inhibitor combinations are more effective. Bacteria showed significant resistant rates to clindamycin. Thus, its single use in penicillin-allergic patients has to be carefully considered. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Hepatitis E Virus: Foodborne, Waterborne and Zoonotic Transmission

    PubMed Central

    Yugo, Danielle M.; Meng, Xiang-Jin

    2013-01-01

    Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1–4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans. PMID:24071919

  14. Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective

    PubMed Central

    Bulage, Lilian; Kihembo, Christine; Nantima, Noelina; Monje, Fred; Ndumu, Deo; Sentumbwe, Juliet; Mbolanyi, Betty; Aruho, Robert; Kaboyo, Winyi; Mutonga, David; Basler, Colin; Paige, Sarah; Barton Behravesh, Casey

    2018-01-01

    Background Zoonotic diseases continue to be a public health burden globally. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a One Health Zoonotic Disease Prioritization Workshop to identify zoonotic diseases of greatest national concern to the Ugandan government. Materials and methods The One Health Zoonotic Disease Prioritization tool, a semi-quantitative tool developed by the U.S. Centers for Disease Control and Prevention, was used for the prioritization of zoonoses. Workshop participants included voting members and observers representing multiple government and non-governmental sectors. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. We used a decision tree to provide a ranked list of zoonoses. Participants then established next steps for multisectoral engagement for the prioritized zoonoses. A sensitivity analysis demonstrated how criteria weights impacted disease prioritization. Results Forty-eight zoonoses were considered during the workshop. Criteria selected to prioritize zoonotic diseases were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Sensitivity analysis did not indicate significant changes in zoonotic disease prioritization based on criteria weights. Discussion One Health approaches and multisectoral collaborations are crucial to the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonoses of

  15. Goat mammary gland expression of Cecropin B to inhibit bacterial pathogens causing mastitis.

    PubMed

    Luo, Chao-chao; Yin, De-yun; Gao, Xue-jun; Li, Qing-zhang; Zhang, Li

    2013-01-01

    The antibacterial peptide Cecropin B (CB), isolated from the giant silk moth, has been shown to effectively eliminate bacteria. In this study, the effects of transgenic CB on dairy goat mammary epithelial cells (DGMECs) and dairy goat mammary gland were investigated. The DNA of CB from silkworm was amplified by reverse transcription PCR (RT-PCR) and then fused to the eukaryotic expression vector pECFP-C1. The recombinant plasmid pECFP-Cecropin B (pECFP-CB) was used for the transfection of DGMECs, and the expression of transgenic CB and the antibacterial activity of it were confirmed by western blot and agar diffusion reaction respectively. The stable DGMEC line transfected by pECFP-CB was obtained by screening with G418. In vivo experiment, pECFP-CB was injected into dairy goat mammary gland, and also the expression and antibacterial activity of transgenic CB were confirmed. Results of this study: transgenic CB can be expressed in DGMECs and dairy goat mammary gland, and inhibit the mastitis caused by Staphylococcus aureus.

  16. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    PubMed Central

    Singh, Jogender

    2017-01-01

    ABSTRACT The unfolded protein response (UPR) is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER), and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins. PMID:28559483

  17. Risk factors and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in solid-organ transplant recipients.

    PubMed

    Bodro, Marta; Sabé, Núria; Tubau, Fe; Lladó, Laura; Baliellas, Carme; Roca, Josep; Cruzado, Josep Maria; Carratalà, Jordi

    2013-11-15

    Although infections due to the six ESKAPE pathogens have recently been identified as a serious emerging problem, information regarding bacteremia caused by these organisms in solid-organ transplant (SOT) recipients is lacking. We sought to determine the frequency, risk factors, and outcomes of bacteremia due to drug-resistant ESKAPE (rESKAPE) organisms in liver, kidney, and heart adult transplant recipients. All episodes of bacteremia prospectively documented in hospitalized SOT recipients from 2007 to 2012 were analyzed. Of 276 episodes of bacteremia, 54 (19.6%) were due to rESKAPE strains (vancomycin-resistant Enterococcus faecium [0], methicillin-resistant Staphylococcus aureus [5], extended-spectrum β-lactamase-producing Klebsiella pneumoniae [10], carbapenem-resistant Acinetobacter baumannii [8], carbapenem- and quinolone-resistant Pseudomonas aeruginosa [26], and derepressed chromosomal β-lactam and extended-spectrum β-lactamase-producing Enterobacter species [5]). Factors independently associated with rESKAPE bacteremia were prior transplantation, septic shock, and prior antibiotic therapy. Patients with rESKAPE bacteremia more often received inappropriate empirical antibiotic therapy than the others (41% vs. 21.6%; P=0.01). Overall case-fatality rate (30 days) was higher in patients with rESKAPE bacteremia (35.2% vs. 14.4%; P=0.001). Bacteremia due to rESKAPE pathogens is frequent in SOT recipients and causes significant morbidity and mortality. rESKAPE organisms should be considered when selecting empirical antibiotic therapy for hospitalized SOT recipients presenting with septic shock, particularly those with prior transplantation and antibiotic use.

  18. Comparative Genome Analysis of Wheat Blue Dwarf Phytoplasma, an Obligate Pathogen That Causes Wheat Blue Dwarf Disease in China

    PubMed Central

    Chen, Wang; Li, Yan; Wang, Qiang; Wang, Nan; Wu, Yunfeng

    2014-01-01

    Wheat blue dwarf (WBD) disease is an important disease that has caused heavy losses in wheat production in northwestern China. This disease is caused by WBD phytoplasma, which is transmitted by Psammotettix striatus. Until now, no genome information about WBD phytoplasma has been published, seriously restricting research on this obligate pathogen. In this paper, we report a new sequencing and assembling strategy for phytoplasma genome projects. This strategy involves differential centrifugation, pulsed-field gel electrophoresis, whole genome amplification, shotgun sequencing, de novo assembly, screening of contigs from phytoplasma and the connection of phytoplasma contigs. Using this scheme, the WBD phytoplasma draft genome was obtained. It was comprised of six contigs with a total size of 611,462 bp, covering ∼94% of the chromosome. Five-hundred-twenty-five protein-coding genes, two operons for rRNA genes and 32 tRNA genes were identified. Comparative genome analyses between WBD phytoplasma and other phytoplasmas were subsequently carried out. The results showed that extensive arrangements and inversions existed among the WBD, OY-M and AY-WB phytoplasma genomes. Most protein-coding genes in WBD phytoplasma were found to be homologous to genes from other phytoplasmas; only 22 WBD-specific genes were identified. KEGG pathway analysis indicated that WBD phytoplasma had strongly reduced metabolic capabilities. However, 46 transporters were identified, which were involved with dipeptides/oligopeptides, spermidine/putrescine, cobalt and Mn/Zn transport, and so on. A total of 37 secreted proteins were encoded in the WBD phytoplasma chromosome and plasmids. Of these, three secreted proteins were similar to the reported phytoplasma virulence factors TENGU, SAP11 and SAP54. In addition, WBD phytoplasma possessed several proteins that were predicted to play a role in its adaptation to diverse environments. These results will provide clues for research on the pathogenic

  19. Sequential necrotizing fasciitis caused by the monomicrobial pathogens Streptococcus equisimilis and extended-spectrum beta-lactamase-producing Escherichia coli.

    PubMed

    Endo, Akiko; Matsuoka, Ryosuke; Mizuno, Yasushi; Doi, Asako; Nishioka, Hiroaki

    2016-08-01

    Necrotizing fasciitis is a rapidly progressing bacterial infection of the superficial fascia and subcutaneous tissue that is associated with a high mortality rate and is caused by a single species of bacteria or polymicrobial organisms. Escherichia coli is rarely isolated from patients with monomicrobial disease. Further, there are few reports of extended-spectrum beta-lactamase (ESBL)-producing E. coli associated with necrotizing fasciitis. We report here our treatment of an 85-year-old man who was admitted because of necrotizing fasciitis of his right thigh. Streptococcus equisimilis was detected as a monomicrobial pathogen, and the infection was cured by amputation of the patient's right leg and the administration of antibiotics. However, 5 days after discontinuing antibiotic therapy, he developed necrotizing fasciitis on his right upper limb and died. ESBL-producing E. coli was the only bacterial species isolated from blood and skin cultures. This case demonstrates that ESBL-producing E. coli can cause monomicrobial necrotizing fasciitis, particularly during hospitalization and that a different bacterial species can cause disease shortly after a previous episode. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  20. Th1 biased response to a novel Porphyromonas gingivalis protein aggravates bone resorption caused by this oral pathogen

    PubMed Central

    Leshem, Onir; Kashino, Suely S.; Gonçalves, Reginaldo B.; Suzuki, Noriyuki; Onodera, Masao; Fujimura, Akira; Sasaki, Hajime; Stashenko, Philip; Campos-Neto, Antonio

    2013-01-01

    In previous studies we showed that biasing the immune response to Porphyromonas gingivalis antigens to the Th1 phenotype increases inflammatory bone resorption caused by this organism. Using a T cell screening strategy we identified eight P. gingivalis genes coding for proteins that appear to be involved in T-helper cell responses. In the present study we characterized the protein, encoded by PG_1841 gene and evaluated its relevance in the in bone resorption caused by P. gingivalis because subcutaneous infection of mice with this organism resulted in the induction of Th1 biased response to the recombinant PG1841 antigen molecule. Using an immunization regime that strongly biases toward the Th1 phenotype followed by challenge with P. gingivalis in dental pulp tissue, we demonstrate that mice pre-immunized with rPG1841 developed severe bone loss compared with control immunized mice. Pre-immunization of mice with the antigen using a Th2 biasing regime resulted in no exacerbation of the disease. These results support the notion that selected antigens of P. gingivalis are involved in a biased Th1 host response that leads to the severe bone loss caused by this oral pathogen. PMID:18457976

  1. Occupational health and safety in small animal veterinary practice: Part I--nonparasitic zoonotic diseases.

    PubMed

    Weese, J S; Peregrine, A S; Armstrong, J

    2002-08-01

    Zoonotic diseases are an ever-present concern in small animal veterinary practice and are often overlooked. A variety of nonparasitic zoonotic diseases may be encountered in small animal practice, including cat scratch disease (bartonellosis), cat bite abscesses, rabies, leptospirosis, methicillin-resistant Staphylococcus aureus, Clostridium difficile-associated diarrhea, salmonellosis, avian chlamydiosis, campylobacteriosis, dermatophytosis, and blastomycosis. These may cause human disease ranging from mild and self-limiting to fatal. The risk of development of a zoonotic disease can be lessened by early recognition of infected animals, proper animal handling, basic biosecurity precautions, and, most importantly, personal hygiene.

  2. Preoperative biliary colonization/infection caused by multidrug-resistant (MDR) pathogens in patients undergoing major hepatectomy with extrahepatic bile duct resection.

    PubMed

    Sugawara, Gen; Yokoyama, Yukihiro; Ebata, Tomoki; Igami, Tsuyoshi; Yamaguchi, Junpei; Mizuno, Takashi; Yagi, Tetsuya; Nagino, Masato

    2018-05-01

    The aim of this study was to review the surgical outcomes of patients who underwent major hepatectomy with extrahepatic bile duct resection after preoperative biliary drainage with a particular focus on the impact of preoperative biliary colonization/infection caused by multidrug-resistant pathogens. Medical records of patients who underwent hepatobiliary resection after preoperative external biliary drainage between 2001 and 2015 were reviewed retrospectively. Prophylactic antibiotics were selected according to the results of drug susceptibility tests of surveillance bile cultures. In total, 565 patients underwent surgical resection. Based on the results of bile cultures, the patients were classified into three groups: group A, patients with negative bile cultures (n = 113); group B, patients with positive bile cultures without multidrug-resistant pathogen growth (n = 416); and group C, patients with multidrug-resistant pathogen-positive bile culture (n = 36). The incidence of organ/space surgical site infection, bacteremia, median duration of postoperative hospital stay, and the mortality rate did not differ among the three groups. The incidence of incisional surgical site infection and infectious complications caused by multidrug-resistant pathogens was significantly higher in group C than in groups A and B. Fifty-two patients had postoperative infectious complications caused by multidrug-resistant pathogens. Multivariate analysis identified preoperative multidrug-resistant pathogen-positive bile culture as a significant independent risk factor for postoperative infectious complications caused by multidrug-resistant pathogens (P< .001). Major hepatectomy with extrahepatic bile duct resection after biliary drainage can be performed with acceptable rates of morbidity and mortality using appropriate antibiotic prophylaxis, even in patients with biliary colonization/infection caused by multidrug-resistant pathogens. Copyright © 2018 Elsevier Inc. All

  3. Development of qPCR systems to quantify shoot infections by canker-causing pathogens in stone fruits and nut crops.

    PubMed

    Luo, Y; Gu, S; Felts, D; Puckett, R D; Morgan, D P; Michailides, T J

    2017-02-01

    To develop real-time PCR assays for quantification of shoot infection levels of canker disease of stone fruits and nut crops caused by six fungal pathogen groups. This study focused on six major canker-causing fungal pathogen groups: Phomopsis sp., Botryosphaeria dothidea, Lasiodiplodia sp., Cytospora sp., Neofusicoccum sp. and Diplodia sp., occurring in stone fruits and nut crops in California. DNA primers were designed to specifically target each of the six pathogen groups after the specificity tests using canker-causing and non-canker-causing pathogens and by using DNA sequences of other species from GenBank using blast. The quantitative real-time PCR (qPCR) systems were developed and used to quantify the infection levels of inoculated dried plum shoots. For Neofusicoccum sp. and Phomopsis sp., which were used in inoculation of walnut shoots, the values of the molecular severity ranged from 5·60 to 6·94 during the 16 days of latent infection period. The qPCR assays were more efficient, accurate and precise to quantify latent infections caused by canker-causing pathogens as compared to the traditional plating methods. This study demonstrated the potential of using the developed qPCR systems for epidemiological studies on canker diseases of woody plants. © 2016 The Society for Applied Microbiology.

  4. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    USGS Publications Warehouse

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  5. Zoonotic diseases: health aspects of Canadian geese.

    PubMed

    Dieter, R A; Dieter, R S; Dieter, R A; Gulliver, G

    2001-11-01

    Review zoonotic diseases associated with Canadian geese. Review article: A review of the multiple physical, microbiologic and safety concerns, and methods used in controlling this potential problem. Over the last decade the Canadian goose population (protected by international treaties and protection acts) has increased rapidly such that in many cities they have become a pest rather than an admired wild bird. Their increasing numbers have caused a number of potential healthcare concerns including: physical, bacterial, parasitic, allergic and viral potential problems. The Canadian goose fecal droppings of one per minute have caused falls and the flying geese have caused air traffic accidents. Bacterial concerns, including botulism, salmonella and E. coli have all been reviewed and presented concerns. The viral Newcastle disease may be detected with hemagglutination studies and the Giardia psittaci parasites have been repeatedly found in their droppings. The Cryptosporidium parvum oocytes have been present on stool study. Definite links to human infectious diseases have been difficult to prove. Revision of the current laws and new control programs must be developed.

  6. Zoonotic helminths affecting the human eye

    PubMed Central

    2011-01-01

    Nowaday, zoonoses are an important cause of human parasitic diseases worldwide and a major threat to the socio-economic development, mainly in developing countries. Importantly, zoonotic helminths that affect human eyes (HIE) may cause blindness with severe socio-economic consequences to human communities. These infections include nematodes, cestodes and trematodes, which may be transmitted by vectors (dirofilariasis, onchocerciasis, thelaziasis), food consumption (sparganosis, trichinellosis) and those acquired indirectly from the environment (ascariasis, echinococcosis, fascioliasis). Adult and/or larval stages of HIE may localize into human ocular tissues externally (i.e., lachrymal glands, eyelids, conjunctival sacs) or into the ocular globe (i.e., intravitreous retina, anterior and or posterior chamber) causing symptoms due to the parasitic localization in the eyes or to the immune reaction they elicit in the host. Unfortunately, data on HIE are scant and mostly limited to case reports from different countries. The biology and epidemiology of the most frequently reported HIE are discussed as well as clinical description of the diseases, diagnostic considerations and video clips on their presentation and surgical treatment. Homines amplius oculis, quam auribus credunt Seneca Ep 6,5 Men believe their eyes more than their ears PMID:21429191

  7. II. Pathogens

    Treesearch

    Ned B. Klopfenstein; Brian W. Geils

    2011-01-01

    Invasive fungal pathogens have caused immeasurably large ecological and economic damage to forests. It is well known that invasive fungal pathogens can cause devastating forest diseases (e.g., white pine blister rust, chestnut blight, Dutch elm disease, dogwood anthracnose, butternut canker, Scleroderris canker of pines, sudden oak death, pine pitch canker) (Maloy 1997...

  8. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract

    PubMed Central

    Ferrando, Maria Laura; Schultsz, Constance

    2016-01-01

    ABSTRACT Streptococcus suis (SS) is a zoonotic pathogen that can cause systemic infection in pigs and humans. The ingestion of contaminated pig meat is a well-established risk factor for zoonotic S. suis disease. In our studies, we provide experimental evidence that S. suis is capable to translocate across the host gastro-intestinal tract (GIT) using in vivo and in vitro models. Hence, S. suis should be considered an emerging foodborne pathogen. In this addendum, we give an overview of the complex interactions between S. suis and host-intestinal mucosa which depends on the host origin, the serotype and genotype of S. suis, as well as the presence and expression of virulence factors involved in host-pathogen interaction. Finally, we propose a hypothetical model of S. suis interaction with the host-GIT taking in account differences in conditions between the porcine and human host. PMID:26900998

  9. Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy.

    PubMed

    Lee, Albert; Rayner, Stephanie L; Gwee, Serene S L; De Luca, Alana; Shahheydari, Hamideh; Sundaramoorthy, Vinod; Ragagnin, Audrey; Morsch, Marco; Radford, Rowan; Galper, Jasmin; Freckleton, Sarah; Shi, Bingyang; Walker, Adam K; Don, Emily K; Cole, Nicholas J; Yang, Shu; Williams, Kelly L; Yerbury, Justin J; Blair, Ian P; Atkin, Julie D; Molloy, Mark P; Chung, Roger S

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that have common molecular and pathogenic characteristics, such as aberrant accumulation and ubiquitylation of TDP-43; however, the mechanisms that drive this process remain poorly understood. We have recently identified CCNF mutations in familial and sporadic ALS and FTD patients. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase (SCF cyclin F ) complex that is responsible for ubiquitylating proteins for degradation by the ubiquitin-proteasome system. In this study, we examined the ALS/FTD-causing p.Ser621Gly (p.S621G) mutation in cyclin F and its effect upon downstream Lys48-specific ubiquitylation in transfected Neuro-2A and SH-SY5Y cells. Expression of mutant cyclin F S621G caused increased Lys48-specific ubiquitylation of proteins in neuronal cells compared to cyclin F WT . Proteomic analysis of immunoprecipitated Lys48-ubiquitylated proteins from mutant cyclin F S621G -expressing cells identified proteins that clustered within the autophagy pathway, including sequestosome-1 (p62/SQSTM1), heat shock proteins, and chaperonin complex components. Examination of autophagy markers p62, LC3, and lysosome-associated membrane protein 2 (Lamp2) in cells expressing mutant cyclin F S621G revealed defects in the autophagy pathway specifically resulting in impairment in autophagosomal-lysosome fusion. This finding highlights a potential mechanism by which cyclin F interacts with p62, the receptor responsible for transporting ubiquitylated substrates for autophagic degradation. These findings demonstrate that ALS/FTD-causing mutant cyclin F S621G disrupts Lys48-specific ubiquitylation, leading to accumulation of substrates and defects in the autophagic machinery. This study also demonstrates that a single missense mutation in cyclin F causes hyper-ubiquitylation of proteins that can indirectly impair the autophagy degradation pathway, which is

  10. Comparative Genomic and Transcriptomic Analysis of Wangiella dermatitidis, A Major Cause of Phaeohyphomycosis and a Model Black Yeast Human Pathogen

    PubMed Central

    Chen, Zehua; Martinez, Diego A.; Gujja, Sharvari; Sykes, Sean M.; Zeng, Qiandong; Szaniszlo, Paul J.; Wang, Zheng; Cuomo, Christina A.

    2014-01-01

    Black or dark brown (phaeoid) fungi cause cutaneous, subcutaneous, and systemic infections in humans. Black fungi thrive in stressful conditions such as intense light, high radiation, and very low pH. Wangiella (Exophiala) dermatitidis is arguably the most studied phaeoid fungal pathogen of humans. Here, we report our comparative analysis of the genome of W. dermatitidis and the transcriptional response to low pH stress. This revealed that W. dermatitidis has lost the ability to synthesize alpha-glucan, a cell wall compound many pathogenic fungi use to evade the host immune system. In contrast, W. dermatitidis contains a similar profile of chitin synthase genes as related fungi and strongly induces genes involved in cell wall synthesis in response to pH stress. The large portfolio of transporters may provide W. dermatitidis with an enhanced ability to remove harmful products as well as to survive on diverse nutrient sources. The genome encodes three independent pathways for producing melanin, an ability linked to pathogenesis; these are active during pH stress, potentially to produce a barrier to accumulated oxidative damage that might occur under stress conditions. In addition, a full set of fungal light-sensing genes is present, including as part of a carotenoid biosynthesis gene cluster. Finally, we identify a two-gene cluster involved in nucleotide sugar metabolism conserved with a subset of fungi and characterize a horizontal transfer event of this cluster between fungi and algal viruses. This work reveals how W. dermatitidis has adapted to stress and survives in diverse environments, including during human infections. PMID:24496724

  11. Dickeya dadantii, a Plant Pathogenic Bacterium Producing Cyt-Like Entomotoxins, Causes Septicemia in the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria. PMID:22292023

  12. Dickeya dadantii, a plant pathogenic bacterium producing Cyt-like entomotoxins, causes septicemia in the pea aphid Acyrthosiphon pisum.

    PubMed

    Costechareyre, Denis; Balmand, Séverine; Condemine, Guy; Rahbé, Yvan

    2012-01-01

    Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 10(8) cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.

  13. Modelling H5N1 in Bangladesh across spatial scales: Model complexity and zoonotic transmission risk.

    PubMed

    Hill, Edward M; House, Thomas; Dhingra, Madhur S; Kalpravidh, Wantanee; Morzaria, Subhash; Osmani, Muzaffar G; Yamage, Mat; Xiao, Xiangming; Gilbert, Marius; Tildesley, Michael J

    2017-09-01

    Highly pathogenic avian influenza H5N1 remains a persistent public health threat, capable of causing infection in humans with a high mortality rate while simultaneously negatively impacting the livestock industry. A central question is to determine regions that are likely sources of newly emerging influenza strains with pandemic causing potential. A suitable candidate is Bangladesh, being one of the most densely populated countries in the world and having an intensifying farming system. It is therefore vital to establish the key factors, specific to Bangladesh, that enable both continued transmission within poultry and spillover across the human-animal interface. We apply a modelling framework to H5N1 epidemics in the Dhaka region of Bangladesh, occurring from 2007 onwards, that resulted in large outbreaks in the poultry sector and a limited number of confirmed human cases. This model consisted of separate poultry transmission and zoonotic transmission components. Utilising poultry farm spatial and population information a set of competing nested models of varying complexity were fitted to the observed case data, with parameter inference carried out using Bayesian methodology and goodness-of-fit verified by stochastic simulations. For the poultry transmission component, successfully identifying a model of minimal complexity, which enabled the accurate prediction of the size and spatial distribution of cases in H5N1 outbreaks, was found to be dependent on the administration level being analysed. A consistent outcome of non-optimal reporting of infected premises materialised in each poultry epidemic of interest, though across the outbreaks analysed there were substantial differences in the estimated transmission parameters. The zoonotic transmission component found the main contributor to spillover transmission of H5N1 in Bangladesh was found to differ from one poultry epidemic to another. We conclude by discussing possible explanations for these discrepancies in

  14. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people

    PubMed Central

    Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C.

    2017-01-01

    Introduction Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Methods Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. Results The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Conclusion Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal

  15. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people.

    PubMed

    Barnes, Amber N; Davaasuren, Anu; Baasandagva, Uyanga; Gray, Gregory C

    2017-01-01

    Zoonotic enteric parasites are ubiquitous and remain a public health threat to humans due to our close relationship with domestic animals and wildlife, inadequate water, sanitation, and hygiene practices and diet. While most communities are now sedentary, nomadic and pastoral populations still exist and experience unique exposure risks for acquiring zoonotic enteric parasites. Through this systematic review we sought to summarize published research regarding pathogens present in nomadic populations and to identify the risk factors for their infection. Using systematic review guidelines set forth by PRISMA, research articles were identified, screened and summarized based on exclusion criteria for the documented presence of zoonotic enteric parasites within nomadic or pastoral human populations. A total of 54 articles published between 1956 and 2016 were reviewed to determine the pathogens and exposure risks associated with the global transhumance lifestyle. The included articles reported more than twenty different zoonotic enteric parasite species and illustrated several risk factors for nomadic and pastoralist populations to acquire infection including; a) animal contact, b) food preparation and diet, and c) household characteristics. The most common parasite studied was Echinococcosis spp. and contact with dogs was recognized as a leading risk factor for zoonotic enteric parasites followed by contact with livestock and/or wildlife, water, sanitation, and hygiene barriers, home slaughter of animals, environmental water exposures, household member age and sex, and consumption of unwashed produce or raw, unprocessed, or undercooked milk or meat. Nomadic and pastoral communities are at risk of infection with a variety of zoonotic enteric parasites due to their living environment, cultural and dietary traditions, and close relationship to animals. Global health efforts aimed at reducing the transmission of these animal-to-human pathogens must incorporate a One Health

  16. The zoonotic potential of avian influenza viruses isolated from wild waterfowl in Zambia.

    PubMed

    Simulundu, Edgar; Nao, Naganori; Yabe, John; Muto, Nilton A; Sithebe, Thami; Sawa, Hirofumi; Manzoor, Rashid; Kajihara, Masahiro; Muramatsu, Mieko; Ishii, Akihiro; Ogawa, Hirohito; Mweene, Aaron S; Takada, Ayato

    2014-10-01

    Whilst remarkable progress in elucidating the mechanisms governing interspecies transmission and pathogenicity of highly pathogenic avian influenza viruses (AIVs) has been made, similar studies focusing on low-pathogenic AIVs isolated from the wild waterfowl reservoir are limited. We previously reported that two AIV strains (subtypes H6N2 and H3N8) isolated from wild waterfowl in Zambia harbored some amino acid residues preferentially associated with human influenza virus proteins (so-called human signatures) and replicated better in the lungs of infected mice and caused more morbidity than a strain lacking such residues. To further substantiate these observations, we infected chickens and mice intranasally with AIV strains of various subtypes (H3N6, H3N8, H4N6, H6N2, H9N1 and H11N9) isolated from wild waterfowl in Zambia. Although some strains induced seroconversion, all of the tested strains replicated poorly and were nonpathogenic for chickens. In contrast, most of the strains having human signatures replicated well in the lungs of mice, and one of these strains caused severe illness in mice and induced lung injury that was characterized by a severe accumulation of polymorphonuclear leukocytes. These results suggest that some strains tested in this study may have the potential to infect mammalian hosts directly without adaptation, which might possibly be associated with the possession of human signature residues. Close monitoring and evaluation of host-associated signatures may help to elucidate the prevalence and emergence of AIVs with potential for causing zoonotic infections.

  17. Zoonotic Chlamydiaceae Species Associated with Trachoma, Nepal

    PubMed Central

    Rothschild, James; Ruettger, Anke; Kandel, Ram Prasad; Sachse, Konrad

    2013-01-01

    Trachoma is the leading cause of preventable blindness. Commercial assays do not discriminate among all Chlamydiaceae species that might be involved in trachoma. We investigated whether a commercial Micro-ArrayTube could discriminate Chlamydiaceae species in DNA extracted directly from conjunctival samples from 101 trachoma patients in Nepal. To evaluate organism viability, we extracted RNA, reverse transcribed it, and subjected it to quantitative real-time PCR. We found that 71 (70.3%) villagers were infected. ArrayTube sensitivity was 91.7% and specificity was 100% compared with that of real-time PCR. Concordance between genotypes detected by microarray and ompA genotyping was 100%. Species distribution included 54 (76%) single infections with Chlamydia trachomatis, C. psittaci, C. suis, or C. pecorum, and 17 (24%) mixed infections that includied C. pneumoniae. Ocular infections were caused by 5 Chlamydiaceae species. Additional studies of trachoma pathogenesis involving Chlamydiaceae species other than C. trachomatis and their zoonotic origins are needed. PMID:24274654

  18. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-10-01

    The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t -test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains.

  19. Bovine origin Staphylococcus aureus: A new zoonotic agent?

    PubMed Central

    Rao, Relangi Tulasi; Jayakumar, Kannan; Kumar, Pavitra

    2017-01-01

    Aim: The study aimed to assess the nature of animal origin Staphylococcus aureus strains. The study has zoonotic importance and aimed to compare virulence between two different hosts, i.e., bovine and ovine origin. Materials and Methods: Conventional polymerase chain reaction-based methods used for the characterization of S. aureus strains and chick embryo model employed for the assessment of virulence capacity of strains. All statistical tests carried on R program, version 3.0.4. Results: After initial screening and molecular characterization of the prevalence of S. aureus found to be 42.62% in bovine origin samples and 28.35% among ovine origin samples. Meanwhile, the methicillin-resistant S. aureus prevalence is found to be meager in both the hosts. Among the samples, only 6.8% isolates tested positive for methicillin resistance. The biofilm formation quantified and the variation compared among the host. A Welch two-sample t-test found to be statistically significant, t=2.3179, df=28.103, and p=0.02795. Chicken embryo model found effective to test the pathogenicity of the strains. Conclusion: The study helped to conclude healthy bovines can act as S. aureus reservoirs. Bovine origin S. aureus strains are more virulent than ovine origin strains. Bovine origin strains have high probability to become zoonotic pathogen. Further, gene knock out studies may be conducted to conclude zoonocity of the bovine origin strains. PMID:29184376

  20. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    PubMed

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  1. Metastatic Complications from Staphylococcus intermedius, a Zoonotic Pathogen

    PubMed Central

    Sree, Aruna; Tirrell, Sandra; Torres, Brenda; Rothman, Alan L.

    2012-01-01

    Metastatic infection is an infrequent complication of non-Staphylococcus aureus staphylococcal infection. Here we report a case of bloodstream infection due to Staphylococcus intermedius. To our knowledge, ours is the only known case of metastatic infection with S. intermedius. PMID:22170938

  2. Chapter 2. Assessing the importance of zoonotic waterborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Cryptosporidium, an apicomplexan protozoan, is reported to infect persons in 106 countries and more than 150 species of other mammals worldwide. Estimates of prevalence in humans vary greatly because reporting is not universally required, diagnostic methods vary greatly, and many persons have no acc...

  3. Zoonotic diseases associated with free-roaming cats.

    PubMed

    Gerhold, R W; Jessup, D A

    2013-05-01

    Free-roaming cat populations have been identified as a significant public health threat and are a source for several zoonotic diseases including rabies, toxoplasmosis, cutaneous larval migrans because of various nematode parasites, plague, tularemia and murine typhus. Several of these diseases are reported to cause mortality in humans and can cause other important health issues including abortion, blindness, pruritic skin rashes and other various symptoms. A recent case of rabies in a young girl from California that likely was transmitted by a free-roaming cat underscores that free-roaming cats can be a source of zoonotic diseases. Increased attention has been placed on trap-neuter-release (TNR) programmes as a viable tool to manage cat populations. However, some studies have shown that TNR leads to increased immigration of unneutered cats into neutered populations as well as increased kitten survival in neutered groups. These compensatory mechanisms in neutered groups leading to increased kitten survival and immigration would confound rabies vaccination campaigns and produce naïve populations of cats that can serve as source of zoonotic disease agents owing to lack of immunity. This manuscript is a review of the various diseases of free-roaming cats and the public health implications associated with the cat populations. © 2012 Blackwell Verlag GmbH.

  4. Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases

    PubMed Central

    Björnsdóttir, Sigríður; Harris, Simon R.; Svansson, Vilhjálmur; Gunnarsson, Eggert; Sigurðardóttir, Ólöf G.; Gammeljord, Kristina; Steward, Karen F.; Newton, J. Richard; Robinson, Carl; Charbonneau, Amelia R. L.

    2017-01-01

    ABSTRACT Iceland is free of the major infectious diseases of horses. However, in 2010 an epidemic of respiratory disease of unknown cause spread through the country’s native horse population of 77,000. Microbiological investigations ruled out known viral agents but identified the opportunistic pathogen Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) in diseased animals. We sequenced the genomes of 257 isolates of S. zooepidemicus to differentiate epidemic from endemic strains. We found that although multiple endemic clones of S. zooepidemicus were present, one particular clone, sequence type 209 (ST209), was likely to have been responsible for the epidemic. Concurrent with the epidemic, ST209 was also recovered from a human case of septicemia, highlighting the pathogenic potential of this strain. Epidemiological investigation revealed that the incursion of this strain into one training yard during February 2010 provided a nidus for the infection of multiple horses that then transmitted the strain to farms throughout Iceland. This study represents the first time that whole-genome sequencing has been used to investigate an epidemic on a national scale to identify the likely causative agent and the link to an associated zoonotic infection. Our data highlight the importance of national biosecurity to protect vulnerable populations of animals and also demonstrate the potential impact of S. zooepidemicus transmission to other animals, including humans. PMID:28765219

  5. Distribution and Antimicrobial Susceptibility Pattern of Bacterial Pathogens Causing Urinary Tract Infection in Urban Community of Meerut City, India

    PubMed Central

    Prakash, Devanand; Saxena, Ramchandra Sahai

    2013-01-01

    Urinary tract infection is one of the common infections in the Indian community. Distribution and susceptibility of UTI-causing pathogens change according to time and place. This study was conducted to determine the distribution and antimicrobial susceptibility of uropathogens in the Indian community as well as to determine the effect of gender and age on the etiology of bacterial uropathogens. Clean catch midstream urine samples were collected from 288 patients of the age ranging from 15 to ≥48 years. Antimicrobial susceptibility was performed on all isolated bacteria by Kirby Bauer's disc diffusion method. The multiple antibiotic resistance (MAR) index of each antibiotic was calculated. The UTI prevalence was 53.82% in patients; however, the prevalence was significantly higher in females than in males (females: 73.57%; males: 35.14%; P = 0.000). Females within the age group of 26–36 years and elderly males of ≥48 years showed higher prevalence of UTI. Gram negative bacteria (90.32%) were found in high prevalence than Gram positive (9.68%). Escherichia coli (42.58%) was the most prevalent gram negative isolate. Nitrofurantoin (78.71%) was found the most resistant drug among all uropathogens. Tested carbapenems were found the most susceptible drug against isolated uropathogens which showed 92.26% and 84.52% susceptibility, respectively. PMID:24288649

  6. Rapid changes in the serum total protein and globulin levels in complications caused by facultatively pathogenic Gram-negative bacteria.

    PubMed

    Petrás, G; Kiss, S; Juraszek, J; Merétey, K

    1978-01-01

    The changes in the levels of total protein and four globulin fractions were followed up throughout the entire course of complications caused by Gram-negative facultative pathogens in 37 acute cases of respiratory insufficiency accompanying different underlying illnesses and in 9 chronic, bedridden patients given artificial ventilation. At the onset of the infectious complications, in the first place in septic shock, the levels of various globulin fractions showed a decrease corresponding to a half-life of 2 to 4 days. Neither the increased catabolism, nor the protein losses by the urine and tracheal secretions offer a sufficient explanation for the escape of globulins of this extent from the plasma. It seems that this is a consequence of the increase in capillary permeability due to the effect of antigen-antibody reactions and that of endotoxin. As a result, in the critical phase of the infectious complications, at the point of culmination, e.g. in septic shock, diminished amount of different globulins is transported to the site of utilization, that is, to the inflammatory area.

  7. Short communication: In vivo screening platform for bacteriocins using Caenorhabditis elegans to control mastitis-causing pathogens.

    PubMed

    Son, S J; Park, M R; Ryu, S D; Maburutse, B E; Oh, N S; Park, J; Oh, S; Kim, Y

    2016-11-01

    This study aimed to develop an in vivo screening platform using Caenorhabditis elegans to identify a novel bacteriocin for controlling the mastitis-causing pathogen Staphylococcus aureus strain RF122 in dairy cows. Using Bacillus spp. isolated from traditional Korean foods, we developed a direct in vivo screening platform that uses 96-well plates and fluorescence image analysis. We identified a novel bacteriocin produced by Bacillus licheniformis strain 146 (lichenicin 146) with a high in vivo antimicrobial activity using our liquid C. elegans-Staph. aureus assay. We also determined the characteristics of lichenicin 146 using liquid chromatography-mass spectrometry and confirmed that it shared homologous sequences with bacteriocin family proteins. In addition, RNA-sequencing analysis revealed genes encoding cell surface or membrane proteins (SAB0993c, SAB0150, SAB0994c, and SAB2375c) that are involved in the bactericidal activity of lichenicin 146 against Staph. aureus strain RF122 infection as well as those encoding transcriptional regulators (SAB0844c and SAB0133). Thus, our direct in vivo screening platform facilitates simple, convenient, cost-effective, and reliable screening of potential antimicrobial compounds with applications in the dairy field. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Population structure and temporal maintenance of the multihost fungal pathogen Botrytis cinerea: causes and implications for disease management.

    PubMed

    Walker, Anne-Sophie; Gladieux, Pierre; Decognet, Véronique; Fermaud, Marc; Confais, Johann; Roudet, Jean; Bardin, Marc; Bout, Alexandre; Nicot, Philippe C; Poncet, Christine; Fournier, Elisabeth

    2015-04-01

    Understanding the causes of population subdivision is of fundamental importance, as studying barriers to gene flow between populations may reveal key aspects of the process of adaptive divergence and, for pathogens, may help forecasting disease emergence and implementing sound management strategies. Here, we investigated population subdivision in the multihost fungus Botrytis cinerea based on comprehensive multiyear sampling on different hosts in three French regions. Analyses revealed a weak association between population structure and geography, but a clear differentiation according to the host plant of origin. This was consistent with adaptation to hosts, but the distribution of inferred genetic clusters and the frequency of admixed individuals indicated a lack of strict host specificity. Differentiation between individuals collected in the greenhouse (on Solanum) and outdoor (on Vitis and Rubus) was stronger than that observed between individuals from the two outdoor hosts, probably reflecting an additional isolating effect associated with the cropping system. Three genetic clusters coexisted on Vitis but did not persist over time. Linkage disequilibrium analysis indicated that outdoor populations were regularly recombining, whereas clonality was predominant in the greenhouse. Our findings open up new perspectives for disease control by managing plant debris in outdoor conditions and reinforcing prophylactic measures indoor. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. High Prevalence of Enterocytozoon bieneusi in Asymptomatic Pigs and Assessment of Zoonotic Risk at the Genotype Level

    PubMed Central

    Zhao, Wei; Zhang, Weizhe; Yang, Fengkun; Cao, Jianping; Liu, Hua; Yang, Dong; Shen, Yujuan

    2014-01-01

    Enterocytozoon bieneusi is an emerging and clinically significant enteric parasite infecting humans and animals and can cause life-threatening diarrhea in immunocompromised people. Pigs are considered to be one of the main reservoir hosts of E. bieneusi based on their high prevalence rates and zoonotic genotypes in pigs. As an opportunistic pathogen, E. bieneusi infection of pigs can be inapparent, which leads to neglect in detecting this parasite in pigs and assessing the epidemiological role of pigs in the transmission of human microsporidiosis. In the present study, 95 healthy pigs aged 2 or 3 months were randomly selected from three areas in Heilongjiang Province, China. E. bieneusi isolates were identified and genotyped based on the small-subunit (SSU) rRNA and internal transcribed spacer (ITS) regions of the rRNA gene by PCR and sequencing. A high prevalence of E. bieneusi was observed, 83.2% (79/95) at the SSU rRNA locus versus 89.5% (85/95) at the ITS locus. Ten ITS genotypes were obtained, comprising six known genotypes—EbpA (n = 30), D (n = 19), H (n = 18), O (n = 11), CS-1 (n = 1), and LW1 (n = 1)—and four novel genotypes named HLJ-I to HLJ-IV; 70.6% (60/85) of E. bieneusi genotypes were zoonotic (genotypes EbpA, D, and O). The findings of a high prevalence of E. bieneusi in pigs and a large percentage of zoonotic genotypes indicate that pigs may play a role in the transmission of E. bieneusi to humans and may become an important source of water contamination in our investigated areas. PMID:24727270

  10. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis

    PubMed Central

    Pajerowska-Mukhtar, Karolina M.; Mukhtar, M. Shahid; Guex, Nicolas; Halim, Vincentius A.; Rosahl, Sabine; Somssich, Imre E.

    2008-01-01

    Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants. Electronic supplementary material The online version of this article (doi:10.1007/s00425-008-0737-x) contains supplementary material, which is available to authorized users

  11. Test characteristics of milk amyloid A ELISA, somatic cell count, and bacteriological culture for detection of intramammary pathogens that cause subclinical mastitis.

    PubMed

    Jaeger, S; Virchow, F; Torgerson, P R; Bischoff, M; Biner, B; Hartnack, S; Rüegg, S R

    2017-09-01

    Bovine mastitis is an important disease in the dairy industry, causing economic losses as a result of withheld milk and treatment costs. Several studies have suggested milk amyloid A (MAA) as a promising biomarker in the diagnosis of mastitis. In the absence of a gold standard for diagnosis of subclinical mastitis, we estimated the diagnostic test accuracy of a commercial MAA-ELISA, somatic cell count (SCC), and bacteriological culture using Bayesian latent class modeling. We divided intramammary infections into 2 classes: those caused by major pathogens (e.g., Escherichia coli, Staphylococcus aureus, streptococci, and lacto-/enterococci) and those caused by all pathogens (major pathogens plus Corynebacterium bovis, coagulase-negative staphylococci, Bacillus spp., Streptomyces spp.). We applied the 3 diagnostic tests to all samples. Of 433 composite milk samples included in this study, 275 (63.5%) contained at least 1 colony of any bacterial species; of those, 56 contained major pathogens and 219 contained minor pathogens. The remaining 158 samples (36.5%) were sterile. We determined 2 different thresholds for the MAA-ELISA using Bayesian latent class modeling: 3.9 µg/mL to detect mastitis caused by major pathogens and 1.6 µg/mL to detect mastitis caused by all pathogens. The optimal SCC threshold for identification of subclinical mastitis was 150,000 cells/mL; this threshold led to higher specificity (Sp) than 100,000 cells/mL. Test accuracy for major-pathogen intramammary infections was as follows: SCC, sensitivity (Se) 92.6% and Sp 72.9%; MAA-ELISA, Se 81.4% and Sp 93.4%; bacteriological culture, Se 23.8% and Sp 95.2%. Test accuracy for all-pathogen intramammary infections was as follows: SCC, sensitivity 90.3% and Sp 71.8%; MAA-ELISA, Se 88.0% and Sp 65.2%; bacteriological culture, Se 83.8% and Sp 54.8%. We suggest the use of SCC and MAA-ELISA as a combined screening procedure for situations such as a Staphylococcus aureus control program. With Bayesian

  12. Chinese and Vietnamese strains of HP-PRRSV cause different pathogenic outcomes in United States high health swine

    USDA-ARS?s Scientific Manuscript database

    An infectious clone of a highly pathogenic PRRSV strain from Vietnam (rSRV07) was prepared, analyzed and compared to Chinese highly pathogenic PRRSV rJXwn06 and US Type 2 prototype VR-2332 in order to examine the effects of virus phenotype and genotype on growth in MARC-145 cells, as well as the imp...

  13. Prion Diseases as Transmissible Zoonotic Diseases

    PubMed Central

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-01-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt–Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  14. A Quantitative Approach to the Prioritization of Zoonotic Diseases in North America: A Health Professionals’ Perspective

    PubMed Central

    Ng, Victoria; Sargeant, Jan M.

    2013-01-01

    Background Currently, zoonoses account for 58% to 61% of all communicable diseases causing illness in humans globally and up to 75% of emerging human pathogens. Although the impact of zoonoses on animal health and public health in North America is significant, there has been no published research involving health professionals on the prioritization of zoonoses in this region. Methodology/Principal Findings We used conjoint analysis (CA), a well-established quantitative method in market research, to identify the relative importance of 21 key characteristics of zoonotic diseases for their prioritization in Canada and the US. Relative importance weights from the CA were used to develop a point-scoring system to derive a recommended list of zoonoses for prioritization in Canada and the US. Study participants with a background in epidemiology, public health, medical sciences, veterinary sciences and infectious disease research were recruited to complete the online survey (707 from Canada and 764 from the US). Hierarchical Bayes models were fitted to the survey data to derive CA-weighted scores for disease criteria. Scores were applied to 62 zoonotic diseases to rank diseases in order of priority. Conclusions/Significance We present the first zoonoses prioritization exercise involving health professionals in North America. Our previous study indicated individuals with no prior knowledge in infectious diseases were capable of producing meaningful results with acceptable model fits (79.4%). This study suggests health professionals with some knowledge in infectious diseases were capable of producing meaningful results with better-fitted models than the general public (83.7% and 84.2%). Despite more similarities in demographics and model fit between the combined public and combined professional groups, there was more uniformity across priority lists between the Canadian public and Canadian professionals and between the US public and US professionals. Our study suggests that

  15. Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.

    PubMed

    Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee

    2016-01-01

    Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.

  16. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study.

    PubMed

    Pritt, Bobbi S; Mead, Paul S; Johnson, Diep K Hoang; Neitzel, David F; Respicio-Kingry, Laurel B; Davis, Jeffrey P; Schiffman, Elizabeth; Sloan, Lynne M; Schriefer, Martin E; Replogle, Adam J; Paskewitz, Susan M; Ray, Julie A; Bjork, Jenna; Steward, Christopher R; Deedon, Alecia; Lee, Xia; Kingry, Luke C; Miller, Tracy K; Feist, Michelle A; Theel, Elitza S; Patel, Robin; Irish, Cole L; Petersen, Jeannine M

    2016-05-01

    Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. It is a multisystem disease caused by Borrelia burgdorferi sensu lato genospecies and characterised by tissue localisation and low spirochaetaemia. In this study we aimed to describe a novel Borrelia species causing Lyme borreliosis in the USA. At the Mayo clinic, from 2003 to 2014, we tested routine clinical diagnostic specimens from patients in the USA with PCR targeting the oppA1 gene of B burgdorferi sensu lato. We identified positive specimens with an atypical PCR result (melting temperature outside of the expected range) by sequencing, microscopy, or culture. We collected Ixodes scapularis ticks from regions of suspected patient tick exposure and tested them by oppA1 PCR. 100 545 specimens were submitted by physicians for routine PCR from Jan 1, 2003 to Sept 30, 2014. From these samples, six clinical specimens (five blood, one synovial fluid) yielded an atypical oppA1 PCR product, but no atypical results were detected before 2012. Five of the six patients with atypical PCR results had presented with fever, four had diffuse or focal rash, three had symptoms suggestive of neurological inclusion, and two were admitted to hospital. The sixth patient presented with knee pain and swelling. Motile spirochaetes were seen in blood samples from one patient and cultured from blood samples from two patients. Among the five blood specimens, the median oppA1 copy number was 180 times higher than that in 13 specimens that tested positive for B burgdorferi sensu stricto during the same time period. Multigene sequencing identified the spirochaete as a novel B burgdorferi sensu lato genospecies. This same genospecies was detected in ticks collected at a probable patient exposure site. We describe a new pathogenic Borrelia burgdorferi sensu lato genospecies (candidatus Borrelia mayonii) in the upper midwestern USA, which causes Lyme borreliosis with unusually high spirochaetaemia. Clinicians

  17. Gastrointestinal parasites of cats in Brazil: frequency and zoonotic risk.

    PubMed

    Monteiro, Maria Fernanda Melo; Ramos, Rafael Antonio Nascimento; Calado, Andréa Maria Campos; Lima, Victor Fernando Santana; Ramos, Ingrid Carla do Nascimento; Tenório, Rodrigo Ferreira Lima; Faustino, Maria Aparecida da Glória; Alves, Leucio Câmara

    2016-04-12

    Gastrointestinal helminths are considered to be the most common parasites affecting cats worldwide. Correct diagnosis of these parasites in animals living in urban areas is pivotal, especially considering the zoonotic potential of some species (e.g. Ancylostoma sp. and Toxocara sp.). In this study, a copromicroscopic survey was conducted using fecal samples (n = 173) from domestic cats living in the northeastern region of Brazil. Samples were examined through the FLOTAC technique and the overall results showed positivity of 65.31% (113/173) among the samples analyzed. Coinfections were observed in 46.01% (52/113) of the positive samples. The most common parasites detected were Ancylostoma sp., Toxocara cati, Strongyloides stercoralis, Trichuris sp., Dipylidium caninum and Cystoisospora sp. From an epidemiological point of view, these findings are important, especially considering that zoonotic parasites (e.g. Ancylostoma sp. and Toxocara sp.) were the nematodes most frequently diagnosed in this study. Therefore, the human population living in close contact with cats is at risk of infection caused by the zoonotic helminths of these animals. In addition, for the first time the FLOTAC has been used to diagnosing gastrointestinal parasites of cats in Brazil.

  18. Lobomycosis: risk of zoonotic transmission from dolphins to humans.

    PubMed

    Reif, John S; Schaefer, Adam M; Bossart, Gregory D

    2013-10-01

    Lobomycosis, a fungal disease of the skin and subcutaneous tissues caused by Lacazia loboi, is sometimes referred to as a zoonotic disease because it affects only specific delphinidae and humans; however, the evidence that it can be transferred directly to humans from dolphins is weak. Dolphins have also been postulated to be responsible for an apparent geographic expansion of the disease in humans. Morphological and molecular differences between the human and dolphin organisms, differences in geographic distribution of the diseases between dolphins and humans, the existence of only a single documented case of presumed zoonotic transmission, and anecdotal evidence of lack of transmission to humans following accidental inoculation of tissue from infected dolphins do not support the hypothesis that dolphins infected with L. loboi represent a zoonotic hazard for humans. In addition, the lack of human cases in communities adjacent to coastal estuaries with a high prevalence of lobomycosis in dolphins, such as the Indian River Lagoon in Florida (IRL), suggests that direct or indirect transmission of L. loboi from dolphins to humans occurs rarely, if at all. Nonetheless, attention to personal hygiene and general principals of infection control are always appropriate when handling tissues from an animal with a presumptive diagnosis of a mycotic or fungal disease.

  19. One Health in Practice: A Pilot Project for Integrated Care of Zoonotic Infections in Immunocompromised Children and Their Pets in Chile.

    PubMed

    Peña, A; Abarca, K; Weitzel, T; Gallegos, J; Cerda, J; García, P; López, J

    2016-08-01

    Although pets provide physiological and psychological benefits to their owners, they are a potential source of zoonotic infections, especially for vulnerable individuals such as immunocompromised patients. During 1 year, we therefore performed a pilot project, which included 32 immunocompromised Chilean children and their family pets (35 dogs and 9 cats) with the aim of detecting, treating and preventing zoonotic infections. Children were examined by Infectious Diseases paediatricians and demographical and clinical information related to zoonotic infections were recorded. Pets were examined and sampled by veterinarians, who also administered missing routine vaccines and anti-parasitics. During family visits, all members were informed and educated about zoonoses and a satisfaction survey was performed. Visits also included vector control and indoor residual spraying with pyrethroids. Children were re-examined and re-tested according to the findings of their pets, and all detected zoonotic infections were treated both in children and pets. Physical examination revealed abnormalities in 18 dogs (51.4%) and three cats (33.3%). Twenty-eight (63.6%) of the pets were diagnosed with a zoonotic pathogen, and seven (15.9%) with a facultative pathogen. Most zoonotic agents were isolated from the pet's external ear and intestine. Bacteria with the highest pathogenic potential were Campylobacter jejuni and Brucella canis. In two children and their respective pets, the same zoonotic diseases were diagnosed (toxocariasis and giardiasis). Arthropods serving as potential vectors of zoonotic infections were found in 49% of dogs and 44% of cats. The pilot project was positively evaluated by the participating families. Our pilot project confirmed that pets are reservoir for various zoonotic agents in Chile and that the implementation of an integrated multidisciplinary programme was a valuable tool to prevent, diagnose and treat such zoonotic infections in vulnerable patients such as

  20. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals.

    PubMed

    Jantakee, Kanyaluck; Tragoolpua, Yingmanee

    2015-01-16

    Honey is a natural product obtained from the nectar that is collected from flowers by bees. It has several properties, including those of being food and supplementary diet, and it can be used in cosmetic products. Honey imparts pharmaceutical properties since it has antibacterial and antioxidant activities. The antibacterial and antioxidant activities of Thai honey were investigated in this study. The honey from longan flower (source No. 1) gave the highest activity on MRSA when compared to the other types of honey, with a minimum inhibitory concentration of 12.5% (v/v) and minimum bactericidal concentration of 25% (v/v). Moreover, it was found that MRSA isolate 49 and S. aureus were completely inhibited by the 50% (v/v) longan honey (source No. 1) at 8 and 20 hours of treatment, respectively. Furthermore, it was observed that the honey from coffee pollen (source No. 4) showed the highest phenolic and flavonoid compounds by 734.76 mg gallic/kg of honey and 178.31 mg quercetin/kg of honey, respectively. The antioxidant activity of the honey obtained from coffee pollen was also found to be the highest, when investigated using FRAP and DPPH assay, with 1781.77 mg FeSO4•7H2O/kg of honey and 86.20 mg gallic/kg of honey, respectively. Additionally, inhibition of tyrosinase enzyme was found that honey from coffee flower showed highest inhibition by 63.46%. Honey demonstrates tremendous potential as a useful source that provides anti-free radicals, anti-tyrosinase and anti-bacterial activity against pathogenic bacteria causing skin diseases.

  1. Seroprevalence of seven zoonotic infections in Nunavik, Quebec (Canada).

    PubMed

    Messier, V; Lévesque, B; Proulx, J-F; Rochette, L; Serhir, B; Couillard, M; Ward, B J; Libman, M D; Dewailly, E; Déry, S

    2012-03-01

    In Nunavik, common practices and food habits such as consumption of raw meat and untreated water place the Inuit at risk for contracting zoonotic diseases. The aim of this study was to determine the seroprevalence of seven zoonotic infections among the permanent residents of Nunavik. The study was conducted in the fall 2004 as part of the Nunavik Health Survey. Blood samples from adults aged 18-74 years (n = 917) were collected and analysed for the presence of antibodies against Trichinella spp., Toxocara canis, Echinococcus granulosus, Brucella spp., Coxiella burnetii, Leptospira spp. and Francisella tularensis. Information on sociodemographic characteristics, traditional activities, drinking water supply and nutrition was gathered using english/inuktitut bilingual questionnaires. The chi-squared test was used to evaluate associations between seropositivity and other measured variables. Statistically significant variables were included in a multivariate logistic regression model to control for confounding factors. Estimated seroprevalences were 8.3% for E. granulosus, 3.9% for T. canis, 5.9% for Leptospira spp. and 18.9% for F. tularensis. Seroprevalence was ≤ 1% for Trichinella spiralis, Brucella spp. and C. burnetii. For most infections, seropositivity tended to increase with age. In multivariate analyses, seroprevalence was positively (i.e. directly) associated with age and residence in the Ungava coast area for F. tularensis; age and residence in the Hudson coast area for T. canis; female gender, lower level of schooling and frequent cleaning of water reservoirs for E. granulosus. No risk factor for Leptospira spp. infection was identified. No associations were detected with regards to food habits or environmental exposures. A small but significant portion of the Nunavik population has serologic evidence of exposure to at least one of the pathogenic microorganisms investigated. Further studies are needed to better understand the mechanisms for transmission

  2. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    PubMed

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  3. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    PubMed Central

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  4. Evidence Supporting Zoonotic Transmission of Cryptosporidium spp. in Wisconsin▿

    PubMed Central

    Feltus, Dawn C.; Giddings, Catherine W.; Schneck, Brianna L.; Monson, Timothy; Warshauer, David; McEvoy, John M.

    2006-01-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States. PMID:17005736

  5. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin.

    PubMed

    Feltus, Dawn C; Giddings, Catherine W; Schneck, Brianna L; Monson, Timothy; Warshauer, David; McEvoy, John M

    2006-12-01

    Cryptosporidium hominis and Cryptosporidium parvum are the primary species of Cryptosporidium that infect humans. C. hominis has an anthroponotic transmission cycle, while C. parvum is zoonotic, infecting cattle and other ruminants, in addition to humans. Most cryptosporidiosis outbreaks in the United States have been caused by C. hominis, and this species is often reported as the primary cause of cryptosporidiosis in this country. However, outbreaks account for only 10% of the overall cryptosporidiosis cases, and there are few data on the species that cause sporadic cases. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 49 cases of sporadic cryptosporidiosis in Wisconsin during the period from 2003 to 2005. The species/genotype of isolates was determined by PCR restriction fragment length polymorphism analysis of the 18S rRNA and Cryptosporidium oocyst wall protein genes. The C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Forty-four of 49 isolates were identified as C. parvum, and 1 was identified as C. hominis. Of the remaining isolates, one was identified as being of the cervine genotype, one was identified as being a cervine genotype variant, and two were identified as being of a novel human genotype, previously reported as W17. Nine different subgenotypes were identified within the C. parvum species, and two of these were responsible for 60% of the cases. In this study we found that most sporadic cases of cryptosporidiosis in Wisconsin are caused by zoonotic Cryptosporidium species, indicating that zoonotic transmission could be more frequently associated with sporadic cases in the United States.

  6. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex.

    PubMed

    Grissett, G P; White, B J; Larson, R L

    2015-01-01

    Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), parainfluenza-3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty-five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV-1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. Molecular identification of zoonotic and livestock-specific Giardia-species in faecal samples of calves in Southern Germany.

    PubMed

    Gillhuber, Julia; Pallant, Louise; Ash, Amanda; Thompson, R C Andrew; Pfister, Kurt; Scheuerle, Miriam C

    2013-12-10

    Giardia-infection in cattle is often subclinical or asymptomatic, but it can also cause diarrhoea. The livestock-specific species Giardia bovis is the most frequently observed in cattle, however, the two zoonotic species Giardia duodenalis and Giardia enterica have also been found. Therefore calves are thought to be of public health significance. The aim of this study was to obtain current data about the frequency of the different Giardia-species in calves in Southern Germany. Faecal samples of calves (diarrhoeic and healthy) in Southern Germany, diagnosed Giardia-positive by microscopy, were characterised by multi-locus PCR and sequencing.Of 152 microscopically Giardia-positive samples 110 (72.4%) were positive by PCR and successfully sequenced. G. bovis (Assemblage E) was detected in 101/110 (91.8%) PCR-positive samples, whilst G. duodenalis (Assemblage A) was detected in 8/110 (7.3%) samples and a mixed infection with G. duodenalis and G. bovis (Assemblage A+E) was identified in 1/110 (0.9%) samples. The sub-genotypes A1, E2 and E3 were identified with the β-giardin and the glutamate dehydrogenase genes. In the majority of diarrhoeic faecal samples a co-infection with Cryptosporidium spp. or Eimeria spp. was present, however, there were some in which G. bovis was the only protozoan pathogen found. The results suggest that there is potentially a risk for animal handlers as calves in Southern Germany are, at a low percentage, infected with the zoonotic species G. duodenalis. In addition, it was found that G. bovis was the only pathogen identified in some samples of diarrhoeic calves, indicating that this parasite may be a contributing factor to diarrhoea in calves.

  8. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas

    PubMed Central

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-01-01

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. PMID:27382078

  9. Human Pulmonary Infection by the Zoonotic Metastrongylus salmi Nematode. The First Reported Case in the Americas.

    PubMed

    Calvopina, Manuel; Caballero, Henry; Morita, Tatsushi; Korenaga, Masataka

    2016-10-05

    Pulmonary metastrongylosis, a zoonotic disease found primarily in pigs, is caused by eight different species of the cosmopolitan nematode Metastrongylus genus. To date, only four human cases have been reported, all from Europe. Herein, a severe case of pulmonary infection caused by Metastrongylus salmi in an Ecuadorian man, with successful treatment with ivermectin, is described. © The American Society of Tropical Medicine and Hygiene.

  10. Fascioliasis: An Ongoing Zoonotic Trematode Infection

    PubMed Central

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration. PMID:26417603

  11. Fascioliasis: An Ongoing Zoonotic Trematode Infection.

    PubMed

    Nyindo, Mramba; Lukambagire, Abdul-Hamid

    2015-01-01

    Zoonotic trematode infections are an area of the neglected tropical diseases that have become of major interest to global and public health due to their associated morbidity. Human fascioliasis is a trematode zoonosis of interest in public health. It affects approximately 50 million people worldwide and over 180 million are at risk of infection in both developed and underdeveloped countries. The one health paradigm is an area that seeks to address the problem of zoonotic infections through a comprehensive and sustainable approach. This review attempts to address the major challenges in managing human and animal fascioliasis with valuable insights gained from the one health paradigm to global health and multidisciplinary integration.

  12. Zoonotic chicken toxoplasmosis in some Egyptians governorates.

    PubMed

    Barakat, Ashraf Mohamed; Salem, Lobna Mohamed Ali; El-Newishy, Adel M Abdel-Aziz; Shaapan, Raafat Mohamed; El-Mahllawy, Ehab Kotb

    2012-09-01

    Toxoplasmosis is one of the most common diseases prevalent in the world, caused by a coccidian parasite Toxoplasma gondii which infects humans, animals and birds. Poultry consider reliable human source of food in addition it is considered an intermediate host in transmission of the disease to humans. Trails of isolation of local T. gondii chicken strain through bioassay of the suspected infected chicken tissues in mice was carried out and the isolated strain was confirmed as being T. gondii using Polymerase Chain Reaction (PCR). Seroprevalence of antibodies against T. gondii in chicken sera in six Egyptian governorates were conducted by enzyme linked immune-sorbent assay (ELISA) using the isolated chicken strain antigen. Moreover, comparison between the prevalence rates in different regions of the Egyptian governorates were been estimated. Isolation of local T. gondii chicken strain was accomplished from chicken tissues and confirmed by PCR technique. The total prevalence rate was 68.8% comprised of 59.5, 82.3, 67.1, 62.2, 75 and 50% in El Sharkia, El Gharbia, Kafr El sheikh, Cairo, Quena and Sohag governorates, respectively. The prevalence rates were higher among Free Range (FR) (69.5%) than commercial farm Chickens (C) (68.5%); while, the prevalence rate was less in Upper Egypt than Lower Egypt governorates and Cairo. This study is the first was used antigen from locally isolated T. gondii chicken strain for the diagnosis of chicken toxoplasmosis. The higher seroprevalence particularly in free range chickens (house-reared) refers to the public health importance of chickens as source of zoonotic toxoplasmosis to human.

  13. Neglected zoonotic helminths: Hymenolepis nana, Echinococcus canadensis and Ancylostoma ceylanicum.

    PubMed

    Thompson, R C A

    2015-05-01

    The majority of helminth parasites that are considered by WHO to be the cause of 'neglected diseases' are zoonotic. In terms of their impact on human health, the role of animal reservoirs and polyparasitism are both emerging issues in understanding the epidemiology of a number of these zoonoses. As such, Hymenolepis (Rodentolepis) nana, Echinococcus canadensis and Ancylostoma ceylanicum all qualify for consideration. They have been neglected and there is increasing evidence that all three parasite infections deserve more attention in terms of their impact on public health as well as their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats

    PubMed Central

    Wilson, Michael B.; Held, Benjamin W.; Freiborg, Amanda H.; Blanchette, Robert A.

    2017-01-01

    White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces. PMID:28617823

  15. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats.

    PubMed

    Wilson, Michael B; Held, Benjamin W; Freiborg, Amanda H; Blanchette, Robert A; Salomon, Christine E

    2017-01-01

    White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.

  16. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany.

    PubMed

    Harder, Timm; Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T C; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin

    2015-05-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus.

  17. Individualistic values are related to an increase in the outbreaks of infectious diseases and zoonotic diseases.

    PubMed

    Morand, Serge; Walther, Bruno A

    2018-03-01

    Collectivist versus individualistic values are important attributes of intercultural variation. Collectivist values favour in-group members over out-group members and may have evolved to protect in-group members against pathogen transmission. As predicted by the pathogen stress theory of cultural values, more collectivist countries are associated with a higher historical pathogen burden. However, if lifestyles of collectivist countries indeed function as a social defence which decreases pathogen transmission, then these countries should also have experienced fewer disease outbreaks in recent times. We tested this novel hypothesis by correlating the values of collectivism-individualism for 66 countries against their historical pathogen burden, recent number of infectious disease outbreaks and zoonotic disease outbreaks and emerging infectious disease events, and four potentially confounding variables. We confirmed the previously established negative relationship between individualism and historical pathogen burden with new data. While we did not find a correlation for emerging infectious disease events, we found significant positive correlations between individualism and the number of infectious disease outbreaks and zoonotic disease outbreaks. Therefore, one possible cost for individualistic cultures may be their higher susceptibility to disease outbreaks. We support further studies into the exact protective behaviours and mechanisms of collectivist societies which may inhibit disease outbreaks.

  18. ZOONOTIC PARASITES, OUR ENVIROMENT AND CHANGE

    USDA-ARS?s Scientific Manuscript database

    Environmental changes arising from nature and human activity are affecting patterns for the occurrence and significance of many infectious diseases, including zoonotic parasites, which are those naturally transmitted between domestic animals or wildlife and people. As these changes continue, and pe...

  19. Surveillance and diagnosis of zoonotic foodborne parasites.

    PubMed

    Zolfaghari Emameh, Reza; Purmonen, Sami; Sukura, Antti; Parkkila, Seppo

    2018-01-01

    Foodborne parasites are a source of human parasitic infection. Zoonotic infections of humans arise from a variety of domestic and wild animals, including sheep, goats, cattle, camels, horses, pigs, boars, bears, felines, canids, amphibians, reptiles, poultry, and aquatic animals such as fishes and shrimp. Therefore, the implementation of efficient, accessible, and controllable inspection policies for livestock, fisheries, slaughterhouses, and meat processing and packaging companies is highly recommended. In addition, more attention should be paid to the education of auditors from the quality control (QC) and assurance sectors, livestock breeders, the fishery sector, and meat inspection veterinarians in developing countries with high incidence of zoonotic parasitic infections. Furthermore, both the diagnosis of zoonotic parasitic infections by inexpensive, accessible, and reliable identification methods and the organization of effective control systems with sufficient supervision of product quality are other areas to which more attention should be paid. In this review, we present some examples of successful inspection policies and recent updates on present conventional, serologic, and molecular diagnostic methods for zoonotic foodborne parasites from both human infection and animal-derived foods.

  20. UMD-USHbases: a comprehensive set of databases to record and analyse pathogenic mutations and unclassified variants in seven Usher syndrome causing genes.

    PubMed

    Baux, David; Faugère, Valérie; Larrieu, Lise; Le Guédard-Méreuze, Sandie; Hamroun, Dalil; Béroud, Christophe; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2008-08-01

    Using the Universal Mutation Database (UMD) software, we have constructed "UMD-USHbases", a set of relational databases of nucleotide variations for seven genes involved in Usher syndrome (MYO7A, CDH23, PCDH15, USH1C, USH1G, USH3A and USH2A). Mutations in the Usher syndrome type I causing genes are also recorded in non-syndromic hearing loss cases and mutations in USH2A in non-syndromic retinitis pigmentosa. Usher syndrome provides a particular challenge for molecular diagnostics because of the clinical and molecular heterogeneity. As many mutations are missense changes, and all the genes also contain apparently non-pathogenic polymorphisms, well-curated databases are crucial for accurate interpretation of pathogenicity. Tools are provided to assess the pathogenicity of mutations, including conservation of amino acids and analysis of splice-sites. Reference amino acid alignments are provided. Apparently non-pathogenic variants in patients with Usher syndrome, at both the nucleotide and amino acid level, are included. The UMD-USHbases currently contain more than 2,830 entries including disease causing mutations, unclassified variants or non-pathogenic polymorphisms identified in over 938 patients. In addition to data collected from 89 publications, 15 novel mutations identified in our laboratory are recorded in MYO7A (6), CDH23 (8), or PCDH15 (1) genes. Information is given on the relative involvement of the seven genes, the number and distribution of variants in each gene. UMD-USHbases give access to a software package that provides specific routines and optimized multicriteria research and sorting tools. These databases should assist clinicians and geneticists seeking information about mutations responsible for Usher syndrome.

  1. Zoonotic Diseases--Fostering Awareness in Critical Audiences

    ERIC Educational Resources Information Center

    Van Metre, David C.; Morley, Paul S.

    2015-01-01

    Zoonotic diseases are infectious diseases that are shared between humans and other vertebrate animals. Extension professionals often serve as consultants and educators to individuals at high risk of zoonotic diseases, such as participants in 4-H livestock projects. Effective education about zoonotic diseases begins with an awareness of the…

  2. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens.

    PubMed

    Chakraborty, Sandeep; Phu, My; de Morais, Tâmara Prado; Nascimento, Rafael; Goulart, Luiz Ricardo; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya M

    2014-01-01

    The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.

  3. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection.

    PubMed

    Morgenstern, Christian; Cabric, Sabrina; Perka, Carsten; Trampuz, Andrej; Renz, Nora

    2018-02-01

    Analysis of joint aspirate is the standard preoperative investigation for diagnosis of periprosthetic joint infection (PJI). We compared the diagnostic performance of culture and multiplex polymerase chain reaction (PCR) of synovial fluid for diagnosis of PJI. Patients in whom aspiration of the prosthetic hip or knee joint was performed before revision arthroplasty were prospectively included. The performance of synovial fluid culture and multiplex PCR was compared by McNemar's chi-squared test. A total of 142 patients were included, 82 with knee and 60 with hip prosthesis. PJI was diagnosed in 77 patients (54%) and aseptic failure in 65 patients (46%). The sensitivity of synovial fluid culture and PCR was 52% and 60%, respectively, showing concordant results in 116 patients (82%). In patients with PJI, PCR missed 6 high-virulent pathogens (S. aureus, streptococci, E. faecalis, E. coli) which grew in synovial fluid culture, whereas synovial fluid culture missed 12 pathogens detected by multiplex PCR, predominantly low-virulent pathogens (Cutibacterium acnes and coagulase-negative staphylococci). In patients with aseptic failure, PCR detected 6 low-virulent organisms (predominantly C. acnes). While the overall performance of synovial fluid PCR was comparable to culture, PCR was superior for detection of low-virulent bacteria such as Cutibacterium spp. and coagulase-negative staphylococci. In addition, synovial fluid culture required several days for growth, whereas multiplex PCR provided results within 5hours in an automated manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Inactivation of the Catalytic Subunit of cAMP-Dependent Protein Kinase A Causes Delayed Appressorium Formation and Reduced Pathogenicity of Colletotrichum gloeosporioides

    PubMed Central

    Priyatno, Tri Puji; Abu Bakar, Farah Diba; Kamaruddin, Nurhaida; Mahadi, Nor Muhammad; Abdul Murad, Abdul Munir

    2012-01-01

    The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides. PMID:22666136

  5. Zoonotic potential of Enterocytozoon genotypes in humans and pigs in Thailand.

    PubMed

    Prasertbun, Rapeepun; Mori, Hirotake; Pintong, Ai-Rada; Sanyanusin, Suparut; Popruk, Supaluk; Komalamisra, Chalit; Changbunjong, Tanasak; Buddhirongawatr, Ruangrat; Sukthana, Yaowalark; Mahittikorn, Aongart

    2017-01-15

    Enterocytozoon bieneusi is an opportunistic intestinal pathogen infecting humans and a variety of animals. Its mode of transmission and zoonotic potential are not completely understood. E. bieneusi has been frequently identified in pigs. The objective of our study was to investigate E. bieneusi in pigs and humans in Western and Central Thailand to determine its presence, genetic diversity, and zoonotic potential. A total of 277 human and 210 pig faecal samples were collected and analysed. E. bieneusi was found in 5.4% and 28.1% of human and pig samples, respectively, by nested PCR. Genotyping based on the internal transcribed spacer regions of the small subunit ribosomal RNA demonstrated three known genotypes (D, H, PigEb10) and eight novel genotypes (TMH1-8) in humans, and five known genotypes (D, EbpA, EbpC, H, O) and 11 novel genotypes (TMP1-11) in pigs. All known genotypes identified in humans and pigs had zoonotic potential. Further studies are needed to evaluate zoonotic risk of novel genotypes, as pigs may play an important role in the transmission of E. bieneusi. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia

    PubMed Central

    Peiris, Malik; Cowling, Benjamin J.; Wu, Joseph T.; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M.

    2017-01-01

    Summary Novel influenza viruses continue to emerge posing zoonotic and potentially pandemic threats, avian influenza A/H7N9 being the most recent example. While closure of live poultry markets in mainland China was effective at aborting A/H7N9 outbreaks temporarily, they are difficult to sustain, given the current poultry production and marketing systems in China. We summarise interventions taken in mainland China to date. We provide evidence for other more sustainable but effective interventions in the live poultry market (LPM) systems that reduce risk of zoonotic influenza including “rest days” in LPM and banning live poultry in markets overnight. On the longer term, separation of live ducks and geese from terrestrial poultry in LPM systems can reduce the risk of emergence of zoonotic, epizootic (and potentially pandemic) viruses at source. Given evidence that A/H7N9 is now endemic in over half of the provinces in mainland China, and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China as well as other Asian countries which are at risk of introduction of A/H7N9 through cross-border poultry movements. Such generic measures are likely to reduce current as well as future threats from zoonotic influenza. PMID:26654122

  7. Enterococcus faecalis urinary-tract infections: Do they have a zoonotic origin?

    PubMed

    Abat, Cédric; Huart, Michael; Garcia, Vincent; Dubourg, Grégory; Raoult, Didier

    2016-10-01

    Major human pathogens are frequently isolated from meat-producing animals, particularly poultry. Among them is Enterococcus faecalis, which is known to be one of the main cause of human urinary-tract infections worldwide. Early in 2015, we detected several, consecutive abnormal increases in the weekly number of human E. faecalis infections in various medical settings in the Provence-Alpes-Côte d'Azur region of France, especially including community-acquired urinary-tract infections. Speculating that this region-wide epidemiological event may have originated from animal-based food, we initiated this work to provide an overview of the epidemiology of E. faecalis, with a particular focus on the possible link between E. faecalis clones isolated from food-producing animals and those responsible for human urinary-tract infections. At that time, only one study had clearly identified strong epidemiological links between E. faecalis clones isolated from food-producing animals and human E. faecalis urinary-tract infections. This observation, coupled with our region-wide epidemiological experience, leads us to strongly believe that E. faecalis is a real zoonotic pathogen with potentially highly significant impact on human health. This is of particular concern because of its ability to acquire antibiotic-resistance genes and to infect animals and humans. Various strategies must be urgently implemented to address this public health threat, in particular through the development and implementation of large integrated automated surveillance systems based on animal and human health data to enable us to detect E. faecalis epidemiological events. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  8. Perspectives on emerging zoonotic disease research and capacity building in Canada

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2004-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:18159512

  9. Perspectives on emerging zoonotic disease research and capacity building in Canada.

    PubMed Central

    Stephen, Craig; Artsob, Harvey; Bowie, William R.; Drebot, Michael; Fraser, Erin; Leighton, Ted; Morshed, Muhammad; Ong, Corinne; Patrick, David

    2005-01-01

    Zoonoses are fundamental determinants of community health. Preventing, identifying and managing these infections must be a central public health focus. Most current zoonoses research focuses on the interface of the pathogen and the clinically ill person, emphasizing microbial detection, mechanisms of pathogenicity and clinical intervention strategies, rather than examining the causes of emergence, persistence and spread of new zoonoses. There are gaps in the understanding of the animal determinants of emergence and the capacity to train highly qualified individuals; these are major obstacles to preventing new disease threats. The ability to predict the emergence of zoonoses and their resulting public health and societal impacts are hindered when insufficient effort is devoted to understanding zoonotic disease epidemiology, and when zoonoses are not examined in a manner that yields fundamental insight into their origin and spread. Emerging infectious disease research should rest on four pillars: enhanced communications across disciplinary and agency boundaries; the assessment and development of surveillance and disease detection tools; the examination of linkages between animal health determinants of human health outcomes; and finally, cross-disciplinary training and research. A national strategy to predict, prevent and manage emerging diseases must have a prominent and explicit role for veterinary and biological researchers. An integrated health approach would provide decision makers with a firmer foundation from which to build evidence-based disease prevention and control plans that involve complex human/animal/environmental systems, and would serve as the foundation to train and support the new cadre of individuals ultimately needed to maintain and apply research capacity in this area. PMID:15759832

  10. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

    USGS Publications Warehouse

    Hayman, D.T.; Bowen, R.A.; Cryan, P.M.; McCracken, G.F.; O'Shea, T.J.; Peel, A.J.; Gilbert, A.; Webb, C.T.; Wood, J.L.

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

  11. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions

    PubMed Central

    Hayman, D T S; Bowen, R A; Cryan, P M; McCracken, G F; O’Shea, T J; Peel, A J; Gilbert, A; Webb, C T; Wood, J L N

    2013-01-01

    Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics. PMID:22958281

  12. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission in Neolithic goat populations.

    PubMed

    Fournié, Guillaume; Pfeiffer, Dirk U; Bendrey, Robin

    2017-02-01

    Zoonotic pathogens are frequently hypothesized as emerging with the origins of farming, but evidence of this is elusive in the archaeological records. To explore the potential impact of animal domestication on zoonotic disease dynamics and human infection risk, we developed a model simulating the transmission of Brucella melitensis within early domestic goat populations. The model was informed by archaeological data describing goat populations in Neolithic settlements in the Fertile Crescent, and used to assess the potential of these populations to sustain the circulation of Brucella . Results show that the pathogen could have been sustained even at low levels of transmission within these domestic goat populations. This resulted from the creation of dense populations and major changes in demographic characteristics. The selective harvesting of young male goats, likely aimed at improving the efficiency of food production, modified the age and sex structure of these populations, increasing the transmission potential of the pathogen within these populations. Probable interactions between Neolithic settlements would have further promoted pathogen maintenance. By fostering conditions suitable for allowing domestic goats to become reservoirs of Brucella melitensis , the early stages of agricultural development were likely to promote the exposure of humans to this pathogen.

  13. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission in Neolithic goat populations

    PubMed Central

    Pfeiffer, Dirk U.; Bendrey, Robin

    2017-01-01

    Zoonotic pathogens are frequently hypothesized as emerging with the origins of farming, but evidence of this is elusive in the archaeological records. To explore the potential impact of animal domestication on zoonotic disease dynamics and human infection risk, we developed a model simulating the transmission of Brucella melitensis within early domestic goat populations. The model was informed by archaeological data describing goat populations in Neolithic settlements in the Fertile Crescent, and used to assess the potential of these populations to sustain the circulation of Brucella. Results show that the pathogen could have been sustained even at low levels of transmission within these domestic goat populations. This resulted from the creation of dense populations and major changes in demographic characteristics. The selective harvesting of young male goats, likely aimed at improving the efficiency of food production, modified the age and sex structure of these populations, increasing the transmission potential of the pathogen within these populations. Probable interactions between Neolithic settlements would have further promoted pathogen maintenance. By fostering conditions suitable for allowing domestic goats to become reservoirs of Brucella melitensis, the early stages of agricultural development were likely to promote the exposure of humans to this pathogen. PMID:28386446

  14. Influenza surveillance in animals: what is our capacity to detect emerging influenza viruses with zoonotic potential?

    PubMed

    VON Dobschuetz, S; DE Nardi, M; Harris, K A; Munoz, O; Breed, A C; Wieland, B; Dauphin, G; Lubroth, J; Stärk, K D C

    2015-07-01

    A survey of national animal influenza surveillance programmes was conducted to assess the current capacity to detect influenza viruses with zoonotic potential in animals (i.e. those influenza viruses that can be naturally transmitted between animals and humans) at regional and global levels. Information on 587 animal influenza surveillance system components was collected for 99 countries from Chief Veterinary Officers (CVOs) (n = 94) and published literature. Less than 1% (n = 4) of these components were specifically aimed at detecting influenza viruses with pandemic potential in animals (i.e. those influenza viruses that are capable of causing epidemic spread in human populations over large geographical regions or worldwide), which would have zoonotic potential as a prerequisite. Those countries that sought to detect influenza viruses with pandemic potential searched for such viruses exclusively in domestic pigs. This work shows the global need for increasing surveillance that targets potentially zoonotic influenza viruses in relevant animal species.

  15. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia.

    PubMed

    Setiadi, Wuryantari; Sudoyo, Herawati; Trimarsanto, Hidayat; Sihite, Boy Adventus; Saragih, Riahdo Juliarman; Juliawaty, Rita; Wangsamuda, Suradi; Asih, Puji Budi Setia; Syafruddin, Din

    2016-04-16

    The Indonesian archipelago is endemic for malaria. Although Plasmodium falciparum and P. vivax are the most common causes for malaria cases, P. malariae and P. ovale are also present in certain regions. Zoonotic case of malaria had just became the attention of public health communities after the Serawak study in 2004. However, zoonotic case in Indonesia is still under reported; only one published report of knowlesi malaria in South Kalimantan in 2010. A case of Plasmodium knowlesi infection in a worker from a charcoal mining company in Central Kalimantan, Indonesia was described. The worker suffered from fever following his visit to a lowland forest being cut and converted into a new mining location. This study confirmed a zoonotic infection using polymerase chain reaction amplification and Sanger sequencing of plasmodial DNA encoding the mitochondrial cytochrome c oxidase subunit I (mtCOI).

  16. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease.

    PubMed

    Lindow, Steven; Newman, Karyn; Chatterjee, Subhadeep; Baccari, Clelia; Lavarone, Anthony T; Ionescu, Michael

    2014-03-01

    The rpfF gene from Xylella fastidiosa, encoding the synthase for diffusible signal factor (DSF), was expressed in 'Freedom' grape to reduce the pathogen's growth and mobility within the plant. Symptoms in such plants were restricted to near the point of inoculation and incidence of disease was two- to fivefold lower than in the parental line. Both the longitudinal and lateral movement of X. fastidiosa in the xylem was also much lower. DSF was detected in both leaves and xylem sap of RpfF-expressing plants using biological sensors, and both 2-Z-tetradecenoic acid, previously identified as a component of X. fastidiosa DSF, and cis-11-methyl-2-dodecenoic acid were detected in xylem sap using electrospray ionization mass spectrometry. A higher proportion of X. fastidiosa cells adhered to xylem vessels of the RpfF-expressing line than parental 'Freedom' plants, reflecting a higher adhesiveness of the pathogen in the presence of DSF. Disease incidence in RpfF-expressing plants in field trials in which plants were either mechanically inoculated with X. fastidiosa or subjected to natural inoculation by sharpshooter vectors was two- to fourfold lower in than that of the parental line. The number of symptomatic leaves on infected shoots was reduced proportionally more than the incidence of infection, reflecting a decreased ability of X. fastidiosa to move within DSF-producing plants.

  17. Adaptive Radiation within Marine Anisakid Nematodes: A Zoogeographical Modeling of Cosmopolitan, Zoonotic Parasites

    PubMed Central

    Kuhn, Thomas; García-Màrquez, Jaime; Klimpel, Sven

    2011-01-01

    Parasites of the nematode genus Anisakis are associated with aquatic organisms. They can be found in a variety of marine hosts including whales, crustaceans, fish and cephalopods and are known to be the cause of the zoonotic disease anisakiasis, a painful inflammation of the gastro-intestinal tract caused by the accidental consumptions of infectious larvae raw or semi-raw fishery products. Since the demand on fish as dietary protein source and the export rates of seafood products in general is rapidly increasing worldwide, the knowledge about the distribution of potential foodborne human pathogens in seafood is of major significance for human health. Studies have provided evidence that a few Anisakis species can cause clinical symptoms in humans. The aim of our study was to interpolate the species range for every described Anisakis species on the basis of the existing occurrence data. We used sequence data of 373 Anisakis larvae from 30 different hosts worldwide and previously published molecular data (n = 584) from 53 field-specific publications to model the species range of Anisakis spp., using a interpolation method that combines aspects of the alpha hull interpolation algorithm as well as the conditional interpolation approach. The results of our approach strongly indicate the existence of species-specific distribution patterns of Anisakis spp. within different climate zones and oceans that are in principle congruent with those of their respective final hosts. Our results support preceding studies that propose anisakid nematodes as useful biological indicators for their final host distribution and abundance as they closely follow the trophic relationships among their successive hosts. The modeling might although be helpful for predicting the likelihood of infection in order to reduce the risk of anisakiasis cases in a given area. PMID:22180787

  18. Zoonotic Transmission of Waterborne Disease: A Mathematical Model.

    PubMed

    Waters, Edward K; Hamilton, Andrew J; Sidhu, Harvinder S; Sidhu, Leesa A; Dunbar, Michelle

    2016-01-01

    Waterborne parasites that infect both humans and animals are common causes of diarrhoeal illness, but the relative importance of transmission between humans and animals and vice versa remains poorly understood. Transmission of infection from animals to humans via environmental reservoirs, such as water sources, has attracted attention as a potential source of endemic and epidemic infections, but existing mathematical models of waterborne disease transmission have limitations for studying this phenomenon, as they only consider contamination of environmental reservoirs by humans. This paper develops a mathematical model that represents the transmission of waterborne parasites within and between both animal and human populations. It also improves upon existing models by including animal contamination of water sources explicitly. Linear stability analysis and simulation results, using realistic parameter values to describe Giardia transmission in rural Australia, show that endemic infection of an animal host with zoonotic protozoa can result in endemic infection in human hosts, even in the absence of person-to-person transmission. These results imply that zoonotic transmission via environmental reservoirs is important.

  19. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria

    PubMed Central

    Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja

    2014-01-01

    Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102

  20. Characterization of bacterial knot disease caused by Pseudomonas savastanoi pv. savastanoi on pomegranate (Punica granatum L.) trees: a new host of the pathogen.

    PubMed

    Bozkurt, I A; Soylu, S; Mirik, M; Ulubas Serce, C; Baysal, Ö

    2014-11-01

    This study aimed to isolate and identify the causal organism causing hyperplastic outgrowths (knots) on stems and branches of pomegranate trees in the Eastern Mediterranean region of Turkey. Bacterial colonies were isolated from young knots on plates containing selective nutrient media. Biochemical tests, fatty acid analysis and PCR were performed to identify possible causal disease agent. Representative isolates were identified as Pseudomonas.pv.savastanoi (Psv) using biochemical tests, fatty acid profiling and PCR. Following inoculation of pomegranate plants (cv. hicaz) with bacterial suspensions, 25 of 54 bacterial isolates caused typical knots at the site of inoculation. PCR analysis, using specific primer for Psv, generated a single amplicon from all isolates. The similarity of the sequence of Turkish pomegranate isolate was 99% similar to the corresponding gene sequences of Psv in the databases. Based on symptoms, biochemical, molecular, pathogenicity tests and sequence analyses, the disease agent of knots observed on the pomegranate trees is Psv. To the best of our knowledge, this research has revealed pomegranate as a natural host of Psv, which extends the list of host plant species affected by the pathogen in the world and Turkey. Pomegranate trees were affected by the disease with outgrowths (galls or knot) disease. Currently, there is no published study on disease agent(s) causing the galls or knots on pomegranate trees in worldwide. Bacterial colonies were isolated from young knots. The causal agent of the knot Pseudomonas savastanoi pv.savastanoi (Psv) was identified based on symptoms, biochemical, molecular methods, pathogenicity tests and sequence analysis. To the best of our knowledge, this is the first report of Psv on pomegranate as a natural host, which extends the growing list of plant species affected by this bacterium in the world and Turkey. © 2014 The Society for Applied Microbiology.

  1. Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae).

    PubMed

    Schütte, Conny; Gols, Rieta; Kleespies, Regina G; Poitevin, Olivier; Dicke, Marcel

    2008-06-01

    were not observed in control predators that were exposed to sterile water. The present data prove that A. phytoseiuli can infect the predatory mite P. persimilis and induce the NR-syndrome and characteristic histopathological changes in adult female P. persimilis. This is the first record of a bacterial pathogen in a phytoseiid mite and the first description of pathogenic effects of a bacterial species in the genus Acaricomes.

  2. Evaluation of the presence and zoonotic transmission of Chlamydia suis in a pig slaughterhouse.

    PubMed

    De Puysseleyr, Kristien; De Puysseleyr, Leentje; Dhondt, Hendrik; Geens, Tom; Braeckman, Lutgart; Morré, Servaas A; Cox, Eric; Vanrompay, Daisy

    2014-10-30

    A significant number of studies on pig farms and wild boars worldwide, demonstrate the endemic presence of Chlamydia suis in pigs. However, the zoonotic potential of this pathogen, phylogenetically closely related to Chlamydia trachomatis, is still uninvestigated. Therefore, this study aims to examine the zoonotic transmission in a Belgian pig abattoir. Presence of Chlamydia suis in pigs, contact surfaces, air and employees was assessed using a Chlamydia suis specific real-time PCR and culture. Furthermore, Chlamydia suis isolates were tested for the presence of the tet(C) gene. Chlamydia suis bacteria could be demonstrated in samples from pigs, the air and contact surfaces. Moreover, eye swabs of two employees were positive for Chlamydia suis by both PCR and culture. The tet(C) gene was absent in both human Chlamydia suis isolates and no clinical signs were reported. These findings suggest the need for further epidemiological and clinical research to elucidate the significance of human ocular Chlamydia suis infections.

  3. Chlamydia gallinacea: a widespread emerging Chlamydia agent with zoonotic potential in backyard poultry.

    PubMed

    Li, L; Luther, M; Macklin, K; Pugh, D; Li, J; Zhang, J; Roberts, J; Kaltenboeck, B; Wang, C

    2017-10-01

    Chlamydia gallinacea, a new chlamydial agent, has been reported in four European countries as well as Argentina and China. Experimentally infected chickens with C. gallinacea in previous study showed no clinical signs but had significantly reduced gains in body weight (6·5-11·4%). Slaughterhouse workers exposed to infected chickens have developed atypical pneumonia, indicating C. gallinacea is likely a zoonotic agent. In this study, FRET-PCR confirmed that C. gallinacea was present in 12·4% (66/531) of oral-pharyngeal samples from Alabama backyard poultry. Phylogenetic comparisons based on ompA variable domain showed that 16 sequenced samples represented 14 biotypes. We report for the first time the presence of C. gallinacea in North America, and this warrants further research on the organism's pathogenicity, hosts, transmission, and zoonotic potential.

  4. [The raccoon roundworm (Baylisascaris procyonis)--no zoonotic risk for Brandenburg?].

    PubMed

    Schwarz, Sabine; Sutor, Astrid; Mattis, Roswitha; Conraths, Franz Josef

    2015-01-01

    The aim of the present study was to investigate the presence of the raccoon roundworm (Baylisascaris [B.] procyonis), a dangerous zoonotic pathogen for humans, in raccoons living in the federal state of Brandenburg, Germany. In the years 2008 to 2013, a total of 762 raccoons, dating from hunting bags, were examined for intestinal helminths. No raccoon roundworm specimen was detected, but 27 samples were positive for Mesocestoides spp. Earlier studies had proved the presence of B. procyonis in Hesse and since 2005 the parasite has also been found in the western part of Saxony-Anhalt. The migration ability of raccoons may promote a further distribution of this parasite and could increase the risk for zoonotic infections in humans.

  5. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  6. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  7. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus).

    PubMed

    Bai, Ying; Urushadze, Lela; Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

  8. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus)

    PubMed Central

    Osikowicz, Lynn; McKee, Clifton; Kuzmin, Ivan; Kandaurov, Andrei; Babuadze, Giorgi; Natradze, Ioseb; Imnadze, Paata; Kosoy, Michael

    2017-01-01

    Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6–50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential. PMID:28129398

  9. Production of infectious dromedary camel hepatitis E virus by a reverse genetic system: Potential for zoonotic infection.

    PubMed

    Li, Tian-Cheng; Zhou, Xianfeng; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Nakamura, Tomofumi; Takeda, Naokazu; Wakita, Takaji

    2016-12-01

    The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Prevalence and characterization of multidrug-resistant zoonotic Enterobacter spp. in poultry of Bangladesh.

    PubMed

    Nandi, Shuvro Prokash; Sultana, Munawar; Hossain, M Anwar

    2013-05-01

    Poultry and poultry products are major contributors of zoonotic pathogens. Limited data are available on Enterobacter spp. as a potent zoonotic pathogen in poultry. The present study is a first endeavor on the emergence of multidrug-resistant zoonotic Enterobacter spp. and its prevalence arising from poultry in Bangladesh. Cloacal swabs from poultry samples of five different farms at Savar, Dhaka, Bangladesh were collected and from 106 isolates, 18 presumptive Enterobacter spp. were obtained. Antibiogram using 19 used antibiotics belonging to 15 major groups revealed that all of the 18 isolates were completely resistant to penicillin and rifampicin, but differed in their drug resistance pattern against ampicillin (94.4%), clindamycin (94.4%), erythromycin (94.4%), vancomycin (88.9%), sulfonamides (72.2%), imipenem (66.6%), streptomycin (55.6%), nitrofurantoin (33.3%), doxycycline (33.3%), tetracyclines (33.3%), cefepime (11.1%), and gentamicin (5.6%). All Enterobacter spp. were found to be plasmid free, implying that multidrug-resistant properties are chromosomal borne. The vanA and sulI were detected by polymerase chain reaction assay in 17 and 13 isolates, respectively. Amplified ribosomal DNA restriction analysis and randomly amplified polymorphic DNA distributed the 18 multidrug-resistant Enterobacter spp. into three genotypes. Phylogenetic analysis of the representatives of the three genotypes using partial 16S rRNA gene sequence (approximately 900 bp) showed that the genotypically diverse groups belonged to Enterobacter hormaechei, E. cloacae, and E. cancerogenus, respectively. The clinical significance of the close relative Enterobacter spp. is indicative of their zoonotic potential. Therefore, urgent intervention is required to limit the emergence and spread of these bacteria in poultry feed as well as prudent use of antibiotics among poultry farmers in Bangladesh.

  11. Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009

    PubMed Central

    Weber, Ingrid B.; McQuiston, Jennifer; Griffith, Kevin S.; Mead, Paul S.; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J.; Stoddard, Robyn A.; Hoffmaster, Alex R.; Smith, Theresa; Bui, Duy; Wilkins, Patricia P.; Jones, Jeffery L.; Gupton, Paige N.; Quinn, Conrad P.; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-01-01

    Abstract U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents. PMID:22835153

  12. Zoonotic infections among employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008-2009.

    PubMed

    Adjemian, Jennifer; Weber, Ingrid B; McQuiston, Jennifer; Griffith, Kevin S; Mead, Paul S; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J; Stoddard, Robyn A; Hoffmaster, Alex R; Smith, Theresa; Bui, Duy; Wilkins, Patricia P; Jones, Jeffery L; Gupton, Paige N; Quinn, Conrad P; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-11-01

    U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents.

  13. A large multi-pathogen gastroenteritis outbreak caused by drinking contaminated water from antique neighbourhood fountains, Erzurum city, Turkey, December 2012.

    PubMed

    Sezen, F; Aval, E; Ağkurt, T; Yilmaz, Ş; Temel, F; Güleşen, R; Korukluoğlu, G; Sucakli, M B; Torunoğlu, M A; Zhu, B-P

    2015-03-01

    We investigated a gastroenteritis outbreak in Erzurum city, Turkey in December 2012 to identify its cause and mode of transmission. We defined a probable case as onset of diarrhoea (⩾3 episodes/day) or vomiting, plus fever or nausea or abdominal pain during 19-27 December, 2012 in an Erzurum city resident. In a case-control study we compared exposures of 95 randomly selected probable cases and 95 neighbourhood-matched controls. We conducted bacterial culture and real-time multiplex PCR for identification of pathogens. During the week before illness onset, 72% of cases and 15% of controls only drank water from antique neighbourhood fountains; conversely, 16% of cases and 65% of controls only drank bottled or tap water (adjusted odds ratio 20, 95% confidence interval 4·6-84, after controlling for age and sex using conditional logistic regression). Of eight stool specimens collected, two were positive for Shigella sonnei, one for astrovirus, one for astrovirus and norovirus, and one for astrovirus and rotavirus. Water samples from the fountains had elevated total coliform (38-300/100 ml) and Escherichia coli (22-198/100 ml) counts. In conclusion, drinking contaminated fountain water caused this multi-pathogen outbreak. Residents should stop drinking water from these fountains, and clean water from the water treatment plant should be connected to the fountains.

  14. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan.

    PubMed

    Sakoda, Yoshihiro; Ito, Hiroshi; Uchida, Yuko; Okamatsu, Masatoshi; Yamamoto, Naoki; Soda, Kosuke; Nomura, Naoki; Kuribayashi, Saya; Shichinohe, Shintaro; Sunden, Yuji; Umemura, Takashi; Usui, Tatsufumi; Ozaki, Hiroichi; Yamaguchi, Tsuyoshi; Murase, Toshiyuki; Ito, Toshihiro; Saito, Takehiko; Takada, Ayato; Kida, Hiroshi

    2012-03-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in the 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On 14 October 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from faecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in nine prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into three groups, suggesting that the viruses were transmitted by migratory water birds through at least three different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.

  15. Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens

    SciTech Connect

    Borucki, M

    2010-01-05

    The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift andmore » provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.« less

  16. Public health significance of zoonotic tapeworms in Korea.

    PubMed

    Moon, J R

    1976-06-01

    Through an epidemiological review on the zoonotic tapeworms in Korea, the frequency and severity of the zoonoses have been recognized. Taeniasis and human cysticercosis are of importance to the public health in Korea. The frequency of taeniasis is 0.3% to 12.7% discovered by stool examination and 4.5% to 38.0% discovered by questionaire survey. Taeniasis occurs more frequently in males than in females and, especially, in both sexes in the age-group of 20 to 49. T. saginata is more common that T. solium. No case of human cysticercosis caused by T.saginata has been reported in Korea. To the contrary, human cysticercosis caused by T. solium has been reported frequently during the 1960's. The severity of human cysticercosis is a significant problem of public health in Korea. Old data on bovine cysticercosis in the 1920's and 1930's are not useful for present control measures. Systematic surveys on bovine and swine cysticercosis as well as taeniasis and human cysticercosis are needed in Korea. Cases of sparganosis have been reported frequently during the past 15 years. Most of the 34 cases of sparganosis reported involved the eating of raw snakes and frogs. Most of the cases occurred in older males. Sparganosis in snakes, frogs, chickens, and swine has been reported in Korea. Human infection of Hymenolepis nana ranged from 0.2% to 1.4% discovered by stool examination. A few cases of adult worm collections of Diphyllobothrium latum and Hymenolepis diminuta have been reported in Korea. Two cases of human hydatid disease have been reported in Korea. No study on the disease in domestic animals is available. No case of human infection with dog tapeworm has been reported, even though it is highly prevalent in the indigenous dogs in Korea. I recommend that further study on the zoonotic tapeworms be conducted epidemiologically in Korea to get basic data for the public health programming.

  17. Zoonotic Malaria – Global Overview and Research and Policy Needs

    PubMed Central

    Ramasamy, Ranjan

    2014-01-01

    The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria. PMID:25184118

  18. The impact of illegal waste sites on a transmission of zoonotic viruses.

    PubMed

    Duh, Darja; Hasic, Sandra; Buzan, Elena

    2017-07-20

    Illegal waste disposal impacts public health and causes aesthetic and environmental pollution. Waste disposed in places without permitted and controlled facilities can provide a ready source of nutrition and shelter for rodents and thus promote the spread of their ecto- and endoparasites. The presence of two distinct zoonotic viruses, lymphocytic choriomeningitis virus (LCMV) and tick-borne encephalitis virus (TBEV), was searched at illegal waste sites. The aim of this study was to determine the prevalence of infection with both viruses in rodents and to discuss the virus-rodent relations in such environments. Rodents sampled between October 2011 and April 2013 at 7 locations in the Istrian peninsula, were identified morphologically and genetically to minimize misidentification. Serological and molecular techniques were used to determine seroprevalence of infection in rodents and to detect viral RNAs. Serological testing was performed by immune fluorescence assay for detection of LCMV and TBEV specific antibodies. Real-time RT PCR was used for the detection of LCMV nucleoprotein gene and TBEV 3' non-coding region. Data were statistically analysed using SPSS statistic v2.0. Out of 82 rodent sera tested, the presence of LCMV antibodies was demonstrated in 24.93%. The highest prevalence of LCMV infection was found in commensal Mus musculus (47.37%), followed by 11.53%, 19.04% and 25% prevalence of infection in A. agrarius, A. flavicolis and A. sylvaticus, respectively. The highest prevalence of infection in rodents (53.33%) was found in locations with large waste sites and high anthropogenic influence. LCMV seroprevalence was significantly lower in rodents sampled from natural habitats. Viral nucleic acids were screened in 46 samples but yielded no amplicons of LCMV or TBEV. In addition, TBEV specific antibodies were not detected. Illegal waste sites have considerable impact on the area where they are located. Results have shown that the transmission of human

  19. Public farms: hygiene and zoonotic agents.

    PubMed

    Heuvelink, A E; Valkenburgh, S M; Tilburg, J J H C; Van Heerwaarden, C; Zwartkruis-Nahuis, J T M; De Boer, E

    2007-10-01

    In three successive years, we visited petting farms (n=132), care farms (n=91), and farmyard campsites (n=84), respectively, and completed a standard questionnaire with the objective of determining the hygienic status of these farms and describing hygiene measures implemented to reduce the risk of transmission of zoonotic agents from the animals to humans. For at least 85% of the farms, the overall impression of hygiene was recorded as good. However, more attention must be paid to: informing visitors on hygiene and handwashing, provision of handwashing facilities, and a footwear cleaning facility. Examination of samples of freshly voided faeces resulted in the detection of Shiga toxin-producing Escherichia coli O157 and/or Salmonella spp. and/or Campylobacter spp. at almost two-thirds (64.9%) of the petting farms, and around half of the care farms (56.0%) and farmyard campsites (45.2%). These data reinforce the need for control measures for both public and private farms to reduce human exposure to livestock faeces and thus the risk of transmission of zoonotic diseases. Public awareness of the risk associated with handling animals or faecal material should be increased.

  20. Zoonotic Leprosy in the Southeastern United States

    PubMed Central

    Sharma, Rahul; Singh, Pushpendra; Loughry, W.J.; Lockhart, J. Mitchell; Inman, W. Barry; Duthie, Malcolm S.; Pena, Maria T.; Marcos, Luis A.; Scollard, David M.; Cole, Stewart T.

    2015-01-01

    Nine-banded armadillos (Dasypus novemcinctus) are naturally infected with Mycobacterium leprae and have been implicated in zoonotic transmission of leprosy. Early studies found this disease mainly in Texas and Louisiana, but armadillos in the southeastern United States appeared to be free of infection. We screened 645 armadillos from 8 locations in the southeastern United States not known to harbor enzootic leprosy for M. leprae DNA and antibodies. We found M. leprae–infected armadillos at each location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using single-nucleotide polymorphism variable number tandem repeat genotyping/genome sequencing, we detected M. leprae genotype 3I-2-v1 among 35 armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In comparison, 52 human patients from the same region were infected with 31 M. leprae types. However, 42.3% (22/52) of patients were infected with 1 of the 2 M. leprae genotype strains associated with armadillos. The geographic range and complexity of zoonotic leprosy is expanding. PMID:26583204

  1. Identification of the Fungal Pathogen that Causes Strawberry Anthracnose in Bangladesh and Evaluation of In Vitro Fungicide Activity

    PubMed Central

    Akhter, Md. Shamim; Alam, Shahidul; Islam, Md. Shafiqul

    2009-01-01

    This study was conducted to identify the Colletotrichum species causing anthracnose disease of strawberry in Balgladesh and to evaluate in vitro activity of commercial fungicides it. Based on morphological and cultural characteristics, all 22 isolates were identified as Colletotrichum gloeosporioides. They developed white or glittery colonies with grey to dark grey reverse colony colors and they produced cylindrical conidia. The efficacy of five commercial fungicides, Bavistin DF, Dithane M-45, Sulcox 50 WP, Corzim 50 WP and Rovral 50 WP, were tested against the fungus. Bavistin inhibited radial growth completely and was followed in efficacy by Dithane M-45. In Bavistin DF treated media, the fungus did not produce conidia. The percent inhibition of radial growth of the fungus was increased with the increasing concentrations of fungicide. PMID:23983513

  2. Modeling risk of occupational zoonotic influenza infection in swine workers.

    PubMed

    Paccha, Blanca; Jones, Rachael M; Gibbs, Shawn; Kane, Michael J; Torremorell, Montserrat; Neira-Ramirez, Victor; Rabinowitz, Peter M

    2016-08-01

    Zoonotic transmission of influenza A virus (IAV) between swine and workers in swine production facilities may play a role in the emergence of novel influenza strains with pandemic potential. Guidelines to prevent transmission of influenza to swine workers have been developed but there is a need for evidence-based decision-making about protective measures such as respiratory protection. A mathematical model was applied to estimate the risk of occupational IAV exposure to swine workers by contact and airborne transmission, and to evaluate the use of respirators to reduce transmission.  The Markov model was used to simulate the transport and exposure of workers to IAV in a swine facility. A dose-response function was used to estimate the risk of infection. This approach is similar to methods previously used to estimate the risk of infection in human health care settings. This study uses concentration of virus in air from field measurements collected during outbreaks of influenza in commercial swine facilities, and analyzed by polymerase chain reaction.  It was found that spending 25 min working in a barn during an influenza outbreak in a swine herd could be sufficient to cause zoonotic infection in a worker. However, this risk estimate was sensitive to estimates of viral infectivity to humans. Wearing an excellent fitting N95 respirator reduced this risk, but with high aerosol levels the predicted risk of infection remained high under certain assumptions.  The results of this analysis indicate that under the conditions studied, swine workers are at risk of zoonotic influenza infection. The use of an N95 respirator could reduce such risk. These findings have implications for risk assessment and preventive programs targeting swine workers. The exact level of risk remains uncertain, since our model may have overestimated the viability or infectivity of IAV. Additionally, the potential for partial immunity in swine workers associated with repeated low

  3. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks

    SciTech Connect

    Brown, Mac; Moore, Leslie; McMahon, Benjamin

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less

  4. Constructing Rigorous and Broad Biosurveillance Networks for Detecting Emerging Zoonotic Outbreaks

    PubMed Central

    Brown, Mac; Moore, Leslie; McMahon, Benjamin; Powell, Dennis; LaBute, Montiago; Hyman, James M.; Rivas, Ariel; Jankowski, Mark; Berendzen, Joel; Loeppky, Jason; Manore, Carrie; Fair, Jeanne

    2015-01-01

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities of potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic. PMID:25946164

  5. Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks

    DOE PAGES

    Brown, Mac; Moore, Leslie; McMahon, Benjamin; ...

    2015-05-06

    Determining optimal surveillance networks for an emerging pathogen is difficult since it is not known beforehand what the characteristics of a pathogen will be or where it will emerge. The resources for surveillance of infectious diseases in animals and wildlife are often limited and mathematical modeling can play a supporting role in examining a wide range of scenarios of pathogen spread. We demonstrate how a hierarchy of mathematical and statistical tools can be used in surveillance planning help guide successful surveillance and mitigation policies for a wide range of zoonotic pathogens. The model forecasts can help clarify the complexities ofmore » potential scenarios, and optimize biosurveillance programs for rapidly detecting infectious diseases. Using the highly pathogenic zoonotic H5N1 avian influenza 2006-2007 epidemic in Nigeria as an example, we determined the risk for infection for localized areas in an outbreak and designed biosurveillance stations that are effective for different pathogen strains and a range of possible outbreak locations. We created a general multi-scale, multi-host stochastic SEIR epidemiological network model, with both short and long-range movement, to simulate the spread of an infectious disease through Nigerian human, poultry, backyard duck, and wild bird populations. We chose parameter ranges specific to avian influenza (but not to a particular strain) and used a Latin hypercube sample experimental design to investigate epidemic predictions in a thousand simulations. We ranked the risk of local regions by the number of times they became infected in the ensemble of simulations. These spatial statistics were then complied into a potential risk map of infection. Finally, we validated the results with a known outbreak, using spatial analysis of all the simulation runs to show the progression matched closely with the observed location of the farms infected in the 2006-2007 epidemic.« less

  6. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases

    PubMed Central

    Kilpatrick, A. Marm; Randolph, Sarah E.

    2013-01-01

    Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503

  7. MICROBIAL PROFILE AND ANTIBIOTIC SUSCEPTIBILITY PATTERNS OF PATHOGENS CAUSING VENTILATOR- ASSOCIATED PNEUMONIA AT INTENSIVE CARE UNIT, SESTRE MILOSRDNICE UNIVERSITY HOSPITAL CENTER, ZAGREB, CROATIA.

    PubMed

    Turković, Tihana Magdić; Grginić, Ana Gverić; Cucujić, Branka Đuras; Gašpar, Božena; Širanović, Mladen; Perić, Mladen

    2015-06-01

    Ventilator-associated pneumonia (VAP) is very common in many intensive care Units, but there are still many uncertainties about VAP, especially about the choice of initial empiric antibiotics. The incidence of specific pathogens with different susceptibility patterns causing VAP varies from hospital to hospital. This is the reason why empiric initial antibiotic treatment for VAP should be based not only on general guidelines (that recommend therapy according to the presence of risk factors for multidrug-resistant bacteria), but also on up-to-date information on local epidemiology. The aim of this study was to determine the microbial profile of pathogens causing VAP and their antibiotic susceptibility patterns. The study was conducted in the 15-bed surgical and neurosurgical Intensive Care Unit, Department of Anesthesiology and Intensive Care, Sestre milosrdnice University Hospital Center, Zagreb, Croatia. Retrospective data were collected from September 2009 to March 2013. All patients that developed VAP during the study period were eligible for the study. According to study results, the incidence of VAP was 29.4%. The most commonly isolated bacterium was Staphylococcus aureus (21.1%), followed by Pseudomonas aeruginosa (19.0%) and Acinetobacter species (13.6%). All Staphylococcus aureus isolates were susceptible to vancomycin and linezolid. Pseudomonas aeruginosa showed 100% susceptibility to cefepime and very high susceptibility to pip'eracillin-tazobactam (96%), ceftazidime (93%) and ciprofloxacin (89%). Ampicillin-sulbactam was highly effective for Acinetobacter species, showing resistance in only 8% of isolates. In conclusion, according to study data, appropriate empiric antibiotic therapy for patients with VAP without risk factors for multidrug-resistant bacteria is ceftriaxone and for patients with risk factors for multidrug-resistant bacteria ampicillin-sulbactam plus cefepime plus vancomycin or linezolid.

  8. The Protein Kinase Double-Stranded RNA-Dependent (PKR) Enhances Protection against Disease Cause by a Non-Viral Pathogen

    PubMed Central

    White, Christine L.; Patel, Krupen; Lamb, Bruce; Sen, Ganes C.; Subauste, Carlos S.

    2013-01-01

    PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR−/− mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway. PMID:23990781

  9. A survey for potentially zoonotic gastrointestinal parasites in domestic cavies in Cameroon (Central Africa).

    PubMed

    Meutchieye, Felix; Kouam, Marc K; Miegoué, Emile; Nguafack, Terence T; Tchoumboué, Joseph; Téguia, Alexis; Théodoropoulos, Georgios

    2017-06-26

    Farm animals are usually suspected to transmit infections to humans. Domestic cavies (Cavia porcellus) are hosts to a variety of pathogens, some of which are zoonotic. Several parasites including the protozoa Giardia spp. and Cryptosporidium spp. may be causative agents of gastrointestinal disorders in domestic cavies and humans. The aim of the study was to investigate the occurrence of potentially zoonotic protozoa as well as any potential zoonotic gastrointestinal parasite in domestic cavies raised under a semi extensive system in the rural areas of Cameroon. Giardia/Cryptosporidium antigens were detected in 12.90% of cavies. Helminthe eggs were found in 1.52% of animals. The prevalence of Paraspidodera uncinata, Heligmosomoides polygyrus (also known as Nematospiroides dubius) and Trichuris sp. was 1% (4/397), 0.3% (1/397), and 0.3% (1/397), respectively. Presence of Giardia/Cryptosporidium was unrelated to the occurrence of diarrhea, as none of the positive samples was from a diarrheic individual. Domestic cavies are hosts of Giardia/Cryptosporidium and appear as potential source of human giardiasis, cryptosporidiosis and infection with H. polygyrus in Cameroon. In keeping with the One Health Initiative, veterinarians and medical doctors should collaborate to address the problem of Giardia and Cryptosporidium infection in cavies and cavy breeders both in Cameroon and other countries with a similar cavy breeding system. Follow-up studies are required to further taxonomically characterize these cavy parasites and to determine their routes of transmission to humans.

  10. Protective practices against zoonotic infections among rural and slum communities from South Central Chile.

    PubMed

    Mason, Meghan R; Gonzalez, Marcelo; Hodges, James S; Muñoz-Zanzi, Claudia

    2015-07-28

    Despite well-recognized recommendations to reduce human exposure to zoonotic pathogens, the use of personal and herd-level protective practices is inconsistent in communities where human interactions with animals are common. This study assessed household-level participation in rodent- (extermination, proper food storage, trash disposal), occupational- (preventive veterinary care, boot-wearing, glove-wearing), and garden-associated (restricting animal access, boot-wearing, glove-wearing) protective practices in farms, villages, and slums in the Los Rios region, Chile, where zoonotic pathogens are endemic. Questionnaires administered at 422 households across 12 communities recorded household-level socio-demographic characteristics and participation in nine protective practices. Household inclusion in the analysis of occupational practices required having livestock and a household member with occupational exposure to livestock (n = 127), and inclusion in analysis of garden practices required having a garden and at least one animal (n = 233). The proportion of households participating in each protective practice was compared across community types through chi-square analyses. Mixed effects logistic regression assessed household-level associations between socio-demographic characteristics and participation in each protective practice. Most households (95.3 %) reported participation in rodent control, and a positive association between the number of rodent signs in a household and rodent extermination was observed (OR: 1.75, 95 % CI: 1.41, 2.16). Occupational protective practices were reported in 61.8 % of eligible households; household size (OR: 1.63, 95 % CI: 1.17, 5.84) and having children (OR: 0.22, 95 % CI: 0.06, 0.78) were associated with preventive veterinary care. Among eligible households, 73.8 % engaged in protective practices when gardening, and species diversity was positively associated with wearing boots (OR: 1.27, 95 % CI: 1.03, 1.56). Household

  11. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador.

    PubMed

    Vasco, Karla; Graham, Jay P; Trueba, Gabriel

    2016-07-15

    Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes of C. jejuni and a

  12. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador

    PubMed Central

    Vasco, Karla; Graham, Jay P.

    2016-01-01

    ABSTRACT Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes

  13. Impacts of an introduced forest pathogen on the risk of Lyme disease in California.

    PubMed

    Swei, Andrea; Briggs, Cheryl J; Lane, Robert S; Ostfeld, Richard S

    2012-08-01

    Global changes such as deforestation, climate change, and invasive species have the potential to greatly alter zoonotic disease systems through impacts on biodiversity. This study examined the impact of the invasive pathogen that causes sudden oak death (SOD) on the ecology of Lyme disease in California. The Lyme disease bacterium, Borrelia burgdorferi, is maintained in the far western United States by a suite of animal reservoirs including the dusky-footed woodrat (Neotoma fuscipes) and deer mouse (Peromyscus maniculatus), and is transmitted by the western black-legged tick (Ixodes pacificus). Other vertebrates, such as the western fence lizard (Sceloporus occidentalis), are important tick hosts but are not reservoirs of the pathogen. Previous work found that higher levels of SOD are correlated with greater abundance of P. maniculatus and S. occidentalis and lower N. fuscipes abundance. Here we model the contribution of these tick hosts to Lyme disease risk and also evaluate the potential impact of SOD on infection prevalence of the tick vector. By empirically parameterizing a static model with field and laboratory data on tick hosts, we predict that SOD reduces an important index of disease risk, nymphal infection prevalence, leading to a reduction in Lyme disease risk in certain coastal woodlands. Direct observational analysis of the impact of SOD on nymphal infection prevalence supports these model results. This study underscores the important direct and indirect impacts of invasive plant pathogens on biodiversity, the transmission cycles of zoonotic diseases, and ultimately human health.

  14. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    PubMed Central

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  15. Zoonotic parasites in fecal samples and fur from dogs and cats in The Netherlands.

    PubMed

    Overgaauw, Paul A M; van Zutphen, Linda; Hoek, Denise; Yaya, Felix O; Roelfsema, Jeroen; Pinelli, Elena; van Knapen, Frans; Kortbeek, Laetitia M

    2009-07-07

    Pets may carry zoonotic pathogens for which owners are at risk. The aim of the study is to investigate whether healthy pets harbour zoonotic parasitic infections and to make an inventory of the interactions between pet-owners and their companion animals in The Netherlands. Fecal and hair samples were collected from healthy household dogs and cats in Dutch veterinary practices. Owners were interviewed about interaction with their pets. The samples were investigated by microscopy, ELISA, and PCR. From 159 households, 152 dogs (D) and 60 cats (C), information and samples were collected and examination for several zoonotic parasites was performed. Toxocara eggs were found in 4.4% (D) and 4.6% (C) of the fecal samples and in 12.2% (D) and 3.4% (C) of the fur samples. The median epg in the fur was 17 (D) and 28 (C) and none of these eggs were viable. From 15.2% of the dog and 13.6% of the cat feces Giardia was isolated. One canine and one feline Giardia isolate was a zoonotic assemblage A (12%). Cryptosporidium sp. were present in 8.7% (D) and 4.6% (C) of the feces. Fifty percent of the owners allow the pet to lick their faces. Sixty percent of the pets visit the bedroom; 45-60% (D-C) are allowed on the bed, and 18-30% (D-C) sleep with the owner in bed. Six percent of the pets always sleep in the bedroom. Of the cats, 45% are allowed to jump onto the kitchen sink. Nearly 39% of the dog owners never clean up the feces of their dog. Fifteen percent of the dog owners and 8% of the cat owners always wash their hands after contact with the animals. Close physical contact between owners and their pets is common and poses an increased risk of transmission of zoonotic pathogens. Education of owners by the vet, specifically about hygiene and potential risks, is required.

  16. Sarcoptic mange: a zoonotic ectoparasitic skin disease.

    PubMed

    Bandi, Kiran Madhusudhan; Saikumar, Chitralekha

    2013-01-01

    A 56-year old man attended the Dermatology Outpatients Department with the complaint of a localized, extremely itchy, erythematous papular lesion of acute onset on the ventral aspect of the right thigh. The patient was referred to the Microbiology Lab for the microscopic detection of the fungal elements. The KOH mount from the skin scrapings showed no fungal elements, but it showed the mites of Sarcopetes scabiei mange. The Sarcoptic Mange is noteworthy because of the fact that it is a zoonotic disease which can easily be passed on to humans. A close contact with infested pet dogs was considered as the main predisposing factor in this case. The response to the antiscabietic treatment was dramatic.

  17. Sarcoptic Mange: A Zoonotic Ectoparasitic Skin Disease

    PubMed Central

    Bandi, Kiran Madhusudhan; Saikumar, Chitralekha

    2013-01-01

    A 56-year old man attended the Dermatology Outpatients Department with the complaint of a localized, extremely itchy, erythematous papular lesion of acute onset on the ventral aspect of the right thigh. The patient was referred to the Microbiology Lab for the microscopic detection of the fungal elements. The KOH mount from the skin scrapings showed no fungal elements, but it showed the mites of Sarcopetes scabiei mange. The Sarcoptic Mange is noteworthy because of the fact that it is a zoonotic disease which can easily be passed on to humans. A close contact with infested pet dogs was considered as the main predisposing factor in this case. The response to the antiscabietic treatment was dramatic. PMID:23450734

  18. Zoonotic helminths of urban brown rats (Rattus norvegicus) in the UK: neglected public health considerations?

    PubMed

    McGarry, J W; Higgins, A; White, N G; Pounder, K C; Hetzel, U

    2015-02-01

    Urban brown rats (Rattus norvegicus) carry microbial human pathogens but their role as reservoir hosts for helminths of public health importance is less well known. In this study, 42 brown rats trapped on Merseyside were subject to thorough combined helminthological and pathohistological post-mortem examination. Eggs of the rodent-borne zoonotic nematode Calodium hepaticum were initially detected in histological sections of the livers of 9.5% of rats, but overall diagnostic sensitivity increased to 16.6% when entire liver tissue was disrupted and the resulting filtrates were examined for released eggs. In their rat host, mainly trapped inside the dockland, infections with C. hepaticum were associated with a chronic multifocal pyogranulomatous hepatitis with intralesional eggs and peripheral fibrosis. Mean intensity of hepatic C. hepaticum egg infections was 1041 eggs. This is the first report of C. hepaticum in an urban brown rat population in the UK and provides original data for liver egg burdens in this abundant commensal rodent. The zoonotic cestode Rodentolepis nana had a prevalence of infection of 14.3%. Rodent-specific, non-zoonotic helminths found were the spiruroid Mastophorus muris (16.0%) in the stomach, the trichuroid Trichosomoides crassicauda in the urinary bladder (31.0%); the ascarid Heterakis spumosa was the commonest helminth of the large intestine (76.2%). Many millions of brown rats inhabit cities and rural areas of the UK, and the infective stages of the zoonotic worm species, particularly C. hepaticum, are likely to be widely distributed in the environment presenting a threat to public health. © 2014 Blackwell Verlag GmbH.

  19. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams

    USDA-ARS?s Scientific Manuscript database

    Manure application is a major source of pathogens to the environment. Through overland runoff and tile drainage, these pathogens contaminate surface water and stream bed sediment. Some of these pathogens are zoonotic that can potentially affect both animal and human health. This study examined the p...

  20. Whole-genome sequencing reveals a coding non-pathogenic variant tagging a non-coding pathogenic hexanucleotide repeat expansion in C9orf72 as cause of amyotrophic lateral sclerosis.

    PubMed

    Herdewyn, Sarah; Zhao, Hui; Moisse, Matthieu; Race, Valérie; Matthijs, Gert; Reumers, Joke; Kusters, Benno; Schelhaas, Helenius J; van den Berg, Leonard H; Goris, An; Robberecht, Wim; Lambrechts, Diether; Van Damme, Philip

    2012-06-01

    Motor neuron degeneration in amyotrophic lateral sclerosis (ALS) has a familial cause in 10% of patients. Despite significant advances in the genetics of the disease, many families remain unexplained. We performed whole-genome sequencing in five family members from a pedigree with autosomal-dominant classical ALS. A family-based elimination approach was used to identify novel coding variants segregating with the disease. This list of variants was effectively shortened by genotyping these variants in 2 additional unaffected family members and 1500 unrelated population-specific controls. A novel rare coding variant in SPAG8 on chromosome 9p13.3 segregated with the disease and was not observed in controls. Mutations in SPAG8 were not encountered in 34 other unexplained ALS pedigrees, including 1 with linkage to chromosome 9p13.2-23.3. The shared haplotype containing the SPAG8 variant in this small pedigree was 22.7 Mb and overlapped with the core 9p21 linkage locus for ALS and frontotemporal dementia. Based on differences in coverage depth of known variable tandem repeat regions between affected and non-affected family members, the shared haplotype was found to contain an expanded hexanucleotide (GGGGCC)(n) repeat in C9orf72 in the affected members. Our results demonstrate that rare coding variants identified by whole-genome sequencing can tag a shared haplotype containing a non-coding pathogenic mutation and that changes in coverage depth can be used to reveal tandem repeat expansions. It also confirms (GGGGCC)n repeat expansions in C9orf72 as a cause of familial ALS.

  1. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012-2013.

    PubMed

    Grytdal, Scott P; DeBess, Emilio; Lee, Lore E; Blythe, David; Ryan, Patricia; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D; Hall, Aron J

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0-98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children <5 years of age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per 1

  2. Incidence of Norovirus and Other Viral Pathogens That Cause Acute Gastroenteritis (AGE) among Kaiser Permanente Member Populations in the United States, 2012–2013

    PubMed Central

    Grytdal, Scott P.; Biggs, Christianne; Cameron, Miriam; Schmidt, Mark; Parashar, Umesh D.; Hall, Aron J.

    2016-01-01

    Noroviruses and other viral pathogens are increasingly recognized as frequent causes of acute gastroenteritis (AGE). However, few laboratory-based data are available on the incidence of AGE caused by viral pathogens in the U.S. This study examined stool specimens submitted for routine clinical diagnostics from patients enrolled in Kaiser Permanente (KP) health plans in metro Portland, OR, and the Maryland, District of Columbia, and northern Virginia geographic areas to estimate the incidence of viral enteropathogens in these populations. Over a one-year study period, participating laboratories randomly selected stools submitted for routine clinical diagnostics for inclusion in the study along with accompanying demographic and clinical data. Selected stools were tested for norovirus, rotavirus, sapovirus, and astrovirus using standardized real-time RT-PCR protocols. Each KP site provided administrative data which were used in conjunction with previously published data on healthcare utilization to extrapolate pathogen detection rates into population-based incidence rates. A total of 1,099 specimens collected during August 2012 to September 2013 were included. Mean age of patients providing stool specimens was 46 years (range: 0–98 years). Noroviruses were the most common viral pathogen identified among patients with AGE (n = 63 specimens, 6% of specimens tested). In addition, 22 (2%) of specimens were positive for rotavirus; 19 (2%) were positive for sapovirus; and 7 (1%) were positive for astrovirus. Incidence of norovirus-associated outpatient visits was 5.6 per 1,000 person-years; incidence of norovirus disease in the community was estimated to be 69.5 per 1,000 person-years. Norovirus incidence was highest among children <5 years of age (outpatient incidence = 25.6 per 1,000 person-years; community incidence = 152.2 per 1,000 person-years), followed by older adults aged >65 years (outpatient incidence = 7.8 per 1,000 person-years; community incidence = 75.8 per

  3. Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans.

    PubMed

    St Michael, Frank; Yang, Qingling; Cairns, Chantelle; Vinogradov, Evgeny; Fleming, Perry; Hayes, Alexander C; Aubry, Annie; Cox, Andrew D

    2018-02-01

    Dental caries remains a major health issue and the Gram-positive bacterium Streptococcus mutans is considered as the major pathogen causing caries. More recently, S. mutans has been recognised as a cause of endocarditis, ulcerative colitis and fatty acid liver disease along with the likelihood of increased cerebral hemorrhage following a stroke if S. mutans is present systemically. We initiated this study to examine the vaccine candidacy of the serotype specific polysaccharides elaborated by S. mutans. We have confirmed the carbohydrate structures for the serotype specific rhamnan containing polysaccharides from serotypes c, f and k. We have prepared glycoconjugate vaccines using the rhamnan containing polymers from serotypes f and k and immunised mice and rabbits. We consistently obtained a robust immune response to the glycoconjugates with cross-reactivity consistent with the structural similarities of the polymers from the different serotypes. We developed an opsonophagocytic assay which illustrated the ability of the post-immune sera to facilitate opsonophagocytic killing of the homologous and heterologous serotypes at titers consistent with the structural homologies. We conclude that glycoconjugates of the rhamnan polymers of S. mutans are a potential vaccine candidate to target dental caries and other sequelae following the escape of S. mutans from the oral cavity.

  4. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain

    PubMed Central

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health. PMID:26600205

  5. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    PubMed

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  6. Resistance profile for pathogens causing urinary tract infection in a pediatric population, and antibiotic treatment response at a university hospital, 2010-2011.

    PubMed

    Vélez Echeverri, Catalina; Serna-Higuita, Lina María; Serrano, Ana Katherina; Ochoa-García, Carolina; Rojas Rosas, Luisa; María Bedoya, Ana; Suárez, Margarita; Hincapié, Catalina; Henao, Adriana; Ortiz, Diana; Vanegas, Juan José; Zuleta, John Jairo; Espinal, David

    2014-01-01

    Urinary tract infection (UTI) is one of the most common bacterial infections in childhood and causes acute and chronic morbidity and long-term hypertension and chronic kidney disease. To describe the demographic characteristics, infectious agents, patterns of antibiotic resistance, etiologic agent and profile of susceptibility and response to empirical treatment of UTI in a pediatric population. This is a descriptive, retrospective study. Included in the study were 144 patients, 1:2.06 male to female ratio. The most common symptom was fever (79.9%) and 31.3% had a history of previous UTI. 72.0% of the patients had positive urine leukocyte count (>5 per field), urine gram was positive in 85.0% of samples and gram negative bacilli accounted for 77.8% for the total pathogens isolated. The most frequent uropathogens isolated were Escherichia coli and Klebsiella pneumoniae. Our E.coli isolates had a susceptibility rate higher than 90% to most of the antibiotics used, but a resistance rate of 42.6% to TMP SMX and 45.5% to ampicillin sulbactam. 6.3% of E. coli was extended-spectrum beta-lactamases producer strains. The most frequent empirical antibiotic used was amikacin, which was used in 66.0% of the patients. 17 of 90 patients who underwent voiding cistouretrography (VCUG) had vesicoureteral reflux. This study revealed that E. coli was the most frequent pathogen of community acquired UTI. We found that E. coli and other uropathogens had a high resistance rate against TMP SMX and ampicillin sulbactam. In order to ensure a successful empirical treatment, protocols should be based on local epidemiology and susceptibility rates.

  7. Resistance profile for pathogens causing urinary tract infection in a pediatric population, and antibiotic treatment response at a University Hospital, 2010-2011

    PubMed Central

    Vélez Echeverri, Catalina; Serrano, Ana Katherina; Ochoa-García, Carolina; Rojas Rosas, Luisa; María Bedoya, Ana; Suárez, Margarita; Hincapié, Catalina; Henao, Adriana; Ortiz, Diana; Vanegas, Juan José; Zuleta, John Jairo; Espinal, David

    2014-01-01

    Introduction: Urinary tract infection (UTI) is one of the most common bacterial infections in childhood and causes acute and chronic morbidity and long-term hypertension and chronic kidney disease. Objectives: To describe the demographic characteristics, infectious agents, patterns of antibiotic resistance, etiologic agent and profile of susceptibility and response to empirical treatment of UTI in a pediatric population. Methods: This is a descriptive, retrospective study. Results: Included in the study were 144 patients, 1:2.06 male to female ratio. The most common symptom was fever (79.9%) and 31.3% had a history of previous UTI. 72.0% of the patients had positive urine leukocyte count (>5 per field), urine gram was positive in 85.0% of samples and gram negative bacilli accounted for 77.8% for the total pathogens isolated. The most frequent uropathogens isolated were Escherichia coli and Klebsiella pneumoniae. Our E.coli isolates had a susceptibility rate higher than 90% to most of the antibiotics used, but a resistance rate of 42.6% to TMP SMX and 45.5% to ampicillin sulbactam. 6.3% of E. coli was extended-spectrum beta-lactamases producer strains. The most frequent empirical antibiotic used was amikacin, which was used in 66.0% of the patients. 17 of 90 patients who underwent voiding cistouretrography (VCUG) had vesicoureteral reflux. Conclusion: This study revealed that E. coli was the most frequent pathogen of community acquired UTI. We found that E. coli and other uropathogens had a high resistance rate against TMP SMX and ampicillin sulbactam. In order to ensure a successful empirical treatment, protocols should be based on local epidemiology and susceptibility rates. PMID:24970958

  8. Evaluation of the Accelerate Pheno System for Fast Identification and Antimicrobial Susceptibility Testing from Positive Blood Cultures in Bloodstream Infections Caused by Gram-Negative Pathogens.

    PubMed

    Marschal, Matthias; Bachmaier, Johanna; Autenrieth, Ingo; Oberhettinger, Philipp; Willmann, Matthias; Peter, Silke

    2017-07-01

    Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI. Copyright © 2017 American Society for Microbiology.

  9. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  10. Human Mycobacterium bovis infection in the United Kingdom: Incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis.

    PubMed

    de la Rua-Domenech, Ricardo

    2006-03-01

    Amongst the members of the Mycobacterium tuberculosis complex (MTBC), M. tuberculosis is mainly a human pathogen, whereas M. bovis has a broad host range and is the principal agent responsible for tuberculosis (TB) in domestic and wild mammals. M. bovis also infects humans, causing zoonotic TB through ingestion, inhalation and, less frequently, by contact with mucous membranes and broken skin. Zoonotic TB is indistinguishable clinically or pathologically from TB caused by M. tuberculosis. Differentiation between the causative organisms may only be achieved by sophisticated laboratory methods involving bacteriological culture of clinical specimens, followed by typing of isolates according to growth characteristics, biochemical properties, routine resistance to pyrazinamide (PZA) and specific non-commercial nucleic acid techniques. All this makes it difficult to accurately estimate the proportion of human TB cases caused by M. bovis infection, particularly in developing countries. Distinguishing between the various members of the MTBC is essential for epidemiological investigation of human cases and, to a lesser degree, for adequate chemotherapy of the human TB patient. Zoonotic TB was formerly an endemic disease in the UK population, usually transmitted to man by consumption of raw cows' milk. Human infection with M. bovis in the UK has been largely controlled through pasteurization of cows' milk and systematic culling of cattle reacting to compulsory tuberculin tests. Nowadays the majority of the 7000 cases of human TB annually reported in the UK are due to M. tuberculosis acquired directly from an infectious person. In the period 1990-2003, between 17 and 50 new cases of human M. bovis infection were confirmed every year in the UK. This represented between 0.5% and 1.5% of all the culture-confirmed TB cases, a proportion similar to that of other industrialized countries. Most cases of zoonotic TB diagnosed in the UK are attributed to (i) reactivation of long

  11. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    PubMed

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  12. Buffalo, Bush Meat, and the Zoonotic Threat of Brucellosis in Botswana

    PubMed Central

    Alexander, Kathleen Anne; Blackburn, Jason Kenna; Vandewalle, Mark Eric; Pesapane, Risa; Baipoledi, Eddie Kekgonne; Elzer, Phil H.

    2012-01-01

    Background Brucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana. Methods Archived wildlife samples from Botswana (1995–2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974–2006). Findings Only buffalo (6%, 95% CI 3.04%–8.96%) and giraffe (11%, 95% CI 0–38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector. Conclusions Low seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife

  13. From Barnyard to Food Table: the Omnipresence of Hepatitis E virus and Risk for Zoonotic Infection and Food Safety

    PubMed Central

    Meng, Xiang-Jin

    2011-01-01

    Hepatitis E virus (HEV) is an important but extremely understudied pathogen. The mechanisms of HEV replication and pathogenesis are poorly understood, and a vaccine against HEV is not yet available. HEV is classified in the family Hepeviridae consisting of at least four recognized major genotypes. Genotypes 1 and 2 HEV are restricted to humans and associated with epidemics in developing countries, whereas genotypes 3 and 4 HEV are zoonotic and responsible for sporadic cases worldwide. The identification and characterization of a number of animal strains of HEV from pigs, chickens, rabbits, rats, mongoose, deer, and possibly cattle and sheep have significantly broadened the host range and diversity of HEV. The demonstrated ability of cross-species infection by some animal strains of HEV raises public health concerns for zoonotic HEV infection. Pigs are a recognized reservoir for HEV, and pig handlers are at increased risk of zoonotic HEV infection. Sporadic cases of hepatitis E have been definitively linked to the consumption of raw or undercooked animal meats such as pig livers, sausages, and deer meats. In addition, since large amounts of viruses excreted in feces, animal manure land application and runoffs can contaminate irrigation and drinking water with concomitant contamination of produce or shellfish. HEV RNA of swine origin has been detected in swine manure, sewage water and oysters, and consumption of contaminated shellfish has also been implicated in sporadic cases of hepatitis E. Therefore, the animal strains of HEV pose not only a zoonotic risk but also food and environmental safety concerns. PMID:21316404

  14. Bat Predation by Cercopithecus Monkeys: Implications for Zoonotic Disease Transmission.

    PubMed

    Tapanes, Elizabeth; Detwiler, Kate M; Cords, Marina

    2016-06-01

    The relationship between bats and primates, which may contribute to zoonotic disease transmission, is poorly documented. We provide the first behavioral accounts of predation on bats by Cercopithecus monkeys, both of which are known to harbor zoonotic disease. We witnessed 13 bat predation events over 6.5 years in two forests in Kenya and Tanzania. Monkeys sometimes had prolonged contact with the bat carcass, consuming it entirely. All predation events occurred in forest-edge or plantation habitat. Predator-prey relations between bats and primates are little considered by disease ecologists, but may contribute to transmission of zoonotic disease, including Ebolavirus.

  15. Estimating Burdens of Neglected Tropical Zoonotic Diseases on Islands with Introduced Mammals.

    PubMed

    de Wit, Luz A; Croll, Donald A; Tershy, Bernie; Newton, Kelly M; Spatz, Dena R; Holmes, Nick D; Kilpatrick, A Marm

    2017-03-01

    AbstractMany neglected tropical zoonotic pathogens are maintained by introduced mammals, and on islands the most common introduced species are rodents, cats, and dogs. Management of introduced mammals, including control or eradication of feral populations, which is frequently done for ecological restoration, could also reduce or eliminate the pathogens these animals carry. Understanding the burden of these zoonotic diseases is crucial for quantifying the potential public health benefits of introduced mammal management. However, epidemiological data are only available from a small subset of islands where these introduced mammals co-occur with people. We examined socioeconomic and climatic variables as predictors for disease burdens of angiostrongyliasis, leptospirosis, toxoplasmosis, toxocariasis, and rabies from 57 islands or island countries. We found strong correlates of disease burden for leptospirosis, Toxoplasma gondii infection, angiostrongyliasis, and toxocariasis with more than 50% of the variance explained, and an average of 57% (range = 32-95%) predictive accuracy on out-of-sample data. We used these relationships to provide estimates of leptospirosis incidence and T. gondii seroprevalence infection on islands where nonnative rodents and cats are present. These predicted estimates of disease burden could be used in an initial assessment of whether the costs of managing introduced mammal reservoirs might be less than the costs of perpetual treatment of these diseases on islands.

  16. Zoonotic bacteria and parasites found in raw meat-based diets for cats and dogs.

    PubMed

    van Bree, Freek P J; Bokken, Gertie C A M; Mineur, Robin; Franssen, Frits; Opsteegh, Marieke; van der Giessen, Joke W B; Lipman, Len J A; Overgaauw, Paul A M

    2018-01-13

    Feeding raw meat-based diets (RMBDs) to companion animals has become increasingly popular. Since these diets may be contaminated with bacteria and parasites, they may pose a risk to both animal and human health. The purpose of this study was to test for the presence of zoonotic bacterial and parasitic pathogens in Dutch commercial RMBDs. We analysed 35 commercial frozen RMBDs from eight different brands. Escherichia coli serotype O157:H7 was isolated from eight products (23 per cent) and extended-spectrum beta-lactamases-producing E coli was found in 28 products (80 per cent). Listeria monocytogenes was present in 19 products (54 per cent), other Listeria species in 15 products (43 per cent) and Salmonella species in seven products (20 per cent). Concerning parasites, four products (11 per cent) contained Sarcocystis cruzi and another four (11 per cent) S tenella In two products (6 per cent) Toxoplasma gondii was found. The results of this study demonstrate the presence of potential zoonotic pathogens in frozen RMBDs that may be a possible source of bacterial infections in pet animals and if transmitted pose a risk for human beings. If non-frozen meat is fed, parasitic infections are also possible. Pet owners should therefore be informed about the risks associated with feeding their animals RMBDs. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Public preferences for vaccination programmes during pandemics caused by pathogens transmitted through respiratory droplets - a discrete choice experiment in four European countries, 2013.

    PubMed

    Determann, Domino; Korfage, Ida J; Fagerlin, Angela; Steyerberg, Ewout W; Bliemer, Michiel C; Voeten, Helene A; Richardus, Jan Hendrik; Lambooij, Mattijs S; de Bekker-Grob, Esther W

    2016-06-02

    This study aims to quantify and compare preferences of citizens from different European countries for vaccination programme characteristics during pandemics, caused by pathogens which are transmitted through respiratory droplets. Internet panel members, nationally representative based on age, sex, educational level and region, of four European Union Member States (Netherlands, Poland, Spain, and Sweden, n = 2,068) completed an online discrete choice experiment. These countries, from different geographical areas of Europe, were chosen because of the availability of high-quality Internet panels and because of the cooperation between members of the project entitled Effective Communication in Outbreak Management: development of an evidence-based tool for Europe (ECOM). Data were analysed using panel latent class regression models. In the case of a severe pandemic scenario, vaccine effectiveness was the most important characteristic determining vaccination preference in all countries, followed by the body that advises on vaccination. In Sweden, the advice of family and/or friends and the advice of physicians strongly affected vaccine preferences, in contrast to Poland and Spain, where the advice of (international) health authorities was more decisive. Irrespective of pandemic scenario or vaccination programme characteristics, the predicted vaccination uptakes were lowest in Sweden, and highest in Poland. To increase vaccination uptake during future pandemics, the responsible authorities should align with other important stakeholders in the country and communicate in a coordinated manner.

  18. Agro-ecological variations of sheath rot disease of rice caused by Sarocladium oryzae and DNA fingerprinting of the pathogen's population structure.

    PubMed

    Tajul Islam Chowdhury, M; Salim Mian, M; Taher Mia, M A; Rafii, M Y; Latif, M A

    2015-12-28

    To examine the impact of regional and seasonal variations on the incidence and severity of sheath rot, a major seed-borne disease of rice caused by Sarocladium oryzae, data on incidence and severity were collected from 27 selected fields in the Gazipur, Rangpur, Bogra, Chittagong, Comilla, Gopalgonj, Jessore, Manikgonj, and Bhola districts of Bangladesh in rain-fed and irrigated conditions. Cultural variability of 29 pathogen isolates obtained from 8 different locations was studied on potato dextrose agar (PDA) and genetic variability was determined by DNA fingerprinting using variable number tandem repeat-polymerase chain reaction markers. Overall, disease incidence and severity were higher in irrigated rice. Disease incidence and severity were highest in the Bhola district in rain-fed rice and lowest in irrigated rice. Mycelial growth of 29 representative isolates was found to vary on PDA and the isolates were divided into 6 groups. The range of the overall size of conidia of the selected isolates was 2.40-7.20 x 1.20-2.40 μm. Analysis of the DNA fingerprint types of the 29 isolates of S. oryzae, obtained from the amplification reactions, revealed 10 fingerprinting types (FPTs) that were 80% similar. FPT-1 was the largest group and included 13 isolates (44.8%), while FPT-2 was the third largest group and included 3 isolates. Each of FPT-3, 4, 5, and 6 included only 1 isolate. We observed no relationship between cultural and genetic groupings.

  19. The zoonotic implications of pentastomiasis in the royal python (python regius).

    PubMed

    Ayinmode, Ab; Adedokun, Ao; Aina, A; Taiwo, V

    2010-09-01

    Pentastomes are worm-like endoparasites of the phylum Pentastomida found principally in the respiratory tract of reptiles, birds, and mammals. They cause a zoonotic disease known as pentastomiasis in humans and other mammals. The autopsy of a Nigerian royal python (Python regius) revealed two yellowish-white parasites in the lungs, tissue necrosis and inflammatory lesions. The parasite was confirmed to be Armillifer spp (Pentastomid); this is the first recorded case of pentastomiasis in the royal python (Python regius) in Nigeria. This report may be an alert of the possibility of on-going zoonotic transmission of pentastomiasis from snake to man, especially in the sub-urban/rural areas of Nigeria and other West African countries where people consume snake meat.

  20. Prioritization of zoonotic diseases of public health significance in Vietnam.

    PubMed

    Trang, Do Thuy; Siembieda, Jennifer; Huong, Nguyen Thi; Hung, Pham; Ky, Van Dang; Bandyopahyay, Santanu; Olowokure, Babatunde

    2015-12-30

    Prioritization of zoonotic diseases is critical as it facilitates optimization of resources, greater understanding of zoonotic diseases and implementation of policies promoting multisectoral collaboration. This study aimed to establish strategic priorities for zoonotic diseases in Vietnam taking a key stakeholder approach. Two weeks prior to a workshop on zoonotic diseases a questionnaire was developed and posted to key professionals involved in different areas of zoonotic disease management in Vietnam. Respondents were asked to assess the relative priority of 12 zoonotic diseases using a number of evidence-based criteria, and to provide suggestions to strengthen multisectoral collaboration. A response rate of 69% (51/74) was obtained, and 75% (38/51) respondents worked in non-international Vietnamese organizations. Respondents identified the top five diseases for prioritization in Vietnam as: avian influenza, rabies, Streptococcus suis infection, pandemic influenza and foodborne bacterial diseases. The three criteria most used to rank diseases were severity of disease, outbreak potential and public attention. Avian influenza was ranked as the number one priority zoonotic disease in Vietnam by 57% of the respondents, followed by rabies (18%). Respondents identified coordination mechanisms, information sharing and capacity building as the most important areas for strengthening to enhance multisectoral collaboration. This study is the first systematic and broad-based attempt to prioritize zoonotic diseases of public health significance in Vietnam using key stakeholders, and a comparative and transparent method. There is limited literature for policy makers and planners on this topic and the results of this study can be used to guide decision-making.

  1. Participation of women and children in hunting activities in Sierra Leone and implications for control of zoonotic infections

    PubMed Central

    Kandeh, Martin; Dawson, Michael; Ansumana, Rashid; Sahr, Foday; Kelly, Ann H.; Brown, Hannah

    2017-01-01

    The emergence of infectious diseases of zoonotic origin highlights the need to understand social practices at the animal-human interface. This study provides a qualitative account of interactions between humans and wild animals in predominantly Mende villages of southern Sierra Leone. We conducted fieldwork over 4 months including participant and direct observations, semi-structured interviews (n = 47), spontaneously occurring focus group discussions (n = 12), school essays and informal interviews to describe behaviours that may serve as pathways for zoonotic infection. In this region, hunting is the primary form of contact with wild animals. We describe how these interactions are shaped by socio-cultural contexts, including opportunities to access economic resources and by social obligations and constraints. Our research suggests that the potential for exposure to zoonotic pathogens is more widely distributed across different age, gender and social groups than previously appreciated. We highlight the role of children in hunting, an age group that has previously not been discussed in the context of hunting. The breadth of the "at risk" population forces reconsideration of how we conceptualize, trace and monitor pathogen exposure. PMID:28749933

  2. Ectoparasites and other epifaunistic arthropods of sympatric cotton mice and golden mice: comparisons and implications for vector-borne zoonotic diseases.

    PubMed

    Durden, Lance A; Polur, Ram N; Nims, Todd; Banks, Craig W; Oliver, James H

    2004-12-01

    Ectoparasite and epifaunistic arthropod biodiversity and infestation parameters were compared between 2 sympatric small rodent species, the cotton mouse (Peromyscus gossypinus (Le Conte)) and golden mouse (Ochrotomys nuttalli (Harlan)), in southern Georgia from 1992 to 2003. Because the cotton mouse is known to be a reservoir of more vector-borne zoonotic pathogens than the golden mouse, we hypothesized that it would be parasitized by more ectoparasites that are known to be vectors of these pathogens. Cotton mice (n = 202) were parasitized by 19 species of arthropods, whereas golden mice (n = 46) were parasitized by 12 species. Eleven species of arthropods were recovered from both host species, whereas 7 were recorded only from cotton mice, and 1 species only from golden mice. Infestation prevalences (percent of mice parasitized) were significantly higher for 1 species of arthropod (the tropical rat mite Ornithonyssus bacoti (Hirst)) infesting cotton mice and for 4 species (the flea Peromyscopsylla scotti Fox and the mites Glycyphagus hypudaei Koch, Androlaelaps casalis (Berlese), and Androlaelaps fahrenholzi (Berlese)) infesting golden mice. Mean intensities (mean per infested mouse) were significantly higher for 2 species (the flea Orchopeas leucopus (Baker) and the blacklegged tick Ixodes scapularis Say) infesting cotton mice and for 2 species (G. hypudaei and A. fahrenholzi) infesting golden mice. Ectoparasites that are known to be vectors of zoonotic pathogens were significantly more common on cotton mice than on golden mice. These ectoparasites included the rhopalopsyllid flea Polygenis gwyni (Fox), a vector of the agent of murine typhus; I. scapularis, the principal vector of the agents of Lyme borreliosis, human granulocytic ehrlichiosis, and human babesiosis; and O. bacoti, a laboratory vector of several zoonotic pathogens. However, 2 species of ixodid ticks that can transmit zoonotic pathogens were recovered from both host species. These were the American

  3. [Parasites of zoonotic importance in dog feces collected in parks and public squares of the city of Los Angeles, Bío-Bío, Chile].

    PubMed

    Luzio, Álvaro; Belmar, Pablo; Troncoso, Ignacio; Luzio, Patricia; Jara, Alexis; Fernández, Ítalo

    2015-08-01

    The contamination of public squares and parks with dog feces poses a risk to the population, since it may contain parasitic elements of zoonotic importance. To identify human pathogenic parasites in samples of dog feces collected from parks and public squares. 452 fecal dog samples collected from 65 squares and public parks were analyzed using the technique of Burrows. 60% (39/65) of the samples contained some parasitic forms with a zoonotic potential. Parasitic taxa with zoonotic risk were Toxocara sp., Ancylostoma sp., Dipylidium caninum, Giardia sp., Taenia sp., Toxascaris sp., Strongyloides sp., and Uncinaria sp. The detected parasites present a risk to human health, so it seems necessary to implement health education activities in the community, develop deworming plans, and control the canine overpopulation.

  4. Neuroinvasion of the Highly Pathogenic Influenza Virus H7N1 Is Caused by Disruption of the Blood Brain Barrier in an Avian Model

    PubMed Central

    Chaves, Aida J.; Vergara-Alert, Júlia; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2014-01-01

    Influenza A virus (IAV) causes central nervous system (CNS) lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI) virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i) detecting Evans blue (EB) extravasation into the brain, (ii) determining the leakage of the serum protein immunoglobulin Y (IgY) into the brain and (iii) assessing the stability of the tight-junction (TJ) proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi). The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR) at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi) with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma. PMID:25506836

  5. Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance

    PubMed Central

    Houlden, Ashley; Hayes, Kelly S.; Bancroft, Allison J.; Worthington, John J.; Wang, Ping; Grencis, Richard K.; Roberts, Ian S.

    2015-01-01

    Trichuris species are a globally important and prevalent group of intestinal helminth parasites, in which Trichuris muris (mouse whipworm) is an ideal model for this disease. This paper describes the first ever highly controlled and comprehensive investigation into the effects of T. muris infection on the faecal microbiota of mice and the effects on the microbiota following successful clearance of the infection. Communities were profiled using DGGE, 454 pyrosequencing, and metabolomics. Changes in microbial composition occurred between 14 and 28 days post infection, resulting in significant changes in α and β- diversity. This impact was dominated by a reduction in the diversity and abundance of Bacteroidetes, specifically Prevotella and Parabacteroides. Metabolomic analysis of stool samples of infected mice at day 41 showed significant differences to uninfected controls with a significant increase in the levels of a number of essential amino acids and a reduction in breakdown of dietary plant derived carbohydrates. The significant reduction in weight gain by infected mice probably reflects these metabolic changes and the incomplete digestion of dietary polysaccharides. Following clearance of infection the intestinal microbiota underwent additional changes gradually transitioning by day 91 towards a microbiota of an uninfected animal. These data indicate that the changes in microbiota as a consequence of infection were transitory requiring the presence of the pathogen for maintenance. Interestingly this was not observed for all of the key immune cell populations associated with chronic T. muris infection. This reflects the highly regulated chronic response and potential lasting immunological consequences of dysbiosis in the microbiota. Thus infection of T. muris causes a significant and substantial impact on intestinal microbiota and digestive function of mice with affects in long term immune regulation. PMID:25938477

  6. Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance.

    PubMed

    Houlden, Ashley; Hayes, Kelly S; Bancroft, Allison J; Worthington, John J; Wang, Ping; Grencis, Richard K; Roberts, Ian S

    2015-01-01

    Trichuris species are a globally important and prevalent group of intestinal helminth parasites, in which Trichuris muris (mouse whipworm) is an ideal model for this disease. This paper describes the first ever highly controlled and comprehensive investigation into the effects of T. muris infection on the faecal microbiota of mice and the effects on the microbiota following successful clearance of the infection. Communities were profiled using DGGE, 454 pyrosequencing, and metabolomics. Changes in microbial composition occurred between 14 and 28 days post infection, resulting in significant changes in α and β- diversity. This impact was dominated by a reduction in the diversity and abundance of Bacteroidetes, specifically Prevotella and Parabacteroides. Metabolomic analysis of stool samples of infected mice at day 41 showed significant differences to uninfected controls with a significant increase in the levels of a number of essential amino acids and a reduction in breakdown of dietary plant derived carbohydrates. The significant reduction in weight gain by infected mice probably reflects these metabolic changes and the incomplete digestion of dietary polysaccharides. Following clearance of infection the intestinal microbiota underwent additional changes gradually transitioning by day 91 towards a microbiota of an uninfected animal. These data indicate that the changes in microbiota as a consequence of infection were transitory requiring the presence of the pathogen for maintenance. Interestingly this was not observed for all of the key immune cell populations associated with chronic T. muris infection. This reflects the highly regulated chronic response and potential lasting immunological consequences of dysbiosis in the microbiota. Thus infection of T. muris causes a significant and substantial impact on intestinal microbiota and digestive function of mice with affects in long term immune regulation.

  7. Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases

    PubMed Central

    Robinson, Mark W.; Dalton, John P.

    2009-01-01

    Zoonotic infections are among the most common on earth and are responsible for >60 per cent of all human infectious diseases. Some of the most important and well-known human zoonoses are caused by worm or helminth parasites, including species of nematodes (trichinellosis), cestodes (cysticercosis, echinococcosis) and trematodes (schistosomiasis). However, along with social, epidemiological and environmental changes, together with improvements in our ability to diagnose helminth infections, several neglected parasite species are now fast-becoming recognized as important zoonotic diseases of humans, e.g. anasakiasis, several fish-borne trematodiasis and fasciolosis. In the present review, we discuss the current disease status of these primary helminth zoonotic infections with particular emphasis on their diagnosis and control. Advances in molecular biology, proteomics and the release of helminth genome-sequencing project data are revolutionizing parasitology research. The use of these powerful experimental approaches, and their potential benefits to helminth biology are also discussed in relation to the future control of helminth infections of animals and humans. PMID:19687044

  8. Wildlife as Source of Zoonotic Infections

    PubMed Central

    Kirkemo, Anne-Mette; Handeland, Kjell

    2004-01-01

    Zoonoses with a wildlife reservoir represent a major public health problem, affecting all continents. Hundreds of pathogens and many different transmission modes are involved, and many factors influence the epidemiology of the various zoonoses. The importance and recognition of wildlife as a reservoir of zoonoses are increasing. Cost-effective prevention and control of these zoonoses necessitate an interdisciplinary and holistic approach and international cooperation. Surveillance, laboratory capability, research, training and education, and communication are key elements. PMID:15663840

  9. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets.

    PubMed

    Greatorex, Zoe F; Olson, Sarah H; Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B; Hansel, Troy; Zimicki, Susan; O'Rourke, Kathleen; Joly, Damien O; Mazet, Jonna A K

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity.

  10. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets

    PubMed Central

    Singhalath, Sinpakone; Silithammavong, Soubanh; Khammavong, Kongsy; Fine, Amanda E.; Weisman, Wendy; Douangngeun, Bounlom; Theppangna, Watthana; Keatts, Lucy; Gilbert, Martin; Karesh, William B.; Hansel, Troy; Zimicki, Susan; O’Rourke, Kathleen; Joly, Damien O.; Mazet, Jonna A. K.

    2016-01-01

    Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity. PMID:27008628

  11. WATERBORNE PATHOGENS IN URBAN WATERSHEDS

    EPA Science Inventory

    Pathogens are microorganisms that can cause sickness or even death. A serious concern for managers of water resources, pathogens in the urban environment easily enter waters through a number of pathways, including discharge of inadequately treated sewage, stormwater runoff, combi...

  12. The zoonotic potential of Clostridium difficile from small companion animals and their owners.

    PubMed

    Rabold, Denise; Espelage, Werner; Abu Sin, Muna; Eckmanns, Tim; Schneeberg, Alexander; Neubauer, Heinrich; Möbius, Nadine; Hille, Katja; Wieler, Lothar H; Seyboldt, Christian; Lübke-Becker, Antina

    2018-01-01

    Clostridium difficile infections (CDI) in humans range from asymptomatic carriage to life-threatening intestinal disease. Findings on C. difficile in various animal species and an overlap in ribotypes (RTs) suggest potential zoonotic transmission. However, the impact of animals for human CDI remains unclear. In a large-scale survey we collected 1,447 fecal samples to determine the occurrence of C. difficile in small companion animals (dogs and cats) and their owners and to assess potential epidemiological links within the community. The Germany-wide survey was conducted from July 2012-August 2013. PCR ribotyping, Multilocus VNTR Analysis (MLVA) and PCR detection of toxin genes were used to characterize isolated C. difficile strains. A database was defined and logistic regression used to identify putative factors associated with fecal shedding of C. difficile. In total, 1,418 samples met the inclusion criteria. The isolation rates for small companion animals and their owners within the community were similarly low with 3.0% (25/840) and 2.9% (17/578), respectively. PCR ribotyping revealed eight and twelve different RTs in animals and humans, respectively, whereas three RTs were isolated in both, humans and animals. RT 014/0, a well-known human hospital-associated lineage, was predominantly detected in animal samples. Moreover, the potentially highly pathogenic RTs 027 and 078 were isolated from dogs. Even though, C. difficile did not occur simultaneously in animals and humans sharing the same household. The results of the epidemiological analysis of factors associated with fecal shedding of C. difficile support the hypothesis of a zoonotic potential. Molecular characterization and epidemiological analysis revealed that the zoonotic risk for C. difficile associated with dogs and cats within the community is low but cannot be excluded.

  13. Protocol for developing a Database of Zoonotic disease Research in India (DoZooRI).

    PubMed

    Chatterjee, Pranab; Bhaumik, Soumyadeep; Chauhan, Abhimanyu Singh; Kakkar, Manish

    2017-12-10

    Zoonotic and emerging infectious diseases (EIDs) represent a public health threat that has been acknowledged only recently although they have been on the rise for the past several decades. On an average, every year since the Second World War, one pathogen has emerged or re-emerged on a global scale. Low/middle-income countries such as India bear a significant burden of zoonotic and EIDs. We propose that the creation of a database of published, peer-reviewed research will open up avenues for evidence-based policymaking for targeted prevention and control of zoonoses. A large-scale systematic mapping of the published peer-reviewed research conducted in India will be undertaken. All published research will be included in the database, without any prejudice for quality screening, to broaden the scope of included studies. Structured search strategies will be developed for priority zoonotic diseases (leptospirosis, rabies, anthrax, brucellosis, cysticercosis, salmonellosis, bovine tuberculosis, Japanese encephalitis and rickettsial infections), and multiple databases will be searched for studies conducted in India. The database will be managed and hosted on a cloud-based platform called Rayyan. Individual studies will be tagged based on key preidentified parameters (disease, study design, study type, location, randomisation status and interventions, host involvement and others, as applicable). The database will incorporate already published studies, obviating the need for additional ethical clearances. The database will be made available online, and in collaboration with multisectoral teams, domains of enquiries will be identified and subsequent research questions will be raised. The database will be queried for these and resulting evidence will be analysed and published in peer-reviewed journals. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise

  14. Host-Nonspecific Iron Acquisition Systems and Virulence in the Zoonotic Serovar of Vibrio vulnificus

    PubMed Central

    Pajuelo, David; Lee, Chung-Te; Roig, Francisco J.; Lemos, Manuel L.; Hor, Lien-I

    2014-01-01

    The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment. PMID:24478087

  15. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania.

    PubMed

    Ionita, Mariana; Mitrea, Ioan Liviu; Pfister, Kurt; Hamel, Dietmar; Silaghi, Cornelia

    2013-09-01

    The aim of the present study was to provide a preliminary insight into the diversity of tick-borne pathogens circulating at the domestic host-tick interface in Romania. For this, feeding and questing ticks were analyzed by real-time polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum, Anaplasma platys, Ehrlichia canis, Borrelia burgdorferi sensu latu, and by PCR and subsequent sequencing for Rickettsia spp., Babesia spp. and Theileria spp. A total of 382 ticks, encompassing 5 species from 4 genera, were collected in April-July 2010 from different areas of Romania; of them, 40 were questing ticks and the remainder was collected from naturally infested cattle, sheep, goats, horses or dogs. Tick species analyzed included Ixodes ricinus, Dermacentor marginatus, Hyalomma marginatum, Rhipicephalus bursa, and Rhipicephalus sanguineus. Four rickettsiae of the spotted fever group of zoonotic concern were identified for the first time in Romania: Rickettsia monacensis and Rickettsia helvetica in I. ricinus, and Rickettsia slovaca and Rickettsia raoultii in D. marginatus. Other zoonotic pathogens such as A. phagocytophilum, Borrelia afzelii, and Babesia microti were found in I. ricinus. Pathogens of veterinary importance were also identified, including Theileria equi in H. marginatum, Babesia occultans in D. marginatus and H. marginatum, Theileria orientalis/sergenti/buffeli-group in I. ricinus and in H. marginatum and E. canis in R. sanguineus. These findings show a wide distribution of very diverse bacterial and protozoan pathogens at the domestic host-tick interface in Romania, with the potential of causing both animal and human diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Molecular Identification of Zoonotic Tissue-Invasive Tapeworm Larvae Other than Taenia solium in Suspected Human Cysticercosis Cases.

    PubMed

    Tappe, Dennis; Berkholz, Jörg; Mahlke, Uwe; Lobeck, Hartmut; Nagel, Thomas; Haeupler, Alexandra; Muntau, Birgit; Racz, Paul; Poppert, Sven

    2016-01-01

    Rarely, zoonotic Taenia species other than Taenia solium cause human cysticercosis. The larval stages are morphologically often indistinguishable. We therefore investigated 12 samples of suspected human cysticercosis cases at the molecular level and surprisingly identified one Taenia crassiceps and one Taenia serialis (coenurosis) infection, which were caused by tapeworm larvae normally infecting rodents and sheep via eggs released from foxes and dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Host and viral traits predict zoonotic spillover from mammals

    PubMed Central

    Olival, Kevin J.; Hosseini, Parviez R.; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L.; Daszak, Peter

    2017-01-01

    The majority of human emerging infectious diseases (EIDs) are zoonotic, with viruses originating in wild mammals of particular concern (e.g. HIV, Ebola, SARS)1–3. Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs4. However, few analytical tools exist to identify which host species likely harbor the next human virus, or which viruses can cross species boundaries5–7. Here we conduct the most comprehensive analysis yet of mammalian host-virus relationships and show that both the total number of viruses that infect a given species, and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy, and human population within a species range – which may reflect human-wildlife contact. We demonstrate for the first time that bats harbor a significantly higher proportion of zoonotic viruses than all other mammalian orders. We identify the taxa and geographic regions with the largest estimated number of ‘missing viruses’ and ‘missing zoonoses’ and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people. PMID:28636590

  19. Host and viral traits predict zoonotic spillover from mammals.

    PubMed

    Olival, Kevin J; Hosseini, Parviez R; Zambrana-Torrelio, Carlos; Ross, Noam; Bogich, Tiffany L; Daszak, Peter

    2017-06-29

    The majority of human emerging infectious diseases are zoonotic, with viruses that originate in wild mammals of particular concern (for example, HIV, Ebola and SARS). Understanding patterns of viral diversity in wildlife and determinants of successful cross-species transmission, or spillover, are therefore key goals for pandemic surveillance programs. However, few analytical tools exist to identify which host species are likely to harbour the next human virus, or which viruses can cross species boundaries. Here we conduct a comprehensive analysis of mammalian host-virus relationships and show that both the total number of viruses that infect a given species and the proportion likely to be zoonotic are predictable. After controlling for research effort, the proportion of zoonotic viruses per species is predicted by phylogenetic relatedness to humans, host taxonomy and human population within a species range-which may reflect human-wildlife contact. We demonstrate that bats harbour a significantly higher proportion of zoonotic viruses than all other mammalian orders. We also identify the taxa and geographic regions with the largest estimated number of 'missing viruses' and 'missing zoonoses' and therefore of highest value for future surveillance. We then show that phylogenetic host breadth and other viral traits are significant predictors of zoonotic potential, providing a novel framework to assess if a newly discovered mammalian virus could infect people.

  20. Occurrence of selected zoonotic food-borne parasites and first molecular identification of Alaria alata in wild boars (Sus scrofa) in Italy.

    PubMed

    Gazzonis, Alessia Libera; Villa, Luca; Riehn, Katharina; Hamedy, Ahmad; Minazzi, Stefano; Olivieri, Emanuela; Zanzani, Sergio Aurelio; Manfredi, Maria Teresa

    2018-05-11

    Wild boar is a source of human infections with zoonotic pathogens, including food-borne parasites. With the aim of a characterization of the human exposure risk, a survey on wild boars intended for human consumption was planned, selecting three pathogens, Toxoplasma gondii, Alaria alata, and Trichinella spp., as markers of meat infection. Diaphragm muscle samples from 100 wild boars hunted in Piedmont region (Northern Italy) in two hunting seasons (2015-2016) were collected. Concerning T. gondii, a combined approach of antibody detection and molecular techniques with genotyping was performed. For the detection of A. alata and Trichinella spp., the larva migration technique and the magnetic stirrer method were employed, respectively; in addition, molecular confirmation of the morphological identification of the recovered specimen was performed. Anti-T. gondii antibodies were found in meat juice samples (43.3%) and T. gondii DNA (type II) was detected in three animals (7.1%) out of 42 seropositive examined. In none of the sampled wild boars (0%), Trichinella spp. larvae were found, whereas one animal (1%) scored positive to A. alata mesocercariae. The molecular diagnosis proved the morphological identification of the trematode. This is the first finding of A. alata in Italian wild boar population. The present study confirmed the role of wild boars as a source of parasitic zoonotic diseases and thus the risk derived for humans posed by the consumption of game meat. Considering the zoonotic implications, the results underline the importance of monitoring and surveillance of zoonotic parasites in Italian wild boar populations.

  1. Molecular survey on zoonotic tick-borne bacteria and chlamydiae in feral pigeons (Columba livia domestica).

    PubMed

    Ebani, Valentina Virginia; Bertelloni, Fabrizio; Mani, Paolo

    2016-04-01

    To determine the presence of zoonotic tick-borne bacteria in feral pigeons (Columba livia domestica) from urban areas. Spleen samples from 84 feral pigeons, found dead with traumatic injuries in urban areas, were examined by PCR to detect DNA of Anaplasma phagocytophilum, Bartonella spp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Rickettsia spp., and Chlamydophila spp. Twenty (23.8%) pigeons were infected by tick-borne agents, in particular 2 (2.38%) animals resulted positive for Bartonella spp., 5 (5.95%) for C. burnetii, 5 (5.95%) for Rickettsia spp., 13 (15.47%) for B. burgdorferi sensu lato. All birds scored negative for A. phagocytophilum. Moreover, 17 (20.23%) pigeons were positive for Chlamydophila spp. and among them 10 (11.9%) for Chlamydophila psittaci. Mixed infections by two or three agents were detected in 8 (9.52%) animals. Feral pigeons living in urban and periurban areas are a hazard for the human health as source of several pathogens. The obtained results confirm pigeons as reservoirs of chlamydial agents and suggest that they may be involved in the epidemiology of zoonotic tick-borne infections too. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  2. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran

    PubMed Central

    VAFAE ESLAHI, Aida; KIA, Eshrat Beigom; MOBEDI, Iraj; SHARIFDINI, Meysam; BADRI, Milad; MOWLAVI, Gholamreza

    2017-01-01

    Background: Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Methods: Fifty road killed carnivores including 27 stray dogs (Canis familiaris), 11 golden jackals (Canis aureus) and 12 stray cats (Felis catus) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. Results: About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum, Toxocara cati, Toxocara canis, Toxascaris leonine, Ancylostoma caninum, Ancylostoma tubaeforme, Dirofilaria immitis, Dioctophyma renale, Dipylidum caninum, Echinococcus granulosus, Mesocestoides spp., Taenia hydatigena, Taenia hydatigera, Joyuxiella spp., Spirometra spp. are reported herein. Conclusion: The prevalent occurrence of zoonotic helminthes such as T. canis, T. cati, T. leonina, E. granulosus, D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province. PMID:28761483

  3. Road Killed Carnivores Illustrate the Status of Zoonotic Helminthes in Caspian Sea Littoral of Iran.

    PubMed

    Vafae Eslahi, Aida; Kia, Eshrat Beigom; Mobedi, Iraj; Sharifdini, Meysam; Badri, Milad; Mowlavi, Gholamreza

    2017-01-01

    Carnivore carcasses on the roads can be regarded as study materials in parasitology and eco-epidemiology. Stray carnivores such as dogs and cats are known to harbor so many different pathogens like zoonotic helminthes. The current investigation, apparent the status of the helminthic parasites found in road killed carnivores from different parts of Guilan Province north of Iran. Fifty road killed carnivores including 27 stray dogs ( Canis familiaris ), 11 golden jackals ( Canis aureus ) and 12 stray cats ( Felis catus ) were collected from 21 locations of Guilan Province, during Apr to Nov 2015. Internal organs of the carcasses, including digestive tract, heart, kidneys, lungs, liver, skin, eyes as well as muscles were carefully inspected and sampled for helminthological investigation. About 80% of the 50 carnivores, (stray dogs 77.77%, golden jackals 81.81%, and stray cats 91.66%) were found naturally infected with helminthic parasites. Dipylidum caninum , Toxocara cati , Toxocara canis , Toxascaris leonine , Ancylostoma caninum , Ancylostoma tubaeforme , Dirofilaria immitis , Dioctophyma renale , Dipylidum caninum , Echinococcus granulosus , Mesocestoides spp ., Taenia hydatigena, Taenia hydatigera , Joyuxiella spp. , Spirometra spp. are reported herein. The prevalent occurrence of zoonotic helminthes such as T. canis , T. cati , T. leonina , E. granulosus , D. immitis and D. renale in stray carnivores should be considered as a public health hazard, specifically within a vast tourism area like Guilan Province.

  4. [Clinical presentation of Ixodes tick-borne borreliosis caused by Borrelia miyamotoi in the context of an immune response to the pathogen].

    PubMed

    Platonov, A E; Toporkova, M G; Kolyasnikova, N M; Stukolova, O A; Dolgova, A S; Brodovikova, A V; Makhneva, N A; Karan, L S; Koetsveld, J; Shipulin, G A; Maleev, V V

    Ixodes tick-borne borreliosis caused by Borrelia miyamotoi (ITBB-BM) is a previously unknown infectious disease discovered in Russia. The present study continues the investigation of the clinical features of ITBB-BM in the context of an immune system-pathogen interaction. The study enrolled 117 patients with ITBB-BM and a comparison group of 71 patients with Lyme disease (LD) that is ITBB with erythema migrans. All the patients were treated at the New Hospital, Yekateringburg. More than 100 clinical, epidemiological and laboratory parameters were obtained from each patient's medical history and included in the general database. A subset of patients hospitalized in 2015 and 2016 underwent additional laboratory examinations. Namely, the levels of B. miyamotoi-specific IgM and IgG antibodies were measured by the protein microarray containing GlpQ protein and four variable major proteins (VMPs): Vlp15/16, Vlp18, Vsp1, and Vlp5. The blood concentration of Borrelia was estimated by quantitative real-time PCR. In contrast to LD, first of all (p<0.001) the following clinical features were typical for ITBB-BM: the absence of erythema migrans (in 95% of patients), fever (93%), fatigue (96%), headache (82%), chill (41%), nausea (28%), lymphopenia (56%), thrombocytopenia (46%), the abnormal levels of alanine aminotransferase (54%) and C-reactive protein (98%), proteinuria (61%). Given the set of these indicators, the course of ITBB-BM was more severe in approximately 70% of patients. At admission, only 13% and 38% of patients had antibodies to GlpQ and VMPs, respectively; at discharge, antibodies to GlpQ and VMPs were detected in 88% of patients. There was no statistically significant association of the antibody response with individual clinical manifestations and laboratory parameters of the disease. However, patients with more severe ITBB-BM produced less IgM antibodies to VMPs and GlpQ at the time of discharge. ITBB-BM is a moderate systemic disease accompanied by the

  5. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    PubMed Central

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  6. Opportunities for optimization: fate of manure-borne pathogens during anaerobic digestion and solids separation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion can inactivate zoonotic pathogens present in cattle manure, which reduces transmission of these pathogens from farms to humans through the environment. However, the variability in extent of inactivation across farms and over time is unknown because most studies have examined pat...

  7. Unusual Aetiology of Pasteurella canis Biovar 2 Causing Dacryocystitis in HIV Patient: A Case Report and Review of Literature

    PubMed Central

    Negi, Sanjay Singh; Gade, Neeta

    2017-01-01

    Pasteurella species are zoonotic bacterial pathogens implicated very infrequently in various human infections following animal bites or licks usually of dogs and cats. This case report described a rare clinical presentation of dacryocystitis caused by P.canis in a Human Immunodeficiency Virus (HIV) positive young male patient involved in caring of cattle. It advocates the utmost need of recognizing the wide clinical manifestation spectrum of P.canis even without prior penetrating injury. P.canis associated clinical infection is more extensive than had been thought previously especially in immunocompromised patient. Early accurate identification and evidence based anti-microbial therapy may prove crucial in preventing further potential complications. PMID:28384864

  8. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni

    PubMed Central

    O’Ryan, Miguel; Vidal, Roberto; del Canto, Felipe; Carlos Salazar, Juan; Montero, David

    2015-01-01

    In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral®), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed. PMID:25715096

  9. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.

    PubMed

    Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Hamming, Ole J; Hartmann, Rune; Rodriguez, Regulo; Geffers, Robert; Fouchier, Ron A M; Drosten, Christian; Müller, Marcel A; Dijkman, Ronald; Thiel, Volker

    2013-02-19

    The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first

  10. MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice

    PubMed Central

    Murciano, Celia; Lee, Chung-Te; Fernández-Bravo, Ana; Hsieh, Tsung-Han; Fouz, Belén; Hor, Lien-I; Amaro, Carmen

    2017-01-01

    Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13), which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing in vitro, ex vivo, and in vivo assays. First, we demonstrated that the ACD domain, present exclusively in this toxin variant, effectively has an actin-cross-linking activity. Second, we determined that the whole toxin caused death of human endotheliocytes and monocytes by lysis and apoptosis, respectively. Finally, we tested the hypothesis that RtxA13 contributes to human death caused by this zoonotic serovar by triggering an early cytokine storm in blood. To this end, we used a Bt2-SerE strain (R99) together with its rtxA13 deficient mutant, and a Bt1 strain (YJ016) producing RtxA11 (the most studied MARTXVv) together with its rtxA11 deficient mutant, as controls. Our results showed that RtxA13 was essential for virulence, as R99ΔΔrtxA13 was completely avirulent in our murine model of infection, and that R99, but not strain YJ016, induced an early, strong and dysregulated immune response involving the up-regulation of a high number of genes. This dysregulated immune response was directly linked to RtxA13. Based on these results and those obtained ex vivo (human blood), we propose a model of infection for the zoonotic serovar of V. vulnificus, in which RtxA13 would act as a sepsis-inducing toxin. PMID:28775962

  11. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece

    PubMed Central

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people. PMID:28141857

  12. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece.

    PubMed

    Diakou, Anastasia; Di Cesare, Angela; Accettura, Paolo Matteo; Barros, Luciano; Iorio, Raffaella; Paoletti, Barbara; Frangipane di Regalbono, Antonio; Halos, Lénaïg; Beugnet, Frederic; Traversa, Donato

    2017-01-01

    This survey investigated the distribution of various intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in four regions of Greece. A total number of one hundred and fifty cats living in three Islands (Crete, Mykonos and Skopelos) and in Athens municipality was established as a realistic aim to be accomplished in the study areas. All cats were examined with different microscopic, serological and molecular assays aiming at evaluating the occurrence of intestinal parasites, and exposure to or presence of vector-borne infections. A total of 135 cats (90%) was positive for one or more parasites and/or pathogens transmitted by ectoparasites. Forty-four (29.3%) cats were positive for one single infection, while 91 (60.7%) for more than one pathogen. A high number of (n. 53) multiple infections caused by feline intestinal and vector-borne agents including at least one zoonotic pathogen was detected. Among them, the most frequently recorded helminths were roundworms (Toxocara cati, 24%) and Dipylidium caninum (2%), while a high number of examined animals (58.8%) had seroreaction for Bartonella spp., followed by Rickettsia spp. (43.2%) and Leishmania infantum (6.1%). DNA-based assays revealed the zoonotic arthropod-borne organisms Bartonella henselae, Bartonella clarridgeiae, Rickettsia spp., and L. infantum. These results show that free-ranging cats living in areas of Greece under examination may be exposed to a plethora of internal parasites and vector-borne pathogens, some of them potentially able to infect humans. Therefore, epidemiological vigilance and appropriate control measures are crucial for the prevention and control of these infections and to minimize the risk of infection for people.

  13. Fusarium torreyae sp. nov., a pathogen causing canker disease of Florida torreya (Torreya taxifolia), a critically endangered conifer restricted to northern Florida and southwestern Georgia

    USDA-ARS?s Scientific Manuscript database

    During a survey for pathogens of Florida torreya (Torreya taxifolia) conducted in 2009, a novel Fusarium species was isolated from cankers affecting this critically endangered conifer whose current range is restricted to northern Florida and southwestern Georgia. Published multilocus molecular phylo...

  14. Bat Hunting and Bat-Human Interactions in Bangladeshi Villages: Implications for Zoonotic Disease Transmission and Bat Conservation.

    PubMed

    Openshaw, J J; Hegde, S; Sazzad, H M S; Khan, S U; Hossain, M J; Epstein, J H; Daszak, P; Gurley, E S; Luby, S P

    2017-08-01

    Bats are an important reservoir for emerging zoonotic pathogens. Close human-bat interactions, including the sharing of living spaces and hunting and butchering of bats for food and medicines, may lead to spillover of zoonotic disease into human populations. We used bat exposure and environmental data gathered from 207 Bangladeshi villages to characterize bat exposures and hunting in Bangladesh. Eleven percent of households reported having a bat roost near their homes, 65% reported seeing bats flying over their households at dusk, and 31% reported seeing bats inside their compounds or courtyard areas. Twenty percent of households reported that members had at least daily exposure to bats. Bat hunting occurred in 49% of the villages surveyed and was more likely to occur in households that reported nearby bat roosts (adjusted prevalence ratio [aPR] 2.3, 95% CI 1.1-4.9) and villages located in north-west (aPR 7.5, 95% CI 2.5-23.0) and south-west (aPR 6.8, 95% CI 2.1-21.6) regions. Our results suggest high exposure to bats and widespread hunting throughout Bangladesh. This has implications for both zoonotic disease spillover and bat conservation. © 2016 Blackwell Verlag GmbH.

  15. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.

    PubMed

    Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Leach, Melissa; Moses, Lina M; Nichols, Gordon; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N

    2016-09-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.

  16. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread

    PubMed Central

    Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Leach, Melissa; Moses, Lina M.; Nichols, Gordon; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.

    2016-01-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens from animals to humans, and ‘stuttering transmission’, i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir. PMID:27588425

  17. Collection and Utilization of Animal Carcasses Associated with zoonotic Disease in Tshuapa District, the Democratic Republic of the Congo, 2012.

    PubMed

    Monroe, Benjamin P; Doty, Jeffrey B; Moses, Cynthia; Ibata, Saturnin; Reynolds, Mary; Carroll, Darin

    2015-07-01

    The collection and consumption of animal carcasses is a common activity in forested areas of the Congo River basin and creates sustainability, conservation, and health concerns. Residents of the Tshuapa District reported collecting the remains of 5,878 animals from >30 species when surveyed about their wildlife consumption habits. Carcasses were discovered in varying degrees of decomposition and were often consumed at home or sold in local markets. The most commonly collected animals were Cricetomys gambianus (Northern giant pouched rat), Cercopithecus ascanius (red-tailed monkey), and Heliosciurus rufobrachium (red-legged sun squirrel). Many of the species recorded may be hosts of zoonotic pathogens, creating concern for spillover events.

  18. Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space.

    PubMed

    Suzán, Gerardo; García-Peña, Gabriel E; Castro-Arellano, Ivan; Rico, Oscar; Rubio, André V; Tolsá, María J; Roche, Benjamin; Hosseini, Parviez R; Rizzoli, Annapaola; Murray, Kris A; Zambrana-Torrelio, Carlos; Vittecoq, Marion; Bailly, Xavier; Aguirre, A Alonso; Daszak, Peter; Prieur-Richard, Anne-Helene; Mills, James N; Guégan, Jean-Francois

    2015-02-01

    The potential for disease transmission at the interface of wildlife, domestic animals and humans has become a major concern for public health and conservation biology. Research in this subject is commonly conducted at local scales while the regional context is neglected. We argue that prevalence of infection at local and regional levels is influenced by three mechanisms occurring at the landscape level in a metacommunity context. First, (1) dispersal, colonization, and extinction of pathogens, reservoir or vector hosts, and nonreservoir hosts, may be due to stochastic and niche-based processes, thus determining distribution of all species, and then their potential interactions, across local communities (metacommunity structure). Second, (2) anthropogenic processes may drive environmental filtering of hosts, nonhosts, and pathogens. Finally, (3) phylogenetic diversity relative to reservoir or vector host(s), within and between local communities may facilitate pathogen persistence and circulation. Using a metacommunity approach, public heath scientists may better evaluate the factors that predispose certain times and places for the origin and emergence of infectious diseases. The multidisciplinary approach we describe fits within a comprehensive One Health and Ecohealth framework addressing zoonotic infectious disease outbreaks and their relationship to their hosts, other animals, humans, and the environment.

  19. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis†

    PubMed Central

    Feng, Yaoyu; Xiao, Lihua

    2011-01-01

    Summary: Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination. PMID:21233509

  20. Intestinal protozoan parasites with zoonotic potential in birds.

    PubMed

    Marietto-Gonçalves, G A; Fernandes, T M; Silva, R J; Lopes, R S; Andreat