Science.gov

Sample records for zooplankton population model

  1. Lake acidification: Effects on crustacean zooplankton populations

    SciTech Connect

    Havens, K.E. ); Yan, N.D. ); Keller, W. )

    1993-08-01

    The ranked acid sensitivities of six common crustacean zooplankton taxa were determined from a multilake field survey in Ontario and from laboratory bioassays. The two approaches gave the same ranking (from most to least sensitive): Daphnia galeata mendotae, Daphnia retrocurva, and Skistodiaptomus oregonensis > Diaphanosoma birgei > Mesocyclops edax > Bosmina longirostris. This finding suggests that acidification has caused the widespread damage which has been documented for the zooplankton of Ontario and northeastern US lakes. 24 refs., 3 figs., 2 tabs.

  2. Modeling vertical carbon flux from zooplankton respiration

    NASA Astrophysics Data System (ADS)

    Packard, Theodore T.; Gómez, May

    2013-03-01

    The transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m-3 h-1), mesopelagic (112.82 nmol CO2 m-3 h-1), and bathypelagic (27.89 nmol CO2 m-3 h-1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m-2 h-1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z-0.292. Using

  3. DEBtox theory and matrix population models as helpful tools in understanding the interaction between toxic cyanobacteria and zooplankton.

    PubMed

    Billoir, Elise; da Silva Ferrão-Filho, Aloysio; Laure Delignette-Muller, Marie; Charles, Sandrine

    2009-06-01

    Bioassays were performed to find out how field samples of the toxic cyanobacteria Microcystis aeruginosa affect Moina micrura, a cladoceran found in the tropical Jacarepagua Lagoon (Rio de Janeiro, Brazil). The DEBtox (Dynamic Energy Budget theory applied to toxicity data) approach has been proposed for use in analysing chronic toxicity tests as an alternative to calculating the usual safety parameters (NOEC, ECx). DEBtox theory deals with the energy balance between physiological processes (assimilation, maintenance, growth and reproduction), and it can be used to investigate and compare various hypotheses concerning the mechanism of action of a toxicant. Even though the DEBtox framework was designed for standard toxicity bioassays carried out with standard species (fish, daphnids), we applied the growth and reproduction models to M. micrura, by adapting the data available using a weight-length allometric relationship. Our modelling approach appeared to be very relevant at the individual level, and confirmed previous conclusions about the toxic mechanism. In our study we also wanted to assess the toxic effects at the population level, which is a more relevant endpoint in risk assessment. We therefore incorporated both lethal and sublethal toxic effects in a matrix population model used to calculate the finite rate of population change as a continuous function of the exposure concentration. Alongside this calculation, we constructed a confidence band to predict the critical exposure concentration for population health. Finally, we discuss our findings with regard to the prospects for further refining the analysis of ecotoxicological data. PMID:18706427

  4. Evaluation of abiotic stresses of temperate estuaries by using resident zooplankton: A community vs. population approach

    NASA Astrophysics Data System (ADS)

    Paul, Sourav; Wooldridge, Tris; Perissinotto, Renzo

    2016-03-01

    By using permanently resident zooplankton, we assessed the ecological level (i.e. community and or population) that provides more in-depth indication of the stress related to salinity and temperature fluctuations in temperate estuaries. In the semi-arid warm temperate South Africa, the Gamtoos estuary experiences a full salinity gradient maintained by irregular but relatively frequent freshwater pulses, whereas the Kromme estuary is euhaline throughout its extent and receives only occasional freshwater inputs when the storage reservoir six km upstream overtops. Changes in the species evenness index of Pielou and the abundances of estuarine resident zooplankton species were modelled against salinity and temperature variations of respective estuaries. In the Gamtoos estuary, response of individual populations provided more in-depth information regarding zooplankton variability. However the most abundant resident zooplankton i.e. Acartia longipatella a copepod was not the best predictor of the salinity and temperature fluctuations. Conversely, the Kromme estuary study provided insights into the potential vulnerability of the resident estuarine zooplankton community to cold. Further, the population level study exposed responses of specific species against salinity changes. We discuss the pros and cons of designing ecological indicators of abiotic stress based on specific species, targeted to specific ecological level, and needs of considering the frequency and magnitude of fresh water inflow in an estuary. A suggestion is to use specific taxonomic group(s) (e.g. Copepods) to better understand the abiotic stress factors of specific set of estuaries (e.g. freshwater rich/starved) until a 'one size fits all' indicator is found for temperate estuaries.

  5. Effects of alewife predation on zooplankton populations in Lake Michigan

    USGS Publications Warehouse

    Wells, LaRue

    1970-01-01

    The zooplankton populations in southeastern Lake Michigan underwent striking, size-related changes between 1954 and 1966. Forms that decline sharply were the largest cladocerans (Leptodora kindtii, Daphnia galeata, and D. retrocurva), the largest calanoid copepods (Limnocalanus macrurus, Epischura lacustris, and Diaptomus sicilis), and the largest cyclopoid copepod (Mesocyclops edax). Two of these, D. galeata and M. edax (both abundant in 1954), became extremely rare. Certain medium-sized or small species increased in numbers: Daphnia longiremis, Holopedium gibberum, Polyphemus pediculus, Bosmina longirostris, Bosmina coregoni, Ceriodaphnia sp., Cyclops bicuspidatus, Cyclops vernalis, and Diaptomus ashlandi. Evidence is strong that the changes were due to selective predation by alewives. The alewife was uncommon in southeastern Lake Michigan in 1954 but had increased to enormous proportions by 1966; there was a massive dieoff in spring 1967, and abundance remained relatively low in 1968. The composition of zooplankton populations in 1968 generally had shifted back toward that of 1954, although D. galeata and M. edax remained rare. The average size, and size at onset of maturity, of D. retrocurva decreased noticeably between 1954 and 1966 but increased between 1966 and 1968.

  6. Roles of predation, food, and temperature in structuring the epilimnetic zooplankton populations in Lake Ontario, 1981-1986

    USGS Publications Warehouse

    Johannsson, Ora E.; O'Gorman, Robert

    1991-01-01

    We sampled phytoplankton, zooplankton, and alewives Alosa pseudoharengus and measured water temperature in Lake Ontario during 1981–1986. Through the use of general linear regression models we then sought evidence of control of the eplimnetic zooplankton community (mid-July to mid-October) by producers, consumers, and temperature. Our measures of the zooplankton community were total biomass, cladoceran biomass, and the ratio of large to small Daphnia spp. (D. galeata mendotae andD. retrocurva). Zooplankton population variables assessed were abundance, egg ratio, and productivity. Through factor analysis, factors were created from the standardized, transformed independent variables for use in the regression analyses. Regression models showed significant inverse relationships (P < 0.05) between alewives and Bosmina longirostris (abundance, production, and egg ratio), Ceriodaphnia lacustris (egg ratio), andDaphnia retrocurva (egg ratio). Bosmina longirostris and D. retrocurva egg ratios were inversely related to algae biomass (<20 μm), thus the smaller algae might be controlled in part by the zooplankton community. Production of C. lacustris was directly related to temperature, as was the production and abundance of Tropocyclops prasinus. The annual size-frequency distributions of B. longirostris and D. retrocurva were inversely related to yearling alewife abundance and directly related to adult alewife abundance, which suggested that yearlings use a particulate-feeding mode on these zooplankton species more frequently than adults. We found no significant negative correlations among the zooplankton species, which suggested that interzooplankton predation and competition were not as important in structuring the community as were planktivory and temperature.

  7. Distribution and abundance of zooplankton populations in Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; McIntire, C.D.; Buktenica, M.W.; Girdner, S.F.; Truitt, R.E.

    2007-01-01

    The zooplankton assemblages in Crater Lake exhibited consistency in species richness and general taxonomic composition, but varied in density and biomass during the period between 1988 and 2000. Collectively, the assemblages included 2 cladoceran taxa and 10 rotifer taxa (excluding rare taxa). Vertical habitat partitioning of the water column to a depth of 200 m was observed for most species with similar food habits and/or feeding mechanisms. No congeneric replacement was observed. The dominant species in the assemblages were variable, switching primarily between periods of dominance of Polyarthra-Keratella cochlearis and Daphnia. The unexpected occurrence and dominance of Asplanchna in 1991 and 1992 resulted in a major change in this typical temporal shift between Polyarthra-K. cochlearis and Daphnia. Following a collapse of the zooplankton biomass in 1993 that was probably caused by predation from Asplanchna, Kellicottia dominated the zooplankton assemblage biomass between 1994 and 1997. The decline in biomass of Kellicottia by 1998 coincided with a dramatic increase in Daphnia biomass. When Daphnia biomass declined by 2000, Keratella biomass increased again. Thus, by 1998 the assemblage returned to the typical shift between Keratella-Polyarthra and Daphnia. Although these observations provided considerable insight about the interannual variability of the zooplankton assemblages in Crater Lake, little was discovered about mechanisms behind the variability. When abundant, kokanee salmon may have played an important role in the disappearance of Daphnia in 1990 and 2000 either through predation, inducing diapause, or both. ?? 2007 Springer Science+Business Media B.V.

  8. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus.

    PubMed

    Blanco-Bercial, L; Bucklin, A

    2016-04-01

    Detection of population genetic structure of zooplankton at medium-to-small spatial scales in the absence of physical barriers has remained challenging and controversial. The large population sizes and high rates of gene flow characteristic of zooplankton have made resolution of geographical differentiation very difficult, especially when using few genetic markers and assuming equilibrium conditions. Next-generation sequencing now allows simultaneous sampling of hundreds to thousands of genetic markers; new analytical approaches allow studies under nonequilibrium conditions and directional migration. Samples of the North Atlantic Ocean planktonic copepod, Centropages typicus, were analysed using restriction site-associated DNA (RAD) sequencing on a PROTON platform. Although prior studies revealed no genetic differentiation of populations across the geographical range of the species, analysis of RAD tags showed significant structure across the North Atlantic Ocean. We also compared the likelihood for models of connectivity among NW Atlantic populations under various directional flow scenarios that replicate oceanographic conditions of the sampled domain. High-density marker sampling with RAD sequencing markedly outperformed other technical and analytical approaches in detection of population genetic structure and characterization of connectivity of this high geneflow zooplankton species. PMID:26857348

  9. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus.

    PubMed

    Blanco-Bercial, L; Bucklin, A

    2016-04-01

    Detection of population genetic structure of zooplankton at medium-to-small spatial scales in the absence of physical barriers has remained challenging and controversial. The large population sizes and high rates of gene flow characteristic of zooplankton have made resolution of geographical differentiation very difficult, especially when using few genetic markers and assuming equilibrium conditions. Next-generation sequencing now allows simultaneous sampling of hundreds to thousands of genetic markers; new analytical approaches allow studies under nonequilibrium conditions and directional migration. Samples of the North Atlantic Ocean planktonic copepod, Centropages typicus, were analysed using restriction site-associated DNA (RAD) sequencing on a PROTON platform. Although prior studies revealed no genetic differentiation of populations across the geographical range of the species, analysis of RAD tags showed significant structure across the North Atlantic Ocean. We also compared the likelihood for models of connectivity among NW Atlantic populations under various directional flow scenarios that replicate oceanographic conditions of the sampled domain. High-density marker sampling with RAD sequencing markedly outperformed other technical and analytical approaches in detection of population genetic structure and characterization of connectivity of this high geneflow zooplankton species.

  10. Towards developing a general framework for modelling vertical migration in zooplankton.

    PubMed

    Morozov, Andrew Yu; Kuzenkov, Oleg A

    2016-09-21

    Diel vertical migration (DVM) of zooplankton is a widespread phenomenon in both oceans and lakes, and is generally considered to be the largest synchronized movement of biomass on Earth. Most existing mathematical models of DVM are based on the assumption that animals maximize a certain criterion such as the expected reproductive value, the venturous revenue, the ratio of energy gain/mortality or some predator avoidance function when choosing their instantaneous depth. The major shortcoming of this general point of view is that the predicted DVM may be strongly affected by a subjective choice of a particular optimization criterion. Here we argue that the optimal strategy of DVM can be unambiguously obtained as an outcome of selection in the underlying equations of genotype/traits frequency dynamics. Using this general paradigm, we explore the optimal strategy for the migration across different depths by zooplankton grazers throughout the day. To illustrate our ideas we consider four generic DVM models, each making different assumptions on the population dynamics of zooplankton, and demonstrate that in each model we need to maximize a particular functional to find the optimal strategy. Surprisingly, patterns of DVM obtained for different models greatly differ in terms of their parameters dependence. We then show that the infinite dimensional trait space of different zooplankton trajectories can be projected onto a low dimensional space of generalized parameters and the genotype evolution dynamics can be easily followed using this low-dimensional space. Using this space of generalized parameters we explore the influence of mutagenesis on evolution of DVM, and we show that strong mutagenesis allows the coexistence of an infinitely large number of strategies whereas for weak mutagenesis the selection results in the extinction of most strategies, with the surviving strategies all staying close to the optimal strategy in the corresponding mutagenesis-free system.

  11. Gelatinous zooplankton in the Belgian part of the North Sea and the adjacent Schelde estuary: Spatio-temporal distribution patterns and population dynamics

    NASA Astrophysics Data System (ADS)

    Vansteenbrugge, Lies; Van Regenmortel, Tina; De Troch, Marleen; Vincx, Magda; Hostens, Kris

    2015-03-01

    Many ocean ecosystems are thought to be heading towards a dominance of gelatinous organisms. However, gelatinous zooplankton has been largely understudied and the absence of quantitative long-term data for the studied area impedes drawing conclusions on potential increasing densities. This study gives a comprehensive overview of the spatio-temporal distribution patterns of gelatinous zooplankton in terms of diversity and density in the Belgian part of the North Sea and the adjacent Schelde estuary, based on monthly and seasonal samples between March 2011 and February 2012. Three Scyphozoa, three Ctenophora and 27 Hydrozoa taxa were identified, including three non-indigenous species: Mnemiopsis leidyi, Nemopsis bachei and Lovenella assimilis. In general, one gelatinous zooplankton assemblage was found across locations and seasons. Average gelatinous zooplankton densities reached up to 18 ind·m-3 near the coast, gradually declining towards the open sea. In the brackish Schelde estuary, average densities remained below 3 ind·m-3. Highest gelatinous zooplankton densities were recorded in summer and autumn. Overall, hydromedusae were the most important group both in terms of diversity and density. The ctenophore Pleurobrachia pileus and the hydromedusa Clytia sp. were present in every season and at every location. Gelatinous zooplankton densities never outnumbered the non-gelatinous zooplankton densities recorded from the WP3 samples. The spatial and temporal distribution patterns seemed to be mainly driven by temperature (season) and salinity (location). Other environmental parameters including (larger) non-gelatinous zooplankton densities (as an important food source) were not retained in the most parsimonious DistLM model.In terms of population dynamics, Beroe sp. seemed to follow the three reproductive cycles of its prey P. pileus and the presence of M. leidyi, which were abundant in a broad size spectrum in summer and autumn. In general, gelatinous zooplankton

  12. Population attenuation in zooplankton communities during transoceanic transfer in ballast water.

    PubMed

    Ghabooli, Sara; Zhan, Aibin; Paolucci, Esteban; Hernandez, Marco R; Briski, Elizabeta; Cristescu, Melania E; MacIsaac, Hugh J

    2016-09-01

    Successful biological invasion requires introduction of a viable population of a nonindigenous species (NIS). Rarely have ecologists assessed changes in populations while entrained in invasion pathways. Here, we investigate how zooplankton communities resident in ballast water change during transoceanic voyages. We used next-generation sequencing technology to sequence a nuclear small subunit ribosomal DNA fragment of zooplankton from ballast water during initial, middle, and final segments as a vessel transited between Canada and Brazil. Operational taxonomic unit (OTU) diversity decreased as voyage duration increased, indicating loss of community-based genetic diversity and development of bottlenecks for zooplankton taxa prior to discharge of ballast water. On average, we observed 47, 26, and 24 OTUs in initial, middle, and final samples, respectively. Moreover, a comparison of genetic diversity within taxa indicated likely attenuation of OTUs in final relative to initial samples. Abundance of the most common taxa (copepods) declined in all final relative to initial samples. Some taxa (e.g., Copepoda) were represented by a high number of OTUs throughout the voyage, and thus had a high level of intraspecific genetic variation. It is not clear whether genotypes that were most successful in surviving transit in ballast water will be the most successful upon introduction to novel environments. This study highlights that population bottlenecks may be common prior to introduction of NIS to new ecosystems. PMID:27648234

  13. Wetland defense: naturally occurring pesticide resistance in zooplankton populations protects the stability of aquatic communities.

    PubMed

    Bendis, Randall J; Relyea, Rick A

    2016-06-01

    Anthropogenic stressors are ubiquitous and have been implicated in worldwide declines of terrestrial and aquatic species. Pesticides are one such stressor that can have profound effects on aquatic communities by directly affecting sensitive species and indirectly affecting other species via trophic cascades, which can alter ecosystem function. However, there is growing evidence that non-target species can evolve increased resistance. When such species are important drivers of the food web, then evolved resistance should help buffer communities from the effects of pesticides. To examine this possibility, we cultured four populations of the common zooplankton Daphnia pulex that we previously demonstrated were either sensitive or resistant to a common insecticide (i.e., chlorpyrifos) due to their proximity to agriculture. Using outdoor mesocosms that contained identical aquatic communities of phytoplankton, periphyton, and leopard frog tadpoles (Lithobates pipiens), we manipulated four D. pulex populations and four insecticide concentrations. As we monitored the communities for nearly 3 months, we found that the insecticide caused direct mortality of D. pulex in communities containing sensitive populations, and this led to a bloom of phytoplankton. In contrast, the insecticide caused much less direct mortality in communities containing resistant D. pulex populations, and the trophic cascade was prevented under low to moderate insecticide concentrations. Across all insecticide treatments, survivorship of leopard frogs was approximately 72 % in communities with resistant D. pulex but only 35 % in communities with sensitive D. pulex. To our knowledge, this is one of the first studies to use naturally occurring population variation in insecticide resistance to show that the evolution of pesticide resistance in zooplankton can mitigate the effects of insecticide-induced trophic cascades, and that this outcome can have far-reaching community effects.

  14. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    NASA Astrophysics Data System (ADS)

    Stempniewicz, Lech; Błachowiak-Samołyk, Katarzyna; Węsławski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate

  15. Role of Zooplankton Diversity in Vibrio cholerae Population Dynamics and in the Incidence of Cholera in the Bangladesh Sundarbans ▿

    PubMed Central

    de Magny, Guillaume Constantin; Mozumder, Pronob K.; Grim, Christopher J.; Hasan, Nur A.; Naser, M. Niamul; Alam, Munirul; Sack, R. Bradley; Huq, Anwar; Colwell, Rita R.

    2011-01-01

    Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a severe watery, life-threatening diarrheal disease occurring predominantly in developing countries. V. cholerae, including both serogroups O1 and O139, is found in association with crustacean zooplankton, mainly copepods, and notably in ponds, rivers, and estuarine systems globally. The incidence of cholera and occurrence of pathogenic V. cholerae strains with zooplankton were studied in two areas of Bangladesh: Bakerganj and Mathbaria. Chitinous zooplankton communities of several bodies of water were analyzed in order to understand the interaction of the zooplankton population composition with the population dynamics of pathogenic V. cholerae and incidence of cholera. Two dominant zooplankton groups were found to be consistently associated with detection of V. cholerae and/or occurrence of cholera cases, namely, rotifers and cladocerans, in addition to copepods. Local differences indicate there are subtle ecological factors that can influence interactions between V. cholerae, its plankton hosts, and the incidence of cholera. PMID:21764957

  16. Response of predatory zooplankton populations to the experimental acidification of Little Rock Lake, Wisconsin

    SciTech Connect

    Sierszen, M.E.; Frost, T.M.

    1993-01-01

    To assess the effects of lake acidification on large predatory zooplankton, the authors monitored population levels of four limnetic taxa for 6 years in a lake with two basins, one of which was experimentally acidified (2 years at each of three levels: pH 5.6, 5.2 and 4.7). Concentrations of phantom midge (Chaoborus spp.), the most abundant large predator, remained similar in the treatment and reference basins until the fourth year (pH 5.2) when they increased in the treatment basin. In contrast, Epischura lacustris and Leptodora kindtii disappeared from limnetic samples, and water mites declined to near zero upon acidification. Treatment basin populations of E. lacustris declined sharply during the second year of acidification. The nature of the decline suggested sensitivity of an early life stage during the first year at pH 5.6. Leptodora kindtii showed no population response at pH 5.6, but declined to essentially zero at pH 5.2. Treatment basin populations of water mites fluctuated until declining in the fifth and sixth years (pH 4.7). These changes indicate a variety of direct and indirect responses to lake acidification.

  17. A case study of an enhanced eutrophication model with stoichiometric zooplankton growth sub-model calibrated by Bayesian method.

    PubMed

    Yang, Likun; Peng, Sen; Sun, Jingmei; Zhao, Xinhua; Li, Xia

    2016-05-01

    Urban lakes in China have suffered from severe eutrophication over the past several years, particularly those with relatively small areas and closed watersheds. Many efforts have been made to improve the understanding of eutrophication physiology with advanced mathematical models. However, several eutrophication models ignore zooplankton behavior and treat zooplankton as particles, which lead to the systematic errors. In this study, an eutrophication model was enhanced with a stoichiometric zooplankton growth sub-model that simulated the zooplankton predation process and the interplay among nitrogen, phosphorus, and oxygen cycles. A case study in which the Bayesian method was used to calibrate the enhanced eutrophication model parameters and to calculate the model simulation results was carried out in an urban lake in Tianjin, China. Finally, a water quality assessment was also conducted for eutrophication management. Our result suggests that (1) integration of the Bayesian method and the enhanced eutrophication model with a zooplankton feeding behavior sub-model can effectively depict the change in water quality and (2) the nutrients resulting from rainwater runoff laid the foundation for phytoplankton bloom.

  18. Biomass, growth, and development of populations of herbivorous zooplankton in the southeastern Bering Sea during spring

    SciTech Connect

    Vidal, J.; Smith, S.L.

    1985-09-01

    Two distinct communities of herbivorous zooplankton, separated by an oceanographic front, inhabit the continental shelf and slope of the southeastern Bering Sea during spring. The community over the outer shelf and slope is dominated by populations of large-sized oceanic copepods (mainly Neocalanus ssp.) that develop early in spring and attain maximum biomass and growth rates by mid- to late spring. Total biomass and growth rates of herbivores follow the spring outburst of phytoplankton; during April and May biomass increases from less than or equal to1 to approx.14 g C m/sup -2/ on the slope and to approx.10 g C m/sup -2/ on the outer shelf, and maximum growth rates >500 and approx.300 mg C m/sup -2/ day/sup -1/ occure on the slope and outer shelf, respectively in May. The dominant species, N. plumchrus, grows from copepodid I and V between late March and early May, and after attaining maximum body weight in late May and early June it begins its downward migration. The inshore community on the middle shelf is dominated by the euphausiid Thysanoessa raschi in April and May and by the copepod Calanus marshallae in late May and early June. Total biomass (less than or equal to g C m/sup -2/) and growth rates (less than or equal to50 mg C m/sup -2/) of the inshore community are substantially lower than those of the offshore community and show a delayed response to the spring bloom of phytoplankton; both biomass and growth rates increase about one month after the bloom. Small herbivorous copepods contributed little to the total biomass and growth rates of either community and the cumulative community growth rates during April and May decreases from 18.3 g C m/sup -2/ on the slope to 2.5 g C m/sup -2/ on the middle shelf. 79 refs., 15 figs., 7 tabs.

  19. Biomixing due to diel vertical migrations of zooplankton: Comparison of computational fluid dynamics model with observations

    NASA Astrophysics Data System (ADS)

    Dean, Cayla; Soloviev, Alexander; Hirons, Amy; Frank, Tamara; Wood, Jon

    2016-02-01

    Recent studies (Dewar et al., 2006; Wilhelmus and Dabiri, 2014) suggest that diel vertical migrations (DVM) of zooplankton (or other migrating organisms) may have an impact on ocean mixing, though details are not completely clear. Zooplankton that undergo DVM can have an impact on oil transport through the water column, and oil and dispersants can have a negative or even lethal effect on the organisms. Kunze et al. (2006) reported an increase of dissipation rate of turbulent kinetic energy, ε, by four to five orders of magnitude during DVM of zooplankton over background turbulence in Saanich Inlet, British Columbia, Canada. However, the effect was not observed in the same area by Rousseau et al. (2010) and was later reassessed by Kunze (2011). In our work, an 11-month data set obtained in the Straits of Florida with a bottom-mounted acoustic Doppler current profiler revealed strong sound scattering layers undergoing DVM. We used a 3-D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating organisms) via a discrete phase model to simulate the effect of turbulence generation by DVM. We tested a range of organism concentrations from 1000 to 10,000 organisms/m3 based on measurements by Greenlaw (1979) and Mackie and Mills (1983) in Saanich Inlet. At a concentration close to the upper limit, the simulation showed an increase in ε by two to three orders of magnitude during DVM over background turbulence, 10-9 W kg-1. At a concentration of 1000 organisms/m3, almost no turbulence above the background level was produced in the model. These results suggest that the Kunze et al. (2006) observations could have been performed at a larger concentration of migrating zooplankton than those reported by Rousseau et al. (2010). No exact zooplankton concentrations data were provided in either work. The difference between observations and the model can, in part, be explained by the fact that Kunze et al. (2006) measured

  20. Discrete modeling of dynamics of zooplankton community at the different stages of an antropogeneous eutrophication.

    PubMed

    Zholtkevych, G N; Bespalov, G Yu; Nosov, K V; Abhishek, Mahalakshmi

    2013-12-01

    Mathematical modeling is a convenient way for characterization of complex ecosystems. This approach was applied to study the dynamics of zooplankton in Lake Sevan (Armenia) at different stages of anthropogenic eutrophication with the use of a novel method called discrete modeling of dynamical systems with feedback (DMDS). Simulation demonstrated that the application of this method helps in characterization of inter- and intra-component relationships in a natural ecosystem. This method describes all possible pairwise inter-component relationships like "plus-plus," "minus-minus," "plus-minus," "plus-zero," "minus-zero," and "zero-zero" that occur in most ecosystems. Based on the results, a working hypothesis was formulated. It was found that the sensitivity to weak external influence in zooplanktons was the greatest during the mid period of eutrophication in Lake Sevan, whereas in the final stages of eutrophication, an outbreak in the biomass production of cyanobacteria was evident. To support this approach, a weak external disturbance in the form of magnetic storm was used to see its effect on species Daphnia longispina sevanica. A statistically significant correlation between the frequency of magnetic storms and the number of this species was revealed and an increase in the number of toxic cyanobacteria species as a consequence of eutrophication. This paper, for the first time, suggests a DMDS method, to diagnose impact of anthropogenic eutrophication on environment.

  1. A scaled-up system to evaluate zooplankton spatial avoidance and the population immediate decline concentration.

    PubMed

    Rosa, Rita; Materatski, Patrick; Moreira-Santos, Matilde; Sousa, José Paulo; Ribeiro, Rui

    2012-06-01

    Most laboratory tests may underestimate adverse effects in real scenarios of contamination because they imply the forced exposure of organisms to contaminants, thus overlooking the possibility of emigration. Avoidance from contaminants has been observed in several aquatic organisms, and avoidance-based tests have been recommended to be included in risk assessment studies. To reduce uncertainty in the extrapolation of laboratory derived results, the first aim of the present study was to compare both the median avoidance concentration and the lowest-observed-effect gradient (LOEG) values of atrazine for the cladoceran Daphnia magna, between an already developed 1.1-m-long system and a scaled-up system, three times longer. Second, the present study aimed at evaluating the population immediate decline--the proportion of the population that disappears (avoids and, if not, dies)--through the integration of the relationships between lethality and avoidance versus contaminant concentration. Daphnia magna significantly avoided atrazine, during 12-h exposures, with similar results in the original and scaled-up systems. The population immediate decline at the 48-h median lethal concentration would be 94%. Even at a concentration eliciting only 5% mortality, the population immediate decline would be over 50%. Achieving a higher pertinence of avoidance results and a better understanding of the LOEG values and their time dependence, scaling up the system further both spatially and temporally, and modeling explicit spatial dynamics in exposure and organism movement in space and time are needed.

  2. A New Trait-Based Auto-Emergent Model for Zooplankton and Confrontation with Size-Structured Observations from the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Vandromme, Pieter; Sourisseau, Marc; Huret, Martin

    2013-04-01

    Zooplankton plays a significant role in marine ecosystems bridging the gap between primary producers and top consumers and interacting with the particle flux through complex dynamics. Scarcity of data and complexity of observing zooplankton make it difficult to integrate it in biogeochemical models where it is most often formulated in a simpler manner, i.e. classic box models with usually two compartments (micro and meso/macro zooplankton). Recent advances in automatic sizing, counting and identification allow better estimates of the dynamics and distribution of zooplankton, notably through the measurement of its size structure, and for zooplankton size matter. Most zooplankton physiological rates as well as predator:prey interactions can be significantly relied to individuals size through allometric relations. Such size-dependency was used in recent models. Yet, these models were neither confronted to observations nor integrated in 3D biogeochemical models. Here we propose a newly developed model of zooplankton dynamics based on size-dependent allometric relations but which allows various diet types regardless of the size. A size and a degree of herbivory is randomly drawn for each zooplankton species generated within the model (up to 400 here, limited by actual computational costs). By generating random degree of herbivory zooplankton species of same size could have various diet (from herbivore to carnivore). Other parameters leading to various reproductive strategies or vertical migration could also be drawn randomly (not tested here). The zooplankton model is coupled to the 3D biogeochemical model MARS3D on a test case representing a simplified view of the Bay of Biscay (i.e., continental shelf, estuary, tides). The model shows auto-emergent properties with the selection of size/diet most adapted to local conditions (here offshore vs. coastal, estuary…). Then, patterns of the modeled size-structure of the zooplankton are confronted to the ones observed during

  3. Lagrangian model of zooplankton dispersion: numerical schemes comparisons and parameter sensitivity tests

    NASA Astrophysics Data System (ADS)

    Qiu, Zhongfeng; Doglioli, Andrea M.; He, Yijun; Carlotti, Francois

    2011-03-01

    This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion: numerical schemes and time steps. Firstly, we compared three numerical schemes using idealized circulations. Results show that the precisions of the advanced Adams-Bashfold-Moulton (ABM) method and the Runge-Kutta (RK) method were in the same order and both were much higher than that of the Euler method. Furthermore, the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption. We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm. Secondly, we performed a sensitivity test for time steps, using outputs of the hydrodynamic model, Symphonie. Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields. The method introduced by Oliveira et al. in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models, at least when only considering advection.

  4. Viewing DVM via general behaviors of zooplankton: a way bridging the success of individual and population.

    PubMed

    Liu, Shun-Hui; Sun, Song; Han, Bo-Ping

    2006-01-21

    In this paper, we viewed the diel vertical migration (DVM) of copepod in the context of the animal's immediate behaviors of everyday concerns and constructed an instantaneous behavioral criterion effective for DVM and non-DVM behaviors. This criterion employed the function of 'venturous revenue' (VR), which is the product of the food intake and probability of the survival, to evaluate the gains and losses of the behaviors that the copepod could trade-off. The optimal behaviors are to find the optimal habitats to maximize VR. Two types of VRs are formulated and tested by the theoretical analysis and simulations. The sensed VR, monitoring the real-time changes of trade-offs and thereby determining the optimum habitat, is validated to be the effective objective function for the optimization of the behavior; whereas, the realized VR, quantifying the actual profit obtained by an optimal copepod in the sensed-VR-determined habitat, defines the life history of a specific age cohort. The achievement of a robust copepod overwintering stock through integrating the dynamics of the constituent age cohorts subjected to the instantaneous behavioral criterion for DVM clearly exemplified a possible way bridging the immediate pursuit of an individual and the end success of the population.

  5. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity

    NASA Astrophysics Data System (ADS)

    Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.

    2007-11-01

    This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The

  6. Temperature effects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients

    USGS Publications Warehouse

    Norberg, J.; DeAngelis, D.L.

    1997-01-01

    A model of a closed phytoplankton—zooplankton ecosystem was analyzed for effects of temperature on stocks and stability and the dependence of these effects on light and total nutrient concentration of the system. An analysis of the steady state equations showed that the effect of temperature on zooplankton and POM biomass was levelled when primary production is nutrient limited. Temperature increase had a generally negative effect on all biomasses at high nutrient levels due to increased maintenance costs. Nutrient limitation of net primary production is the main factor governing the effect of stocks and flows as well as the stability of the system. All components of the system, except for phytoplankton biomass, are proportional to net production and thus to the net effect of light on photosynthesis. However, temperature determines the slope of that relationship. The resilience of the system was measured by calculating the eigenvalues of the steady state. Under oligotrophic conditions, the system can be stable, but an increase in temperature can cause instability or a decrease in resilience. This conclusion is discussed in the face of recent models that take spatial heterogeneity into account and display far more stable behavior, in better agreement to empirical data. Using simulations, we found that the amplitude of fluctuations of the herbivore stock increases with temperature while the mean biomass and minimum values decrease in comparison with steady state predictions

  7. An analysis of a zooplankton sampling-gear change in the CalCOFI long-term monitoring program, with implications for copepod population abundance trends

    NASA Astrophysics Data System (ADS)

    Rebstock, Ginger A.

    The California Cooperative Oceanic Fisheries Investigations (CalCOFI) program has been systematically sampling zooplankton off the west coast of North America since 1949. In 1978, the 1-m diameter ring net used by the program was replaced with a bongo net, which consists of two 0.71-m diameter nets on a single frame. This study compares paired zooplankton samples taken with a ring net and a 0.71-m or 0.6-m bongo net to determine the relative performances of the two net types for catching calanoid copepods. Thirty-one species and stages were enumerated, along with the category ‘total female calanoids’. Twenty-one categories of calanoid copepods were abundant enough to test for effects of changes in net type. No significant differences between the nets were found after correcting for multiple testing. Statistical power was then estimated for a range of potential net effects equivalent to ratios of copepod densities between the nets of 1.1-3.0. The probability of detecting differences greater than a factor of 1.5-3.0 was high (≥80%) for total female calanoids, Metridia pacifica, Pleuromamma abdominalis edentata, P. borealis, Calanus pacificus, Eucalanus californicus and Rhincalanus nasutus. For these categories of copepods, any population changes greater than a factor of 1.5-3.0 that might be found from the CalCOFI data set can be assumed to be the result of factors other than the change in net type.

  8. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs.

    PubMed

    Broman, Elias; Brüsin, Martin; Dopson, Mark; Hylander, Samuel

    2015-10-22

    Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 10(5) nauplii m(-2) emerged from sediment turned oxic compared with 0.02 × 10(5) m(-2) from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.

  9. Statistical Mechanics of Zooplankton.

    PubMed

    Hinow, Peter; Nihongi, Ai; Strickler, J Rudi

    2015-01-01

    Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar "microscopic" quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the "ecological temperature" of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean's swimming behavior.

  10. Statistical Mechanics of Zooplankton

    PubMed Central

    Hinow, Peter; Nihongi, Ai; Strickler, J. Rudi

    2015-01-01

    Statistical mechanics provides the link between microscopic properties of many-particle systems and macroscopic properties such as pressure and temperature. Observations of similar “microscopic” quantities exist for the motion of zooplankton, as well as many species of other social animals. Herein, we propose to take average squared velocities as the definition of the “ecological temperature” of a population under different conditions on nutrients, light, oxygen and others. We test the usefulness of this definition on observations of the crustacean zooplankton Daphnia pulicaria. In one set of experiments, D. pulicaria is infested with the pathogen Vibrio cholerae, the causative agent of cholera. We find that infested D. pulicaria under light exposure have a significantly greater ecological temperature, which puts them at a greater risk of detection by visual predators. In a second set of experiments, we observe D. pulicaria in cold and warm water, and in darkness and under light exposure. Overall, our ecological temperature is a good discriminator of the crustacean’s swimming behavior. PMID:26270537

  11. The effects of juvenile American shad planktivory on zooplankton production in Columbia River food webs

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.; Rondorf, Dennis W.

    2013-01-01

    Columbia River reservoirs support a large population of nonnative American Shad Alosa sapidissima that consume the zooplankton that native fishes also rely on. We hypothesized that the unprecedented biomass of juvenile American Shad in John Day Reservoir is capable of altering the zooplankton community if these fish consume a large portion of the zooplankton production. We derived taxon-specific estimates of zooplankton production using field data and a production model from the literature. Empirical daily ration was estimated for American Shad and expanded to population-level consumption using abundance and biomass data from hydroacoustic surveys. Daphnia spp. production was high in early summer but declined to near zero by September as shad abundance increased. American Shad sequentially consumed Daphnia spp., copepods, and Bosmina spp., which tracked the production trends of these taxa. American Shad evacuation rates ranged from 0.09 to 0.24/h, and daily rations ranged from 0.008 to 0.045 g·g−1·d−1 (dry weight) over all years. We observed peak American Shad biomass (45.2 kg/ha) in 1994, and daily consumption (1.6 kg/ha) approached 30% (5.3 kg/ha) of zooplankton production. On average, American Shad consumed 23.6% of the available zooplankton production (range, <1–83%). The changes in the zooplankton community are consistent with a top-down effect of planktivory by American Shad associated with their unprecedented biomass and consumption, but the effects are likely constrained by temperature, nutrient flux, and the seasonal production patterns of zooplankton in John Day Reservoir. American Shad add to the planktivory exerted by other species like Neomysis mercedis to reduce the capacity of the reservoir to support other planktivorous fishes. The introduction of American Shad and other nonnative species will continue to alter the food web in John Day Reservoir, potentially affecting native fishes, including Pacific salmon Oncorhynchus spp.

  12. High evolutionary potential of marine zooplankton

    PubMed Central

    Peijnenburg, Katja T C A; Goetze, Erica

    2013-01-01

    Abstract Open ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change. We present theoretical arguments that suggest plankton species may respond rapidly to selection on mildly beneficial mutations due to exceptionally large population size, and consider the circumstantial evidence that supports our inference that selection may be particularly important for these species. We also review all primary population genetic studies of open ocean zooplankton and show that genetic isolation can be achieved at the scale of gyre systems in open ocean habitats (100s to 1000s of km). Furthermore, population genetic structure often varies across planktonic taxa, and appears to be linked to the particular ecological requirements of the organism. In combination, these characteristics should facilitate adaptive evolution to distinct oceanographic habitats in the plankton. We conclude that marine zooplankton may be capable of rapid evolutionary as well as ecological responses to changing ocean conditions, and discuss the implications of this view. We further suggest two priority areas for future research to test our hypothesis of high evolutionary potential in open ocean zooplankton, which will require (1) assessing how pervasive selection is in driving population divergence and (2) rigorously quantifying the spatial and temporal scales of population differentiation in the open ocean. Recent attention has focused on the ecological responses of open ocean zooplankton to current global change, including range shifts and changing phenology. Here, we argue that marine zooplankton also are well poised for evolutionary responses to global change. PMID:24567838

  13. Latitudinal comparisons of equatorial Pacific zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Dam, H. G.; Le Borgne, R.; Zhang, X.

    Zooplankton biomass and rates of ingestion, egestion and production in the equatorial Pacific Ocean along 140°W and 180° exhibit maximum values in the High-Nutrient Low-Chlorophyll (HNLC) zone associated with equatorial upwelling (5°S-5°N) as compared to the more oligotrophic regions to the north and south. Zooplankton biomass and rates are not usually highest on the equator, but increase "downstream" of the upwelling center as the zooplankton populations exhibit a delayed response to enhanced phytoplankton production. The vertical distribution of zooplankton biomass in the equatorial HNLC area tends to be concentrated in surface waters and is more uniform with depth in oligotrophic regions to the north and south of the equatorial upwelling zone. In general, the amount of mesozooplankton (>200 μm) carbon biomass is approximately 25% of estimated phytoplankton biomass and 30% of bacterial biomass in the HNLC area of the equatorial Pacific Ocean. Zooplankton grazing on phytoplankton is low in the equatorial Pacific Ocean, generally <5% of the total chlorophyll-a standing stock grazed per day. Based on estimates of metabolic demand, it is apparent that zooplankton in the equatorial Pacific Ocean are omnivores, consuming primarily microzooplankton and detritus. Estimated zooplankton growth rates in the warm waters of the HNLC equatorial Pacific Ocean are high, ranging from 0.58 d -1 for 64-200 μm zooplankton to 0.08 d -1 for 1000-2000 μm zooplankton. Thus, the numerical and functional response of equatorial zooplankton to increases in phytoplankton production are more rapid than normally occurs in sub-tropical and temperate waters. Potential zooplankton fecal pellet production, estimated from metabolic demand, is approximately 1.6 times the estimated gravitational carbon flux at 150 m in the zone of equatorial upwelling (5°S-5°N) and 1.1 times the export flux in the more oligotrophic regions to the north and south. The active flux of carbon by diel migrant

  14. Modeling the direct and indirect effects of copper on phytoplankton-zooplankton interactions.

    PubMed

    Prosnier, Loïc; Loreau, Michel; Hulot, Florence D

    2015-05-01

    Predicting the effects of pollution at the community level is difficult because of the complex impacts of ecosystem dynamics and properties. To predict the effects of copper on a plant-herbivore interaction in a freshwater ecosystem, we built a model that focuses on the interaction between an alga, Scenedesmus sp., and a herbivore, Daphnia sp. The model assumes logistic growth for Scenedesmus and a type II functional response for Daphnia. Internal copper concentrations in Scenedesmus and Daphnia are calculated using a biodynamic model. We include two types of direct effects of copper on Scenedesmus and Daphnia that results from hormesis: a deficiency effect at low concentration and a toxic effect at high concentration. We perform a numerical analysis to predict the combined effects of copper and nutrient enrichment on the Scenedesmus-Daphnia interaction. Results show three types of outcomes depending on copper concentration. First, low (4 μg L(-1)) and high (50 μg L(-1)) copper concentrations cause deficiency and toxicity, respectively, leading to the extinction of all populations; for less extreme concentrations (between 4 and 5 μg L(-1) and between 16.5 and 50 μg L(-1)), only the consumer population becomes extinct. The two populations survive with intermediate concentrations. Second, when population dynamics present oscillations, copper has a stabilizing effect and reduces or suppresses oscillations. Third, copper, on account of its stabilizing effect, opposes the destabilizing effect of nutrient enrichment. Our model shows that (1) Daphnia is affected by copper at lower concentrations when community interactions are taken into account than when analyzed alone, and (2) counterintuitive effects may arise from the interaction between copper pollution and nutrient enrichment. Our model also suggests that single-value parameters such as NOEC and LOEC, which do not take community interactions into account to characterize pollutants effects, are unable to

  15. Zooplankton in the Arctic outflow

    NASA Astrophysics Data System (ADS)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence

  16. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population.

  17. Modeling Honey Bee Populations

    PubMed Central

    Torres, David J.; Ricoy, Ulises M.; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  18. Modeling Honey Bee Populations.

    PubMed

    Torres, David J; Ricoy, Ulises M; Roybal, Shanae

    2015-01-01

    Eusocial honey bee populations (Apis mellifera) employ an age stratification organization of egg, larvae, pupae, hive bees and foraging bees. Understanding the recent decline in honey bee colonies hinges on understanding the factors that impact each of these different age castes. We first perform an analysis of steady state bee populations given mortality rates within each bee caste and find that the honey bee colony is highly susceptible to hive and pupae mortality rates. Subsequently, we study transient bee population dynamics by building upon the modeling foundation established by Schmickl and Crailsheim and Khoury et al. Our transient model based on differential equations accounts for the effects of pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in the absence of sufficient hive bees, and the effects of food scarcity. We also conduct sensitivity studies and show the effects of parameter variations on the colony population. PMID:26148010

  19. Zooplankton mortality in 3D ecosystem modelling considering variable spatial-temporal fish consumptions in the North Sea

    NASA Astrophysics Data System (ADS)

    Maar, Marie; Rindorf, Anna; Møller, Eva Friis; Christensen, Asbjørn; Madsen, Kristine S.; van Deurs, Mikael

    2014-05-01

    We tested the feasibility of imposing mesozooplankton mortality into a 3D model based on estimated consumption rates of the dominant planktivorous fish in the North Sea-Kattegat area. The spatial biomass distribution of Atlantic herring (Clupea harengus), horse mackerel (Trachurus trachurus), Atlantic mackerel (Scomber scombrus), sandeel (Ammodytidae) and European sprat (Sprattus sprattus) was derived from quarterly scientific trawl surveys and Danish commercial catches. Spatio-temporal indices of mortality were created based on the estimated biomasses and ingestion rates from the literature. The fish larvae grazing pressure was obtained from a spatial, size-based larval community model. In this model, larvae, herring and sandeel were the most important fish predators on mesozooplankton, but these groups had different spatial and temporal (seasonal) distributions. Fish larvae were particularly dominant in the eastern and southern areas in early summer. Herring and sandeel had the highest consumption in the central and north-western areas and were more important in late summer. The fish index changed the perceived annual, seasonal and spatial patterns in modelled mesozooplankton biomass, production and mortality. In the present study, the index was kept relatively simple and can be further developed with respect to the description of fish as well carnivorous zooplankton ingestion rates. The data input required to create the fish index is (i) planktivorous fish stock biomasses and (ii) relative fish spawning distribution information and (iii) physics (ocean currents and temperatures) for the region and situation of interest. The fish index seems promising as a realistic mortality term for lower trophic levels in 3D ecosystem models in areas with available data on fish stocks to improve management of marine resources.

  20. If you see one, have you seen them all?: Community-wide effects of insecticide cross-resistance in zooplankton populations near and far from agriculture.

    PubMed

    Bendis, Randall J; Relyea, Rick A

    2016-08-01

    The worldwide use of pesticides has led to increases in agricultural yields by reducing crop losses. However, increased pesticide use has resulted in pesticide-resistant pest species and recent studies have discovered pesticide-resistance in non-target species living close to farms. Such increased tolerance not only affects the species, but can alter the entire food web. Given that some species can evolve not only resistance to a single pesticide, but also cross-resistance to other pesticides that share the same mode of action, one would predict that cross-resistance to pesticides would also have effects on the entire community and affect community stability. To address this hypothesis, we conducted an outdoor mesocosm experiment comprised of 200 identical aquatic communities with phytoplankton, periphyton, and leopard frog (Lithobates pipiens) tadpoles. To these communities, we added one of four Daphnia pulex populations that we previously discovered were either resistant or sensitive to the insecticide of chlorpyrifos as a result of living close to or far from agriculture, respectively. We then exposed the communities to either no insecticide or three different concentrations of AChE-inhibiting insecticides (chlorpyrifos, malathion or carbaryl) or sodium channel-inhibiting insecticides (permethrin or cypermethrin). We discovered that communities containing sensitive Daphnia pulex experienced phytoplankton blooms and subsequent cascades through all trophic groups including amphibians at moderate to high concentrations of all five insecticides. However, communities containing resistant D. pulex were buffered from these effects at low to moderate concentrations of all AChE-inhibiting insecticides, but were not buffered against the pyrethroid insecticides. These data suggest that a simple change in the population-level resistance of zooplankton to a single insecticide can have widespread consequences for community stability and that the effects can be extrapolated

  1. Microplastic ingestion by zooplankton.

    PubMed

    Cole, Matthew; Lindeque, Pennie; Fileman, Elaine; Halsband, Claudia; Goodhead, Rhys; Moger, Julian; Galloway, Tamara S

    2013-06-18

    Small plastic detritus, termed "microplastics", are a widespread and ubiquitous contaminant of marine ecosystems across the globe. Ingestion of microplastics by marine biota, including mussels, worms, fish, and seabirds, has been widely reported, but despite their vital ecological role in marine food-webs, the impact of microplastics on zooplankton remains under-researched. Here, we show that microplastics are ingested by, and may impact upon, zooplankton. We used bioimaging techniques to document ingestion, egestion, and adherence of microplastics in a range of zooplankton common to the northeast Atlantic, and employed feeding rate studies to determine the impact of plastic detritus on algal ingestion rates in copepods. Using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy we identified that thirteen zooplankton taxa had the capacity to ingest 1.7-30.6 μm polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Post-ingestion, copepods egested faecal pellets laden with microplastics. We further observed microplastics adhered to the external carapace and appendages of exposed zooplankton. Exposure of the copepod Centropages typicus to natural assemblages of algae with and without microplastics showed that 7.3 μm microplastics (>4000 mL(-1)) significantly decreased algal feeding. Our findings imply that marine microplastic debris can negatively impact upon zooplankton function and health.

  2. Microplastic ingestion by zooplankton.

    PubMed

    Cole, Matthew; Lindeque, Pennie; Fileman, Elaine; Halsband, Claudia; Goodhead, Rhys; Moger, Julian; Galloway, Tamara S

    2013-06-18

    Small plastic detritus, termed "microplastics", are a widespread and ubiquitous contaminant of marine ecosystems across the globe. Ingestion of microplastics by marine biota, including mussels, worms, fish, and seabirds, has been widely reported, but despite their vital ecological role in marine food-webs, the impact of microplastics on zooplankton remains under-researched. Here, we show that microplastics are ingested by, and may impact upon, zooplankton. We used bioimaging techniques to document ingestion, egestion, and adherence of microplastics in a range of zooplankton common to the northeast Atlantic, and employed feeding rate studies to determine the impact of plastic detritus on algal ingestion rates in copepods. Using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy we identified that thirteen zooplankton taxa had the capacity to ingest 1.7-30.6 μm polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Post-ingestion, copepods egested faecal pellets laden with microplastics. We further observed microplastics adhered to the external carapace and appendages of exposed zooplankton. Exposure of the copepod Centropages typicus to natural assemblages of algae with and without microplastics showed that 7.3 μm microplastics (>4000 mL(-1)) significantly decreased algal feeding. Our findings imply that marine microplastic debris can negatively impact upon zooplankton function and health. PMID:23692270

  3. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  4. Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication.

    PubMed

    Luo, Jinhuo

    2013-10-01

    In this paper, we derive and analyze a mathematical model for the interactions between phytoplankton and zooplankton in a periodic environment, in which the growth rate and the intrinsic carrying-capacity of phytoplankton are changing with respect to time and nutrient concentration. A threshold value: "Predator's average growth rate" is introduced and it is proved that the phytoplankton-zooplankton ecosystem is permanent (both populations survive cronically) and possesses a periodic solution if and only if the value is positive. We use TP (Total Phosphorus) concentration to mark the degree of eutrophication. Based on experimental data, we fit the growth rate function and the environmental carrying capacity function with temperature and nutrient concentration as independent variables. Using measured data of temperature on water bodies we fit a periodic temperature function of time, and this leads the growth rate and intrinsic carrying-capacity of phytoplankton to be periodic functions of time. Thus we establish a periodic system with TP concentration as parameter. The simulation results reveal a high diversity of population levels of the ecosystem that are mainly sensitive to TP concentration and the death-rate of zooplankton. It illustrates that the eruption of algal bloom is mainly resulted from the increasing of nutrient concentration while zooplankton only plays a role to alleviate the scale of algal bloom, which might be used to explain the mechanism of algal bloom occurrence in many natural waters. What is more, our results provide a better understanding of the traditional manipulation method.

  5. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  6. The ICES Working Group on Zooplankton Ecology: Accomplishments of the first 25 years

    NASA Astrophysics Data System (ADS)

    Wiebe, Peter H.; Harris, Roger; Gislason, Astthor; Margonski, Piotr; Skjoldal, Hein Rune; Benfield, Mark; Hay, Steve; O'Brien, Todd; Valdés, Luis

    2016-02-01

    The ICES Study Group on Zooplankton Ecology was created in 1991 to address issues of current and future concern within the field of zooplankton ecology. Within three years it became the ICES Working Group on Zooplankton Ecology (ICES WGZE) and this unique group in the world's oceanographic community has now been active for 25 years. This article reviews and synthesizes the products, and major accomplishments of the group. Achievements of the group, including the Zooplankton Methodology Manual, the Zooplankton Status Reports, and the International Zooplankton Symposia, have had an important impact on the wider field. Among the future issues that remain to be addressed by the group are the assessment of exploratory fisheries on zooplankton and micronekton species; further development of the zooplankton time-series; compilation and integration of allometric relationships for zooplankton species, and evaluation of new methodologies for the study of zooplankton distribution, abundance, physiology, and genetics. Marine science is an increasingly global undertaking and groups such as the ICES WGZE will continue to be essential to the advancement of understanding of zooplankton community structure and population dynamics in the world's oceans.

  7. Population modeling for furbearer management

    USGS Publications Warehouse

    Johnson, D.H.; Sanderson, G.C.

    1982-01-01

    The management of furbearers has become increasingly complex as greater demands are placed on their populations. Correspondingly, needs for information to use in management have increased. Inadequate information leads the manager to err on the conservative side; unless the size of the 'harvestable surplus' is known, the population cannot be fully exploited. Conversely, information beyond what is needed becomes an unaffordable luxury. Population modeling has proven useful for organizing information on numerous game animals. Modeling serves to determine if information of the right kind and proper amount is being gathered; systematizes data collection, data interpretation, and decision making; and permits more effective management and better utilization of game populations. This report briefly reviews the principles of population modeling, describes what has been learned from previous modeling efforts on furbearers, and outlines the potential role of population modeling in furbearer management.

  8. Rapid local adaptation mediates zooplankton community assembly in experimental mesocosms.

    PubMed

    Pantel, Jelena H; Duvivier, Cathy; Meester, Luc De

    2015-10-01

    Adaptive evolution can occur over similar timescales as ecological processes such as community assembly, but its particular effects on community assembly and structure and their magnitude are poorly understood. In experimental evolution trials, Daphnia magna were exposed to varying environments (presence and absence of fish and artificial macrophytes) for 2 months. Then, in a common gardening experiment, we compared zooplankton community composition when either experimentally adapted or D. magna from the original population were present. Local adaptation of D. magna significantly altered zooplankton community composition, leading to a suppression of abundances for some zooplankton taxa and facilitation for others. The effect size of D. magna adaptation was similar to that of adding fish or macrophytes to mesocosms, two important drivers of zooplankton community structure. Our results suggest that substantial amounts of variation in community composition in natural systems may be unexplained if evolutionary dynamics are ignored. PMID:26251339

  9. Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check

    PubMed Central

    Dubovskaya, Olga P.; Tang, Kam W.; Gladyshev, Michail I.; Kirillin, Georgiy; Buseva, Zhanna; Kasprzak, Peter; Tolomeev, Aleksandr P.; Grossart, Hans-Peter

    2015-01-01

    Background Mortality is a main driver in zooplankton population biology but it is poorly constrained in models that describe zooplankton population dynamics, food web interactions and nutrient dynamics. Mortality due to non-predation factors is often ignored even though anecdotal evidence of non-predation mass mortality of zooplankton has been reported repeatedly. One way to estimate non-predation mortality rate is to measure the removal rate of carcasses, for which sinking is the primary removal mechanism especially in quiescent shallow water bodies. Objectives and Results We used sediment traps to quantify in situ carcass sinking velocity and non-predation mortality rate on eight consecutive days in 2013 for the cladoceran Bosmina longirostris in the oligo-mesotrophic Lake Stechlin; the outcomes were compared against estimates derived from in vitro carcass sinking velocity measurements and an empirical model correcting in vitro sinking velocity for turbulence resuspension and microbial decomposition of carcasses. Our results show that the latter two approaches produced unrealistically high mortality rates of 0.58-1.04 d-1, whereas the sediment trap approach, when used properly, yielded a mortality rate estimate of 0.015 d-1, which is more consistent with concurrent population abundance data and comparable to physiological death rate from the literature. Ecological implications Zooplankton carcasses may be exposed to water column microbes for days before entering the benthos; therefore, non-predation mortality affects not only zooplankton population dynamics but also microbial and benthic food webs. This would be particularly important for carbon and nitrogen cycles in systems where recurring mid-summer decline of zooplankton population due to non-predation mortality is observed. PMID:26146995

  10. Modeling Population Growth and Extinction

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2009-01-01

    The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…

  11. Modeling sandhill crane population dynamics

    USGS Publications Warehouse

    Johnson, D.H.

    1979-01-01

    The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.

  12. Optimal Foraging by Zooplankton

    NASA Astrophysics Data System (ADS)

    Garcia, Ricardo; Moss, Frank

    2007-03-01

    We describe experiments with several species of the zooplankton, Daphnia, while foraging for food. They move in sequences: hop-pause-turn-hop etc. While we have recorded hop lengths, hop times, pause times and turning angles, our focus is on histograms representing the distributions of the turning angles. We find that different species, including adults and juveniles, move with similar turning angle distributions described by exponential functions. Random walk simulations and a theory based on active Brownian particles indicate a maximum in food gathering efficiency at an optimal width of the turning angle distribution. Foraging takes place within a fixed size food patch during a fixed time. We hypothesize that the exponential distributions were selected for survival over evolutionary time scales.

  13. The zooplankton of the north sea

    NASA Astrophysics Data System (ADS)

    Fransz, H. G.; Colebrook, J. M.; Gamble, J. C.; Krause, M.

    This review summarizes available knowledge on herbivorous and omnivorous zooplankton of the North Sea. After an introductory chapter on history and general approach of zooplankton studies, the four main contributions review distribution patterns, cycles and trends in temporal variation, trophic interactions and population dyamics and production. The distribution of zooplankton species in relation to hydrography and origin of watermasses is described for copepods. It highlights the influence of Atlantic Ocean influx from the northwest, which to a large extent dominates the species composition and its seasonal variation in the summer-stratified waters. In contrast, the more neritic communities in the southeast region mainly depend on the local populations of the species abundant in coastal mixed waters. The chapter on cycles and trends in temporal variation discusses the differences in seasonal variation with respect to species, area, and community structure in terms of herbivores, omnivores and carnivores. The year-to-year changes are considered as dependent on the overwintering stocks and strategies. Patterns in long-term variation appearing from long-term data series are related to climatic changes, leading to two hypotheses with respect to the effects of changes in wind regime. The chapter on trophic interactions deals with the utilization of primary particulate production by planktonic herbivores and its variation in time and space. Emphasis is put on differences between north and south, which are partly due to differences in species composition, community structure and seasonal variation already discussed in foregoing chapters. The various aspects of copepod grazing are reviewed, but also the role of microzooplankton as both grazers and food organisms is brought to attention. The last chapter deals with population dynamics and production of key species. Seasonal fluctuations in abundance and biomass are discussed and related to underlying population processes

  14. Rotenone Decreases Hatching Success in Brine Shrimp Embryos by Blocking Development: Implications for Zooplankton Egg Banks

    PubMed Central

    Hutchison, Evan R.; Neumeyer, Courtney H.; Gunderson, Matthew D.

    2016-01-01

    While many zooplankton species recover quickly after the treatment of water resources with the piscicide, rotenone, some fail to reach pretreatment population density or, in rare cases, do not reappear at all. The variable impact of rotenone on zooplankton populations could stem from differences in the capacity of species to switch entirely to anaerobic catabolic pathways in the presence of rotenone, which blocks mitochondrial electron transport. Alternatively, variable responses among species could originate from differences in permeability of dormant life-stages to lipophilic chemicals like rotenone. The purpose of the present study was to determine the effects of rotenone on development, emergence and hatching of zooplankton embryos that lack both the anaerobic capacity to develop in the presence of rotenone and a permeability barrier to prevent the entry of rotenone during dormancy. Post-diapause embryos of the brine shrimp, Artemia franciscana, were employed as a model system, because they are permeable to lipophilic compounds when dechorionated and require aerobic conditions to support development. Early development in this species is also well characterized in the literature. Brine shrimp embryos were exposed to rotenone while development was either slowed by chilling or suspended by anoxia. Development, emergence and hatching were then observed in rotenone-free artificial seawater. The data presented demonstrate that rotenone freely diffuses across the embryonic cuticle in a matter of hours, and prevents development and emergence after brief exposures to ecologically relevant concentrations (0.025–0.5 mg L-1) of the piscicide. Neither the removal of rotenone from the environment, nor the removal of embryonic water with a hypertonic solution, are sufficient to reverse this block on development and emergence. These data indicate that rotenone could impair recruitment from egg banks for species of zooplankton that lack both an embryonic barrier to the entry

  15. Fission Models of Population Variability

    PubMed Central

    Thompson, E. A.

    1979-01-01

    Most models in population genetics are models of allele frequency, making implicit or explicit assumptions of equilibrium or constant population size. In recent papers, we have attempted to develop more appropriate models for the analysis of rare variant data in South American Indian tribes; these are branching process models for the total number of replicates of a variant allele. The spatial distribution of a variant may convey information about its history and characteristics, and this paper extends previous models to take this factor into consideration. A model of fission into subdivisions is superimposed on the previous branching process, and variation between subdivisions is considered. The case where fission is nonrandom and the locations of like alleles are initially positively associated, as would happen were a tribal cluster or village to split on familial lines, is also analyzed. The statistics developed are applied to Yanomama Indian data on rare genetic variants. Due to insufficient time depth, no definitive new inferences can be drawn, but the analysis shows that this model provides results consistent with previous conclusions, and demonstrates the general type of question that may be answered by the approach taken here. In particular, striking confirmation of a higher-than-average growth rate, and hence smaller-than-previously-estimated age, is obtained for the Yan2 serum albumen variant. PMID:535728

  16. Biodiversity and ecosystem function in the Gulf of Maine: pattern and role of zooplankton and pelagic nekton.

    PubMed

    Johnson, Catherine L; Runge, Jeffrey A; Curtis, K Alexandra; Durbin, Edward G; Hare, Jonathan A; Incze, Lewis S; Link, Jason S; Melvin, Gary D; O'Brien, Todd D; Van Guelpen, Lou

    2011-01-01

    This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to inter annual climate variation than zoo plankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown" but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately

  17. Biodiversity and ecosystem function in the Gulf of Maine: pattern and role of zooplankton and pelagic nekton.

    PubMed

    Johnson, Catherine L; Runge, Jeffrey A; Curtis, K Alexandra; Durbin, Edward G; Hare, Jonathan A; Incze, Lewis S; Link, Jason S; Melvin, Gary D; O'Brien, Todd D; Van Guelpen, Lou

    2011-01-31

    This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to inter annual climate variation than zoo plankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown" but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately

  18. Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics

    PubMed Central

    Merten, Christoph A.; Arendt, Detlev

    2015-01-01

    Global environmental change significantly affects marine species composition. However, analyzing the impact of these changes on marine zooplankton communities was so far mostly limited to assessing lethal doses through mortality assays and hence did not allow a direct assessment of the preferred conditions, or preferendum. Here, we use a microfluidic device to characterize individual behavior of actively swimming zooplankton, and to quantitatively determine their ecological preferendum. For the annelid zooplankton model Platynereis dumerilii we observe a broader pH preferendum than for the copepod Euterpina acutifrons, and reveal previously unrecognized sub-populations with different pH preferenda. For Platynereis, the minimum concentration difference required to elicit a response (responsiveness) is ~1 μM for H+ and ~13.7 mM for NaCl. Furthermore, using laser ablations we show that olfactomedin-expressing sensory cells mediate chemical responsiveness in the Platynereis foregut. Taken together, our microfluidic approach allows precise assessment and functional understanding of environmental perception on planktonic behaviour. PMID:26517120

  19. Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics.

    PubMed

    Ramanathan, Nirupama; Simakov, Oleg; Merten, Christoph A; Arendt, Detlev

    2015-01-01

    Global environmental change significantly affects marine species composition. However, analyzing the impact of these changes on marine zooplankton communities was so far mostly limited to assessing lethal doses through mortality assays and hence did not allow a direct assessment of the preferred conditions, or preferendum. Here, we use a microfluidic device to characterize individual behavior of actively swimming zooplankton, and to quantitatively determine their ecological preferendum. For the annelid zooplankton model Platynereis dumerilii we observe a broader pH preferendum than for the copepod Euterpina acutifrons, and reveal previously unrecognized sub-populations with different pH preferenda. For Platynereis, the minimum concentration difference required to elicit a response (responsiveness) is ~1 μM for H+ and ~13.7 mM for NaCl. Furthermore, using laser ablations we show that olfactomedin-expressing sensory cells mediate chemical responsiveness in the Platynereis foregut. Taken together, our microfluidic approach allows precise assessment and functional understanding of environmental perception on planktonic behaviour. PMID:26517120

  20. Modeling Political Populations with Bacteria

    NASA Astrophysics Data System (ADS)

    Cleveland, Chris; Liao, David

    2011-03-01

    Results from lattice-based simulations of micro-environments with heterogeneous nutrient resources reveal that competition between wild-type and GASP rpoS819 strains of E. Coli offers mutual benefit, particularly in nutrient deprived regions. Our computational model spatially maps bacteria populations and energy sources onto a set of 3D lattices that collectively resemble the topology of North America. By implementing Wright-Fishcer re- production into a probabilistic leap-frog scheme, we observe populations of wild-type and GASP rpoS819 cells compete for resources and, yet, aid each other's long term survival. The connection to how spatial political ideologies map in a similar way is discussed.

  1. Modelling nova populations in galaxies

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Liang; Woods, T. E.; Yungelson, L. R.; Gilfanov, M.; Han, Zhanwen

    2016-05-01

    Theoretical modelling of the evolution of classical and recurrent novae plays an important role in studies of binary evolution, nucleosynthesis and accretion physics. However, from a theoretical perspective the observed statistical properties of novae remain poorly understood. In this paper, we have produced model populations of novae using a hybrid binary population synthesis approach for differing star formation histories (SFHs): a starburst case (elliptical-like galaxies), a constant star formation rate case (spiral-like galaxies) and a composite case (in line with the inferred SFH for M31). We found that the nova rate at 10 Gyr in an elliptical-like galaxy is ˜10-20 times smaller than a spiral-like galaxy with the same mass. The majority of novae in elliptical-like galaxies at the present epoch are characterized by low-mass white dwarfs (WDs), long decay times, relatively faint absolute magnitudes and long recurrence periods. In contrast, the majority of novae in spiral-like galaxies at 10 Gyr have massive WDs, short decay times, are relatively bright and have short recurrence periods. The mass-loss time distribution for novae in our M31-like galaxy is in agreement with observational data for Andromeda. However, it is possible that we underestimate the number of bright novae in our model. This may arise in part due to the present uncertainties in the appropriate bolometric correction for novae.

  2. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish

    USGS Publications Warehouse

    Bunnell, D.B.; Davis, B.M.; Warner, D.M.; Chriscinske, M.A.; Roseman, E.F.

    2011-01-01

    Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91-m depth sites in northern Lake Huron, U.S.A., for each month, May-October 2007. Daily consumption was compared to daily zooplankton production. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant - eating only 3% of all zooplankton consumed. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi-, meta- and

  3. Mechanism of phototaxis in marine zooplankton.

    PubMed

    Jékely, Gáspár; Colombelli, Julien; Hausen, Harald; Guy, Keren; Stelzer, Ernst; Nédélec, François; Arendt, Detlev

    2008-11-20

    The simplest animal eyes are eyespots composed of two cells only: a photoreceptor and a shading pigment cell. They resemble Darwin's 'proto-eyes', considered to be the first eyes to appear in animal evolution. Eyespots cannot form images but enable the animal to sense the direction of light. They are characteristic for the zooplankton larvae of marine invertebrates and are thought to mediate larval swimming towards the light. Phototaxis of invertebrate larvae contributes to the vertical migration of marine plankton, which is thought to represent the biggest biomass transport on Earth. Yet, despite its ecological and evolutionary importance, the mechanism by which eyespots regulate phototaxis is poorly understood. Here we show how simple eyespots in marine zooplankton mediate phototactic swimming, using the marine annelid Platynereis dumerilii as a model. We find that the selective illumination of one eyespot changes the beating of adjacent cilia by direct cholinergic innervation resulting in locally reduced water flow. Computer simulations of larval swimming show that these local effects are sufficient to direct the helical swimming trajectories towards the light. The computer model also shows that axial rotation of the larval body is essential for phototaxis and that helical swimming increases the precision of navigation. These results provide, to our knowledge, the first mechanistic understanding of phototaxis in a marine zooplankton larva and show how simple eyespots regulate it. We propose that the underlying direct coupling of light sensing and ciliary locomotor control was a principal feature of the proto-eye and an important landmark in the evolution of animal eyes. PMID:19020621

  4. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Buitenhuis, E. T.; Moriarty, R.; Alvain, S.; Aumont, O.; Bopp, L.; Chollet, S.; Enright, C.; Franklin, D. J.; Geider, R. J.; Harrison, S. P.; Hirst, A.; Larsen, S.; Legendre, L.; Platt, T.; Prentice, I. C.; Rivkin, R. B.; Sathyendranath, S.; Stephens, N.; Vogt, M.; Sailley, S.; Vallina, S. M.

    2015-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  5. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the "Testing Matrix Models" working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  6. Matrix population models from 20 studies of perennial plant populations

    USGS Publications Warehouse

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  7. Does dispersal limitation impact the recovery of zooplankton communities damaged by a regional stressor?

    PubMed

    Gray, Derek K; Arnott, Shelley E

    2011-06-01

    The acidification and ongoing pH recovery of lakes in Killarney Provincial Park, Canada, provide a unique opportunity to increase our understanding of the role of dispersal as communities respond to environmental change. Time lags in community recovery following pH increases in acidified lakes have typically been attributed to local factors; however, no studies have been conducted to determine if colonist availability could also play a role. Moreover, the rates and mechanisms of dispersal to recovering lakes are poorly understood. In this study, we sought to determine if dispersal limitation could impede the recovery of zooplankton communities affected by a regional stressor. To achieve this objective, we used a combination of empirical data collection along with spatial modeling and variation partitioning techniques. Data were collected by measuring dispersal to four recovering lakes in Killarney Park. Dispersal traps were placed next to lakes to measure immigration overland, drift nets were used to measure immigration via streams, and in situ emergence traps were used to quantify immigration from historically deposited resting eggs. Documented dispersal levels were then compared with the theoretical critical density required for reproduction (N(c)) to determine if adequate numbers were dispersing to establish populations of acid-sensitive species in recovering lakes. Spatial modeling and variation partitioning were conducted using community and physical/chemical data for 45 park lakes that were collected in 1972-1973, 1990, and 2005. Field data demonstrated that a variety of zooplankton species were dispersing to recovering lakes through streams and the egg bank, but few individuals were collected dispersing overland. Although we identified 24 species of zooplankton dispersing, only six species absent from the communities of our study lakes were identified from our traps, and two of these species did not disperse in high enough numbers to surpass N(c). Local

  8. Does dispersal limitation impact the recovery of zooplankton communities damaged by a regional stressor?

    PubMed

    Gray, Derek K; Arnott, Shelley E

    2011-06-01

    The acidification and ongoing pH recovery of lakes in Killarney Provincial Park, Canada, provide a unique opportunity to increase our understanding of the role of dispersal as communities respond to environmental change. Time lags in community recovery following pH increases in acidified lakes have typically been attributed to local factors; however, no studies have been conducted to determine if colonist availability could also play a role. Moreover, the rates and mechanisms of dispersal to recovering lakes are poorly understood. In this study, we sought to determine if dispersal limitation could impede the recovery of zooplankton communities affected by a regional stressor. To achieve this objective, we used a combination of empirical data collection along with spatial modeling and variation partitioning techniques. Data were collected by measuring dispersal to four recovering lakes in Killarney Park. Dispersal traps were placed next to lakes to measure immigration overland, drift nets were used to measure immigration via streams, and in situ emergence traps were used to quantify immigration from historically deposited resting eggs. Documented dispersal levels were then compared with the theoretical critical density required for reproduction (N(c)) to determine if adequate numbers were dispersing to establish populations of acid-sensitive species in recovering lakes. Spatial modeling and variation partitioning were conducted using community and physical/chemical data for 45 park lakes that were collected in 1972-1973, 1990, and 2005. Field data demonstrated that a variety of zooplankton species were dispersing to recovering lakes through streams and the egg bank, but few individuals were collected dispersing overland. Although we identified 24 species of zooplankton dispersing, only six species absent from the communities of our study lakes were identified from our traps, and two of these species did not disperse in high enough numbers to surpass N(c). Local

  9. Modeling population dynamics: A quantile approach.

    PubMed

    Chavas, Jean-Paul

    2015-04-01

    The paper investigates the modeling of population dynamics, both conceptually and empirically. It presents a reduced form representation that provides a flexible characterization of population dynamics. It leads to the specification of a threshold quantile autoregression (TQAR) model, which captures nonlinear dynamics by allowing lag effects to vary across quantiles of the distribution as well as with previous population levels. The usefulness of the model is illustrated in an application to the dynamics of lynx population. We find statistical evidence that the quantile autoregression parameters vary across quantiles (thus rejecting the AR model as well as the TAR model) as well as with past populations (thus rejecting the quantile autoregression QAR model). The results document the nature of dynamics and cycle in the lynx population over time. They show how both the period of the cycle and the speed of population adjustment vary with population level and environmental conditions. PMID:25661501

  10. Amerciamysis bahia Stochastic Matrix Population Model for Laboratory Populations

    EPA Science Inventory

    The population model described here is a stochastic, density-independent matrix model for integrating the effects of toxicants on survival and reproduction of the marine invertebrate, Americamysis bahia. The model was constructed using Microsoft® Excel 2003. The focus of the mode...

  11. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  12. Algal viruses hitchhiking on zooplankton across phytoplankton blooms

    PubMed Central

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical ‘engines’ of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings. PMID:26479489

  13. Algal viruses hitchhiking on zooplankton across phytoplankton blooms.

    PubMed

    Frada, Miguel J; Vardi, Assaf

    2015-01-01

    Viruses infecting marine phytoplankton are key biogeochemical 'engines' of the oceans, regulating the dynamics of algal populations and the fate of their extensive blooms. In addition they are important ecological and evolutionary drivers of microbial diversification. Yet, little is known about mechanisms influencing viral dispersal in aquatic systems, enabling the rapid infection and demise of vast phytoplankton blooms. In a recent study we showed that migrating zooplankton as copepods that graze on marine phytoplankton can act as transmission vectors for algal viruses. We demonstrated that these grazers can concentrate virions through topical adsorption and by ingesting infected cells and then releasing back to the medium, via detachment or defecation, high viral titers that readily infect host populations. We proposed that this zooplankton-driven process can potentially boost viral dispersal over wide oceanic scales and enhance bloom termination. Here, we highlight key results and further discuss the ecological and evolutionary consequences of our findings.

  14. [The population problem in global modeling].

    PubMed

    Naidenova, P

    1986-01-01

    Developments during the past 15 years in population modeling are critically reviewed. The author notes that while population variables were treated as endogenous in earlier models developed by the Club of Rome, later models have treated such variables as exogenous. The need to link demographic factors to structural changes and economic growth, in accordance with Marxist-Leninist population theory, is noted. (SUMMARY IN ENG AND RUS) PMID:12280533

  15. Habitat Heterogeneity Determines Climate Impact on Zooplankton Community Structure and Dynamics

    PubMed Central

    Otto, Saskia A.; Diekmann, Rabea; Flinkman, Juha; Kornilovs, Georgs; Möllmann, Christian

    2014-01-01

    Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such as temperature, salinity and oxygen that are closely linked to atmospheric conditions. Little attention has been given, however, to the role of habitat heterogeneity in modulating the response of animal communities to external climate forcing. Here we investigate the long-term dynamics of Acartia spp., Temora longicornis, and Pseudocalanus acuspes, three dominant zooplankton species inhabiting different pelagic habitats in the Central Baltic Sea (CBS). We use the three copepods as indicator species for changes in the CBS zooplankton community and apply non-linear statistical modeling techniques to compare spatial population trends and to identify their drivers. We demonstrate that effects of climate variability and change depend strongly on species-specific habitat utilization, being more direct and pronounced at the upper water layer. We propose that the differential functional response to climate-related drivers in relation to strong habitat segregation is due to alterations of the species’ environmental niches. We stress the importance of understanding how anticipated climate change will affect ecological niches and habitats in order to project spatio-temporal changes in species abundance and distribution. PMID:24614110

  16. Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics.

    PubMed

    Otto, Saskia A; Diekmann, Rabea; Flinkman, Juha; Kornilovs, Georgs; Möllmann, Christian

    2014-01-01

    Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such as temperature, salinity and oxygen that are closely linked to atmospheric conditions. Little attention has been given, however, to the role of habitat heterogeneity in modulating the response of animal communities to external climate forcing. Here we investigate the long-term dynamics of Acartia spp., Temora longicornis, and Pseudocalanus acuspes, three dominant zooplankton species inhabiting different pelagic habitats in the Central Baltic Sea (CBS). We use the three copepods as indicator species for changes in the CBS zooplankton community and apply non-linear statistical modeling techniques to compare spatial population trends and to identify their drivers. We demonstrate that effects of climate variability and change depend strongly on species-specific habitat utilization, being more direct and pronounced at the upper water layer. We propose that the differential functional response to climate-related drivers in relation to strong habitat segregation is due to alterations of the species' environmental niches. We stress the importance of understanding how anticipated climate change will affect ecological niches and habitats in order to project spatio-temporal changes in species abundance and distribution.

  17. Mathematical Modeling of Extinction of Inhomogeneous Populations

    PubMed Central

    Karev, G.P.; Kareva, I.

    2016-01-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  18. Stochastic models of population extinction.

    PubMed

    Ovaskainen, Otso; Meerson, Baruch

    2010-11-01

    Theoretical ecologists have long sought to understand how the persistence of populations depends on biotic and abiotic factors. Classical work showed that demographic stochasticity causes the mean time to extinction to increase exponentially with population size, whereas variation in environmental conditions can lead to a power-law scaling. Recent work has focused especially on the influence of the autocorrelation structure ('color') of environmental noise. In theoretical physics, there is a burst of research activity in analyzing large fluctuations in stochastic population dynamics. This research provides powerful tools for determining extinction times and characterizing the pathway to extinction. It yields, therefore, sharp insights into extinction processes and has great potential for further applications in theoretical biology.

  19. What Determines Seasonal and Interannual Variability of Phytoplankton and Zooplankton in Strongly Estuarine Systems?

    NASA Astrophysics Data System (ADS)

    Li, M.; Gargett, A.; Denman, K.

    2000-04-01

    A coupled biological-physical box model is developed to investigate the seasonal and interannual variability of marine plankton in strongly estuarine systems such as the semi-enclosed estuary of the Strait of Georgia and Juan de Fuca Strait on the west coast of Canada. The estuarine circulation not only supplies nutrients to the euphotic layer but also transports plankton between the straits, causing an asymmetrical distribution of plankton biomass in the estuary. A specific set of biological parameters can be chosen so that the model predicts a large spring bloom and nutrient limitation in the Strait of Georgia but high nutrient levels and no spring bloom in the Juan de Fuca Strait, in agreement with observations. However, as the plankton growth and mortality rate parameters are varied over a realistic range, the plankton also exhibit two other ecosystem behaviours: one with a large spring bloom in the Juan de Fuca Strait and one with a low zooplankton stock in the Strait of Georgia. To determine possible causes for observed interannual variability of the planktonic ecosystem, we have run the coupled biophysical model with stochastic variation of the Fraser River runoff and the shelf salinity. The plankton populations are found to be insensitive to the interannual variability in the estuarine circulation. It is suggested that marine phytoplankton and zooplankton might respond more significantly to climate variability (or change) through changes in their biological rate parameters.

  20. Zooplankton data: Vertical distributions of zooplankton in the Norweigian and Greenland Seas during summer, 1989

    SciTech Connect

    Lane, P.V.Z.; Smith, S.L.; Schwarting, E.M.

    1993-08-01

    Recent studies of zooplankton populations in the Greenland Sea have focused on processes at the Marginal Ice Zone (MIZ) and the areas immediately adjacent to it under the ice and in open water. These studies have shown a relatively short period of intense secondary productivity which is closely linked temporally and spatially to phytoplankton blooms occurring near the ice edge in spring and early summer. During the summer of 1989 we participated in a project focusing on benthic and water column processes in the basins of the Norwegian and Greenland Seas. This study allowed us to compare biological processes at the MIZ with those occurring in the open waters of the Greenland Sea, and to compare processes at both of these locations with those in the Norwegian Sea. The data presented in this report are the results of zooplankton net tows covering the upper 1000 meters of the water column over the Norwegian Sea basin and the Greenland Sea basin, and the upper 500 meters of open water adjacent to the MIZ in the Greenland Sea. Sampling was conducted between 12 and 29 July 1989.

  1. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  2. Population Modelling with M&M's[R

    ERIC Educational Resources Information Center

    Winkel, Brian

    2009-01-01

    Several activities in which population dynamics can be modelled by tossing M&M's[R] candy are presented. Physical activities involving M&M's[R] can be modelled by difference equations and several population phenomena, including death and immigration, are studied. (Contains 1 note.)

  3. Validation of an Eulerian population model for the marine copepod Calanus finmarchicus in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Alver, Morten Omholt; Broch, Ole Jacob; Melle, Webjørn; Bagøien, Espen; Slagstad, Dag

    2016-08-01

    Calanus finmarchicus is an important zooplankton species in the Norwegian Sea, as a dominant food organism for pelagic fish larvae, and a potentially large source of marine lipids and proteins. Its position in the marine food web also makes it an important model species in assessing the risk posed by oil spills in the Norwegian and Arctic Seas. In this study, an Eulerian population model for C.finmarchicus, coupled to the physical and ecological model SINMOD, is presented. The model includes the full life cycle of C. finmarchicus with a representation of all developmental stages. The model has been validated against field measurements made in different areas of the Norwegian Sea in 1997 and 1998. The model displays geographical and temporal distributions of development stages that is in line with observed patterns. When comparing time series for selected regions, we see a high degree of variability both in the field samples and model output. On average, the model deviations are near half of the summed variability of the field data and model estimates. The model has applications within assessment of ecological production, and the potential for harvesting in the Norwegian and Arctic Seas, but in combination with other models, also for the assessment of ecological effects of oil spills and other types of pollution.

  4. A new model for care population management.

    PubMed

    Williams, Jeni

    2013-03-01

    Steps toward building a population management model of care should include: Identifying the population that would be cared for through a population management initiative. Conducting an actuarial analysis for this population, reviewing historical utilization and cost data and projecting changes in utilization. Investing in data infrastructure that supports the exchange of data among providers and with payers. Determining potential exposure to downside risk and organizational capacity to assume this risk. Experimenting with payment models and care delivery approaches Hiring care coordinators to manage care for high-risk patients.

  5. Feeding and production of zooplankton in the Catalan Sea (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Saiz, Enric; Calbet, Albert; Atienza, Dacha; Alcaraz, Miquel

    2007-08-01

    Zooplankton are key components of the structure and functioning of marine planktonic food webs. They are the main link of planktonic primary production towards top pelagic consumer levels (fish), and play a relevant role on the nutrient recycling in the water column and on the export of particulate matter out of the photic zone. In this paper, we review the present knowledge on the feeding and production of zooplankton in the Catalan Sea (NW Mediterranean), with special emphasis on copepods. Feeding of zooplankton in the Catalan Sea appears typically food limited, with average daily rations on a yearly basis in the order of 48% body C d -1. Heterotrophic prey constitute a relevant fraction of their diet, as an alternative to the scarce phytoplankton in the area. From a structural point of view, the trophic impact and control of their prey populations are low on standing stocks but, at certain times, zooplankton can exert a meaningful effect on their prey production. Regarding zooplankton production, the available estimates of growth rates in the area are based on the egg production rate of copepods. Egg production rates appear to be limited, especially in summer. Tentative estimates of copepod production in the area are in the order of 20-40 mg C m -2 d -1. In conclusion, this review confirms that the oligotrophic character of the NW Mediterranean constrains the feeding activity and production of zooplankton.

  6. Disentangling the mechanisms behind climate effects on zooplankton.

    PubMed

    Kvile, Kristina Ø; Langangen, Øystein; Prokopchuk, Irina; Stenseth, Nils C; Stige, Leif C

    2016-02-16

    Understanding how climate influences ecosystems is complicated by the many correlated and interrelated impacting factors. Here we quantify climate effects on Calanus finmarchicus in the northeastern Norwegian Sea and southwestern Barents Sea. By combining oceanographic drift models and statistical analyses of field data from 1959 to 1993 and investigating effects across trophic levels, we are able to elucidate pathways by which climate influences zooplankton. The results show that both chlorophyll biomass in spring and C. finmarchicus biomass in summer relate positively to a combination of shallow mixed layer depth and increased wind in spring, suggesting that C. finmarchicus biomass in summer is influenced by bottom-up effects of food availability. Furthermore, spatially resolved C. finmarchicus biomass in summer is linked to favorable transport from warmer, core areas to the south. However, increased mean temperature in spring does not lead to increased C. finmarchicus biomass in summer. Rather, spring biomass is generally higher, but population growth from spring to summer is lower, after a warm compared with a cold spring. Our study illustrates how improved understanding of climate effects can be obtained when different datasets and different methods are combined in a unified approach.

  7. Disentangling the mechanisms behind climate effects on zooplankton

    PubMed Central

    Kvile, Kristina Ø.; Langangen, Øystein; Prokopchuk, Irina; Stenseth, Nils C.; Stige, Leif C.

    2016-01-01

    Understanding how climate influences ecosystems is complicated by the many correlated and interrelated impacting factors. Here we quantify climate effects on Calanus finmarchicus in the northeastern Norwegian Sea and southwestern Barents Sea. By combining oceanographic drift models and statistical analyses of field data from 1959 to 1993 and investigating effects across trophic levels, we are able to elucidate pathways by which climate influences zooplankton. The results show that both chlorophyll biomass in spring and C. finmarchicus biomass in summer relate positively to a combination of shallow mixed layer depth and increased wind in spring, suggesting that C. finmarchicus biomass in summer is influenced by bottom-up effects of food availability. Furthermore, spatially resolved C. finmarchicus biomass in summer is linked to favorable transport from warmer, core areas to the south. However, increased mean temperature in spring does not lead to increased C. finmarchicus biomass in summer. Rather, spring biomass is generally higher, but population growth from spring to summer is lower, after a warm compared with a cold spring. Our study illustrates how improved understanding of climate effects can be obtained when different datasets and different methods are combined in a unified approach. PMID:26831099

  8. Disentangling the mechanisms behind climate effects on zooplankton.

    PubMed

    Kvile, Kristina Ø; Langangen, Øystein; Prokopchuk, Irina; Stenseth, Nils C; Stige, Leif C

    2016-02-16

    Understanding how climate influences ecosystems is complicated by the many correlated and interrelated impacting factors. Here we quantify climate effects on Calanus finmarchicus in the northeastern Norwegian Sea and southwestern Barents Sea. By combining oceanographic drift models and statistical analyses of field data from 1959 to 1993 and investigating effects across trophic levels, we are able to elucidate pathways by which climate influences zooplankton. The results show that both chlorophyll biomass in spring and C. finmarchicus biomass in summer relate positively to a combination of shallow mixed layer depth and increased wind in spring, suggesting that C. finmarchicus biomass in summer is influenced by bottom-up effects of food availability. Furthermore, spatially resolved C. finmarchicus biomass in summer is linked to favorable transport from warmer, core areas to the south. However, increased mean temperature in spring does not lead to increased C. finmarchicus biomass in summer. Rather, spring biomass is generally higher, but population growth from spring to summer is lower, after a warm compared with a cold spring. Our study illustrates how improved understanding of climate effects can be obtained when different datasets and different methods are combined in a unified approach. PMID:26831099

  9. Incorporating evolutionary processes into population viability models.

    PubMed

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence.

  10. Avoidance of strobe lights by zooplankton

    USGS Publications Warehouse

    Hamel, Martin J.; Richards, Nathan S.; Brown, Michael L.; Chipps, Steven R.

    2010-01-01

    Underwater strobe lights can influence the behavior and distribution of fishes and are increasingly used as a technique to divert fish away from water intake structures on dams. However, few studies examine how strobe lights may affect organisms other than targeted species. To gain insight on strobe lighting effects on nontarget invertebrates, we investigated whether underwater strobe lights influence zooplankton distributions and abundance in Lake Oahe, South Dakota. Zooplankton were collected using vertical tows at 3 discrete distances from an underwater strobe light to quantify the influence of light intensity on zooplankton density. Samples were collected from 3 different depth ranges (0–10 m, 10–20 m and 20–30 m) at <1 m, 15 m and ⩾100 m distance intervals away from the strobe light. Copepods represented 67.2% and Daphnia spp. represented 23.3% of all zooplankton sampled from 17 August to 15 September 2004. Night time zooplankton densities significantly decreased in surface waters when strobe lights were activated. Copepods exhibited the greatest avoidance patterns, while Daphnia avoidance varied throughout sampling depths. These results indicate that zooplankton display negative phototaxic behavior to strobe lights and that researchers must be cognizant of potential effects to the ecosystem such as altering predator–prey interactions or affecting zooplankton distribution and growth.

  11. The Career Counseling with Underserved Populations Model

    ERIC Educational Resources Information Center

    Pope, Mark

    2011-01-01

    Providing effective career counseling to culturally diverse individuals is not the same as helping those from majority cultures. The Career Counseling With Underserved Populations model aids career counselors in supporting underserved populations as they strive to address their important career counseling issues.

  12. Investigating Population Heterogeneity With Factor Mixture Models

    ERIC Educational Resources Information Center

    Lubke, Gitta H.; Muthen, Bengt

    2005-01-01

    Sources of population heterogeneity may or may not be observed. If the sources of heterogeneity are observed (e.g., gender), the sample can be split into groups and the data analyzed with methods for multiple groups. If the sources of population heterogeneity are unobserved, the data can be analyzed with latent class models. Factor mixture models…

  13. A Population Health Model for Integrated Assessment Models

    SciTech Connect

    Pitcher, Hugh M.; Ebi, Kristie L.; Brenkert, Antoinette L.

    2008-05-01

    This paper presents the initial results of a project to develop a population health model so we can extend the scenarios included in the IPCC's Special Report on Emissions Scenarios to include population health status.

  14. Ecosystem model-based approach for modelling the dynamics of 137Cs transfer to marine plankton populations: application to the western North Pacific Ocean after the Fukushima nuclear power plant accident

    NASA Astrophysics Data System (ADS)

    Belharet, M.; Estournel, C.; Charmasson, S.

    2015-06-01

    Huge amounts of radionuclides, especially 137Cs, were released into the western North Pacific Ocean after the Fukushima nuclear power plant (FNPP) accident that occurred on 11 March 2011, resulting in contamination of the marine biota. In this study we developed a radioecological model to estimate 137Cs concentrations in phytoplankton and zooplankton populations representing the lower levels of the pelagic trophic chain. We coupled this model to a lower trophic level ecosystem model and an ocean circulation model to take into account the site-specific environmental conditions in the area. The different radioecological parameters of the model were estimated by calibration, and a sensitivity analysis to parameter uncertainties was carried out, showing a high sensitivity of the model results, especially to the 137Cs concentration in seawater, to the rates of uptake from water and to the radionuclide assimilation efficiency for zooplankton. The results of the 137Cs concentrations in planktonic populations simulated in this study were then validated through comparison with the some data available in the region after the accident. The model results have shown that the maximum concentrations in plankton after the accident were about two to four orders of magnitude higher than those observed before the accident depending on the distance from FNPP. Finally, the maximum 137Cs absorbed dose rate for phyto- and zooplankton populations was estimated to be about 10-2 μGy h-1, and was, therefore, lower than the 10 μGy h-1 benchmark value defined in the ERICA assessment approach from which a measurable effect on the marine biota can be observed.

  15. Effect of advection on variations in zooplankton at a single location near Cabo Nazca, Peru

    SciTech Connect

    Smith, S L; Brink, K H; Santander, H; Cowles, T J; Huyer, A

    1980-04-01

    Temporal variations in the biomass and species composition of zooplankton at a single midshelf station in an upwelling area off Peru can be explained to a large extent by onshore-offshore advection in the upper 20 m of the water column. During periods of strong or sustained near-surface onshore flow, peaks in biomass of zooplankton were observed at midshelf and typically oceanic species of copepod were collected. In periods of offshore flow at the surface, a copepod capable of migrating into oxygen-depleted layers deeper than 30 m was collected. A simple translocation model of advection applied to the cross-shelf distribution of Paracalanus parvus suggests that the fluctuations in P. pavus observed in the midshelf time-series were closely related to onshore-offshore flow in the upper 20 m. Fluctuations in abundance of the numerically dominant copepod, Acartia tonsa, were apparently affected by near surface flow also. The population age-structure suggests that A. tonsa was growing at maximal rates, due in part to its positive feeding response to the dinoflagellate/diatom assemblage of phytoplankton.

  16. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages

    PubMed Central

    Harmer, Rachel A.; Somerfield, Paul J.; Atkinson, Angus

    2013-01-01

    Background Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly

  17. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  18. Simple models for reading neuronal population codes.

    PubMed Central

    Seung, H S; Sompolinsky, H

    1993-01-01

    In many neural systems, sensory information is distributed throughout a population of neurons. We study simple neural network models for extracting this information. The inputs to the networks are the stochastic responses of a population of sensory neurons tuned to directional stimuli. The performance of each network model in psychophysical tasks is compared with that of the optimal maximum likelihood procedure. As a model of direction estimation in two dimensions, we consider a linear network that computes a population vector. Its performance depends on the width of the population tuning curves and is maximal for width, which increases with the level of background activity. Although for narrowly tuned neurons the performance of the population vector is significantly inferior to that of maximum likelihood estimation, the difference between the two is small when the tuning is broad. For direction discrimination, we consider two models: a perceptron with fully adaptive weights and a network made by adding an adaptive second layer to the population vector network. We calculate the error rates of these networks after exhaustive training to a particular direction. By testing on the full range of possible directions, the extent of transfer of training to novel stimuli can be calculated. It is found that for threshold linear networks the transfer of perceptual learning is nonmonotonic. Although performance deteriorates away from the training stimulus, it peaks again at an intermediate angle. This nonmonotonicity provides an important psychophysical test of these models. PMID:8248166

  19. Melatonin Signaling Controls Circadian Swimming Behavior in Marine Zooplankton

    PubMed Central

    Tosches, Maria Antonietta; Bucher, Daniel; Vopalensky, Pavel; Arendt, Detlev

    2014-01-01

    Summary Melatonin, the “hormone of darkness,” is a key regulator of vertebrate circadian physiology and behavior. Despite its ubiquitous presence in Metazoa, the function of melatonin signaling outside vertebrates is poorly understood. Here, we investigate the effect of melatonin signaling on circadian swimming behavior in a zooplankton model, the marine annelid Platynereis dumerilii. We find that melatonin is produced in brain photoreceptors with a vertebrate-type opsin-based phototransduction cascade and a light-entrained clock. Melatonin released at night induces rhythmic burst firing of cholinergic neurons that innervate locomotor-ciliated cells. This establishes a nocturnal behavioral state by modulating the length and the frequency of ciliary arrests. Based on our findings, we propose that melatonin signaling plays a role in the circadian control of ciliary swimming to adjust the vertical position of zooplankton in response to ambient light. PMID:25259919

  20. Bivalves: From individual to population modelling

    NASA Astrophysics Data System (ADS)

    Saraiva, S.; van der Meer, J.; Kooijman, S. A. L. M.; Ruardij, P.

    2014-11-01

    An individual based population model for bivalves was designed, built and tested in a 0D approach, to simulate the population dynamics of a mussel bed located in an intertidal area. The processes at the individual level were simulated following the dynamic energy budget theory, whereas initial egg mortality, background mortality, food competition, and predation (including cannibalism) were additional population processes. Model properties were studied through the analysis of theoretical scenarios and by simulation of different mortality parameter combinations in a realistic setup, imposing environmental measurements. Realistic criteria were applied to narrow down the possible combination of parameter values. Field observations obtained in the long-term and multi-station monitoring program were compared with the model scenarios. The realistically selected modeling scenarios were able to reproduce reasonably the timing of some peaks in the individual abundances in the mussel bed and its size distribution but the number of individuals was not well predicted. The results suggest that the mortality in the early life stages (egg and larvae) plays an important role in population dynamics, either by initial egg mortality, larvae dispersion, settlement failure or shrimp predation. Future steps include the coupling of the population model with a hydrodynamic and biogeochemical model to improve the simulation of egg/larvae dispersion, settlement probability, food transport and also to simulate the feedback of the organisms' activity on the water column properties, which will result in an improvement of the food quantity and quality characterization.

  1. Predation by estuarine zooplankton on tintinnid ciliates

    NASA Astrophysics Data System (ADS)

    Robertson, J. Roy

    1983-01-01

    Laboratory experiments were conducted to determine the feeding performances of Uca zoeae and the estuarine copepods Acartia tonsa and Tortanus setacaudatus when these zooplankton preyed upon the co-occurring tintinnids Favella panamensis (length 265 μm) and Tintinnopsis tubulosa (length 148 μm). Predation by Favella on Tintinnopsis was also studied. Over the range of experimental prey densities used, Acartia ingested Tintinopsis at rates linearly related to prey density. Favella was ingested by Aractia at higher rates than was Tintinnopsis. Tortamus ingested Favella more readily than did Acartia, but Tortanus did not ingest Tintinnopsis. Uca ingested both Tintinnopsis and Favella while Tintinnopsis was also ingested by the larger tintinnid Favella. Comparisons of Acartia predation on tintinnids with published data on ingestion of nauplii and phytoplankton showed that when the phytoplankton are dominated by small (diameters < 10 μm) species, tintinnids in concentrations exceeding 10 3 organisms 1 -1 can be important items in the diets of Acartia. At lower tintinnid concentrations or when algal species with diameters > 10 μm are present in significant concentrations, tintinnids merely supplement algae in the diet of Acartia. Generally, tintinnids are more important food items for Acartia than are comparably sized nauplii. Only at concentrations exceeding 10 4 cop. m -3 can Acartia depress tintinid population growth.

  2. Effects of the ``Amoco Cadiz'' oil spill on zooplankton

    NASA Astrophysics Data System (ADS)

    Samain, J. F.; Moal, J.; Coum, A.; Le Coz, J. R.; Daniel, J. Y.

    1980-03-01

    A survey of zooplankton physiology on the northern coast of Brittany (France) was carried out over a one-year period by comparing two estuarine areas, one oil-polluted area (Aber Benoit) following the oil spill by the tanker “Amoco Cadiz” and one non-oil-polluted area (Rade de Brest). A new approach to an ecological survey was made by describing trophic relationships using analysis of digestive enzyme equipment (amylase and trypsin) of zooplankton organisms, mesoplankton populations and some selected species. These measurements allowed determination of (a) groups of populations with homogeneous trophic and faunistic characteristics and (b) groups of species with homogeneous trophic characteristics. The study of the appearance of these groups over a one-year period revealed the succession of populations and their adaptation to the environment on the basis of biochemical analysis. These phenomena observed in the compared areas showed marked differences in the most polluted areas during the productive spring period. Specific treatment of the data using unusual correlations between digestive enzymes is discussed in terms of the immediate effect on the whole population and on a copepod ( Anomalocera patersoni) living in the upper 10 cm.

  3. Bayesian population modeling of drug dosing adherence.

    PubMed

    Fellows, Kelly; Stoneking, Colin J; Ramanathan, Murali

    2015-10-01

    Adherence is a frequent contributing factor to variations in drug concentrations and efficacy. The purpose of this work was to develop an integrated population model to describe variation in adherence, dose-timing deviations, overdosing and persistence to dosing regimens. The hybrid Markov chain-von Mises method for modeling adherence in individual subjects was extended to the population setting using a Bayesian approach. Four integrated population models for overall adherence, the two-state Markov chain transition parameters, dose-timing deviations, overdosing and persistence were formulated and critically compared. The Markov chain-Monte Carlo algorithm was used for identifying distribution parameters and for simulations. The model was challenged with medication event monitoring system data for 207 hypertension patients. The four Bayesian models demonstrated good mixing and convergence characteristics. The distributions of adherence, dose-timing deviations, overdosing and persistence were markedly non-normal and diverse. The models varied in complexity and the method used to incorporate inter-dependence with the preceding dose in the two-state Markov chain. The model that incorporated a cooperativity term for inter-dependence and a hyperbolic parameterization of the transition matrix probabilities was identified as the preferred model over the alternatives. The simulated probability densities from the model satisfactorily fit the observed probability distributions of adherence, dose-timing deviations, overdosing and persistence parameters in the sample patients. The model also adequately described the median and observed quartiles for these parameters. The Bayesian model for adherence provides a parsimonious, yet integrated, description of adherence in populations. It may find potential applications in clinical trial simulations and pharmacokinetic-pharmacodynamic modeling. PMID:26319548

  4. Formalisms for Specifying Markovian Population Models

    NASA Astrophysics Data System (ADS)

    Henzinger, Thomas A.; Jobstmann, Barbara; Wolf, Verena

    We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model.

  5. A population model of integrative cardiovascular physiology.

    PubMed

    Pruett, William A; Husband, Leland D; Husband, Graham; Dakhlalla, Muhammad; Bellamy, Kyle; Coleman, Thomas G; Hester, Robert L

    2013-01-01

    We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters most associated with model sensitivity. The population is built by sampling from these distributions to create the model coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost less than 15 mmHg arterial pressure (compensators), and those that lost more (decompensators). The populations were parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis included single variable correlation, graphical time series analysis, and support vector machine (SVM) classification. Most variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any deterministic mathematical model. PMID:24058546

  6. A Population Model of Integrative Cardiovascular Physiology

    PubMed Central

    Pruett, William A.; Husband, Leland D.; Husband, Graham; Dakhlalla, Muhammad; Bellamy, Kyle; Coleman, Thomas G.; Hester, Robert L.

    2013-01-01

    We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters most associated with model sensitivity. The population is built by sampling from these distributions to create the model coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost less than 15 mmHg arterial pressure (compensators), and those that lost more (decompensators). The populations were parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis included single variable correlation, graphical time series analysis, and support vector machine (SVM) classification. Most variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any deterministic mathematical model. PMID:24058546

  7. A population model of integrative cardiovascular physiology.

    PubMed

    Pruett, William A; Husband, Leland D; Husband, Graham; Dakhlalla, Muhammad; Bellamy, Kyle; Coleman, Thomas G; Hester, Robert L

    2013-01-01

    We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters most associated with model sensitivity. The population is built by sampling from these distributions to create the model coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost less than 15 mmHg arterial pressure (compensators), and those that lost more (decompensators). The populations were parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis included single variable correlation, graphical time series analysis, and support vector machine (SVM) classification. Most variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any deterministic mathematical model.

  8. Spatial uncertainty analysis of population models

    SciTech Connect

    Jager, Yetta; King, Anthony Wayne; Schumaker, Nathan; Ashwood, Tom L; Jackson, Barbara L

    2004-01-01

    This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically simulate birth, death, and migration on an input map that describes habitat. Typically, only a single reference map is available, but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species' habitat. As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced. Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and arrangement of suitable habitat are such that habitat capacity is near the minimum

  9. A one dimensional model of population growth

    NASA Astrophysics Data System (ADS)

    Ribeiro, Fabiano L.; Ribeiro, Kayo N.

    2015-09-01

    In this work, a one dimensional population growth model is proposed. The model, based on the cooperative and competitive individual-individual distance-dependent interaction, allows us to get a full analytical solution. With this analytical approach, it was possible to investigate the dynamics of the population according to some parameters, as intrinsic growth rate, strength of the interaction between individuals, and the distance-dependent interaction. As a consequence of the individuals' interaction, a rich phase diagram to which the population has access was observed. The phases observed are: convergence to carrying capacity, exponential growth, divergence at finite time, and extinction. Moreover, it was also observed that some phases are strictly dependent on the initial condition. For instance, in the cooperative regime with negative intrinsic growth rate, the population can diverge or become extinct according to the initial population size. The phases accessible to the population can be seen as a macroscopic behavior which emerges from the interaction among the individuals (the microscopic level).

  10. EFFECTS OF CHRONIC STRESS ON WILDLIFE POPULATIONS: A POPULATION MODELING APPROACH AND CASE STUDY

    EPA Science Inventory

    This chapter describes a matrix modeling approach to characterize and project risks to wildlife populations subject to chronic stress. Population matrix modeling was used to estimate effects of one class of environmental contaminants, dioxin-like compounds (DLCs), to populations ...

  11. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  12. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    contrast were investigated. The sound speed contrast (h) was measured for Pacific hake flesh, myctophid flesh, Humboldt squid mantle, and Humboldt squid braincase. Sound speed varied within and between nekton taxa. The material properties reported in this study can be used to improve target strength estimates from acoustic scattering models which would increase the accuracy of biomass estimates from acoustic surveys for these zooplankton and nekton.

  13. Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Le Quéré, Corinne; Buitenhuis, Erik T.; Moriarty, Róisín; Alvain, Séverine; Aumont, Olivier; Bopp, Laurent; Chollet, Sophie; Enright, Clare; Franklin, Daniel J.; Geider, Richard J.; Harrison, Sandy P.; Hirst, Andrew G.; Larsen, Stuart; Legendre, Louis; Platt, Trevor; Prentice, I. Colin; Rivkin, Richard B.; Sailley, Sévrine; Sathyendranath, Shubha; Stephens, Nick; Vogt, Meike; Vallina, Sergio M.

    2016-07-01

    Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

  14. Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot

    NASA Astrophysics Data System (ADS)

    Kelly, Paige; Clementson, Lesley; Davies, Claire; Corney, Stuart; Swadling, Kerrie

    2016-10-01

    Southeastern Australia is a 'hotspot' for oceanographic change. Here, rapidly increasing sea surface temperatures, rising at more than double the global trend, are largely associated with a southerly extension of the East Australian Current (EAC) and its eddy field. Maria Island, situated at the southern end of the EAC extension at 42°S, 148°E, has been used as a site to study temperature-driven biological trends in this region of accelerated change. Zooplankton have short life cycles (usually < 1 year) and are highly sensitive to environmental change, making them an ideal indicator of the biological effects of an increased southward flow of the EAC. Data from in-situ net drops and the Continuous Plankton Recorder (CPR), collected since 2009, together with historical zooplankton abundance data, have been analysed in this study. Like the North Atlantic, zooplankton communities of southeastern Australia are responding to increased temperatures through relocation, long-term increases in warm-water species and a shift towards a zooplankton community dominated by small copepods. The biological trends present evidence of extended EAC influence at Maria Island into autumn and winter months, which has allowed for the rapid establishment of warm-water species during these seasons, and has increased the similarity between Maria Island and the more northerly Port Hacking zooplankton community. Generalised Linear Models (GLM) suggest the high salinity and low nutrient properties of EAC-water to be the primary drivers of increasing abundances of warm-water species off southeastern Australia. Changes in both the species composition and size distribution of the Maria Island zooplankton community will have effects for pelagic fisheries. This study provides an indication of how zooplankton communities influenced by intensifying Western Boundary currents may respond to rapid environmental change.

  15. Biomass and estimated production properties of size-fractionated zooplankton in the Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Huo, Yuanzi; Sun, Song; Zhang, Fang; Wang, Minxiao; Li, Chaolun; Yang, Bo

    2012-06-01

    December due to the intrusion of the Yellow Sea Warm Current. And in March, the higher zooplankton biomass and production, especially for small size zooplankton, occurred at the coastal waters resulting from complex physical properties. Results of the present paper showed the biomass and production properties of size-fractionated zooplankton, which is very important for "parameterization" of food web structure models of the Yellow Sea.

  16. The link between environmental variation and evolutionary shifts in dormancy in zooplankton.

    PubMed

    Walsh, Matthew R

    2013-10-01

    Sex and dormancy are intertwined in organisms that engage in asexual and sexual reproduction. The transition between asexual and sexual reproduction typically results in a dormant stage that provides a mechanism for persisting under harsh environmental conditions. For example, many zooplankton engage in sexual reproduction when environmental conditions deteriorate and produce resting eggs that remain viable for decades. It has long been assumed that observed variation in the timing and magnitude of investment into a dormant stage among populations or species reflects local environmental conditions. Yet, the importance of dormancy for the persistence of a given population can differ dramatically among habitats (i.e., permanent vs. seasonal ponds). As a result, environmental conditions may exert selection on the propensity for zooplankton to engage in sexual reproduction and enter dormancy in natural populations. Here, I highlight a growing body of research illustrating an important link between environmental conditions and divergent reproductive strategies in zooplankton. I specifically: (1) review the environmental cues that initiate a transition between asexual and sexual reproduction in zooplankton and (2) describe recent work demonstrating an evolutionary consequence of ecological selective pressures, such as predation and habitat predictability, on variation in the extent to which organisms engage in sex and enter dormancy. Such results have implications for the genetics and ecology of these organisms. PMID:23630969

  17. USING POPULATION MODELS TO EVALUATE RISK IN POPULATION OF BIRDS

    EPA Science Inventory

    Wildlife populations are exposed to varying habitat structure and quality, as well as an array of human-induced environmental stressors. Predicting the consequences to a real population of one perturbation (e.g. a pesticide application) without considering other human activities ...

  18. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Economou, G.; Christou, E. D.; Giannakourou, A.; Gerasopoulos, E.; Georgopoulos, D.; Kotoulas, V.; Lyra, D.; Tsakalis, N.; Tziortzou, M.; Vahamidis, P.; Papathanassiou, E.; Karamanos, A.

    2008-01-01

    The effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on the photoenergetic and photoregulatory plant processes, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m-2 s-1. However, since solar irradiance attenuation has not at the same time induced stomatal closure thus not blocking CO2 uptake by plants, it is probably other endogenous factors that has been responsible for the observed fall in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates), and meso-zooplankton) due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  19. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse

    NASA Astrophysics Data System (ADS)

    Economou, G.; Christou, E. D.; Giannakourou, A.; Gerasopoulos, E.; Georgopoulos, D.; Kotoulas, V.; Lyra, D.; Tsakalis, N.; Tzortziou, M.; Vahamidis, P.; Papathanassiou, E.; Karamanos, A.

    2008-08-01

    Some effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on plant life and productivity, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m-2 s-1. The drop in solar irradiance and the increase in mesophyll CO2-concentration during the eclipse did not induce stomatal closure thus not blocking CO2 uptake by plants. Light effects on the photochemical phase of photosynthesis may be responsible for the observed depression in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates), and meso-zooplankton) due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  20. Preliminary study on the occurrence and risk arising from bacteria internalized in zooplankton in drinking water.

    PubMed

    Bichai, F; Hijnen, W; Baars, Eric; Rosielle, M; Dullemont, Y; Barbeau, B

    2011-01-01

    In this study, an environmental sampling campaign was conducted to detect internalized E. coli and C. jejuni bacteria in zooplankton and amoebae samples collected at various stages of three water treatment plants in Amsterdam, the Netherlands. Eight sampling locations were selected and sampling was performed twice, at a two-week interval, at each location. Chlorination was used to inactivate free (external) bacteria in the concentrated zooplankton samples and sonication was used to disrupt zooplankton organisms in order to release and recover internalized bacteria. Zooplankton enumeration was performed by microscopy. No internalized E. coli or C. jejuni bacteria were recovered from all of the samples analyzed. The occurrence of internalized E. coli or C. jejuni bacteria in drinking water was estimated to be lower than one internalized bacteria in 10⁵ zooplankton organisms, as derived from the detection limit of the sampling campaign. By using the QMRA approach and the Beta-Poisson model, a risk of infection of less than 9.2E-6 and 5.9E-5 was estimated for internalized E. coli and C. jejuni in drinking water, respectively. This study remains preliminary due to the limited number of samples taken at each location. PMID:21245561

  1. Bacteria dispersal by hitchhiking on zooplankton

    PubMed Central

    Grossart, Hans-Peter; Dziallas, Claudia; Leunert, Franziska; Tang, Kam W.

    2010-01-01

    Microorganisms and zooplankton are both important components of aquatic food webs. Although both inhabit the same environment, they are often regarded as separate functional units that are indirectly connected through nutrient cycling and trophic cascade. However, research on pathogenic and nonpathogenic bacteria has shown that direct association with zooplankton has significant influences on the bacteria's physiology and ecology. We used stratified migration columns to study vertical dispersal of hitchhiking bacteria through migrating zooplankton across a density gradient that was otherwise impenetrable for bacteria in both upward and downward directions (conveyor-belt hypothesis). The strength of our experiments is to permit quantitative estimation of transport and release of associated bacteria: vertical migration of Daphnia magna yielded an average dispersal rate of 1.3 × 105·cells·Daphnia−1·migration cycle−1 for the lake bacterium Brevundimonas sp. Bidirectional vertical dispersal by migrating D. magna was also shown for two other bacterial species, albeit at lower rates. The prediction that diurnally migrating zooplankton acquire different attached bacterial communities from hypolimnion and epilimnion between day and night was subsequently confirmed in our field study. In mesotrophic Lake Nehmitz, D. hyalina showed pronounced diel vertical migration along with significant diurnal changes in attached bacterial community composition. These results confirm that hitchhiking on migrating animals can be an important mechanism for rapidly relocating microorganisms, including pathogens, allowing them to access otherwise inaccessible resources. PMID:20547852

  2. SENSITIVITY OF ZOOPLANKTON INDICATORS IN REGIONAL MONITORING

    EPA Science Inventory

    This study describes an approach for assessing and selecting ecological indicators for regional monitoring of northeastern US lakes. We analyze the components of variance for indicators of zooplankton richness and abundance in the context of the spatial and temporal sampling des...

  3. SIMULATING TEMPORAL VARIATIONS IN NUTRIENT, PHYTOPLANKTON, AND ZOOPLANKTON ON THE INNER OREGON SHELF

    EPA Science Inventory

    The objective of this study is to use a numerical model to examine the linkages between physical processes and temporal variability in the plankton dynamics in a coastal upwelling system. We used a nutrient-phytoplankton-zooplankton model coupled to a two-dimensional circulation...

  4. Hierarchical spatial capture-recapture models: modeling population density from stratified populations

    USGS Publications Warehouse

    Royle, J. Andrew; Converse, Sarah J.

    2013-01-01

    1. Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata. 2. We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages. 3. We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids. 4. Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.

  5. Multilocus models in the infinite island model of population structure.

    PubMed

    Roze, Denis; Rousset, François

    2008-06-01

    Different methods have been developed to consider the effects of statistical associations among genes that arise in population genetics models: kin selection models deal with associations among genes present in different interacting individuals, while multilocus models deal with associations among genes at different loci. It was pointed out recently that these two types of models are very similar in essence. In this paper, we present a method to construct multilocus models in the infinite island model of population structure (where deme size may be arbitrarily small). This method allows one to compute recursions on allele frequencies, and different types of genetic associations (including associations between different individuals from the same deme), and incorporates selection. Recursions can be simplified using quasi-equilibrium approximations; however, we show that quasi-equilibrium calculations for associations that are different from zero under neutrality must include a term that has not been previously considered. The method is illustrated using simple examples.

  6. Exploring Physical and Biological Mechanisms for Zooplankton Retention in the Estuarine Transition Zone of a Riverine Estuary

    NASA Astrophysics Data System (ADS)

    Simons, R. D.; Monismith, S. G.

    2002-12-01

    In this study, we use a coupled three-dimensional physical-biological model to investigate zooplankton retention in the estuarine transition zone (ETZ) of the St. Lawrence Estuary (SLE). Varying from well-mixed to partially stratified, the hydrodynamic environment of the SLE is defined by a large tidal range, strong salinity gradients, a large freshwater river flow, and complex bathymetry. The physical-biological model used for this study consisted of two parts: a circulation model and a zooplankton transport model. The circulation model is a three-dimensional Eulerian hydrodynamic model (TRIM3D) driven by the wind, tides, and freshwater outflow. The zooplankton transport model is a three-dimensional Lagrangian particle tracking model which simulates zooplankton movement using velocity fields derived from the three-dimensional circulation model. The circulation model is calibrated using field data such as salinity, pressure, and current time series from different locations in the ETZ. The transport and distribution of three zooplankton taxa, non-native zebra mussel veligers, resident mysids, and larval smelt, were simulated for this study. By simulating these three taxa, we were able to investigate the effect of a range of swimming speeds on zooplankton retention in the ETZ. We present the results of simulations exploring the efficiency of tidal vertical migration, a commonly described biological retention mechanism that is characterized by zooplankton migration up to the surface on flood and down to the bottom on ebb. Tidal vertical migration, also known as selective tidal stream transport, was investigated for several swimming speeds and endogenous rhythms.

  7. Estimating population trends with a linear model

    USGS Publications Warehouse

    Bart, J.; Collins, B.; Morrison, R.I.G.

    2003-01-01

    We describe a simple and robust method for estimating trends in population size. The method may be used with Breeding Bird Survey data, aerial surveys, point counts, or any other program of repeated surveys at permanent locations. Surveys need not be made at each location during each survey period. The method differs from most existing methods in being design based, rather than model based. The only assumptions are that the nominal sampling plan is followed and that sample size is large enough for use of the t-distribution. Simulations based on two bird data sets from natural populations showed that the point estimate produced by the linear model was essentially unbiased even when counts varied substantially and 25% of the complete data set was missing. The estimating-equation approach, often used to analyze Breeding Bird Survey data, performed similarly on one data set but had substantial bias on the second data set, in which counts were highly variable. The advantages of the linear model are its simplicity, flexibility, and that it is self-weighting. A user-friendly computer program to carry out the calculations is available from the senior author.

  8. Regulation of Mnemiopsis leidyi dynamics by potential changes in temperature and zooplankton conditions in the Black Sea.

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Fach, B.; Oguz, T.

    2009-04-01

    Providing a comprehensive understanding of the effects that cause formations of ctenophore blooms in the Black Sea is the main objective of this study. In order to analyse ctenophore dynamics in the Black Sea a zero-dimensional population based model of the ctenophore Mnemiopsis leidyi is developed. The stage resolving ctenophore model combines the modified form of stage resolving approach of Fennel, 2001 with the growth dynamics model of Kremer, 1976; Kremer and Reeve, 1989 under 4 stages of model-ctenophore. These stages include the different growth characteristics of egg, juvenile, transitional and adult stages. The dietary patterns of the different stages follows the observations obtained from the literature. The model is able to represent consistent development patterns, while reflecting the physiological complexity of a population of Mnemiopsis leidyi. Model results suggest that different nutritional requirement of each stage may serve as the bottlenecks for population growth and only when growth conditions are favorable for both larval and lobate stages, the high overall population growth rates may occur. Model is also used to analyse the influence of climatic changes on Mnemiopsis leidyi reproduction and outburst. This study presents and discussed how potential changes in temperature and zooplankton conditions in the Black Sea may regulate Mnemiopsis leidyi dynamics.

  9. Dispersive models describing mosquitoes’ population dynamics

    NASA Astrophysics Data System (ADS)

    Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.

    2016-08-01

    The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.

  10. Zooplankton Seasonal Abundance of South AmericanSaline Shallow Lakes

    NASA Astrophysics Data System (ADS)

    Echaniz, Santiago Andrés; Vignatti, Alicia María; José de Paggi, Susana; Paggi, Juan César; Pilati, Alberto

    2006-02-01

    The central provinces of Argentina are characterized by the presence of a high number of shallow lakes, located in endorheic basins, many of which have elevated salinities as well as eutrophic or hypereutrophic condition. The zooplankton of four saline shallow lakes of the province of La Pampa was studied on a monthly basis during a 2-year period to determine its temporal and spatial variation.The surface of these shallow lakes (<2.5 m depth) varied between 56.8 and 215.9 ha, and some have from 8.4 to 20.8 g . l-1. The more saline lakes have clear water and the less saline lakes turbid water. Fishes, Jenynsia multidentata , were present in only two lakes during the last two months of the studied period.The zooplankton was composed of 17 taxa of Rotifera, 5 taxa of Cladocera and 4 taxa of Copepoda. The low diversity and the faunistic composition are characteristic of saline environments. Although the studied lakes share 38% of the species, the faunistic similarity was higher between the two least saline lakes. The lowest diversity was found in the two most saline lakes.All four shallow lakes were characterized by their very high zooplankton density, especially in the least saline lakes (<80000 ind . l-1). The abundance is significantly correlated with the water transparency but not with salinity.The zooplankton temporal variation was characterized by the alternation of macro- and microzooplankton, probably regulated by competition and intrazooplanktonic predation. In each lake, the spatial abundance distribution of the macro- and microzooplankton was homogeneous. It was related to the shallow depht of the lakes and their polymictic condition.The Scheffer model on alternative states in shallow lakes acknowledges that it cannot be applied to saline lakes because Daphnia , the main responsible for the clear water state, is not tolerant to high salinity. Our study shows that the most saline lakes, where the halophylic Daphnia menucoensis is abundant, have also the

  11. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ye, L.; Chang, C.; García-Comas, C.; Gong, G.; Hsieh, C.

    2012-12-01

    generalized linear mixed-effect model in investigating the effect of each factor on the spatiotemporal dynamics of zooplankton/phytoplankton biomass ratio in the East China Sea, with sampling cruises as a random effect. A lower value of AIC represents better goodness of fit of the model. The p-value was estimated based on MCMC sampling.

  12. Sustainability in single-species population models.

    PubMed

    Quinn, Terrance J; Collie, Jeremy S

    2005-01-29

    In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, F(MSY), which results in MSY, and a higher value, F(ext), for which the population is eventually driven to extinction. For each F between 0 and F(ext), there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This view point is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10-20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of F(MSY) (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to

  13. Sustainability in single-species population models

    PubMed Central

    Quinn, Terrance J.; Collie, Jeremy S.

    2005-01-01

    In this paper, we review the concept of sustainability with regard to a single-species, age-structured fish population with density dependence at some stage of its life history. We trace the development of the view of sustainability through four periods. The classical view of sustainability, prevalent in the 1970s and earlier, developed from deterministic production models, in which equilibrium abundance or biomass is derived as a function of fishing mortality. When there is no fishing mortality, the population equilibrates about its carrying capacity. We show that carrying capacity is the result of reproductive and mortality processes and is not a fixed constant unless these processes are constant. There is usually a fishing mortality, FMSY, which results in MSY, and a higher value, Fext, for which the population is eventually driven to extinction. For each F between 0 and Fext, there is a corresponding sustainable population. From this viewpoint, the primary tool for achieving sustainability is the control of fishing mortality. The neoclassical view of sustainability, developed in the 1980s, involved population models with depensation and stochasticity. This viewpoint is in accord with the perception that a population at a low level is susceptible to collapse or to a lack of rebuilding regardless of fishing. Sustainability occurs in a more restricted range from that in the classical view and includes an abundance threshold. A variety of studies has suggested that fishing mortality should not let a population drop below a threshold at 10–20% of carrying capacity. The modern view of sustainability in the 1990s moves further in the direction of precaution. The fishing mortality limit is the former target of FMSY (or some proxy), and the target fishing mortality is set lower. This viewpoint further reduces the range of permissible fishing mortalities and resultant desired population sizes. The objective has shifted from optimizing long-term catch to preserving

  14. Population Models for Massive Globular Clusters

    NASA Astrophysics Data System (ADS)

    Lee, Young-Wook; Joo, Seok-Joo; Han, Sang-Il; Na, Chongsam; Lim, Dongwook; Roh, Dong-Goo

    2015-03-01

    Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ω Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y 2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).

  15. [Kinetics of zooplankton in an aquatic continuum: from the Marne River and reservoir to the Seine estuary].

    PubMed

    Akopian, Maïa; Garnier, Josette; Pourriot, Roger

    2002-07-01

    A study was carried out within a 700-km river sector, including three types of ecosystems (a reservoir, a river and its estuary) to characterise the major features of zooplankton communities in the Seine Basin. In rivers, zooplankton biomass becomes significant only when the growth rate of the organisms is higher than the dilution rate (4-5th orders rivers, according to River Continuum Concept). Upstream, short residence times favour the development of small species (Rotifers) with low individual body weight and biomass. Conversely, larger species (microcrustaceans) develop more downstream, where increased residence time leads to autochthonous production (Riverine Productivity Model). Such a pattern is greatly modified by human impact. Zooplankton input from the Marne reservoir represents one type of disruption in the general upstream-downstream trend (according to the Serial Discontinuity Concept). This reservoir is a source of microcrustaceans; they rapidly disappear mainly through fish predation, and therefore have little impact on the river phytoplankton. Discontinuities, such as confluences, have a relatively small effect on the stock of zooplankton with regard to the water release from the reservoir, but they persist more downstream, because they have the same lotic origin. A few microhabitats with macrophytes play a small role for this canalised river, but they can modify locally the plankton community structure and composition. As a whole, the flux of zooplankton rises exponentially, whereas discharge increases linearly from upstream (4th order) to downstream (8th order). In the canalised sectors, Dreissena larvae build up an important biomass, adding to that of the zooplankton sensu stricto. Especially abundant in the downstream sector of the Marne and Seine Rivers, the larvae show a widespread colonisation of the benthic substrates by the adult Dreissena. One of the largest mussel colonies in the middle estuary can contribute to a rapid decrease of

  16. Correlations between zooplankton assemblages and environmental factors in the downtown rivers of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Yu, Na; Li, Erchao; Feng, Dexiang; Xiao, Baicai; Wei, Chaoqun; Zhang, Meiling; Chen, Liqiao

    2014-11-01

    Most urban rivers play an important role in urban flood control and drainage in China, but pollution is fast becoming an issue of greater importance in water management. In this study, 63 zooplankton species were recorded in four downtown rivers in Shanghai between November 2007 and October 2008. Of these, 44 species belonged to the Rotifera, 13 to Cladocera, and six to Copepoda. The three most frequently occurring zooplankton ( Brachionus calyciflorus, Microcyclops leuckarti, and Asplanchna priodonta) accounted for 80.00%, 76.84%, and 53.68%, respectively. Rotifera were found to be dominant, comprising 86.26% of total zooplankton, while cladoceran and copepod abundance amounted to 5.08% and 8.67%, respectively. Water temperature, salinity, electrical conductivity, and total nitrogen were of the greatest significance in the occurrence of zooplankton. Two species ( Schmackeria forbesi and Lepadella ovalis) were notably more sensitive to environmental factors such as salinity and electrical conductivity than other species. The population size and community were inversely correlated with the increasing nutrient levels of the four rivers, suggesting that the water quality of the four rivers had been gradually recovering from a severe eutrophic state and that water conditions of the rivers had been gradually improved.

  17. Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link

    NASA Astrophysics Data System (ADS)

    Mitra, Aditee; Castellani, Claudia; Gentleman, Wendy C.; Jónasdóttir, Sigrún H.; Flynn, Kevin J.; Bode, Antonio; Halsband, Claudia; Kuhn, Penelope; Licandro, Priscilla; Agersted, Mette D.; Calbet, Albert; Lindeque, Penelope K.; Koppelmann, Rolf; Møller, Eva F.; Gislason, Astthor; Nielsen, Torkel Gissel; St. John, Michael

    2014-12-01

    Exploring climate and anthropogenic impacts on marine ecosystems requires an understanding of how trophic components interact. However, integrative end-to-end ecosystem studies (experimental and/or modelling) are rare. Experimental investigations often concentrate on a particular group or individual species within a trophic level, while tropho-dynamic field studies typically employ either a bottom-up approach concentrating on the phytoplankton community or a top-down approach concentrating on the fish community. Likewise the emphasis within modelling studies is usually placed upon phytoplankton-dominated biogeochemistry or on aspects of fisheries regulation. In consequence the roles of zooplankton communities (protists and metazoans) linking phytoplankton and fish communities are typically under-represented if not (especially in fisheries models) ignored. Where represented in ecosystem models, zooplankton are usually incorporated in an extremely simplistic fashion, using empirical descriptions merging various interacting physiological functions governing zooplankton growth and development, and thence ignoring physiological feedback mechanisms. Here we demonstrate, within a modelled plankton food-web system, how trophic dynamics are sensitive to small changes in parameter values describing zooplankton vital rates and thus the importance of using appropriate zooplankton descriptors. Through a comprehensive review, we reveal the mismatch between empirical understanding and modelling activities identifying important issues that warrant further experimental and modelling investigation. These include: food selectivity, kinetics of prey consumption and interactions with assimilation and growth, form of voided material, mortality rates at different age-stages relative to prior nutrient history. In particular there is a need for dynamic data series in which predator and prey of known nutrient history are studied interacting under varied pH and temperature regimes.

  18. Zooplankton Distribution in Tropical Reservoirs, South China

    NASA Astrophysics Data System (ADS)

    Lin, Qiu-Qi; Duan, Shun-Shan; Hu, Ren; Han, Bo-Ping

    2003-11-01

    The zooplankton of 18 reservoirs of South China was investigated in 2000. 61 Rotifera species, 23 Cladoceras and 14 Copepodas were identified. The most frequent Rotifera genera were Keratella, Brachionus, Trichocerca, Diurella, Ascomorpha, Polyarthra, Ploesoma, Asplanchna, Pompholyx and Conochilus. Bosmina longirostris, Bosminopsis deitersi, Diaphanosoma birgei, D. brachyurum and Moina micrura were typical of Cladocera in the reservoirs. Phyllodiaptomus tunguidus, Neodiaptomus schmackeri and Mesocyclops leuckarti were the most frequent Copepoda and M. leuckarti dominated Copepoda in most reservoirs. High zooplankton species richness with low abundance was characteristic of the throughflowing reservoir, whereas low species richness with low abundance was found in the reservoir with the longest retention time. Relative high abundance and medium species diversity were the distinction of intermediate retention time reservoirs.

  19. Dynamic analysis of a parasite population model

    NASA Astrophysics Data System (ADS)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  20. A hybrid numerical-experimental study of fluid transport by migrating zooplankton aggregations

    NASA Astrophysics Data System (ADS)

    Martinez, Monica; Dabiri, John; Nawroth, Janna; Gemmell, Brad; Collins, Samantha

    2014-11-01

    Zooplankton aggregations that undergo diel vertical migrations have been hypothesized to play an important role in local nutrient transport and global ocean dynamics. The degree of the contributions of these naturally occurring events ultimately relies on how efficiently fluid is transported and eventually mixed within the water column. By implementing solutions to the Stokes equations, numerical models have successfully captured the time-averaged far-field flow of self-propelled swimmers. However, discrepancies between numerical fluid transport estimates and field measurements of individual jellyfish suggest the need to include near-field effects to assess the impact of biomixing in oceanic processes. Here, we bypass the inherent difficulty of modeling the unsteady flow of active swimmers while including near-field effects by integrating experimental velocity data of zooplankton into our numerical model. Fluid transport is investigated by tracking a sheet of artificial fluid particles during vertical motion of zooplankton. Collective effects are addressed by studying different swimmer configurations within an aggregation from the gathered data for a single swimmer. Moreover, the dependence of animal swimming mode is estimated by using data for different species of zooplankton.

  1. [Causes of the technogenic changes in a freshwater zooplankton community].

    PubMed

    Kalinkina, N M; Kulikova, T P; Morozov, A K; Vlasova, L I

    2003-01-01

    The situation in water bodies of northwestern Karelia in 1992-2001 was analyzed. As a result of waste discharge from the mining and ore-processing works, weakly mineralized hydrocarbonate-calcium waters changed into highly mineralized waters with the prevalence of potassium ions and sulfates. The total abundance and biomass of zooplanktonic communities decreased. Using the methods of principal components and partial correlations, differences in the responses of zooplankters to mineral pollution were revealed. Typical inhabitants of northern water bodies decreased in numbers, and the species Eudiaptomus gracilis Sars and Heterocope appendiculata Sars (Calanoida) disappeared. On the other hand, eurybiontic species prevailing in water bodies with higher mineralization manifested a positive reaction to the increase in the contents of dissolved mineral compounds. Toxicological experiments made it possible to estimate the survival threshold for E. gracilis and H. appendiculata: the populations of these crustaceans in the polluted water body perished when potassium concentration in water exceeded 50 mg/l.

  2. Promotion of harmful algal blooms by zooplankton predatory activity.

    PubMed

    Mitra, Aditee; Flynn, Kevin J

    2006-06-22

    The relationship between algae and their zooplanktonic predators typically involves consumption of nutrients by algae, grazing of the algae by zooplankton which in turn enhances predator biomass, controls algal growth and regenerates nutrients. Eutrophication raises nutrient levels, but does not simply increase normal predator-prey activity; rather, harmful algal bloom (HAB) events develop often with serious ecological and aesthetic implications. Generally, HAB species are outwardly poor competitors for nutrients, while their development of grazing deterrents during nutrient stress ostensibly occurs too late, after the nutrients have largely been consumed already by fast-growing non-HAB species. A new mechanism is presented to explain HAB dynamics under these circumstances. Using a multi-nutrient predator-prey model, it is demonstrated that these blooms can develop through the self-propagating failure of normal predator-prey activity, resulting in the transfer of nutrients into HAB growth at the expense of competing algal species. Rate limitation of this transfer provides a continual level of nutrient stress that results in HAB species exhibiting grazing deterrents protecting them from top-down control. This process is self-stabilizing as long as nutrient demand exceeds supply, maintaining the unpalatable status of HABs; such events are most likely under eutrophic conditions with skewed nutrient ratios.

  3. Stochastic modeling in biological populations with sexual reproduction through branching models: application to Coho salmon populations.

    PubMed

    Molina, Manuel; Mota, Manuel; Ramos, Alfonso

    2014-12-01

    The motivation behind this research is to develop appropriate mathematical models to describe the demographic dynamics of animal populations with sexual reproduction. We introduce a new class of two-sex branching models where several mating strategies between females and males and a variety of possibilities for the process of reproduction are taken into account. Unlike other classes of two-sex models which assume that mating and reproduction are influenced by the number of couples in the population, we now consider the most realistic case where both biological processes are affected by the numbers of females and males in the population, which may differ. Under a general parametric setting, we deal with inferential questions about the main parameters affecting the reproduction process. By considering the observation over time of the numbers of females and males up to when a certain pre-set generation is reached, we derive Bayes estimators for such parameters. With the purpose of determining highest posterior density credibility sets, we also propose a computational algorithm. As illustration, we include an application to Coho salmon populations.

  4. [Mathematical model of value of population].

    PubMed

    Sha, J; Wang, S

    1983-09-29

    The authors define the value of population as an economic concept and present mathematical formulas for calculating this value. Included in this theoretical discussion are different kinds of surplus value of population and the social significance of population value. PMID:12279805

  5. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive

  6. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs?

    PubMed Central

    Lampert, Winfried; McCauley, Edward; Manly, Bryan F J

    2003-01-01

    Zooplankton vertical migratory patterns are a classic example of optimal habitat choice. We hypothesize that zooplankton distribute themselves vertically in the water column according to an ideal free distribution (IFD) with costs such as to optimize their fitness. In lakes with a deep-water chlorophyll maximum, zooplankton are faced with a trade-off, either experiencing high food (high reproductive potential) but low temperature (slow development) in the hypolimnion or high temperature and low food in the epilimnion. Thus, in the absence of fish predation (e.g. at night) they should allocate the time spent in the different habitats according to fitness gain dependent on the temperature gradient and distribution of food. We tested this hypothesis with a Daphnia hyalina x galeata clone in large indoor columns (Plön Plankton Towers) and with a dynamic energy budget model. In the tower experiments, we simulated a deep-water algal maximum below the thermocline with epilimnetic/hypolimnetic temperature differences of 2, 5 and 10 degrees C. Experimental data supported the model. We found a significantly larger proportion of daphniids in the hypolimnion when the temperature difference was smaller. Our results are consistent with the concept of IFD with costs originally developed for stream fishes. This concept can be applied to predict the vertical distribution of zooplankton in habitats where fish predation is of minor importance. PMID:12713752

  7. Fitting a predator prey model to zooplankton time-series data in the Gironde estuary (France): Ecological significance of the parameters

    NASA Astrophysics Data System (ADS)

    David, Valérie; Chardy, Pierre; Sautour, Benoît

    2006-05-01

    The relationships between the seasonal fluctuations of the copepod Eurytemora affinis and the mysid Neomysis integer were studied from observed data and experimental results, using a predator-prey model in the oligo-mesohaline area of the Gironde estuary. Mean seasonal fluctuations of abundances were derived from long term data series collected from 1978 to 2003 for both species. In situ predator-prey experiments over a seasonal cycle were used to estimate the seasonal variation of the consumption rate of N. integer on E. affinis and to verify the order of magnitude of the biological parameters given by the model. Predator-prey experiments revealed a high seasonal variation in maximum consumption rates with a mean of 56 ± 9 ind. pred -1 d -1. Maximum consumption rates were always higher for adults than for juveniles of Neomysis integer. Recorded selectivities were higher on nauplii than on copepodids + adults of Eurytemora affinis, both for the juveniles and the adults of N. integer. Neomysis integer mainly fed on meroplanktonic larvae, when they were available in higher abundances, than E. affinis in their environment. Spring increases of abundance for Eurytemora affinis copepodids + adults seemed to be mainly controlled by temperature whereas its decreasing abundance in summer was more related to Neomysis integer predation, suggesting that summer fluctuations of E. affinis abundance are probably controlled by mysid predation at summer times. Using a Lotka-Volterra predator-prey model, the seasonal peak of abundance of the mysid N. integer was well reproduced considering a predation on copepodids + adults of E. affinis, and suggested a dependence between mysid and copepod seasonal variations. However, the seasonal peak amplitude could not be explained solely by a predation on copepodids + adults or on nauplii of the copepod. Thus, N. integer is probably dependent on the seasonal fluctuations of the copepod's abundance, complementing its diet with macrophytal

  8. Tidal exchange of zooplankton between Lough Hyne and the adjacent coast

    NASA Astrophysics Data System (ADS)

    Rawlinson, K. A.; Davenport, J.; Barnes, D. K. A.

    2005-01-01

    Plankton samples collected in November 2002, February, May and August 2003 were used to examine seasonal variation in tidal exchange of zooplankton biomass, abundance and species composition between Lough Hyne Marine Nature Reserve and the adjacent Atlantic coast. Micro- to mesozooplankton were collected by pump over 24-h sampling periods during spring and neap tides from the narrow channel connecting the semi-enclosed water body to the Atlantic. Sample biomass (dry weight) and total zooplankton abundance peaked in the summer and were lowest in winter, showing a positive relationship with temperature. Zooplankton biomass, total abundance and numbers of holo- and meroplankton revealed import during some diel cycles and export in others. However, the tidal import of these planktonic components was generally dominant, especially during May. The greatest import of numbers of holoplankters and meroplanktonic larvae occurred during May and August, respectively. There was no significant variation in sample biomass between periods of light and dark, but some variation in zooplankton abundance could be explained by this diel periodicity. Significant differences in sample assemblage composition between flood and ebb tide samples were always observed, except during winter neap tides. There was a net import of the copepods Temora longicornis and Oithona helgolandica and the larval stages of Mytilus edulis during spring and summer. Proceraea cornuta and Capitellid trochophores were imported during winter, and a hydrozoan of the genus Obelia during the spring spring tides. Seasonal export from the lough was shown by Pseudopolydora pulchra larvae (autumn and spring), Serpulid trochophores (autumn) and veligers of the bivalve Anomia ephippium (summer). It is suggested that the direction of tidal exchange of meroplanktonic taxa is related to the distribution of the adult populations. Copepod naupliar stages dominated the assemblages except during May spring tides when the copepod

  9. Zooplankton diversity and physico-chemical conditions in three perennial ponds of Virudhunagar district, Tamilnadu.

    PubMed

    Rajagopal, T; Thangamani, A; Sevarkodiyone, S P; Sekar, M; Archunan, G

    2010-05-01

    Plankton diversity and physico-chemical parameters are an important criterion for evaluating the suitability of water for irrigation and drinking purposes. In this study we tried to assess the zooplankton species richness, diversity and evenness and to predict the state of three perennial ponds according to physico-chemical parameters. A total of 47 taxa were recorded: 24 rotifers, 9 copepods, 8 cladocerans, 4 ostracods and 2 protozoans. More number of zooplankton species were recorded in Chinnapperkovil pond (47 species) followed by Nallanchettipatti (39 species) and Kadabamkulam pond (24 species). Among the rotifers, Branchionus sp. is abundant. Diaphanosoma sp. predominant among the cladocerans. Among copepods, numerical superiority was found in the case of Mesocyclopes sp. Cypris sp. repeated abundance among ostracoda. Present study revealed that zooplankton species richness (R1 and R2) was comparatively higher (R1: 4.39; R2: 2.13) in Chinnapperkovil pond. The species diversity was higher in the Chinnapperkovil pond (H': 2.53; N1: 15.05; N2: 15.75) as compared to other ponds. The water samples were analyzed for temperature, pH, electrical conductivity alkalinity salinity, phosphate, hardness, dissolved oxygen and biological oxygen demand. Higher value of physico-chemical parameters and zooplankton diversity were recorded in Chinnapperkovil pond as compared to other ponds. The zooplankton population shows positive significant correlation with physico-chemical parameters like, temperature, alkalinity phosphate, hardness and biological oxygen demand, whereas negatively correlated with rainfall and salinity. The study revealed that the presence of certain species like, Monostyla sp., Keratella sp., Lapadella sp., Leydigia sp., Moinodaphnia sp., Diaptomus sp., Diaphanosoma sp., Mesocyclopes sp., Cypris sp. and Brachionus sp. is considered to be biological indicator for eutrophication.

  10. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies

    NASA Astrophysics Data System (ADS)

    Genin, Amatzia

    2004-09-01

    Aggregations of zooplankton, micronekton and fish are frequently observed above seamounts, canyons and shelf breaks. The aggregations are produced by five different mechanisms, all driven by ocean currents. Upwelling is frequently generated when ambient currents impinge on abrupt topographies. Nevertheless, upwelling enhances local production of zooplankton and fish only over large topographies such as shelf breaks, where the residence time of the upwelled water is sufficiently long to allow enrichment in primary production to propagate up the food web and augment the growth of resident animals. Daily accumulations occur over topographies at shallow and intermediate depths when the topography blocks the morning descent of migrating zooplankton. This mechanism is common over seamounts. Two other mechanisms are driven by behavioral response to vertical currents when zooplankton swims vertically in order to maintain depth: accumulations by depth retention against upwelling are common at depths to which migrating zooplankton descend during the day, while depth retention against downwelling seems to operate only in the upper water column (e.g., along topographically generated fronts). The fifth mechanism is driven by the amplification of currents over abrupt topographies. Strong currents enhance population growth of resident animals by augmenting fluxes of suspended food. A feed-rest hypothesis is proposed to explain how site-attached planktivorous fish can benefit from strong currents at sites with ample quiescence shelters in which the fish rest during non-feeding intervals. Four of the above mechanisms generate "trophic focusing", a process by which prey from immense volumes of flowing water is accumulated (or trapped) in a relatively small confined area. The ensuing subsidy of prey propagates up the food web, supporting aggregations of higher predators, such as fish, marine mammals and fishermen. Abrupt topographies can have an important role in determining trophic

  11. Harvesting and Processing Zooplankton for Use as Supplemental Fry Feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the methods that we used to capture and dry large zooplankton from ponds to feed to channel catfish Ictalurus punctatus fry. Using a submersible pump and canister filter, we were able to capture about 1.0 kg (wet weight; 200 g in terms of dry weight) of zooplankton from well-fertilized po...

  12. Limnetic crustacean zooplankton of Lake Oahe, May-October 1969

    USGS Publications Warehouse

    Selgeby, James H.

    1974-01-01

    The limnetic crustacean zooplankton of Lake Oahe was dominated by copepods. Cyclops bicuspidatus thomasi was the dominant crustacean throughout the lake. Mesocyclops edax, Diaptomus ashlandi and Daphnia pulex were major components of the zooplankton in the deep, downstream portion of the lake while Bosmina longirostris and Daphnia retrocurva were important constituents in the river-like, upstream section of the lake.

  13. MODELING OF GENE REGULATORY PROCESSES BY POPULATION MEDIATED SIGNALING. NEW APPLICATIONS OF POPULATION BALANCES

    PubMed Central

    Shu, Che-Chi; Chatterjee, Anushree; Hu, Wei-Shou

    2011-01-01

    Population balance modeling is considered for cell populations in gene regulatory processes in which one or more intracellular variables undergo stochastic dynamics as determined by Ito stochastic differential equations. This paper addresses formulation and computational issues with sample applications to the spread of drug resistance among bacterial cells. It is shown that predictions from population balances can display qualitative differences from those made with single cell models which are usually encountered in the literature. Such differences are deemed to be important. PMID:22581980

  14. AN INDIVIDUAL-BASED MODEL OF COTTUS POPULATION DYNAMICS

    EPA Science Inventory

    We explored population dynamics of a southern Appalachian population of Cottus bairdi using a spatially-explicit, individual-based model. The model follows daily growth, mortality, and spawning of individuals as a function of flow and temperature. We modeled movement of juveniles...

  15. Effects of a synthetic oil on zooplankton community structure

    SciTech Connect

    Hook, L.A.

    1988-01-01

    This study assessed the effects of a coal-derived oil on the structure of zooplankton communities of laboratory pond microcosms and outdoor experimental ponds. Several measures of community structure and multivariate statistical techniques were used to reveal changes in the patterns of zooplankton community structure caused by the perturbation. From these results the basic ecological mechanisms responsible for maintenance of zooplankton community structure were inferred. The comparison of the field, laboratory microcosm, and laboratory bioassay results for the effects of oil provided an empirical basis for predicting pollutant effects on aquatic ecosystems. The responses of the microcosm and pond zooplankton communities to oil treatment were quite similar. Changes in cladoceran densities were the most sensitive indicators of stress in the zooplankton communities. Copepods were slightly less sensitive, and rotifers were least sensitive to oil treatment.

  16. Responses of zooplankton in lufenuron-stressed experimental ditches in the presence or absence of uncontaminated refuges.

    PubMed

    López-Mancisidor, Patricia; Van den Brink, Paul J; Crum, Steven J H; Maund, Steve J; Carbonell, Gregoria; Brock, Theo C M

    2008-06-01

    Outdoor experimental ditches were used to evaluate the influence of untreated refuges on the recovery of zooplankton communities following treatment with the fast-dissipating insecticide lufenuron. Each experimental ditch was divided into three sections of the same surface area. The treatments differed in the proportion of ditch (0, 33, 67, and 100% of the surface area) to which the insecticide was applied at the same nominal treatment (3 mug/L). During the first week postapplication, a barrier was placed between treated and untreated ditch sections. The untreated sections were included to provide a source of organisms for recovery of affected zooplankton populations in the treated sections of the ditch after the removal of the barrier. Cyclopoida were the most affected by lufenuron treatment, followed by Daphnia gr. galeata. These and other direct effects of treatment on larvae of the phantom midge Chaoborus spp. resulted in clear indirect effects on populations of Calanoida, Ceriodaphnia, and Rotifera. Overall, faster recovery of the zooplankton community was observed in the treated sections of ditches that were sprayed for a smaller proportion of their surface area. Nevertheless, individual zooplankton populations showed considerable differences in rate of recovery. Cyclopoida showed a relatively slow rate of recovery even in the partially treated ditches. Daphnia gr. galeata recovered more rapidly in treated ditch sections in the presence of unsprayed ditch sections, illustrating the potential influence of unexposed refuges. Furthermore, the presence of refuges most likely dampened the magnitude and duration of indirect effects in the ditches treated with lufenuron. PMID:18466038

  17. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    PubMed

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103

  18. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    PubMed

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability.

  19. Random Effects Models and Multistage Estimation Procedures for Statistical Population Reconstruction of Small Game Populations

    PubMed Central

    Gast, Christopher M.; Skalski, John R.; Isabelle, Jason L.; Clawson, Michael V.

    2013-01-01

    Recently, statistical population models using age-at-harvest data have seen increasing use for monitoring of harvested wildlife populations. Even more recently, detailed evaluation of model performance for long-lived, large game animals indicated that the use of random effects to incorporate unmeasured environmental variation, as well as second-stage Horvitz-Thompson-type estimators of abundance, provided more reliable estimates of total abundance than previous models. We adapt this new modeling framework to small game, age-at-harvest models with only young-of-the-year and adult age classes. Our Monte Carlo simulation results indicate superior model performance for the new modeling framework, evidenced by lower bias and proper confidence interval coverage. We apply this method to male wild turkey harvest in the East Ozarks turkey productivity region, Missouri, USA, where statistical population reconstruction indicates a relatively stationary population for 1996–2010. PMID:23755199

  20. SMALL POPULATIONS REQUIRE SPECIFIC MODELING APPROACHES FOR ASSESSING RISK

    EPA Science Inventory

    All populations face non-zero risks of extinction. However, the risks for small populations, and therefore the modeling approaches necessary to predict them, are different from those of large populations. These differences are currently hindering assessment of risk to small pop...

  1. Population model for Alaska Peninsula sea otters. Final report

    SciTech Connect

    Eberhardt, L.L.; Siniff, D.B.

    1988-12-31

    This study was conducted to provide a basis for assessing risks of oil spills to sea otter populations along the Alaska Peninsula. The principal efforts were devoted to analyzing the available data on population dynamics. Curves characterizing survivorship and reproduction for sea otters were devised and fitted to several data sets. A detailed review was conducted of methods of assessing population dynamics data, and several new techniques (e.g., bootstrapping) were applied to available data. A simplified model for use with Alaska Peninsula sea otter populations was devised and implemented in a 'spreadsheet' format. Various aspects of model development and data on population size in Alaska Peninsula areas were reviewed.

  2. Modeling of LEO orbital debris populations for ORDEM2008

    NASA Astrophysics Data System (ADS)

    Xu, Y.-L.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.

    2009-03-01

    The NASA Orbital Debris Engineering Model, ORDEM2000, is in the process of being updated to a new version: ORDEM2008. The data-driven ORDEM covers a spectrum of object size from 10 μm to greater than 1 m, and ranging from LEO (low Earth orbit) to GEO (geosynchronous orbit) altitude regimes. ORDEM2008 centimeter-sized populations are statistically derived from Haystack and HAX (the Haystack Auxiliary) radar data, while micron-sized populations are estimated from shuttle impact records. Each of the model populations consists of a large number of orbits with specified orbital elements, the number of objects on each orbit (with corresponding uncertainty), and the size, type, and material assignment for each object. This paper describes the general methodology and procedure commonly used in the statistical inference of the ORDEM2008 LEO debris populations. Major steps in the population derivations include data analysis, reference-population construction, definition of model parameters in terms of reference populations, linking model parameters with data, seeking best estimates for the model parameters, uncertainty analysis, and assessment of the outcomes. To demonstrate the population-derivation process and to validate the Bayesian statistical model applied in the population derivations throughout, this paper uses illustrative examples for the special cases of large-size (>1 m, >32 cm, and >10 cm) populations that are tracked by SSN (the Space Surveillance Network) and also monitored by Haystack and HAX radars operating in a staring mode.

  3. A linear model of population dynamics

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  4. Population modelling to compare chronic external radiotoxicity between individual and population endpoints in four taxonomic groups.

    PubMed

    Alonzo, Frédéric; Hertel-Aas, Turid; Real, Almudena; Lance, Emilie; Garcia-Sanchez, Laurent; Bradshaw, Clare; Vives I Batlle, Jordi; Oughton, Deborah H; Garnier-Laplace, Jacqueline

    2016-02-01

    In this study, we modelled population responses to chronic external gamma radiation in 12 laboratory species (including aquatic and soil invertebrates, fish and terrestrial mammals). Our aim was to compare radiosensitivity between individual and population endpoints and to examine how internationally proposed benchmarks for environmental radioprotection protected species against various risks at the population level. To do so, we used population matrix models, combining life history and chronic radiotoxicity data (derived from laboratory experiments and described in the literature and the FREDERICA database) to simulate changes in population endpoints (net reproductive rate R0, asymptotic population growth rate λ, equilibrium population size Neq) for a range of dose rates. Elasticity analyses of models showed that population responses differed depending on the affected individual endpoint (juvenile or adult survival, delay in maturity or reduction in fecundity), the considered population endpoint (R0, λ or Neq) and the life history of the studied species. Among population endpoints, net reproductive rate R0 showed the lowest EDR10 (effective dose rate inducing 10% effect) in all species, with values ranging from 26 μGy h(-1) in the mouse Mus musculus to 38,000 μGy h(-1) in the fish Oryzias latipes. For several species, EDR10 for population endpoints were lower than the lowest EDR10 for individual endpoints. Various population level risks, differing in severity for the population, were investigated. Population extinction (predicted when radiation effects caused population growth rate λ to decrease below 1, indicating that no population growth in the long term) was predicted for dose rates ranging from 2700 μGy h(-1) in fish to 12,000 μGy h(-1) in soil invertebrates. A milder risk, that population growth rate λ will be reduced by 10% of the reduction causing extinction, was predicted for dose rates ranging from 24 μGy h(-1) in mammals to 1800 μGy h(-1) in

  5. Population modelling to compare chronic external radiotoxicity between individual and population endpoints in four taxonomic groups.

    PubMed

    Alonzo, Frédéric; Hertel-Aas, Turid; Real, Almudena; Lance, Emilie; Garcia-Sanchez, Laurent; Bradshaw, Clare; Vives I Batlle, Jordi; Oughton, Deborah H; Garnier-Laplace, Jacqueline

    2016-02-01

    In this study, we modelled population responses to chronic external gamma radiation in 12 laboratory species (including aquatic and soil invertebrates, fish and terrestrial mammals). Our aim was to compare radiosensitivity between individual and population endpoints and to examine how internationally proposed benchmarks for environmental radioprotection protected species against various risks at the population level. To do so, we used population matrix models, combining life history and chronic radiotoxicity data (derived from laboratory experiments and described in the literature and the FREDERICA database) to simulate changes in population endpoints (net reproductive rate R0, asymptotic population growth rate λ, equilibrium population size Neq) for a range of dose rates. Elasticity analyses of models showed that population responses differed depending on the affected individual endpoint (juvenile or adult survival, delay in maturity or reduction in fecundity), the considered population endpoint (R0, λ or Neq) and the life history of the studied species. Among population endpoints, net reproductive rate R0 showed the lowest EDR10 (effective dose rate inducing 10% effect) in all species, with values ranging from 26 μGy h(-1) in the mouse Mus musculus to 38,000 μGy h(-1) in the fish Oryzias latipes. For several species, EDR10 for population endpoints were lower than the lowest EDR10 for individual endpoints. Various population level risks, differing in severity for the population, were investigated. Population extinction (predicted when radiation effects caused population growth rate λ to decrease below 1, indicating that no population growth in the long term) was predicted for dose rates ranging from 2700 μGy h(-1) in fish to 12,000 μGy h(-1) in soil invertebrates. A milder risk, that population growth rate λ will be reduced by 10% of the reduction causing extinction, was predicted for dose rates ranging from 24 μGy h(-1) in mammals to 1800 μGy h(-1) in

  6. Survival models for harvest management of mourning dove populations

    USGS Publications Warehouse

    Otis, D.L.

    2002-01-01

    Quantitative models of the relationship between annual survival and harvest rate of migratory game-bird populations are essential to science-based harvest management strategies. I used the best available band-recovery and harvest data for mourning doves (Zenaida macroura) to build a set of models based on different assumptions about compensatory harvest mortality. Although these models suffer from lack of contemporary data, they can be used in development of an initial set of population models that synthesize existing demographic data on a management-unit scale, and serve as a tool for prioritization of population demographic information needs. Credible harvest management plans for mourning dove populations will require a long-term commitment to population monitoring and iterative population analysis.

  7. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    NASA Astrophysics Data System (ADS)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  8. Global stability of Gompertz model of three competing populations

    NASA Astrophysics Data System (ADS)

    Yu, Yumei; Wang, Wendi; Lu, Zhengyi

    2007-10-01

    The model of three competitive populations with Gompertz growth is studied. The periodic solutions are ruled out by generalized Dulac criteria. On the basis of the analysis, we obtain conditions that ensure the asymptotic behavior of the model is simple.

  9. MODELING APPROACHES TO POPULATION-LEVEL RISK AESSESSMENT

    EPA Science Inventory

    A SETAC Pellston Workshop on Population-Level Risk Assessment was held in Roskilde, Denmark on 23-27 August 2003. One aspect of this workshop focused on modeling approaches for characterizing population-level effects of chemical exposure. The modeling work group identified th...

  10. Mathematical modeling in biological populations through branching processes. Application to salmonid populations.

    PubMed

    Molina, Manuel; Mota, Manuel; Ramos, Alfonso

    2015-01-01

    This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations.

  11. Biological processes in the water column of the South Atlantic Bight: Zooplankton responses: Progress report, June 1988--June 1989

    SciTech Connect

    Paffenhoefer, G.A.

    1989-02-07

    It is our objective to determine the major processes governing the abundance, composition and disruption of zooplankton as part of the interdisciplinary southeastern US continental shelf program of the Department of Energy. We will study the effects of physical processes such as along- and cross shelf advection and frontogenesis, on the development and fate of zooplankton populations during winter. Our proposed research consists of shipboard sampling, laboratory experiments and in situ determination of zooplankton abundance over time. The last objective represents a novel approach because the observations are (a) non-destructive with great spatial resolution, and (b) occur on current meter arrays at similar scales as measurements of current velocity and direction. Results to date show prolonged residence times of upwelled water masses on the middle and inner shelf during summer which results in the development of massive copepod and tunicate populations. During spring, the extent of displacement of nearshore zooplankton was a function of wind stress. Our results can be used to predict the impact of energy-related technology on the ecosystem of the southeastern continental shelf. 8 refs., 6 figs.

  12. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  13. Zooplankton and Micronekton Studies at Bermuda: An Historical Perspective.

    NASA Astrophysics Data System (ADS)

    Madin, L. P.; Steinberg, D. K.

    2001-12-01

    Studies of zooplankton and fishes around Bermuda have a fairly long history, with collections and descriptions dating back to the late 19th century, at least. This talk reviews the history of these studies at Bermuda, and looks for long-term generalizations about diversity, biomass and seasonality. The first organized sampling program was probably the Bermuda Oceanographic Expedition led by William Beebe in 1929-1931. Beebe worked on mesopelagic fishes and zooplankton for many years at Bermuda, making the first manned dives to the midwater zone in the Bathysphere. More systematic investigations began in 1940 with the work of Moore who used (fairly) consistent sampling methods and reported on the diversity and distribution of zooplankton around the island. Moore paid particular attention to vertical migrations and seasonal shifts in species dominance, but did not provide quantitative data in the modern sense. From the 1960's onward there were a series of programs to sample and quantify zooplankton around Bermuda, mainly in the upper water layers. Since 1994, the BATS program has made monthly zooplankton collections in the top 200 m that are analyzed for biomass and species composition. This sampling, combined with the various historical records of zooplankton occurrence, other sampling efforts at the Bermuda Biological Station, and physical and biogeochemical datasets of the BATS program, forms a valuable time-series of zooplankton dynamics, which should be continued as part of a Sargasso Observatory program.

  14. [Models of economic theory of population growth].

    PubMed

    Von Zameck, W

    1987-01-01

    "The economic theory of population growth applies the opportunity cost approach to the fertility decision. Variations and differentials in fertility are caused by the available resources and relative prices or by the relative production costs of child services. Pure changes in real income raise the demand for children or the total amount spent on children. If relative prices or production costs and real income are affected together the effect on fertility requires separate consideration." (SUMMARY IN ENG)

  15. Zooplankton functional groups on the continental shelf of the yellow sea

    NASA Astrophysics Data System (ADS)

    Sun, Song; Huo, Yuanzi; Yang, Bo

    2010-06-01

    Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m -2 in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m -2, which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed

  16. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  17. Accommodating environmental variation in population models: metaphysiological biomass loss accounting.

    PubMed

    Owen-Smith, Norman

    2011-07-01

    1. There is a pressing need for population models that can reliably predict responses to changing environmental conditions and diagnose the causes of variation in abundance in space as well as through time. In this 'how to' article, it is outlined how standard population models can be modified to accommodate environmental variation in a heuristically conducive way. This approach is based on metaphysiological modelling concepts linking populations within food web contexts and underlying behaviour governing resource selection. Using population biomass as the currency, population changes can be considered at fine temporal scales taking into account seasonal variation. Density feedbacks are generated through the seasonal depression of resources even in the absence of interference competition. 2. Examples described include (i) metaphysiological modifications of Lotka-Volterra equations for coupled consumer-resource dynamics, accommodating seasonal variation in resource quality as well as availability, resource-dependent mortality and additive predation, (ii) spatial variation in habitat suitability evident from the population abundance attained, taking into account resource heterogeneity and consumer choice using empirical data, (iii) accommodating population structure through the variable sensitivity of life-history stages to resource deficiencies, affecting susceptibility to oscillatory dynamics and (iv) expansion of density-dependent equations to accommodate various biomass losses reducing population growth rate below its potential, including reductions in reproductive outputs. Supporting computational code and parameter values are provided. 3. The essential features of metaphysiological population models include (i) the biomass currency enabling within-year dynamics to be represented appropriately, (ii) distinguishing various processes reducing population growth below its potential, (iii) structural consistency in the representation of interacting populations and

  18. Accommodating environmental variation in population models: metaphysiological biomass loss accounting.

    PubMed

    Owen-Smith, Norman

    2011-07-01

    1. There is a pressing need for population models that can reliably predict responses to changing environmental conditions and diagnose the causes of variation in abundance in space as well as through time. In this 'how to' article, it is outlined how standard population models can be modified to accommodate environmental variation in a heuristically conducive way. This approach is based on metaphysiological modelling concepts linking populations within food web contexts and underlying behaviour governing resource selection. Using population biomass as the currency, population changes can be considered at fine temporal scales taking into account seasonal variation. Density feedbacks are generated through the seasonal depression of resources even in the absence of interference competition. 2. Examples described include (i) metaphysiological modifications of Lotka-Volterra equations for coupled consumer-resource dynamics, accommodating seasonal variation in resource quality as well as availability, resource-dependent mortality and additive predation, (ii) spatial variation in habitat suitability evident from the population abundance attained, taking into account resource heterogeneity and consumer choice using empirical data, (iii) accommodating population structure through the variable sensitivity of life-history stages to resource deficiencies, affecting susceptibility to oscillatory dynamics and (iv) expansion of density-dependent equations to accommodate various biomass losses reducing population growth rate below its potential, including reductions in reproductive outputs. Supporting computational code and parameter values are provided. 3. The essential features of metaphysiological population models include (i) the biomass currency enabling within-year dynamics to be represented appropriately, (ii) distinguishing various processes reducing population growth below its potential, (iii) structural consistency in the representation of interacting populations and

  19. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses.

    PubMed

    Starks, Elizabeth; Cooper, Ryan; Leavitt, Peter R; Wissel, Björn

    2014-04-01

    The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed-basin lakes within semiarid regions. To address this shortfall, we quantified decade-scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI <-2). DFA also predicted that lakes could support more fish species during pluvial periods, but their occurrences may be limited by periodic stress due to recurrent droughts and physical barriers to colonization. Zooplankton taxonomic assemblages in fishless lakes were resilient to short-term changes in meteorological conditions, and did not vary between drought and deluge periods. Conversely, zooplankton taxa in fish-populated lakes decreased substantially in biomass during the wet interval, likely due to increased zooplanktivory by fish. The powerful effects of such climatic variability on hydrology and the strong subsequent links to water chemistry and biota indicate that future changes in global climate could result in significant restructuring of aquatic communities. Together these findings suggest that semiarid lakes undergoing temporary climate shifts provide a useful model system for anticipating the effects of global climate change on lake food webs.

  20. A general consumer-resource population model

    USGS Publications Warehouse

    Lafferty, Kevin D.; DeLeo, Giulio; Briggs, Cheryl J.; Dobson, Andrew P.; Gross, Thilo; Kuris, Armand M.

    2015-01-01

    Food-web dynamics arise from predator-prey, parasite-host, and herbivore-plant interactions. Models for such interactions include up to three consumer activity states (questing, attacking, consuming) and up to four resource response states (susceptible, exposed, ingested, resistant). Articulating these states into a general model allows for dissecting, comparing, and deriving consumer-resource models. We specify this general model for 11 generic consumer strategies that group mathematically into predators, parasites, and micropredators and then derive conditions for consumer success, including a universal saturating functional response. We further show how to use this framework to create simple models with a common mathematical lineage and transparent assumptions. Underlying assumptions, missing elements, and composite parameters are revealed when classic consumer-resource models are derived from the general model.

  1. Spatially correlated disturbances in a locally dispersing population model.

    PubMed

    Hiebeler, David

    2005-01-01

    The basic contact process in continuous time is studied, where instead of single occupied sites becoming empty independently, larger-scale disturbance events simultaneously remove the population from contiguous blocks of sites. Stochastic spatial simulations and pair approximations were used to investigate the model. Increasing the spatial scale of disturbance events increases spatial clustering of the population and variability in growth rates within localized regions, reduces the effective overall population density, and increases the critical reproductive rate necessary for the population to persist. Pair approximations yield a closed-form analytic expression for equilibrium population density and the critical value necessary for persistence.

  2. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters.

    PubMed

    Frias, J P G L; Otero, V; Sobral, P

    2014-04-01

    Records of high concentrations of plastic and microplastic marine debris floating in the ocean have led to investigate the presence of microplastics in samples of zooplankton from Portuguese coastal waters. Zooplankton samples collected at four offshore sites, in surveys conducted between 2002 and 2008, with three different sampling methods, were used in this preliminary study. A total of 152 samples were processed and microplastics were identified in 93 of them, corresponding to 61% of the total. Costa Vicentina, followed by Lisboa, were the regions with higher microplastic concentrations (0.036 and 0.033 no. m⁻³) and abundances (0.07 and 0.06 cm³ m⁻³), respectively. Microplastic: zooplankton ratios were also higher in these two regions, which is probably related to the proximity of densely populated areas and inputs from the Tejo and Sado river estuaries. Microplastics polymers were identified using Micro Fourier Transformed Infrared Spectroscopy (μ-FTIR), as polyethylene (PE), polypropylene (PP) and polyacrylates (PA). The present work is the first report on the composition of microplastic particles collected with plankton nets in Portuguese coastal waters. Plankton surveys from regular monitoring campaigns conducted worldwide may be used to monitor plastic particles in the oceans and constitute an important and low cost tool to address marine litter within the scope of the Marine Strategy Framework Directive (2008/56/EC). PMID:24461782

  3. Phytoplankton limitation by phosphorus and zooplankton grazing in an acidic Adirondack lake

    SciTech Connect

    Singer, R.; Evans, G.L.; Pratt, N.C.

    1984-08-01

    Lakes which are believed to have been acidified by atmospheric deposition of anthropogenic substances are known for their unusually high water clarity and low nutrient concentrations. Some evidence indicates that alterations in predator/prey relationships, an indirect effect of acidification, bring about the increase in water clarity. Enclosures were used to study the effects of phosphorus addition and zooplankton removal on the phytoplankton of an acidic lake in the Adirondack Mountains of New York. Fertilized enclosures had significantly lower alkalinities and contained significantly more dissolved oxygen after the incubation period than did unfertilized enclosures. The P concentration remained at or near the limit of detection in the unfertilized enclosures. The phytoplankton population bloomed after the addition of 80 micro g/liter of phosphate as KH/sub 2/PO/sub 4/. The response was measured by cell counts of the dominant phytoplankton. Chlamydomonas, and by changes in chlorophyll a concentration. About half the number of algal cells were present after the two week incubation when zooplankton were not removed, indicating that zooplankton herbivory can influence, but not totally control, the algal production. 46 references.

  4. Spatial interaction among nontoxic phytoplankton, toxic phytoplankton, and zooplankton: emergence in space and time.

    PubMed

    Roy, Shovonlal

    2008-10-01

    In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity-a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water.

  5. Spatial interaction among nontoxic phytoplankton, toxic phytoplankton, and zooplankton: emergence in space and time.

    PubMed

    Roy, Shovonlal

    2008-10-01

    In homogeneous environments, by overturning the possibility of competitive exclusion among phytoplankton species, and by regulating the dynamics of overall plankton population, toxin-producing phytoplankton (TPP) potentially help in maintaining plankton diversity-a result shown recently. Here, I explore the competitive effects of TPP on phytoplankton and zooplankton species undergoing spatial movements in the subsurface water. The spatial interactions among the species are represented in the form of reaction-diffusion equations. Suitable parametric conditions under which Turing patterns may or may not evolve are investigated. Spatiotemporal distributions of species biomass are simulated using the diffusivity assumptions realistic for natural planktonic systems. The study demonstrates that spatial movements of planktonic systems in the presence of TPP generate and maintain inhomogeneous biomass distribution of competing phytoplankton, as well as grazer zooplankton, thereby ensuring the persistence of multiple species in space and time. The overall results may potentially explain the sustainability of biodiversity and the spatiotemporal emergence of phytoplankton and zooplankton species under the influence of TPP combined with their physical movement in the subsurface water. PMID:19669506

  6. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters.

    PubMed

    Frias, J P G L; Otero, V; Sobral, P

    2014-04-01

    Records of high concentrations of plastic and microplastic marine debris floating in the ocean have led to investigate the presence of microplastics in samples of zooplankton from Portuguese coastal waters. Zooplankton samples collected at four offshore sites, in surveys conducted between 2002 and 2008, with three different sampling methods, were used in this preliminary study. A total of 152 samples were processed and microplastics were identified in 93 of them, corresponding to 61% of the total. Costa Vicentina, followed by Lisboa, were the regions with higher microplastic concentrations (0.036 and 0.033 no. m⁻³) and abundances (0.07 and 0.06 cm³ m⁻³), respectively. Microplastic: zooplankton ratios were also higher in these two regions, which is probably related to the proximity of densely populated areas and inputs from the Tejo and Sado river estuaries. Microplastics polymers were identified using Micro Fourier Transformed Infrared Spectroscopy (μ-FTIR), as polyethylene (PE), polypropylene (PP) and polyacrylates (PA). The present work is the first report on the composition of microplastic particles collected with plankton nets in Portuguese coastal waters. Plankton surveys from regular monitoring campaigns conducted worldwide may be used to monitor plastic particles in the oceans and constitute an important and low cost tool to address marine litter within the scope of the Marine Strategy Framework Directive (2008/56/EC).

  7. Changes in the nearshore and offshore zooplankton communities in Lake Ontario: 1981-88

    USGS Publications Warehouse

    Johannsson, Ora E.; Mills, Edward L.; O'Gorman, Robert

    1991-01-01

    We examined trends and factors influencing changes in nearshore and offshore zooplankton abundance and composition in Lake Ontario between 1981 and 1988. In the nearshore (southshore and eastern basin), zooplankton abundance decreased and shifts occurred in the relative abundances of Bosmina longirostris and Daphnia retrocurva (eastern basin) and Daphnia retrocurva and Daphnia galeata mendotae (southshore). These changes could have resulted from increased vertebrate predation or reduced food resources which intensified the effects of predation. In the offshore, the first appearance (FA) of the larger, less common cladoceran species occurred earlier in the season as of 1985. FA was correlated with cumulative epilimnetic temperature (CET) and the catch per unit effort (CPUE) of alewife (Alosa pseudoharengus) a?Y165 mm caught in U.S. waters in the spring. In 1987, when CET was high and CPUE of alewife a?Y165 mm was low, large populations of these cladocerans developed in June and July. Bythotrephes cederstroemi, a recent invader in the Great Lakes, was abundant only in 1987 when the CPUE of alewife was lowest. Changes in zooplankton abundance, development, and composition along the nearshore-offshore gradient reflected effects of temperature, habitat, and planktivory on the community.

  8. [Population projection and its principal components: the future model of population in the province of Alicante].

    PubMed

    Norman Mora, E

    1994-01-01

    "In this article we analyze the different demographic patterns defining the population in the province of Alicante [Spain]. The behaviour of the demographic factors in the past and in the present is studied here, and a series of models are put into practice in order to foresee the future pattern of population.... The result shows either the effect of a possible ageing in an already aged population, as is the case of the province of Alicante, or what the job market would have to endure if the above mentioned ageing took place, increased by the possibility of an inmigration of an older population." (SUMMARY IN ENG AND FRE)

  9. An open-population hierarchical distance sampling model

    USGS Publications Warehouse

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  10. IBSEM: An Individual-Based Atlantic Salmon Population Model.

    PubMed

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a 'wild' genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256

  11. IBSEM: An Individual-Based Atlantic Salmon Population Model

    PubMed Central

    Castellani, Marco; Heino, Mikko; Gilbey, John; Araki, Hitoshi; Svåsand, Terje; Glover, Kevin A.

    2015-01-01

    Ecology and genetics can influence the fate of individuals and populations in multiple ways. However, to date, few studies consider them when modelling the evolutionary trajectory of populations faced with admixture with non-local populations. For the Atlantic salmon, a model incorporating these elements is urgently needed because many populations are challenged with gene-flow from non-local and domesticated conspecifics. We developed an Individual-Based Salmon Eco-genetic Model (IBSEM) to simulate the demographic and population genetic change of an Atlantic salmon population through its entire life-cycle. Processes such as growth, mortality, and maturation are simulated through stochastic procedures, which take into account environmental variables as well as the genotype of the individuals. IBSEM is based upon detailed empirical data from salmon biology, and parameterized to reproduce the environmental conditions and the characteristics of a wild population inhabiting a Norwegian river. Simulations demonstrated that the model consistently and reliably reproduces the characteristics of the population. Moreover, in absence of farmed escapees, the modelled populations reach an evolutionary equilibrium that is similar to our definition of a ‘wild’ genotype. We assessed the sensitivity of the model in the face of assumptions made on the fitness differences between farm and wild salmon, and evaluated the role of straying as a buffering mechanism against the intrusion of farm genes into wild populations. These results demonstrate that IBSEM is able to capture the evolutionary forces shaping the life history of wild salmon and is therefore able to model the response of populations under environmental and genetic stressors. PMID:26383256

  12. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-01-01

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem. PMID:21533156

  13. A Quantitative Model of Honey Bee Colony Population Dynamics

    PubMed Central

    Khoury, David S.; Myerscough, Mary R.; Barron, Andrew B.

    2011-01-01

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem. PMID:21533156

  14. Numerical integration of population models satisfying conservation laws: NSFD methods.

    PubMed

    Mickens, Ronald E

    2007-10-01

    Population models arising in ecology, epidemiology and mathematical biology may involve a conservation law, i.e. the total population is constant. In addition to these cases, other situations may occur for which the total population, asymptotically in time, approach a constant value. Since it is rarely the situation that the equations of motion can be analytically solved to obtain exact solutions, it follows that numerical techniques are needed to provide solutions. However, numerical procedures are only valid if they can reproduce fundamental properties of the differential equations modeling the phenomena of interest. We show that for population models, involving a dynamical conservation law the use of nonstandard finite difference (NSFD) methods allows the construction of discretization schemes such that they are dynamically consistent (DC) with the original differential equations. The paper will briefly discuss the NSFD methodology, the concept of DC, and illustrate their application to specific problems for population models.

  15. Models of plant populations and communities

    SciTech Connect

    Huston, M.

    1990-01-01

    This document is the overview of the plant section in the book, {und Individual-Based Models and Approaches in Ecology}. A brief description of each of the chapters is provided, as well as a comparison of the models presented in each chapter. Four of the six chapters deal with single species interactions, one dealt with a two species system (plants and pollinators) and one deals with multispecies interactions. Both i-state distribution models and i-state configuration models are discussed. (MHB)

  16. Hydroxide stabilization as a new tool for ballast disinfection: Efficacy of treatment on zooplankton

    USGS Publications Warehouse

    Moffitt, Christine M.; Watten, Barnaby J.; Barenburg, Amber; Henquinet, Jeffrey

    2015-01-01

    Effective and economical tools are needed for treating ship ballast to meet new regulatory requirements designed to reduce the introduction of invasive aquatic species from ship traffic. We tested the efficacy of hydroxide stabilization as a ballast disinfection tool in replicated, sequential field trials on board the M/V Ranger III in waters of Lake Superior. Ballast water was introduced into each of four identical 1,320 L stainless steel tanks during a simulated ballasting operation. Two tanks were treated with NaOH to elevate the pH to 11.7 and the remaining two tanks were held as controls without pH alteration. After retention on board for 14–18 h, CO2-rich gas recovered from one of two diesel propulsion engines was sparged into tanks treated with NaOH for 2 h to force conversion of NaOH ultimately to sodium bicarbonate, thereby lowering pH to about 7.1. Prior to gas sparging, the engine exhaust was treated by a unique catalytic converter/wet scrubber process train to remove unwanted combustion byproducts and to provide cooling. The contents of each tank were then drained and filtered through 35-µm mesh plankton nets to collect all zooplankton. The composition and relative survival of zooplankton in each tank were evaluated by microscopy. Zooplankton populations were dominated by rotifers, but copepods and cladocerans were also observed. Hydroxide stabilization was 100% effective in killing all zooplankton present at the start of the tests. Our results suggest hydroxide stabilization has potential to be an effective and practical tool to disinfect ship ballast. Further, using CO2 released from the ship engine reduces emissions and the neutralized by product, sodium bicarbonate, can have beneficial impacts on the aquatic environment.

  17. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean.

    PubMed

    Frada, Miguel José; Schatz, Daniella; Farstey, Viviana; Ossolinski, Justin E; Sabanay, Helena; Ben-Dor, Shifra; Koren, Ilan; Vardi, Assaf

    2014-11-01

    Marine viruses are recognized as a major driving force regulating phytoplankton community composition and nutrient cycling in the oceans. Yet, little is known about mechanisms that influence viral dispersal in aquatic systems, other than physical processes, and that lead to the rapid demise of large-scale algal blooms in the oceans. Here, we show that copepods, abundant migrating crustaceans that graze on phytoplankton, as well as other zooplankton can accumulate and mediate the transmission of viruses infecting Emiliania huxleyi, a bloom-forming coccolithophore that plays an important role in the carbon cycle. We detected by PCR that >80% of copepods collected during a North Atlantic E. huxleyi bloom carried E. huxleyi virus (EhV) DNA. We demonstrated by isolating a new infectious EhV strain from a copepod microbiome that these viruses are infectious. We further showed that EhVs can accumulate in high titers within zooplankton guts during feeding or can be adsorbed to their surface. Subsequently, EhV can be dispersed by detachment or via viral-dense fecal pellets over a period of 1 day postfeeding on EhV-infected algal cells, readily infecting new host populations. Intriguingly, the passage through zooplankton guts prolonged EhV's half-life of infectivity by 35%, relative to free virions in seawater, potentially enhancing viral transmission. We propose that zooplankton, swimming through topographically adjacent phytoplankton micropatches and migrating daily over large areas across physically separated water masses, can serve as viral vectors, boosting host-virus contact rates and potentially accelerating the demise of large-scale phytoplankton blooms.

  18. Augmenting superpopulation capture-recapture models with population assignment data

    USGS Publications Warehouse

    Wen, Zhi; Pollock, Kenneth; Nichols, James; Waser, Peter

    2011-01-01

    Ecologists applying capture-recapture models to animal populations sometimes have access to additional information about individuals' populations of origin (e.g., information about genetics, stable isotopes, etc.). Tests that assign an individual's genotype to its most likely source population are increasingly used. Here we show how to augment a superpopulation capture-recapture model with such information. We consider a single superpopulation model without age structure, and split each entry probability into separate components due to births in situ and immigration. We show that it is possible to estimate these two probabilities separately. We first consider the case of perfect information about population of origin, where we can distinguish individuals born in situ from immigrants with certainty. Then we consider the more realistic case of imperfect information, where we use genetic or other information to assign probabilities to each individual's origin as in situ or outside the population. We use a resampling approach to impute the true population of origin from imperfect assignment information. The integration of data on population of origin with capture-recapture data allows us to determine the contributions of immigration and in situ reproduction to the growth of the population, an issue of importance to ecologists. We illustrate our new models with capture-recapture and genetic assignment data from a population of banner-tailed kangaroo rats Dipodomys spectabilis in Arizona.

  19. Modeling Radicalization Phenomena in Heterogeneous Populations

    PubMed Central

    2016-01-01

    The phenomenon of radicalization is investigated within a mixed population composed of core and sensitive subpopulations. The latest includes first to third generation immigrants. Respective ways of life may be partially incompatible. In case of a conflict core agents behave as inflexible about the issue. In contrast, sensitive agents can decide either to live peacefully adjusting their way of life to the core one, or to oppose it with eventually joining violent activities. The interplay dynamics between peaceful and opponent sensitive agents is driven by pairwise interactions. These interactions occur both within the sensitive population and by mixing with core agents. The update process is monitored using a Lotka-Volterra-like Ordinary Differential Equation. Given an initial tiny minority of opponents that coexist with both inflexible and peaceful agents, we investigate implications on the emergence of radicalization. Opponents try to turn peaceful agents to opponents driving radicalization. However, inflexible core agents may step in to bring back opponents to a peaceful choice thus weakening the phenomenon. The required minimum individual core involvement to actually curb radicalization is calculated. It is found to be a function of both the majority or minority status of the sensitive subpopulation with respect to the core subpopulation and the degree of activeness of opponents. The results highlight the instrumental role core agents can have to hinder radicalization within the sensitive subpopulation. Some hints are outlined to favor novel public policies towards social integration. PMID:27166677

  20. Modeling Radicalization Phenomena in Heterogeneous Populations.

    PubMed

    Galam, Serge; Javarone, Marco Alberto

    2016-01-01

    The phenomenon of radicalization is investigated within a mixed population composed of core and sensitive subpopulations. The latest includes first to third generation immigrants. Respective ways of life may be partially incompatible. In case of a conflict core agents behave as inflexible about the issue. In contrast, sensitive agents can decide either to live peacefully adjusting their way of life to the core one, or to oppose it with eventually joining violent activities. The interplay dynamics between peaceful and opponent sensitive agents is driven by pairwise interactions. These interactions occur both within the sensitive population and by mixing with core agents. The update process is monitored using a Lotka-Volterra-like Ordinary Differential Equation. Given an initial tiny minority of opponents that coexist with both inflexible and peaceful agents, we investigate implications on the emergence of radicalization. Opponents try to turn peaceful agents to opponents driving radicalization. However, inflexible core agents may step in to bring back opponents to a peaceful choice thus weakening the phenomenon. The required minimum individual core involvement to actually curb radicalization is calculated. It is found to be a function of both the majority or minority status of the sensitive subpopulation with respect to the core subpopulation and the degree of activeness of opponents. The results highlight the instrumental role core agents can have to hinder radicalization within the sensitive subpopulation. Some hints are outlined to favor novel public policies towards social integration. PMID:27166677

  1. Modeling the brain morphology distribution in the general aging population

    NASA Astrophysics Data System (ADS)

    Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.

    2016-03-01

    Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.

  2. Population extinction in an inhomogeneous host-pathogen model

    NASA Astrophysics Data System (ADS)

    Bagarti, Trilochan

    2016-01-01

    We study inhomogeneous host-pathogen dynamics to model the global amphibian population extinction in a lake basin system. The lake basin system is modeled as quenched disorder. In this model we show that once the pathogen arrives at the lake basin it spreads from one lake to another, eventually spreading to the entire lake basin system in a wave like pattern. The extinction time has been found to depend on the steady state host population and pathogen growth rate. Linear estimate of the extinction time is computed. The steady state host population shows a threshold behavior in the interaction strength for a given growth rate.

  3. PBPK and population modelling to interpret urine cadmium concentrations of the French population.

    PubMed

    Béchaux, Camille; Bodin, Laurent; Clémençon, Stéphan; Crépet, Amélie

    2014-09-15

    As cadmium accumulates mainly in kidney, urinary concentrations are considered as relevant data to assess the risk related to cadmium. The French Nutrition and Health Survey (ENNS) recorded the concentration of cadmium in the urine of the French population. However, as with all biomonitoring data, it needs to be linked to external exposure for it to be interpreted in term of sources of exposure and for risk management purposes. The objective of this work is thus to interpret the cadmium biomonitoring data of the French population in terms of dietary and cigarette smoke exposures. Dietary and smoking habits recorded in the ENNS study were combined with contamination levels in food and cigarettes to assess individual exposures. A PBPK model was used in a Bayesian population model to link this external exposure with the measured urinary concentrations. In this model, the level of the past exposure was corrected thanks to a scaling function which account for a trend in the French dietary exposure. It resulted in a modelling which was able to explain the current urinary concentrations measured in the French population through current and past exposure levels. Risk related to cadmium exposure in the general French population was then assessed from external and internal critical values corresponding to kidney effects. The model was also applied to predict the possible urinary concentrations of the French population in 2030 assuming there will be no more changes in the exposures levels. This scenario leads to significantly lower concentrations and consequently lower related risk.

  4. Parasitic chytrids sustain zooplankton growth during inedible algal bloom

    PubMed Central

    Rasconi, Serena; Grami, Boutheina; Niquil, Nathalie; Jobard, Marlène; Sime-Ngando, Télesphore

    2014-01-01

    This study assesses the quantitative impact of parasitic chytrids on the planktonic food web of two contrasting freshwater lakes during different algal bloom situations. Carbon-based food web models were used to investigate the effects of chytrids during the spring diatom bloom in Lake Pavin (oligo-mesotrophic) and the autumn cyanobacteria bloom in Lake Aydat (eutrophic). Linear inverse modeling was employed to estimate undetermined flows in both lakes. The Monte Carlo Markov chain linear inverse modeling procedure provided estimates of the ranges of model-derived fluxes. Model results confirm recent theories on the impact of parasites on food web function through grazers and recyclers. During blooms of “inedible” algae (unexploited by planktonic herbivores), the epidemic growth of chytrids channeled 19–20% of the primary production in both lakes through the production of grazer exploitable zoospores. The parasitic throughput represented 50% and 57% of the zooplankton diet, respectively, in the oligo-mesotrophic and in the eutrophic lakes. Parasites also affected ecological network properties such as longer carbon path lengths and loop strength, and contributed to increase the stability of the aquatic food web, notably in the oligo-mesotrophic Lake Pavin. PMID:24904543

  5. [On the relation between encounter rate and population density: Are classical models of population dynamics justified?].

    PubMed

    Nedorezov, L V

    2015-01-01

    A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.

  6. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Garijo, J. C.; Landeira, J. M.; Bordes, F.; Hernández-León, S.

    2015-05-01

    Diel Vertical Migration (DVM) in marine ecosystems is performed by zooplankton and micronekton, promoting a poorly accounted export of carbon to the deep ocean. Major efforts have been made to estimate carbon export due to gravitational flux and to a lesser extent, to migrant zooplankton. However, migratory flux by micronekton has been largely neglected in this context, due to its time-consuming and difficult sampling. In this paper, we evaluated gravitational and migratory flux due to the respiration of zooplankton and micronekton in the northeast subtropical Atlantic Ocean (Canary Islands). Migratory flux was addressed by calculating the biomass of migrating components and measuring the electron transfer system (ETS) activity in zooplankton and dominant species representing micronekton (Euphausia gibboides, Sergia splendens and Lobianchia dofleini). Our results showed similar biomass in both components. The main taxa contributing to DVM within zooplankton were juvenile euphausiids, whereas micronekton were mainly dominated by fish, followed by adult euphausiids and decapods. The contribution to respiratory flux of zooplankton (3.4 ± 1.9 mg C m-2 d-1) was similar to that of micronekton (2.9 ± 1.0 mg C m-2 d-1). In summary, respiratory flux accounted for 53% (range 23-71) of the gravitational flux measured at 150 m depth (11.9 ± 5.8 mg C m-2 d-1). However, based on larger migratory ranges and gut clearance rates, micronekton are expected to be the dominant component that contributes to carbon export in deeper waters. Micronekton estimates in this paper as well as those in existing literature, although variable due to regional differences and difficulties in calculating their biomass, suggest that carbon fluxes driven by this community are important for future models of the biological carbon pump.

  7. A probabilistic model to evaluate population dietary recommendations.

    PubMed

    Chalabi, Zaid; Ferguson, Elaine; Stanley, Robert; Briend, André

    2014-07-28

    Food-based dietary recommendations (FBR) play an essential role in promoting a healthy diet. To support the process of formulating a set of population-specific FBR, a probabilistic model was developed specifically to predict the changes in the percentage of a population at risk of inadequate nutrient intakes after the adoption of alternative sets of FBR. The model simulates the distribution of the number of servings per week from food groups or food items at baseline and after the hypothetical successful adoption of alternative sets of FBR, while ensuring that the population's energy intake distribution remains similar. The simulated changes from baseline in median nutrient intakes and the percentage of the population at risk of inadequate nutrient intakes are calculated and compared across the alternative sets of FBR. The model was illustrated using a hypothetical population of 12- to 18-month-old breast-feeding children consuming a cereal-based diet low in animal source foods.

  8. Contribution and pathways of diazotroph-derived nitrogen to zooplankton during the VAHINE mesocosm experiment in the oligotrophic New Caledonia lagoon

    NASA Astrophysics Data System (ADS)

    Hunt, Brian P. V.; Bonnet, Sophie; Berthelot, Hugo; Conroy, Brandon J.; Foster, Rachel A.; Pagano, Marc

    2016-05-01

    In oligotrophic tropical and subtropical oceans, where strong stratification can limit the replenishment of surface nitrate, dinitrogen (N2) fixation by diazotrophs can represent a significant source of nitrogen (N) for primary production. The VAHINE (VAriability of vertical and tropHIc transfer of fixed N2 in the south-wEst Pacific) experiment was designed to examine the fate of diazotroph-derived nitrogen (DDN) in such ecosystems. In austral summer 2013, three large ( ˜ 50 m3) in situ mesocosms were deployed for 23 days in the New Caledonia lagoon, an ecosystem that typifies the low-nutrient, low-chlorophyll environment, to stimulate diazotroph production. The zooplankton component of the study aimed to measure the incorporation of DDN into zooplankton biomass, and assess the role of direct diazotroph grazing by zooplankton as a DDN uptake pathway. Inside the mesocosms, the diatom-diazotroph association (DDA) het-1 predominated during days 5-15 while the unicellular diazotrophic cyanobacteria UCYN-C predominated during days 15-23. A Trichodesmium bloom was observed in the lagoon (outside the mesocosms) towards the end of the experiment. The zooplankton community was dominated by copepods (63 % of total abundance) for the duration of the experiment. Using two-source N isotope mixing models we estimated a mean ˜ 28 % contribution of DDN to zooplankton nitrogen biomass at the start of the experiment, indicating that the natural summer peak of N2 fixation in the lagoon was already contributing significantly to the zooplankton. Stimulation of N2 fixation in the mesocosms corresponded with a generally low-level enhancement of DDN contribution to zooplankton nitrogen biomass, but with a peak of ˜ 73 % in mesocosm 1 following the UCYN-C bloom. qPCR analysis targeting four of the common diazotroph groups present in the mesocosms (Trichodesmium, het-1, het-2, UCYN-C) demonstrated that all four were ingested by copepod grazers, and that their abundance in copepod

  9. Discriminating zooplankton assemblages in neritic and oceanic waters: a case for the northeast coast of India, Bay of Bengal.

    PubMed

    Rakhesh, M; Raman, A V; Sudarsan, D

    2006-02-01

    Zooplankton species distribution and abundance data at 17 locations in the inshore (10-30 m), shelf (50-200 m) and oceanic (2,500-2,800 m) regions off northeast India (Bay of Bengal) during January 1999-April 2001 revealed 112 taxa represented by 30 divergent groups. Copepods (58 species) dominated (87%) the population numerically. In general zooplankton diversity (Margalef richness d, Shannon-Wiener H', Pielou's evenness J') increased in the direction of the open sea relative to coastal locations with a concomitant decrease both in abundance (ind m(-3)) and biomass (dry mass m(-3)). Based on multivariate analyses, it was possible to distinguish the zooplankton community into different assemblages according to their location (e.g., inshore, shelf, oceanic) and seasonality. While Acrocalanus sp., Oithona sp., Corycaeus danae, Euterpina acutifrons, Paracalanus sp., and Acartia sp. were found characterizing the coastal locations, Oncaea venusta was the discriminating species for shelf waters. In oceanic areas, there was a clear dominance of Labidocera sp., Candacia sp., Euchaeta rimana, Centropages calaninus, Copilia mirabilis and Corycella gibbula. The investigations revealed that changes in zooplankton community structure across water bodies could be associated with differing salinity. During November 1999 (post-monsoon), when salinity in the coastal waters was relatively low (26-28.9 PSU), the zooplankton community consisted of mainly Acrocalanus sp., Salpa, Corycaeus danae, Oikopleura sp., Acartia sp., Evadne tergestina, and Creseis sp. In January 2000 (salinity 32.4-34.1), additionally Corycella gibbula, Labidocera sp., Centropages sp., Microsetella sp., Euterpina acutifrons, Canthocalanus pauper, and Oncaea venusta represented the population discriminating the assemblage from others. In May 2000 (pre-monsoon) when salinity was highest (34.7-35.3), Oithona sp., Paracalanus sp., and Acrocalanus gibber were found important. Chaetognaths formed a distinct group

  10. A Role for M-Matrices in Modelling Population Growth

    ERIC Educational Resources Information Center

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  11. Zooplankton distribution around four eastern North Pacific seamounts

    NASA Astrophysics Data System (ADS)

    Haury, Loren; Fey, Connie; Newland, Carol; Genin, Amatzia

    2000-01-01

    The effects of seamounts on the distribution of zooplankton were investigated at four seamounts in the northeastern Pacific. The following hypotheses were tested: (1) mesoscale gaps of reduced abundance of migrating zooplankton develop over seamounts every night; (2) fine-scale patchiness is augmented within these gaps and in the region downstream of seamounts; and (3) increased numbers of crustacean carcasses occur over seamounts. Gaps are expected because most zooplankton that descend over shallow topography at dawn are either eaten by resident predators or are advected off the summit, while fine-scale patchiness should result from lateral shear between the gap and the surrounding zooplankton-rich waters. Copepod carcasses should be more abundant over seamounts than the surrounding water because of the increased predation at seamounts. Zooplankton distributions were determined from net samples and acoustic records. Water column properties were measured with a CTD and hydrocasts, and currents by moored current meters, acoustic current profilers and drifter drogues. Zooplankton gaps were found over three of the four seamounts surveyed, but not on every survey of each seamount. Only three of the surveys provided the information necessary to test the patchiness hypothesis; on two of these increased patchiness and carcass abundance were found associated with gaps. When no gap was observed over a seamount, there was no evidence of increased carcass abundance or enhanced patchiness, indicating that the three phenomena are temporally and spatially linked. Copepod carcasses were found in the intestines of small fish sampled at the same time as the zooplankton. The fish, along with crustacean predators like euphausiids, are the likely source for the carcasses. Seamounts appear to be an important cause of enhanced zooplankton patchiness on scales ranging from 100s of meters to areas larger than the seamounts themselves.

  12. Seasonal cycles of zooplankton from San Francisco Bay

    USGS Publications Warehouse

    Ambler, Julie W.; Cloern, James E.; Hutchinson, Anne

    1985-01-01

    Seasonal cycles of zooplankton abundance appear to be constant among years (1978–1981) and are similar in the deep (>10 m) channels and lateral shoals (<3 m). The seasonal zooplankton community dynamics are discussed in relation to: (1) river discharge which alters salinity distribution and residence time of plankton; (2) temperature which induces production and hatching of dormant copepod eggs; (3) coastal hydrography which brings neritic copepods of different zoogeographic affinities into the bay; and (4) seasonal cycles of phytoplankton.

  13. Spatial models of Northern Bobwhite populations for conservation planning

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Keister, A.S.

    2007-01-01

    Since 1980, northern bobwhite (Colinus virginianus) range-wide populations declined 3.9% annually. Within the West Gulf Coastal Plain Bird Conservation Region in the south-central United States, populations of this quail species have declined 6.8% annually. These declines sparked calls for land use change and prompted implementation of various conservation practices. However, to effectively reverse these declines and restore northern bobwhite to their former population levels, habitat conservation and management efforts must target establishment and maintenance of sustainable populations. To provide guidance for conservation and restoration of habitat capable of supporting sustainable northern bobwhite populations in the West Gulf Coastal Plain, we modeled their spatial distribution using landscape characteristics derived from 1992 National Land Cover Data and bird detections, from 1990 to 1994, along 10-stop Breeding Bird Survey route segments. Four landscape metrics influenced detections of northern bobwhite: detections were greater in areas with more grassland and increased aggregation of agricultural lands, but detections were reduced in areas with increased density of land cover edge and grassland edge. Using these landscape metrics, we projected the abundance and spatial distribution of northern bobwhite populations across the entire West Gulf Coastal Plain. Predicted populations closely approximated abundance estimates from a different cadre of concurrently collected data but model predictions did not accurately reflect bobwhite detections along species-specific call-count routes in Arkansas and Louisiana. Using similar methods, we also projected northern bobwhite population distribution circa 1980 based on Land Use Land Cover data and bird survey data from 1976 to 1984. We compared our 1980 spatial projections with our spatial estimate of 1992 populations to identify areas of population change. Additionally, we used our projection of the spatial

  14. Spatial models of northern bobwhite populations for conservation planning

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Keister, A.S.

    2007-01-01

    Since 1980, northern bobwhite (Colinus virginianus) range-wide populations declined 3.9% annually. Within the West Gulf Coastal Plain Bird Conservation Region in the south-central United States, populations of this quail species have declined 6.8% annually. These declines sparked calls for land use change and prompted implementation of various conservation practices. However, to effectively reverse these declines and restore northern bobwhite to their former population levels, habitat conservation and management efforts must target establishment and maintenance of sustainable populations. To provide guidance for conservation and restoration of habitat capable of supporting sustainable northern bobwhite populations in the West Gulf Coastal Plain, we modeled their spatial distribution using landscape characteristics derived from 1992 National Land Cover Data and bird detections, from 1990 to 1994, along 10-stop Breeding Bird Survey route segments. Four landscape metrics influenced detections of northern bobwhite: detections were greater in areas with more grassland and increased aggregation of agricultural lands, but detections were reduced in areas with increased density of land cover edge and grassland edge. Using these landscape metrics, we projected the abundance and spatial distribution of northern bobwhite populations across the entire West Gulf Coastal Plain. Predicted populations closely approximated abundance estimates from a different cadre of concurrently collected data but model predictions did not accurately reflect bobwhite detections along species-specific call-count routes in Arkansas and Louisiana. Using similar methods, we also projected northern bobwhite population distribution circa 1980 based on Land Use Land Cover data and bird survey data from 1976 to 1984. We compared our 1980 spatial projections with our spatial estimate of 1992 populations to identify areas of population change. Additionally, we used our projection of the spatial

  15. Population models of burrowing mayfly recolonization in Western Lake Erie

    USGS Publications Warehouse

    Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.

    1998-01-01

    Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.

  16. Modeling X-Linked Ancestral Origins in Multiparental Populations

    PubMed Central

    Zheng, Chaozhi

    2015-01-01

    The models for the mosaic structure of an individual’s genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes in a mapping population, which is necessary for developing hidden Markov models in the reconstruction of ancestry blocks for X-linked quantitative trait locus mapping. The model accounts for the joint recombination pattern, the asymmetry between maternally and paternally derived X chromosomes, and the finiteness of population size. The model can be applied to various mapping populations such as the advanced intercross lines (AIL), the Collaborative Cross (CC), the heterogeneous stock (HS), the Diversity Outcross (DO), and the Drosophila synthetic population resource (DSPR). We further derive the map expansion, density (per Morgan) of recombination breakpoints, in advanced intercross populations with L inbred founders under the limit of an infinitely large population size. The analytic results show that for X chromosomes the genetic map expands linearly at a rate (per generation) of two-thirds times 1 – 10/(9L) for the AIL, and at a rate of two-thirds times 1 – 1/L for the DO and the HS, whereas for autosomes the map expands at a rate of 1 – 1/L for the AIL, the DO, and the HS. PMID:25740936

  17. Population dynamics of pond zooplankton II Daphnia ambigua Scourfield

    USGS Publications Warehouse

    Angino, E.E.; Armitage, K.B.; Saxena, B.

    1973-01-01

    Calcium was the most important of 27 environmental components affecting density for a 50 week period. Simultaneous stepwise regression accounted for more variability in total number/1 and in the number of ovigerous females/1 than did any of the lag analyses; 1-week lag accounted for the greatest amount of variability in clutch size. Total number and clutch size were little affected by measures of food. ?? 1973 Dr. W. Junk b.v. Publishers.

  18. Modeling oscillations and spiral waves in Dictyostelium populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  19. Modeling oscillations and spiral waves in Dictyostelium populations.

    PubMed

    Noorbakhsh, Javad; Schwab, David J; Sgro, Allyson E; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales-from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations. PMID:26172740

  20. Parameter Estimates in Differential Equation Models for Population Growth

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  1. PBPK and population modelling to interpret urine cadmium concentrations of the French population

    SciTech Connect

    Béchaux, Camille; Bodin, Laurent; Clémençon, Stéphan; Crépet, Amélie

    2014-09-15

    As cadmium accumulates mainly in kidney, urinary concentrations are considered as relevant data to assess the risk related to cadmium. The French Nutrition and Health Survey (ENNS) recorded the concentration of cadmium in the urine of the French population. However, as with all biomonitoring data, it needs to be linked to external exposure for it to be interpreted in term of sources of exposure and for risk management purposes. The objective of this work is thus to interpret the cadmium biomonitoring data of the French population in terms of dietary and cigarette smoke exposures. Dietary and smoking habits recorded in the ENNS study were combined with contamination levels in food and cigarettes to assess individual exposures. A PBPK model was used in a Bayesian population model to link this external exposure with the measured urinary concentrations. In this model, the level of the past exposure was corrected thanks to a scaling function which account for a trend in the French dietary exposure. It resulted in a modelling which was able to explain the current urinary concentrations measured in the French population through current and past exposure levels. Risk related to cadmium exposure in the general French population was then assessed from external and internal critical values corresponding to kidney effects. The model was also applied to predict the possible urinary concentrations of the French population in 2030 assuming there will be no more changes in the exposures levels. This scenario leads to significantly lower concentrations and consequently lower related risk. - Highlights: • Interpretation of urine cadmium concentrations in France • PBPK and Bayesian population modelling of cadmium exposure • Assessment of the historic time-trend of the cadmium exposure in France • Risk assessment from current and future external and internal exposure.

  2. Generalized population models and the nature of genetic drift.

    PubMed

    Der, Ricky; Epstein, Charles L; Plotkin, Joshua B

    2011-09-01

    The Wright-Fisher model of allele dynamics forms the basis for most theoretical and applied research in population genetics. Our understanding of genetic drift, and its role in suppressing the deterministic forces of Darwinian selection has relied on the specific form of sampling inherent to the Wright-Fisher model and its diffusion limit. Here we introduce and analyze a broad class of forward-time population models that share the same mean and variance as the Wright-Fisher model, but may otherwise differ. The proposed class unifies and further generalizes a number of population-genetic processes of recent interest, including the Λ and Cannings processes. Even though these models all have the same variance effective population size, they encode a rich diversity of alternative forms of genetic drift, with significant consequences for allele dynamics. We characterize in detail the behavior of standard population-genetic quantities across this family of generalized models. Some quantities, such as heterozygosity, remain unchanged; but others, such as neutral absorption times and fixation probabilities under selection, deviate by orders of magnitude from the Wright-Fisher model. We show that generalized population models can produce startling phenomena that differ qualitatively from classical behavior - such as assured fixation of a new mutant despite the presence of genetic drift. We derive the forward-time continuum limits of the generalized processes, analogous to Kimura's diffusion limit of the Wright-Fisher process, and we discuss their relationships to the Kingman and non-Kingman coalescents. Finally, we demonstrate that some non-diffusive, generalized models are more likely, in certain respects, than the Wright-Fisher model itself, given empirical data from Drosophila populations.

  3. Probability bounds analysis for nonlinear population ecology models.

    PubMed

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals.

  4. Minimal models of growth and decline of microbial populations.

    PubMed

    Juška, Alfonsas

    2011-01-21

    Dynamics of growth and decline of microbial populations were analysed and respective models were developed in this investigation. Analysis of the dynamics was based on general considerations concerning the main properties of microorganisms and their interactions with the environment which was supposed to be affected by the activity of the population. Those considerations were expressed mathematically by differential equations or systems of the equations containing minimal sets of parameters characterizing those properties. It has been found that: (1) the factors leading to the decline of the population have to be considered separately, namely, accumulation of metabolites (toxins) in the medium and the exhaustion of resources; the latter have to be separated again into renewable ('building materials') and non-renewable (sources of energy); (2) decline of the population is caused by the exhaustion of sources of energy but no decline is predicted by the model because of the exhaustion of renewable resources; (3) the model determined by the accumulation of metabolites (toxins) in the medium does not suggest the existence of a separate 'stationary phase'; (4) in the model determined by the exhaustion of energy resources the 'stationary' and 'decline' phases are quite discernible; and (5) there is no symmetry in microbial population dynamics, the decline being slower than the rise. Mathematical models are expected to be useful in getting insight into the process of control of the dynamics of microbial populations. The models are in agreement with the experimental data. PMID:21036180

  5. Demographics of reintroduced populations: estimation, modeling, and decision analysis

    USGS Publications Warehouse

    Converse, Sarah J.; Moore, Clinton T.; Armstrong, Doug P.

    2013-01-01

    Reintroduction can be necessary for recovering populations of threatened species. However, the success of reintroduction efforts has been poorer than many biologists and managers would hope. To increase the benefits gained from reintroduction, management decision making should be couched within formal decision-analytic frameworks. Decision analysis is a structured process for informing decision making that recognizes that all decisions have a set of components—objectives, alternative management actions, predictive models, and optimization methods—that can be decomposed, analyzed, and recomposed to facilitate optimal, transparent decisions. Because the outcome of interest in reintroduction efforts is typically population viability or related metrics, models used in decision analysis efforts for reintroductions will need to include population models. In this special section of the Journal of Wildlife Management, we highlight examples of the construction and use of models for informing management decisions in reintroduced populations. In this introductory contribution, we review concepts in decision analysis, population modeling for analysis of decisions in reintroduction settings, and future directions. Increased use of formal decision analysis, including adaptive management, has great potential to inform reintroduction efforts. Adopting these practices will require close collaboration among managers, decision analysts, population modelers, and field biologists.

  6. Mathematical modeling in biological populations through branching processes. Application to salmonid populations.

    PubMed

    Molina, Manuel; Mota, Manuel; Ramos, Alfonso

    2015-01-01

    This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations. PMID:24526259

  7. A model of northern pintail productivity and population growth rate

    USGS Publications Warehouse

    Flint, P.L.; Grand, J.B.; Rockwell, R.F.

    1998-01-01

    Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokvim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (??) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (?? = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on ?? for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.

  8. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  9. Simple model of population vulnerability during crisis relocation. Final report

    SciTech Connect

    Schmidt, L.A.

    1983-01-01

    The objective of the study is to estimate the cost in survivors of short warning leading to attack during full nationwide crises relocation. A simulation model of traffic flow over the national interstate road network was developed to predict population vulnerability during a crisis relocation. The model predicts large initial rates of reduction in nationwide vulnerability (half the at-risk population is evacuated in 21 hours) due to the large number of risk areas, reception areas, and over the road network to achieve the traffic plan assumptions of the model are discussed. No unreasonable problems are uncovered in achieving the major production of the model.

  10. Zooplankton time series from the Strait of Georgia: Results from year-round sampling at deep water locations, 1990-2010

    NASA Astrophysics Data System (ADS)

    Mackas, David; Galbraith, Moira; Faust, Deborah; Masson, Diane; Young, Kelly; Shaw, William; Romaine, Stephen; Trudel, Marc; Dower, John; Campbell, Rob; Sastri, Akash; Bornhold Pechter, Elizabeth A.; Pakhomov, Evgeny; El-Sabaawi, Rana

    2013-08-01

    We have compiled and archived a large fraction of the zooplankton data collected from the Strait of Georgia during the past 50 years. Although the full dataset is very heterogeneous and gappy, sampling since 1990 has been consistent and frequent enough to examine interannual variability of the full zooplankton community. In this paper we focus on deep tows at mid-Strait deep-water locations, where vertical-migratory zooplankton can be captured at all times of day and all seasons. Average zooplankton dryweight biomass is high (∼9 g m-2) and varies seasonally between a winter minimum (∼4 g m-2) and a broad late-spring to autumn maximum (10-11 g m-2). Much of the biomass in all seasons consists of large crustaceans (copepods, euphausiids and amphipods with oceanic and subarctic zoogeographic affinities) that undergo strong diurnal or seasonal vertical migrations. Their interannual variability is very strong: about an order of magnitude within most zooplankton categories, and nearly two orders of magnitude for euphausiids, large copepods, and chaetognaths. Most (73%) of the interannual variability is accounted for by three principal components. The dominant mode (36%) is a low-frequency decadal fluctuation shared by most zooplankton taxa: declining from 1990 to 1995, increasing to a maximum ∼1999-2002, declining to a second minimum in 2005-2007, and then recovering to near-average levels by 2010. This zooplankton signal correlates positively with the North Pacific Gyre Oscillation (NPGO) climate index, negatively with temperature anomalies throughout the water column, and positively (but less consistently) with survival anomalies of Strait of Georgia salmon and herring. Proximal causal mechanisms are less certain, but probably include estuarine advective exchange with outer coast populations, and timing match-mismatch within the Strait.

  11. Stable isotope analysis of 1987-1991 zooplankton samples and bowhead whale tissues. Final report

    SciTech Connect

    Schell, D.M.

    1992-06-01

    Stable isotope analyses of bowhead whale tissue samples and bowhead whale prey organisms collected over the years 1987 to 1991 were used to provide detail on the isotope ratio gradients evident in the arctic Alaskan zooplankton and to verify previous findings regarding the growth rates and age determination techniques developed for bowhead whales. Zooplankton of the Bering and Chukchi seas are enriched in (13)C relative to the eastern Beaufort Sea. The analysis of baleen from bowhead whales taken between 1987 to 1990 indicate that the whales are slow-growing and the young animals between year one and about six to seven years of age, undergo a period of little or no linear growth. The authors estimate that bowheads require 16-18 years to reach the length of sexual maturity, i.e., 13-14 m. From baleen Delta(13C) cycles, a 20 year record of the isotope ratios in the phytoplankton of the northern Bering and Chukchi seas was constructed. The long-term record has been compared with the temperature anomalies in surface waters of the Bering Sea. The Delta(13C) of the zooplankton is inversely correlated with temperature and refutes current models attempting to relate ocean temperature, and atmospheric carbon dioxide levels with the Delta(13C) of ocean sediment organic matter.

  12. The vertical distribution of zooplankton in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hopkins, Thomas L.

    1982-09-01

    The zooplankton community in the eastern Gulf of Mexico was investigated to determine the quantity and taxonomic composition of forage available to higher trophic levels and to provide a data base for future trophodynamic modelling. Standing stock (1.2 g m -2, dw) in the upper 1000 m is in the range for oligotrophic low-latitude boundary currents but is greater than in central gyre areas. Abundance decreases exponentially with depth, over half the biomass occuring in the upper 200 m. Diel variations are apparent, the greatest differences in biomass occuring in the upper 50 m and at 300 to 350 m. Copepods were dominant, contributing over 80% of the number and half the net-caught biomass. The zooplankton community is diverse, 21 genera individually exceeding 1% of the biomass in the 0 to 100-m layer. Grazers (herbivores, detritivores, omnivores) were 66% of the 0 to 1000-m standing stock and carnivores 34%, their biomass in the epipelagic zone above the base of the thermocline (150 m) at night increasing 46 and 57%, respectively. Zooplankton biomass available as forage for higher trophic levels is most concentrated in the upper 50 m, whereas, paradoxically, the zooplanktivorous micronekton, the myctophid fishes in particular, are centered deeper, primarily between 50 and 150 m.

  13. A decade of predatory control of zooplankton species composition of Lake Michigan

    USGS Publications Warehouse

    Makarewicz, Joseph C.; Bertram, Paul; Lewis, Theodore; Brown, Edward H.

    1995-01-01

    From 1983 to 1992, 71 species representing 38 genera from the Calanoida, Cladocera, Cyclopoida, Mysidacea, Rotifera, Mollusca and Harpacticoida comprised the offshore zooplankton community of Lake Michigan. Our data demonstrate that the composition and abundance of the calanoid community after 1983 is not unlike that of 1960s and that species diversity of the calanoid community is more diverse than the cladoceran community in the 1990s as compared to the early 1980s. Even though the relative biomass of the cladocerans has remained similar over the 1983-1993 period, the species diversity and evenness of the Cladocera community in the early 1990s is unlike anything that has been previously reported for Lake Michigan. Cladocera dominance is centered in one species, Daphnia galeata mendotae, and only three species of Cladocera were observed in the pelagic region of the lake in 1991 and 1992. Nutrient levels, phytoplankton biomass, and the abundance of planktivorous alewife and bloater chub and Bythotrephes are examined as possible causes of these changes in zooplankton species composition. The increase in Rotifera biomass, but not Crustacea, was correlated with an increase in relative biomass of unicellular algae. Food web models suggest Bythotrephes will cause Lake Michigan's plankton to return to a community similar to that of the 1970s; that is Diaptomus dominated. Such a change has occurred. However, correlational analysis suggest that alewife and bloater chubs (especially juveniles) are affecting size and biomass of larger species of zooplankton as well as Bythotrephes.

  14. From home range dynamics to population cycles: validation and realism of a common vole population model for pesticide risk assessment.

    PubMed

    Wang, Magnus

    2013-04-01

    Despite various attempts to establish population models as standard tools in pesticide risk assessment, population models still receive limited acceptance by risk assessors and authorities in Europe. A main criticism of risk assessors is that population models are often not, or not sufficiently, validated. Hence the realism of population-level risk assessments conducted with such models remains uncertain. We therefore developed an individual-based population model for the common vole, Microtus arvalis, and demonstrate how population models can be validated in great detail based on published data. The model is developed for application in pesticide risk assessment, therefore, the validation covers all areas of the biology of the common vole that are relevant for the analysis of potential effects and recovery after application of pesticides. Our results indicate that reproduction, survival, age structure, spatial behavior, and population dynamics reproduced from the model are comparable to field observations. Also interannual population cycles, which are frequently observed in field studies of small mammals, emerge from the population model. These cycles were shown to be caused by the home range behavior and dispersal. As observed previously in the field, population cycles in the model were also stronger for longer breeding season length. Our results show how validation can help to evaluate the realism of population models, and we discuss the importance of taking field methodology and resulting bias into account. Our results also demonstrate how population models can help to test or understand biological mechanisms in population ecology.

  15. A hierarchical model for estimating change in American Woodcock populations

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Kendall, W.L.; Kelley, J.R.; Niven, D.K.

    2008-01-01

    The Singing-Ground Survey (SGS) is a primary source of information on population change for American woodcock (Scolopax minor). We analyzed the SGS using a hierarchical log-linear model and compared the estimates of change and annual indices of abundance to a route regression analysis of SGS data. We also grouped SGS routes into Bird Conservation Regions (BCRs) and estimated population change and annual indices using BCRs within states and provinces as strata. Based on the hierarchical model?based estimates, we concluded that woodcock populations were declining in North America between 1968 and 2006 (trend = -0.9%/yr, 95% credible interval: -1.2, -0.5). Singing-Ground Survey results are generally similar between analytical approaches, but the hierarchical model has several important advantages over the route regression. Hierarchical models better accommodate changes in survey efficiency over time and space by treating strata, years, and observers as random effects in the context of a log-linear model, providing trend estimates that are derived directly from the annual indices. We also conducted a hierarchical model analysis of woodcock data from the Christmas Bird Count and the North American Breeding Bird Survey. All surveys showed general consistency in patterns of population change, but the SGS had the shortest credible intervals. We suggest that population management and conservation planning for woodcock involving interpretation of the SGS use estimates provided by the hierarchical model.

  16. Developing population models with data from marked individuals

    USGS Publications Warehouse

    Hae Yeong Ryu,; Kevin T. Shoemaker,; Eva Kneip,; Anna Pidgeon,; Patricia Heglund,; Brooke Bateman,; Thogmartin, Wayne E.; Reşit Akçakaya,

    2016-01-01

    Population viability analysis (PVA) is a powerful tool for biodiversity assessments, but its use has been limited because of the requirements for fully specified population models such as demographic structure, density-dependence, environmental stochasticity, and specification of uncertainties. Developing a fully specified population model from commonly available data sources – notably, mark–recapture studies – remains complicated due to lack of practical methods for estimating fecundity, true survival (as opposed to apparent survival), natural temporal variability in both survival and fecundity, density-dependence in the demographic parameters, and uncertainty in model parameters. We present a general method that estimates all the key parameters required to specify a stochastic, matrix-based population model, constructed using a long-term mark–recapture dataset. Unlike standard mark–recapture analyses, our approach provides estimates of true survival rates and fecundities, their respective natural temporal variabilities, and density-dependence functions, making it possible to construct a population model for long-term projection of population dynamics. Furthermore, our method includes a formal quantification of parameter uncertainty for global (multivariate) sensitivity analysis. We apply this approach to 9 bird species and demonstrate the feasibility of using data from the Monitoring Avian Productivity and Survivorship (MAPS) program. Bias-correction factors for raw estimates of survival and fecundity derived from mark–recapture data (apparent survival and juvenile:adult ratio, respectively) were non-negligible, and corrected parameters were generally more biologically reasonable than their uncorrected counterparts. Our method allows the development of fully specified stochastic population models using a single, widely available data source, substantially reducing the barriers that have until now limited the widespread application of PVA. This method

  17. L-Lake zooplankton: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Bowen, M.

    1992-03-01

    The L- Lake Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and address portions of Section 316(a) of the Clean Water Act, which requires an applicant for a discharge permit to provide scientific evidence that the discharge causes no significant impact on the indigenous ecosystem. The Department of Energy (DOE) must demonstrate that the discharge of L-Reactor affluent into L Lake will not inhibit the eventual establishment of a ``Balanced Biological Community`` (BBC) in at least 50% of the lake. This report details results of monitoring zooplankton populations in L-Lake.

  18. Estimating a geographically explicit model of population divergence.

    PubMed

    Knowles, L Lacey; Carstens, Bryan C

    2007-03-01

    Patterns of genetic variation can provide valuable insights for deciphering the relative roles of different evolutionary processes in species differentiation. However, population-genetic models for studying divergence in geographically structured species are generally lacking. Since these are the biogeographic settings where genetic drift is expected to predominate, not only are population-genetic tests of hypotheses in geographically structured species constrained, but generalizations about the evolutionary processes that promote species divergence may also be potentially biased. Here we estimate a population-divergence model in montane grasshoppers from the sky islands of the Rocky Mountains. Because this region was directly impacted by Pleistocene glaciation, both the displacement into glacial refugia and recolonization of montane habitats may contribute to differentiation. Building on the tradition of using information from the genealogical relationships of alleles to infer the geography of divergence, here the additional consideration of the process of gene-lineage sorting is used to obtain a quantitative estimate of population relationships and historical associations (i.e., a population tree) from the gene trees of five anonymous nuclear loci and one mitochondrial locus in the broadly distributed species Melanoplus oregonensis. Three different approaches are used to estimate a model of population divergence; this comparison allows us to evaluate specific methodological assumptions that influence the estimated history of divergence. A model of population divergence was identified that significantly fits the data better compared to the other approaches, based on per-site likelihood scores of the multiple loci, and that provides clues about how divergence proceeded in M. oregonensis during the dynamic Pleistocene. Unlike the approaches that either considered only the most recent coalescence (i.e., information from a single individual per population) or did not

  19. Estimation of population size using open capture-recapture models

    USGS Publications Warehouse

    McDonald, T.L.; Amstrup, Steven C.

    2001-01-01

    One of the most important needs for wildlife managers is an accurate estimate of population size. Yet, for many species, including most marine species and large mammals, accurate and precise estimation of numbers is one of the most difficult of all research challenges. Open-population capture-recapture models have proven useful in many situations to estimate survival probabilities but typically have not been used to estimate population size. We show that open-population models can be used to estimate population size by developing a Horvitz-Thompson-type estimate of population size and an estimator of its variance. Our population size estimate keys on the probability of capture at each trap occasion and therefore is quite general and can be made a function of external covariates measured during the study. Here we define the estimator and investigate its bias, variance, and variance estimator via computer simulation. Computer simulations make extensive use of real data taken from a study of polar bears (Ursus maritimus) in the Beaufort Sea. The population size estimator is shown to be useful because it was negligibly biased in all situations studied. The variance estimator is shown to be useful in all situations, but caution is warranted in cases of extreme capture heterogeneity.

  20. Mathematically modelling proportions of Japanese populations by industry

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito

    2016-10-01

    I propose a mathematical model for temporal changes of proportions for industrial sectors. I prove that the model keeps the proportions for the primary, the secondary, and the tertiary sectors between 0 and 100% and preserves their total as 100%. The model fits the Japanese historical data between 1950 and 2005 for the population proportions by industry very well. The model also predicts that the proportion for the secondary industry becomes negligible and becomes less than 1% at least around 2080.

  1. An aerial sightability model for estimating ferruginous hawk population size

    USGS Publications Warehouse

    Ayers, L.W.; Anderson, S.H.

    1999-01-01

    Most raptor aerial survey projects have focused on numeric description of visibility bias without identifying the contributing factors or developing predictive models to account for imperfect detection rates. Our goal was to develop a sightability model for nesting ferruginous hawks (Buteo regalis) that could account for nests missed during aerial surveys and provide more accurate population estimates. Eighteen observers, all unfamiliar with nest locations in a known population, searched for nests within 300 m of flight transects via a Maule fixed-wing aircraft. Flight variables tested for their influence on nest-detection rates included aircraft speed, height, direction of travel, time of day, light condition, distance to nest, and observer experience level. Nest variables included status (active vs. inactive), condition (i.e., excellent, good, fair, poor, bad), substrate type, topography, and tree density. A multiple logistic regression model identified nest substrate type, distance to nest, and observer experience level as significant predictors of detection rates (P < 0.05). The overall model was significant (??26 = 124.4, P < 0.001, n = 255 nest observations), and the correct classification rate was 78.4%. During 2 validation surveys, observers saw 23.7% (14/59) and 36.5% (23/63) of the actual population. Sightability model predictions, with 90% confidence intervals, captured the true population in both tests. Our results indicate standardized aerial surveys, when used in conjunction with the predictive sightability model, can provide unbiased population estimates for nesting ferruginous hawks.

  2. Modeling structured population dynamics using data from unmarked individuals

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  3. FISHERY-ORIENTED MODEL OF MARYLAND OYSTER POPULATIONS

    EPA Science Inventory

    We used time series data to calibrate a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters were fishing mortality, natural mortality, recruitment, and carrying capacity. We calibrated for the Maryland bay as a whole and separately for 3 salinity z...

  4. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...

  5. The population model of bone remodelling employed the optimal control.

    PubMed

    Moroz, Adam

    2012-11-01

    Several models have been developed in recent years which apply population dynamics methods to describe the mechanisms of bone remodelling. This study incorporates the population kinetics model of bone turnover (including the osteocyte loop regulation) with the optimal control technique. Model simulations have been performed with a wide range of rate parameters using the Monte Carlo method. The regression method has also been used to investigate the interdependence of the location of equilibrium and the characteristics of the equilibrium/relaxation time on the rate parameters employed. The dynamic optimal control outlook for the regulation of bone remodelling processes, in the context of the osteocyte-control population model, has been discussed. Optimisation criteria have been formulated from the perspective of the energetic and metabolic losses in the tissue, with respect to the performance of the bone multicellular unit.

  6. Internal models for interpreting neural population activity during sensorimotor control.

    PubMed

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

  7. Size-specific sensitivity: Applying a new structured population model

    SciTech Connect

    Easterling, M.R.; Ellner, S.P.; Dixon, P.M.

    2000-03-01

    Matrix population models require the population to be divided into discrete stage classes. In many cases, especially when classes are defined by a continuous variable, such as length or mass, there are no natural breakpoints, and the division is artificial. The authors introduce the integral projection model, which eliminates the need for division into discrete classes, without requiring any additional biological assumptions. Like a traditional matrix model, the integral projection model provides estimates of the asymptotic growth rate, stable size distribution, reproductive values, and sensitivities of the growth rate to changes in vital rates. However, where the matrix model represents the size distributions, reproductive value, and sensitivities as step functions (constant within a stage class), the integral projection model yields smooth curves for each of these as a function of individual size. The authors describe a method for fitting the model to data, and they apply this method to data on an endangered plant species, northern monkshood (Aconitum noveboracense), with individuals classified by stem diameter. The matrix and integral models yield similar estimates of the asymptotic growth rate, but the reproductive values and sensitivities in the matrix model are sensitive to the choice of stage classes. The integral projection model avoids this problem and yields size-specific sensitivities that are not affected by stage duration. These general properties of the integral projection model will make it advantageous for other populations where there is no natural division of individuals into stage classes.

  8. Effects of polycyclic aromatic hydrocarbons (PAHs) on an aquatic ecosystem: acute toxicity and community-level toxic impact tests of benzo[a]pyrene using lake zooplankton community.

    PubMed

    Ikenaka, Yoshinori; Sakamoto, Masaki; Nagata, Takamaru; Takahashi, Hirokazu; Miyabara, Yuichi; Hanazato, Takayuki; Ishizuka, Mayumi; Isobe, Tomohiko; Kim, Jun-Woo; Chang, Kwang-Hyeon

    2013-02-01

    We estimated acute toxicity of benzo[a]pyrene (B[a]P) using two cladoceran species, Ceriodaphnia reticulata and Daphnia magna, and also analyzed its impact on zooplankton community throughout an exposure experiment using small-scale mesocosms. LC(50) of B[a]P for C. reticulata and D. magna was 4.3 and 4.7 µg/l, respectively. However, individuals fed with Chlorella showed higher LC(50), 6.1 µg/l for C. reticulata and 8.0 µg/l for D. magna. In the exposure experiment, we examined the impact of B[a]P on zooplankton community using conceivable concentrations in the environment (5 and 10 µg/l) using typical zooplankton community in eutrophicated systems. Despite the residence time of B[a]P in the water column was short as < 4 days, application of B[a]P induced decrease of zooplankton abundance. However, the recovery pattern was different among cladocerans and rotifers. Consequently, B[a]P showed insecticide-like impacts, suppressing cladoceran populations and inducing the dominance of rotifers particularly under high concentration (10 µg/l). Results have suggested that, even such short duration of B[a]P in the water body can have impact on zooplankton abundance and community structure. Since B[a]P easily precipitate to the bottom and rapidly disappears from the water body, careful monitoring and further assessment of the potential toxicity of polycyclic aromatic hydrocarbons are necessary.

  9. Short term changes in zooplankton community during the summer-autumn transition in the open NW Mediterranean Sea: species composition, abundance and diversity

    NASA Astrophysics Data System (ADS)

    Raybaud, V.; Nival, P.; Mousseau, L.; Gubanova, A.; Altukhov, D.; Khvorov, S.; Ibañez, F.; Andersen, V.

    2008-05-01

    Short term changes in zooplankton community were investigated at a fixed station in offshore waters of the Ligurian Sea (Dynaproc 2 cruise, September-October 2004). Mesozooplankton was sampled with vertical WP2 hauls (200 µm mesh-size) and large mesozooplankton, macrozooplankton and micronekton with a BIONESS multinet sampler (500 µm mesh-size). Temporal variations of total biomass, species composition and abundance of major taxa were studied. Intrusions of low salinity water masses were observed two times during the cruise. The first one, which was the most important, was associated with changes in zooplankton community composition. Among copepods, the abundance of Calocalanus, Euchaeta, Heterorhabdus, Mesocalanus, Nannocalanus, Neocalanus, Pleuromamma and also calanoid copepodites increased markedly. Among non-copepod taxa, only small ostracods abundance increased. After this low salinity event, abundance of all taxa nearly returned to their initial values. The influence of salinity on each zooplankton taxon was confirmed by a statistical analysis (Perry's method). Shannon diversity index, Pielou evenness and species richness were used to describe temporal variations of large copepod (>500 µm) diversity. Shannon index and Pielou evenness decreased at the beginning of the low salinity water intrusions, but not species richness. We suggest that low salinity water masses contained its own zooplankton community and passed through the sampling area, thus causing the replacement of zooplankton population.

  10. Short term changes in zooplankton community during the summer-autumn transition in the open NW Mediterranean Sea: species composition, abundance and diversity

    NASA Astrophysics Data System (ADS)

    Raybaud, V.; Nival, P.; Mousseau, L.; Gubanova, A.; Altukhov, D.; Khvorov, S.; Ibañez, F.; Andersen, V.

    2008-12-01

    Short term changes in zooplankton community were investigated at a fixed station in offshore waters of the Ligurian Sea (DYNAPROC 2 cruise, September-October 2004). Mesozooplankton were sampled with vertical WP-II hauls (200 μm mesh-size) and large mesozooplankton, macrozooplankton and micronekton with a BIONESS multinet sampler (500 μm mesh-size). Temporal variations of total biomass, species composition and abundance of major taxa were studied. Intrusions of low salinity water masses were observed two times during the cruise. The first one, which was the most intense, was associated with changes in zooplankton community composition. Among copepods, the abundance of Calocalanus, Euchaeta, Heterorhabdus, Mesocalanus, Nannocalanus, Neocalanus, Pleuromammaand also calanoid copepodites increased markedly. Among non-copepod taxa, only small ostracods abundance increased. After this low salinity event, abundance of all taxa nearly returned to their initial values. The influence of salinity on each zooplankton taxon was confirmed by a statistical analysis (Perry's method). The Shannon diversity index, Pielou evenness and species richness were used to describe temporal variations of large copepod (>500 μm) diversity. The Shannon index and Pielou evenness decreased at the beginning of the low salinity water intrusions, but not species richness. We suggest that low salinity water masses contained its own zooplankton community and passed through the sampling area, thus causing a replacement of the zooplankton population.

  11. Multistability in simplest models of the population dynamics

    NASA Astrophysics Data System (ADS)

    Zhdanova, Oksana L.; Frisman, Efim Ya.

    2016-06-01

    The investigation of dynamics behavior of population number and genetic structure has been conducted for a homogeneous limited population influenced by density-dependent selection in single di-allelic genetic locus. The detailed investigation of the mechanisms of the loss of stability in the considered model is carried out. It is shown that coexistence of several different asymptotic dynamic regimes (with own attraction basins) is possible in numerous enough parametric regions which are meaningful biologically.

  12. A model for dengue disease with variable human population.

    PubMed

    Esteva, L; Vargas, C

    1999-03-01

    A model for the transmission of dengue fever with variable human population size is analyzed. We find three threshold parameters which govern the existence of the endemic proportion equilibrium, the increase of the human population size, and the behaviour of the total number of human infectives. We prove the global asymptotic stability of the equilibrium points using the theory of competitive systems, compound matrices, and the center manifold theorem.

  13. On population size estimators in the Poisson mixture model.

    PubMed

    Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua

    2013-09-01

    Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. PMID:23865502

  14. Statistical validation of structured population models for Daphnia magna

    PubMed Central

    Adoteye, Kaska; Banks, H.T.; Cross, Karissa; Eytcheson, Stephanie; Flores, Kevin B.; LeBlanc, Gerald A.; Nguyen, Timothy; Ross, Chelsea; Smith, Emmaline; Stemkovski, Michael; Stokely, Sarah

    2016-01-01

    In this study we use statistical validation techniques to verify density-dependent mechanisms hypothesized for populations of Daphnia magna. We develop structured population models that exemplify specific mechanisms, and use multi-scale experimental data in order to test their importance. We show that fecundity and survival rates are affected by both time-varying density-independent factors, such as age, and density-dependent factors, such as competition. We perform uncertainty analysis and show that our parameters are estimated with a high degree of confidence. Further, we perform a sensitivity analysis to understand how changes in fecundity and survival rates affect population size and age-structure. PMID:26092608

  15. Modelling interactions of toxicants and density dependence in wildlife populations

    USGS Publications Warehouse

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  16. On population size estimators in the Poisson mixture model.

    PubMed

    Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua

    2013-09-01

    Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated.

  17. Stellar population model dependence in optical AGN identification

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zaw, Ingyin; Farrar, Glennys

    2016-08-01

    The choice of stellar templates plays an important role in optical spectroscopic AGN classification, because the host galaxy contribution must be accurately subtracted in order to isolate the true contribution of the AGN. Up to now, simple stellar population models such as BC03, have been used as templates in doing the stellar component analysis. As more stellar population models become available, systematic study of the impact of the stellar population modeling becomes possible. This is important not only for finding the best template but also for understanding the merits and limitations of the templates. We analyzed the SDSS DR8 spectra, using different empirical, theoretical, and mixed stellar population models. We found that some templates lead to systematic biases in the identification of AGN candidates. We investigated the effects of the range of age,metallicity, and the total wavelength used in full-spectrum fitting. We found that the completeness of parameter space in the template model plays a vital role in classifying AGN candidates; the wavelength range used to analyze the spectra also affects the result but in a relative minor way. Empirical stellar models can be expected to yield the most reliable estimate of the absorption features in the host galaxies, since there will be less model dependence (e.g., on opacity assumption, line profile representation).

  18. Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations

    NASA Astrophysics Data System (ADS)

    Morozov, Andrew; Arashkevich, Elena; Reigstad, Marit; Falk-Petersen, Stig

    2008-10-01

    Mathematical models of plankton dynamics are sensitive to the choice of type of zooplankton functional response, i.e., to how the rate of intake of food varies with the food density. Conventionally, the conclusion on the actual type of functional response for a given zooplankton species is made based upon laboratory analysis on experimental feeding. In this paper, we show that such an approach can be too simplistic and misleading. Based on real ocean data obtained from three expeditions of R/V Jan Mayen in the Barents Sea in 2003-2005, we demonstrate that vertical heterogeneity in algal distribution as well as active vertical movement of herbivorous zooplankton can modify the type of trophic response completely. In particular, we found that the rate of average intake of algae by Calanus glacialis exhibits a Holling type III response, instead of Holling type I or II found previously in laboratory experiments. We argue that this conceptual discrepancy is due to the ability of the zooplankton to feed in layers with high algal density and to avoid depths with lower algal density. Since theoretical studies would predict enhancing in system stability in the case of Holling type III, our results may be of importance for understanding the main factors controlling plankton dynamics.

  19. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.

    PubMed

    D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C

    2016-09-01

    The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary. PMID:27494188

  20. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.

    PubMed

    D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C

    2016-09-01

    The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary.

  1. Zooplankton structure and dynamics in two estuaries from the Atlantic coast in relation to multi-stressors exposure

    NASA Astrophysics Data System (ADS)

    Vieira, L. R.; Guilhermino, L.; Morgado, F.

    2015-12-01

    The aim of this research was to investigate the response of pelagic zooplankton to different levels of abiotic multi-stressors in the North Atlantic coast, taking advantage of the comparison of the communities of two adjacent estuaries with different levels of historical pollution (estuaries of Minho and Lima Rivers). The zooplankton community structure, composition and temporal variation were comparatively investigated for 15 months, using different net meshes. Several abiotic factors were measured in situ and water samples were simultaneously collected for determination of nutrients and chlorophyll a. The overall results revealed a diverse community represented by species that have been found in subtropical and temperate zones. Although the highest diversity was observed in the Lima estuary, supported by higher contributions of marine taxa, the total zooplankton biomass was found to be significantly higher in the Minho estuary. The salinity gradient differences between estuaries, associated to significant differences in water nutrients levels, were found to be the main forcing factors affecting micro and mesozooplankton. Considering the importance of the impacts resulting from abiotic variation on the basis of aquatic food webs, the present investigation represented a case-study, based in two contrasting estuaries, one strongly influenced by freshwater discharges (Minho estuary) and the other with higher salinity levels (Lima estuary), contributing to a better understanding of the effects of multi-stressors on pelagic zooplankton communities, providing useful information for studies related with climate change impacts, biogeography, conservation and providing data contributing to the improvement of pelagic fisheries management models.

  2. Potential retention effect at fish farms boosts zooplankton abundance

    NASA Astrophysics Data System (ADS)

    Fernandez-Jover, D.; Toledo-Guedes, K.; Valero-Rodríguez, J. M.; Fernandez-Gonzalez, V.; Sanchez-Jerez, P.

    2016-11-01

    Coastal aquaculture activities influence wild macrofauna in natural environments due to the introduction of artificial structures, such as floating cages, that provide structural complexity in the pelagic system. This alters the abundance and distribution of the affected species and also their feeding behaviour and diet. Despite this, the effects of coastal aquaculture on zooplankton assemblages and the potential changes in their abundance and distribution remain largely unstudied. Traditional plankton sampling hauls between the farm mooring systems entail some practical difficulties. As an alternative, light traps were deployed at 2 farms in the SW Mediterranean during a whole warm season. Total zooplankton capture by traps at farms was higher than at control locations on every sampling night. It ranged from 3 to 10 times higher for the taxonomic groups: bivalvia, cladocera, cumacea, fish early-life-stages, gastropoda, polychaeta and tanaidacea; 10-20 times higher for amphipoda, chaetognatha, isopoda, mysidacea and ostracoda, and 22 times higher for copepoda and the crustacean juvenile stages zoea and megalopa. Permutational analysis showed significant differences for the most abundant zooplankton groups (copepoda, crustacean larvae, chaetognatha, cladocera, mysidacea and polychaeta). This marked incremental increase in zooplankton taxa at farms was consistent, irrespective of the changing environmental variables registered every night. Reasons for the greater abundance of zooplankton at farms are discussed, although results suggest a retention effect caused by cage structures rather than active attraction through physical or chemical cues.

  3. Stochastic resonance in a generalized Von Foerster population growth model

    SciTech Connect

    Lumi, N.; Mankin, R.

    2014-11-12

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. An analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.

  4. Changes in fatty acid and hydrocarbon composition of zooplankton assemblages related to environmental conditions

    SciTech Connect

    Lambert, R.M.

    1989-01-01

    Changes in zooplankton fatty acid and hydrocarbon patterns are described in relation to changes in environmental conditions and species composition. The regulation of zooplankton abundance by sea nettle-ctenophore interaction was examined in a small Rhode Island coastal pond. Sea nettles were nettles were able to eliminate ctenophores from the pond and subsequently zooplankton abundance increased. During one increase in zooplankton abundance, it was found that polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. It was concluded that this shift in biochemical pattern was due to food limitation. In addition, zooplankton fatty acids were used in multivariate discriminant analysis to classify whether zooplankton were from coastal or estuarine environments. Zooplankton from coastal environments were characterized by higher monounsaturate fatty acids. Zooplankton hydrocarbon composition was affected by species composition and by pollution inputs. The presence of Calanus finmarchicus was detected by increased levels of pristane.

  5. Population estimates for Bangladesh: The use of a specific transitional population model.

    PubMed

    Gupta, A D; Roy, S G

    1976-03-01

    Summary The development of population in Bangladesh was affected by a succession of man-made and natural calamities, such as the Bengal Famine of 1943, refugee movements following the partition of India and Pakistan in 1947, devastating floods and cyclones around 1970, and the military action during the war of liberation. Though there had been a tradition of census taking and vital registration in Bangladesh, as part of the Indian sub-continent, extending for over a century, vital registration was so deficient as to be almost valueless, and there were gross misstatements of age and under-enumeration in the censuses. In the census of 1941, on the other hand, political manoeuvring led to a substantial overcount of the population. In this paper, Bangladesh population trends are studied within the broader framework of the subcontinent, taking account of plausible differentials. A considerable element of uncertainty was introduced into growth trends as a result of variations in the completeness of census-taking and of unrecorded refugee and labour movements across open land borders. In this connection the substantial inflationary bias associated with techniques of population estimation using the dual record system is discussed. The application of stable population models is even less justified in Bangladesh with its history of declining mortality. A transitional age structure model was constructed on the basis of the information available on declining mortality and accelerating growth and the model was made even more specific by modifications which took care of the impact of recent calamities and of unrecorded migration. The population base of the census of 1961 was adjusted in accordance with this model. The local mortality age pattern was used in projecting the population by sex and age groups to the date at which the census was originally due to be taken in 1971, and to the date when it was actually taken in March 1974. The post-1970 calamities and their effect on

  6. Modelling the effect of conjugate vaccines in pneumococcal disease: cohort or population models?

    PubMed

    Standaert, Baudouin; Demarteau, Nadia; Talbird, Sandra; Mauskopf, Josephine

    2010-11-19

    Cohort and population models estimate vaccine impact on disease events, and yield different estimates in countries with different demographic compositions. We compared administration of the new 10-valent pneumococcal Haemophilus influenzae-protein D conjugate vaccine (PHiD-CV) with no vaccination in two countries, the United Kingdom (UK) and Mexico, using two modelling strategies: a cohort model and a population model. The cohort model followed a birth cohort over a lifetime, beginning 10 years after initiation of the vaccine program, when vaccine efficacy steady state had been reached. The population model examined the country-specific population over 1 year, also beginning 10 years after initiation of the vaccine program. Both models included the same age-specific disease rates of meningitis, bacteraemia, pneumonia, and otitis media. The output variables were the numbers of specific events, with and without indirect vaccine effects. Without indirect effects, the cohort and population models produced similar results for both countries (deviation of <20% difference per output measure for most outcomes). The difference between the model types was much greater when indirect vaccine effects were included, especially in Mexico (up to 120% difference). Cohort and population modelling methods produce different results depending on the disease, the intervention, the demographic composition, and the time horizon evaluated. Results from the two model types provide different information about the impact of interventions on events: accumulated vaccine benefit for an individual in a cohort model; vaccine benefit for a whole population at a specific time point in a population model.

  7. Two stressors and a community: effects of hydrological disturbance and a toxicant on freshwater zooplankton.

    PubMed

    Stampfli, Nathalie C; Knillmann, Saskia; Liess, Matthias; Noskov, Yury A; Schäfer, Ralf B; Beketov, Mikhail A

    2013-02-01

    Climate change models predict an increase in the frequency and intensity of extreme fluctuations in water level in aquatic habitats. Therefore, it is necessary to understand the combined effects of hydrological fluctuations and toxicants on aquatic biological communities. We investigated the individual and combined effects of the insecticide esfenvalerate and recurring fluctuations in water level on zooplankton communities in a system of 55 outdoor pond microcosms. The communities were exposed to esfenvalerate contamination as a single pulse (at 0.03, 0.3, or 3μg/L) and gradual removal of water and its subsequent replacement over three cycles and monitored until 84 days after contamination. The results showed that the sensitivities of the community and its constituent populations to the toxicant were increased by the hydrological stress. Specifically, for both the community structure and abundance of Daphnia spp. the lowest-observed-effect concentrations (LOEC) were 0.03 and 0.3μg/L for the series with fluctuating and constant water levels, respectively. Despite these differences in sensitivity, the interactive effects of the two stressors were found to be additive for both the community structure and the abundance of the most affected species. Presumably, it was not possible to detect synergism due to the strong individual effects of the water level fluctuations. Recovery times in the series exposed to the highest pesticide concentration were 64 and 55 days under fluctuating and constant water level regimes, respectively. Competition and water quality are suggested to be the major factors that underlie the observed effects of fluctuations in the water level. For the ecological risk assessment of toxicants, the present results suggest that (i) community sensitivity may vary substantially, depending on the environmental context, and (ii) this variability can be assessed experimentally to derive safety factors (coefficients used to avoid unexpected effects and

  8. Population based models of cortical drug response: insights from anaesthesia

    PubMed Central

    Bojak, Ingo; Liley, David T. J.

    2008-01-01

    A great explanatory gap lies between the molecular pharmacology of psychoactive agents and the neurophysiological changes they induce, as recorded by neuroimaging modalities. Causally relating the cellular actions of psychoactive compounds to their influence on population activity is experimentally challenging. Recent developments in the dynamical modelling of neural tissue have attempted to span this explanatory gap between microscopic targets and their macroscopic neurophysiological effects via a range of biologically plausible dynamical models of cortical tissue. Such theoretical models allow exploration of neural dynamics, in particular their modification by drug action. The ability to theoretically bridge scales is due to a biologically plausible averaging of cortical tissue properties. In the resulting macroscopic neural field, individual neurons need not be explicitly represented (as in neural networks). The following paper aims to provide a non-technical introduction to the mean field population modelling of drug action and its recent successes in modelling anaesthesia. PMID:19003456

  9. Model estimation of energy flow in Oregon coastal seabird populations

    USGS Publications Warehouse

    Wiens, J.A.; Scott, J.M.

    1976-01-01

    A computer simulation model was used to explore the patterns and magnitudes of population density changes and population energy demands in Oregon populations of Sooty Shear-waters, Leach?s Storm-Petrels, Brandt?s Cormorants, and Common Murres. The species differ in seasonal distribution and abundance, with shearwaters attaining high densities during their migratory movements through Oregon waters, and murres exhibiting the greatest seasonal stability in population numbers. On a unit area basis, annual energy flow is greatest through murre and cormorant populations. However, because shearwaters occupy a larger area during their transit, they dominate the total energy flow through the four-species seabird ?community.?.....Consumption of various prey types is estimated by coupling model output of energy demands with information on dietary habits. This analysis suggests that murres annually consume nearly twice as many herring as any other prey and consume approximately equal quantities of anchovy, smelt, cod, and rockfish. Cormorants consume a relatively small quantity of bottom-dwelling fish, while stormpetrels take roughly equal quantities of euphausiids and hydrozoans. Anchovies account for 43% of the 62,506 metric tons of prey the four species are estimated to consume annually; 86% of this anchovy consumption is by shearwaters. The consumption of pelagic fishes by these four populations within the neritic zone may represent as much as 22% of the annual production of these fish.

  10. Modeling Climate Change and Sturgeon Populations in the Missouri River

    USGS Publications Warehouse

    Wildhaber, Mark L.

    2010-01-01

    The U.S. Geological Survey (USGS) Columbia Environmental Research Center (CERC), in collaboration with researchers from the University of Missouri and Iowa State University, is conducting research to address effects of climate change on sturgeon populations (Scaphirhynchus spp.) in the Missouri River. The CERC is conducting laboratory, field, and modeling research to identify causative factors for the responses of fish populations to natural and human-induced environmental changes and using this information to understand sensitivity of sturgeon populations to potential climate change in the Missouri River drainage basin. Sturgeon response information is being used to parameterize models predicting future population trends. These models will provide a set of tools for natural resource managers to assess management strategies in the context of global climate change. This research complements and builds on the ongoing Comprehensive Sturgeon Research Program (CSRP) at the CERC. The CSRP is designed to provide information critical to restoration of the Missouri River ecosystem and the endangered pallid sturgeon (S. albus). Current research is being funded by USGS through the National Climate Change Wildlife Science Center (NCCWSC) and the Science Support Partnership (SSP) Program that is held by the USGS and the U.S. Fish and Wildlife Service. The national mission of the NCCWSC is to improve the capacity of fish and wildlife agencies to respond to climate change and to address high-priority climate change effects on fish and wildlife. Within the national context, the NCCWSC research on the Missouri River focuses on temporal and spatial downscaling and associated uncertainty in modeling climate change effects on sturgeon species in the Missouri River. The SSP research focuses on improving survival and population estimates for pallid sturgeon population models.

  11. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  12. Impact of zooplankton grazing on Alexandrium blooms in the offshore Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.; Borkman, David G.

    2005-09-01

    Zooplankton grazing was investigated by shipboard experiments during natural blooms of Alexandrium spp. in the offshore Gulf of Maine in spring and/or summer of 1998, 2000, and 2001. Grazing studies were done in conjunction with studies of accumulation of Alexandrium toxins in the zooplankton, as part of the ECOHAB-Gulf of Maine regional program. Several species of copepods, marine cladocerans, and appendicularians were allowed to graze upon natural phytoplankton assemblages, at ambient temperatures (14-17 °C). Grazing was measured by quantitative microscopic analyses of disappearance of phytoplankton cells in initial, control, and experimental food suspensions. Thus, we were able to examine grazing upon Alexandrium in comparison to grazing on other co-occurring phytoplankton taxa. Even during Alexandrium "blooms," this dinoflagellate was a minor component of the overall phytoplankton assemblage. It was present at stations where grazing experiments were conducted at levels of 0.12-7.57×10 3 cells l -1, or 0.03-3.93% of total phytoplankton cells. Maximum ingestion of Alexandrium accounted for only up to 3.2% of total cells ingested. Phytoplankton assemblages were dominated by athecate microflagellates, and to a lesser extent by diatoms and non-toxic dinoflagellates. Microflagellates were present at abundances of 159.62-793.93 cells ml -1, or 60.6-95.56% of total cells. Grazing on microflagellates accounted for 35.59-98.21% of total grazing. Grazing on Alexandrium spp. and microflagellates was generally non-selective, with these taxa being ingested in similar proportions to their availability in food assemblages. Grazing on diatoms was selective, with diatoms being disproportionately ingested, compared to their proportions in food assemblages. There were no apparent adverse effects of Alexandrium on grazers during incubations of 18-24 h, and grazer survival was 100%. Estimated daily zooplankton grazing impact on Alexandrium spp. field populations by field

  13. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean. PMID:25309996

  14. High mortality of Red Sea zooplankton under ambient solar radiation.

    PubMed

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  15. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA

    USGS Publications Warehouse

    Girdner, Scott; Larson, Gary L.

    1995-01-01

    Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.

  16. Zooplankton Successions in Neighboring Lakes with Contrasting Impacts of Amphibian and Fish Predators

    NASA Astrophysics Data System (ADS)

    Schabetsberger, Robert; Grill, Susanne; Hauser, Gabriele; Wukits, Petra

    2006-06-01

    Two pairs of neighboring subalpine lakes located in the Northern Calcareous Alps of Austria were investigated. Each pair comprised a deeper lake containing European minnows (Phoxinus phoxinus ), and a corresponding shallower lake harboring Alpine newts (Triturus alpestris ) as top predators. Plankton successions within fish and amphibian lakes differed markedly from each other. Throughout the year rotifers numerically dominated within the minnow lakes, while pigmented copepods (Genera Heterocope, Acanthodiaptomus , Arctodiaptomus , Mixodiaptomus ) and Daphnia were prominent in the amphibian lakes, at least early during the ice-free period. We argue that size-selective predation by minnows was the ultimate reason for this predominance of smaller zooplankton. While one of the minnow lakes was characterized by a succession of spatially and temporally segregated rotifer species, the other minnow lake permitted the development of populations of small-sized Bosmina and Ceriodaphnia during summer, probably due to the existence of a strong oxycline allowing zooplankton crustaceans to avoid predation from shore-based shoals of minnows. Once trout were introduced into this lake, minnows were visibly reduced in abundance. Bosmina and Ceriodaphnia disappeared and Daphnia together with a predacious copepod (Heterocope ) emerged either from egg banks or arrived from nearby source populations. We argue that the crustacean communities within the fishless lakes were adapted to the comparatively weak predation rates of Alpine newts.

  17. Imazethapyr and imazapic, bispyribac-sodium and penoxsulam: zooplankton and dissipation in subtropical rice paddy water.

    PubMed

    Reimche, Geovane B; Machado, Sérgio L O; Oliveira, Maria Angélica; Zanella, Renato; Dressler, Valderi Luiz; Flores, Erico M M; Gonçalves, Fábio F; Donato, Filipe F; Nunes, Matheus A G

    2015-05-01

    Herbicides are very effective at eliminating weed and are largely used in rice paddy around the world, playing a fundamental role in maximizing yield. Therefore, considering the flooded environment of rice paddies, it is necessary to understand the side effects on non-target species. Field experiment studies were carried out during two rice growing seasons in order to address how the commonly-used herbicides imazethapyr and imazapic, bispyribac-sodium and penoxsulam, used at recommended dosage, affect water quality and the non-target zooplankton community using outdoor rice field microcosm set-up. The shortest (4.9 days) and longest (12.2 days) herbicide half-life mean, estimated of the dissipation rate (k) is shown for imazethapyr and bispyribac-sodium, respectively. Some water quality parameters (pH, conductivity, hardness, BOD5, boron, potassium, magnesium, phosphorus and chlorides) achieved slightly higher values at the herbicide treatment. Zooplankton community usually quickly recovered from the tested herbicide impact. Generally, herbicides led to an increase of cladocera, copepods and nauplius population, while rotifer population decreased, with recovery at the end of the experiment (88 days after herbicide treatment). PMID:25659307

  18. Influence of a multiyear event of low salinity on the zooplankton from Mexican eco-regions of the California Current

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.

    2009-12-01

    Data are presented from the southern part of the California Current System (CCS) for the period 1997-2007, derived from the IMECOCAL monitoring program. Apart from El Niño 1997 to 1998, and La Niña 1998-1999 the strongest perturbation occurred in 2002 due to an intrusion of subarctic water affecting all the CCS. The response of zooplankton biomass to the strong cooling and freshening of the upper layer was an immediate drop followed by a progressive recovery between 2003 and 2007. Though the low salinity influence ended in 2006, the increased zooplankton trend continued, reinforced by increased upwelling activity beginning 2005 off north Baja California region (30-32°N) and beginning 2006 off central Baja California (24-30°N). Multiple regression analysis was done between regional variables and Upwelling Index (UI) and two basin-scale proxies: the North Pacific Gyre Oscillation (NPGO), and Pacific Decadal Oscillation (PDO). The significant influence of the NPGO on surface salinity, salinity stratification, zooplankton volume and secondary consumers (zooplankton carnivores) suggests a basin scale control on these variables more than local mechanisms. The signature of the NPGO was also evident in the base of the trophic web, but more related to the group of crustacean herbivores in the north eco-region, and the tunicates in central Baja California. In this last region, the effect from NPGO on the zooplankton volume and tunicates was antagonist with UI indicative of similar importance of basin and local processes. However, when the time interval is limited to the post-subarctic intrusion (2003-2007) the significance of multiple regression models and physical variables was lost. Therefore, though data and bio-physical coupling analysis off Baja California suggest a better relation with NPGO compared to PDO, it is still not sufficient to explain the magnitude of the perturbation observed in 2002.

  19. YONSEI EVOLUTIONARY POPULATION SYNTHESIS (YEPS) MODEL. I. SPECTROSCOPIC EVOLUTION OF SIMPLE STELLAR POPULATIONS

    SciTech Connect

    Chung, Chul; Yoon, Suk-Jin; Lee, Sang-Yoon; Lee, Young-Wook

    2013-01-15

    We present a series of papers on the 2012 version of the Yonsei Evolutionary Population Synthesis (YEPS) model, which was constructed based on over 20 years of research. This first paper delineates the spectroscopic aspect of integrated light from stellar populations older than 1 Gyr. The standard YEPS is based on the most up-to-date Yonsei-Yale stellar evolutionary tracks and BaSel 3.1 flux libraries, and provides absorption line indices of the Lick/IDS system and high-order Balmer lines for simple stellar populations as functions of stellar parameters, such as metallicity, age, and {alpha}-element mixture. Special care has been taken to incorporate a systematic contribution from horizontal-branch (HB) stars, which alters the temperature-sensitive Balmer lines significantly, resulting in up to a 5 Gyr difference in the age estimation of old, metal-poor stellar populations. We also find that HBs exert an appreciable effect not only on the Balmer lines but also on the metallicity-sensitive lines, including the magnesium index. This is critical in explaining the intriguing bimodality found in index distributions of globular clusters in massive galaxies and to accurately derive spectroscopic metallicities from various indices. A full set of the spectroscopic and photometric YEPS model data of the entire parameter space is currently downloadable at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

  20. PKgraph: an R package for graphically diagnosing population pharmacokinetic models.

    PubMed

    Sun, Xiaoyong; Wu, Kai; Cook, Dianne

    2011-12-01

    Population pharmacokinetic (PopPK) modeling has become increasing important in drug development because it handles unbalanced design, sparse data and the study of individual variation. However, the increased complexity of the model makes it more of a challenge to diagnose the fit. Graphics can play an important and unique role in PopPK model diagnostics. The software described in this paper, PKgraph, provides a graphical user interface for PopPK model diagnosis. It also provides an integrated and comprehensive platform for the analysis of pharmacokinetic data including exploratory data analysis, goodness of model fit, model validation and model comparison. Results from a variety of modeling fitting software, including NONMEM, Monolix, SAS and R, can be used. PKgraph is programmed in R, and uses the R packages lattice, ggplot2 for static graphics, and rggobi for interactive graphics.

  1. Modeling Population Exposures to Silver Nanoparticles Present in Consumer Products

    PubMed Central

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-01-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (Geographic Information System) Extension (PRoTEGE), has been developed: it employs a product Life Cycle Analysis (LCA) approach coupled with basic human Life Stage Analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs Probabilistic Material Flow Analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employs screening Microenvironmental Modeling and Intake Fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically-relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters. PMID:25745354

  2. Zooplankton Responses to Low-Oxygen Condition upon a Shallow Oxygen Minimum Zone in the Upwelling Region off Chile

    NASA Astrophysics Data System (ADS)

    Hidalgo, P.; Escribano, R.

    2015-12-01

    A shallow oxygen minimum zone (OMZ) is a critical component in the coastal upwelling ecosystem off Chile. This OMZ causes oxygen-deficient water entering the photic layer and affecting plankton communities having low tolerance to hypoxia. Variable, and usually species-dependent, responses of zooplankton to hypoxia condition can be found. Most dominant species avoid hypoxia by restricting their vertical distribution, while others can temporarily enter and even spent part of their life cycle within the OMZ. Whatever the case, low-oxygen conditions appear to affect virtually all vital rates of zooplankton, such as mortality, fecundity, development and growth and metabolism, and early developmental stages seem more sensitive, with significant consequences for population and community dynamics. For most study cases, these effects are negative at individual and population levels. Observations and predictions upon increasing upwelling intensity over the last 20-30 years indicate a gradual shoaling of the OMZ, and so that an expected enhancement of these negative effects of hypoxia on the zooplankton community. Unknown processes of adaptation and community-structure adjustments are expected to take place with uncertain consequences for the food web of this highly productive eastern boundary current ecosystem.

  3. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  4. Population genetics of Setaria viridis, a new model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extensive survey of the standing genetic variation in natural populations is among the priority steps in developing a species into a model system. In recent years, green foxtail (Setaria viridis), along with its domesticated form foxtail millet (S. italica), has rapidly become a promising new mod...

  5. SOC in a population model with global control

    NASA Astrophysics Data System (ADS)

    Bröker, Hans-Martin; Grassberger, Peter

    We study a plant population model introduced recently by Wallinga (OIKOS 74 (1995) 377). It is similar to the contact process (‘simple epidemic’, ‘directed percolation’), but instead of using an infection or recovery rate as control parameter, the population size is controlled directly and globally by removing excess plants. We show that the model is very closely related to directed percolation (DP). Anomalous scaling laws appear in the limit of large populations, small densities, and long times. These laws, associated critical exponents, and even some non-universal parameters, can be related to those of DP. As in invasion percolation and in other models where the rôles of control and order parameters are interchanged, the critical value pc of the wetting probability p is obtained in the scaling limit as singular point in the distribution of removal rates. We show that a mean field type approximation leads to a model studied by Zhang et al. (J. Stat. Phys. 58 (1990) 849). Finally, we verify the claim of Wallinga that family extinction in a marginally surviving population is governed by DP scaling laws, and speculate on applications to human mitochondrial DNA.

  6. Ciliate Epibionts Associated with Crustacean Zooplankton in German Lakes: Distribution, Motility, and Bacterivory

    PubMed Central

    Bickel, Samantha L.; Tang, Kam W.; Grossart, Hans-Peter

    2012-01-01

    Ciliate epibionts associated with crustacean zooplankton are widespread in aquatic systems, but their ecological roles are little known. We studied the occurrence of ciliate epibionts on crustacean zooplankton in nine German lakes with different limnological features during the summer of 2011. We also measured the detachment and re-attachment rates of the ciliates, changes in their motility, and the feeding rates of attached vs. detached ciliate epibionts. Epibionts were found in all lakes sampled except an acidic lake with large humic inputs. Epibiont prevalence was as high as 80.96% on the cladoceran Daphnia cucullata, 67.17% on the cladoceran Diaphanosoma brachyurum, and 46.67% on the calanoid copepod Eudiaptomus gracilis. Both cladoceran groups typically had less than 10 epibionts per individual, while the epibiont load on E. gracilis ranged from 1 to >30 epibionts per individual. After the death of the zooplankton host, the peritrich ciliate epibiont Epistylis sp. detached in an exponential fashion with a half-life of 5 min, and 98% detached within 30 min, leaving behind the stalks used for attachment. Immediately after detachment, the ciliates were immotile, but 62% became motile within 60 min. When a new host was present, only 27% reattached after 120 min. The average measured ingestion rate and clearance rate of Epistylis were 11,745 bacteria ciliate−1 h−1 and 24.33 μl ciliate−1 h−1, respectively. Despite their high feeding rates, relatively low epibiont abundances were observed in the field, which suggests either diversion of energy to stalk formation, high metabolic loss by the epibionts, or high mortality among the epibiont populations. PMID:22783247

  7. Tidally oriented vertical migration and position maintenance of zooplankton in a temperate estuary

    USGS Publications Warehouse

    Kimmerer, W.J.; Burau, J.R.; Bennett, W.A.

    1998-01-01

    In many estuaries, maxima in turbidity and abundance of several common species of zooplankton occur in the low salinity zone (LSZ) in the range of 0.5-6 practical salinity units (psu). Analysis of zooplankton abundance from monitoring in 1972-1987 revealed that historical maxima in abundance of the copepod Eurytemora affinis and the mysid Neomysis mercedis, and in turbidity as determined from Secchi disk data, were close to the estimated position of 2 psu bottom salinity. The copepod Sinocalanus doerrii had a maximum slightly landward of that of E. affinis. After 1987 these maxima decreased and shifted to a lower salinity, presumably because of the effects of grazing by the introduced clam Potamocorbula amurensis. At the same time, the copepod Pseudodiaptomus forbesi, the mysid Acanthomysis sp., and amphipods became abundant with peaks at salinity around 0.2-0.5 psu. Plausible mechanisms for maintenance of these persistent abundance peaks include interactions between variation in flow and abundance, either in the vertical or horizontal plane, or higher net population growth rate in the peaks than seaward of the peaks. In spring of 1994, a dry year, we sampled in and near the LSZ using a Lagrangian sampling scheme to follow selected isohalines while sampling over several complete tidal cycles. Acoustic Doppler current profilers were used to provide detailed velocity distributions to enable us to estimate longitudinal fluxes of organisms. Stratification was weak and gravitational circulation nearly absent in the LSZ. All of the common species of zooplankton migrated vertically in response to the tides, with abundance higher in the water column on the flood than on the ebb. Migration of mysids and amphipods was sufficient to override net seaward flow to produce a net landward flux of organisms. Migration of copepods, however, was insufficient to reverse or even greatly diminish the net seaward flux of organisms, implying alternative mechanisms of position maintenance.

  8. Parsimonious snow model explains reindeer population dynamics and ranging behavior

    NASA Astrophysics Data System (ADS)

    Kohler, J.; Aanes, R.; Hansen, B. B.; Loe, L.; Severinsen, T.; Stien, A.

    2008-12-01

    Winter snow is a key factor affecting polar ecosystems. One example is the strong negative correlation of winter precipitation with fluctuations in population in some high-arctic animal populations. Ice layers within and at the base of the snowpack have particularly deleterious effects on such populations. Svalbard reindeer have small home ranges and are vulnerable to local "locked pasture" events due to ground-ice formation. When pastures are locked, reindeer are faced with the decision of staying, living off a diminishing fat store, or trying to escape beyond the unknown spatial borders of the ice. Both strategies may inhibit reproduction and increase mortality, leading to population declines. Here we assess the impact of winter snow and ice on the population dynamics of an isolated herd of Svalbard reindeer near Ny-Ålesund, monitored annually since 1978, with a retrospective analysis of the winter snowpack. Because there are no long-term observational records of snow or snow properties, such as ice layers, we must recourse to snowpack modeling. A parsimonious model of snow and ground-ice thickness is driven with daily temperature and precipitation data collected at a nearby weather station. The model uses the degree-day concept and has three adjustable parameters which are tuned to correlate model snow and ground-ice thicknesses to the limited observations available: April snow accumulation measurements on two local glaciers, and a limited number of ground-ice observations made in recent years. Parameter values used are comparable to those reported elsewhere. We find that modeled mean winter ground-ice thickness explains a significant percentage of the observed variance in reindeer population growth rate. Adding other explanatory parameters, such as modeled mean winter snowpack thickness or previous years' population size does not significanly improve the relation. Furthermore, positioning data from a small subset of reindeer show that model icing events are

  9. A model study with light-dependent mortality rates of copepod stages

    NASA Astrophysics Data System (ADS)

    Neumann, Thomas; Kremp, Christine

    2005-06-01

    This paper is based on an advanced ecosystem model of the Baltic Sea (ERGOM [ J. Mar. Sys. 25 (3-4) (2005) 405]), but with an increased resolution of the zooplankton stage variable [ J. Plankton Res. 23 (2001) 1217; ICES Marine Science 219 (2003) 208]. The model copepods are represented by five stages: eggs, an aggregated variable of nauplii, two aggregated groups of copepodites and adults. The transfer among the stages, i.e., hatching, molting and reproduction, is controlled by food availability and temperature. As usual, the model food web is truncated at the level of zooplankton. The study explores the effects of different parametrization of zooplankton mortality and looks in particular on light-dependent rates. The light climate may serve a proxy for the effects of visual feeding of fish larvae and fish. Different choices of the mortality parameters can result in remarkable differences in abundances and biomass of the model zooplankton and in the timing of its development. It is found that the different choices of mortality affect the development of populations in several ways: Relative small initial differences of abundances at the beginning of the spring bloom are important for the development of the model populations. Higher mortality rates are less important at food rich conditions than at scarce resources. At low phytoplankton levels, the individual development of the copepods through the stages can be faster for elevated mortality rates because then less animals have to share the available food.

  10. Modelling Spread of Oncolytic Viruses in Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Ellis, Michael; Dobrovolny, Hana

    2014-03-01

    One of the most promising areas in current cancer research and treatment is the use of viruses to attack cancer cells. A number of oncolytic viruses have been identified to date that possess the ability to destroy or neutralize cancer cells while inflicting minimal damage upon healthy cells. Formulation of predictive models that correctly describe the evolution of infected tumor systems is critical to the successful application of oncolytic virus therapy. A number of different models have been proposed for analysis of the oncolytic virus-infected tumor system, with approaches ranging from traditional coupled differential equations such as the Lotka-Volterra predator-prey models, to contemporary modeling frameworks based on neural networks and cellular automata. Existing models are focused on tumor cells and the effects of virus infection, and offer the potential for improvement by including effects upon normal cells. We have recently extended the traditional framework to a 2-cell model addressing the full cellular system including tumor cells, normal cells, and the impacts of viral infection upon both populations. Analysis of the new framework reveals complex interaction between the populations and potential inability to simultaneously eliminate the virus and tumor populations.

  11. Can modeling improve estimation of desert tortoise population densities?

    USGS Publications Warehouse

    Nussear, K.E.; Tracy, C.R.

    2007-01-01

    The federally listed desert tortoise (Gopherus agassizii) is currently monitored using distance sampling to estimate population densities. Distance sampling, as with many other techniques for estimating population density, assumes that it is possible to quantify the proportion of animals available to be counted in any census. Because desert tortoises spend much of their life in burrows, and the proportion of tortoises in burrows at any time can be extremely variable, this assumption is difficult to meet. This proportion of animals available to be counted is used as a correction factor (g0) in distance sampling and has been estimated from daily censuses of small populations of tortoises (6-12 individuals). These censuses are costly and produce imprecise estimates of g0 due to small sample sizes. We used data on tortoise activity from a large (N = 150) experimental population to model activity as a function of the biophysical attributes of the environment, but these models did not improve the precision of estimates from the focal populations. Thus, to evaluate how much of the variance in tortoise activity is apparently not predictable, we assessed whether activity on any particular day can predict activity on subsequent days with essentially identical environmental conditions. Tortoise activity was only weakly correlated on consecutive days, indicating that behavior was not repeatable or consistent among days with similar physical environments. ?? 2007 by the Ecological Society of America.

  12. Zooplankton species composition, abundance and biomass on the eastern Bering Sea shelf during summer: The potential role of water-column stability and nutrients in structuring the zooplankton community

    NASA Astrophysics Data System (ADS)

    Coyle, Kenneth O.; Pinchuk, Alexei I.; Eisner, Lisa B.; Napp, Jeffrey M.

    2008-08-01

    The southeastern Bering Sea sustains one of the largest fisheries in the United States, as well as wildlife resources that support valuable tourist and subsistence economies. The fish and wildlife populations in turn are sustained by a food web linking primary producers to apex predators through the zooplankton community. Recent shifts in climate toward warmer conditions may threaten these resources by altering productivity and trophic relationships in the ecosystem on the southeastern Bering Sea shelf. We examined the zooplankton community near the Pribilof Islands and on the middle shelf of the southeastern Bering Sea in summer of 1999 and 2004 to document differences and similarities in species composition, abundance and biomass by region and year. Between August 1999 and August 2004, the summer zooplankton community of the middle shelf shifted from large to small species. Significant declines were observed in the biomass of large scyphozoans ( Chrysaora melanaster), large copepods ( Calanus marshallae), arrow worms ( Sagitta elegans) and euphausiids ( Thysanoessa raschii, T. inermis) between 1999 and 2004. In contrast, significantly higher densities of the small copepods ( Pseudocalanus spp., Oithona similis) and small hydromedusae ( Euphysa flammea) were observed in 2004 relative to 1999. Stomach analyses of young-of-the-year (age 0) pollock ( Theragra chalcogramma) from the middle shelf indicated a dietary shift from large to small copepods in 2004 relative to 1999. The shift in the zooplankton community was accompanied by a 3-fold increase in water-column stability in 2004 relative to 1999, primarily due to warmer water above the thermocline, with a mean temperature of 7.3 °C in 1999 and 12.6 °C in 2004. The elevated water-column stability and warmer conditions may have influenced the zooplankton composition by lowering summer primary production and selecting for species more tolerant of a warm, oligotrophic environment. A time series of temperature from

  13. A frictional population model of seismicity rate change

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.; Cocco, M.; Belardinelli, M.E.

    2005-01-01

    We study models of seismicity rate changes caused by the application of a static stress perturbation to a population of faults and discuss our results with respect to the model proposed by Dieterich (1994). These models assume distribution of nucleation sites (e.g., faults) obeying rate-state frictional relations that fail at constant rate under tectonic loading alone, and predicts a positive static stress step at time to will cause an immediate increased seismicity rate that decays according to Omori's law. We show one way in which the Dieterich model may be constructed from simple general idead, illustratted using numerically computed synthetic seismicity and mathematical formulation. We show that seismicity rate change predicted by these models (1) depend on the particular relationship between the clock-advanced failure and fault maturity, (2) are largest for the faults closest to failure at to, (3) depend strongly on which state evolution law faults obey, and (4) are insensitive to some types of population hetrogeneity. We also find that if individual faults fail repeatedly and populations are finite, at timescales much longer than typical aftershock durations, quiescence follows at seismicity rate increase regardless of the specific frictional relations. For the examined models the quiescence duration is comparable to the ratio of stress change to stressing rate ????/??,which occurs after a time comparable to the average recurrence interval of the individual faults in the population and repeats in the absence of any new load may pertubations; this simple model may partly explain observations of repeated clustering of earthquakes. Copyright 2005 by the American Geophysical Union.

  14. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    NASA Astrophysics Data System (ADS)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  15. Estimating genetic parameters in natural populations using the "animal model".

    PubMed Central

    Kruuk, Loeske E B

    2004-01-01

    Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation. PMID:15306404

  16. Negative binomial models for abundance estimation of multiple closed populations

    USGS Publications Warehouse

    Boyce, Mark S.; MacKenzie, Darry I.; Manly, Bryan F.J.; Haroldson, Mark A.; Moody, David W.

    2001-01-01

    Counts of uniquely identified individuals in a population offer opportunities to estimate abundance. However, for various reasons such counts may be burdened by heterogeneity in the probability of being detected. Theoretical arguments and empirical evidence demonstrate that the negative binomial distribution (NBD) is a useful characterization for counts from biological populations with heterogeneity. We propose a method that focuses on estimating multiple populations by simultaneously using a suite of models derived from the NBD. We used this approach to estimate the number of female grizzly bears (Ursus arctos) with cubs-of-the-year in the Yellowstone ecosystem, for each year, 1986-1998. Akaike's Information Criteria (AIC) indicated that a negative binomial model with a constant level of heterogeneity across all years was best for characterizing the sighting frequencies of female grizzly bears. A lack-of-fit test indicated the model adequately described the collected data. Bootstrap techniques were used to estimate standard errors and 95% confidence intervals. We provide a Monte Carlo technique, which confirms that the Yellowstone ecosystem grizzly bear population increased during the period 1986-1998.

  17. Inbreeding estimation from population data: models, procedures and implications.

    PubMed

    Spielman, R S; Neel, J V; Li, F H

    1977-02-01

    Four different estimation procedures for models of population structure are compared. The parameters of the models are shown to be equivalent and, in most cases, easily expressed in terms of the parameters WRIGHT calls "F-statistics." We have estimated the parameters of each of these models with data on nine codominant allele pairs in 47 Yanomama villages, and we find that the different estimators for a given parameter all yield more or less equivalent results. F-statistics are often equated to inbreeding coefficients that are definid as the probability of identity by descent from alleles taken to be unique in some founding population. However, we are led to infer from computer simulation and general historical considerations that all estimates from genotype frequencies greatly underestimate the inbreeding coefficient for alleles in the founding population of American Indians in the western hemisphere. We surmise that in the highly subdivided tribal populations which prevailed until the recent advent of civilization, the probability of identity by descent for homologous alleles was roughly 0.5. We consider some consequences of working with the customary, much lower, estimates--0.005 to 0.01--if, on the time scale of human evolution, these represent only a very recent departure from the inbreeding intensity that prevailed before civilization.

  18. Stellar Populations and the Star Formation Histories of LSB Galaxies: III. Stellar Population Models

    NASA Astrophysics Data System (ADS)

    Schombert, James; McGaugh, Stacy

    2014-09-01

    A series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low Hα emission and high gas fractions that indicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into the Spitzer wavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S4G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.

  19. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  20. A stochastic population model of mid-continental mallards

    USGS Publications Warehouse

    Koford, Rolf R.; Sauer, J.R.; Johnson, D.H.; Nichols, J.D.; Samuel, M.D.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    We developed a simulation model that integrates infonnation on factors affecting the population dynamics of mallards in the mid-continental region of the United States. In the model we vary age, body mass, and reproductive and molt status of simulated females. Females use several types of nesting and foraging habitat in 15 geographic areas. Deterministic and stochastic events cause mortality or attribute changes on a daily basis, depending on current attributes, habitat, area, calendar date, wetland conditions, temperature, and various mortality agents. Because the model encompasses the entire year, it can be used to examine cross-seasonal effects. A simulated increase in nest success from 0.14 to 0.17 changed the annual rate of population growth from -6% to -1 %. A simulated 75% reduction in lead poisoning changed the rate from -6% to -3%.

  1. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  2. Computational models of populations of bacteria and lytic phage.

    PubMed

    Krysiak-Baltyn, Konrad; Martin, Gregory J O; Stickland, Anthony D; Scales, Peter J; Gras, Sally L

    2016-11-01

    The use of phages to control and reduce numbers of unwanted bacteria can be traced back to the early 1900s, when phages were explored as a tool to treat infections before the wide scale use of antibiotics. Recently, phage therapy has received renewed interest as a method to treat multiresistant bacteria. Phages are also widely used in the food industry to prevent the growth of certain bacteria in foods, and are currently being explored as a tool for use in bioremediation and wastewater treatment. Despite the large body of biological research on phages, relatively little attention has been given to computational modeling of the population dynamics of phage and bacterial interactions. The earliest model was described by Campbell in the 1960s. Subsequent modifications to this model include partial or complete resistance, multiple phage binding sites, and spatial heterogeneity. This review provides a general introduction to modeling of the population dynamics of bacteria and phage. The review introduces the basic model and relevant concepts and evaluates more complex variations of the basic model published to date, including a model of disease epidemics caused by infectious bacteria. Finally, the shortcomings and potential ways to improve the models are discussed.

  3. Searching for an Integrated Watershed Salmonid Population Model

    NASA Astrophysics Data System (ADS)

    Ligon, F. K.; Dietrich, W. E.

    2005-05-01

    In proposing to restore a stream or watershed, we imply that we know what we are restoring and why. However, in many cases, restoration proceeds without having the tools to adequately assess the efficacy of a project-both in terms of its likely local success and what effects it may have at a larger watershed or regional scale. In salmonid ecology and restoration, our approach has been to "step back" and investigate the degree to which geology, tectonics, and climate determine the relative abundance and temporal variability of the species present in a watershed or reach. In other words, does the habitat provided by a landscape prior to European disturbance (the so-called historical reference condition) allow us to predict, using salmon life history theory, the historical population dynamics of all salmonid species for a watershed or region? Likewise, as changes in physical processes have occurred due to human disturbance, can we predict the differential effects on the abundance of different salmonid species historically present in the watershed? To explore these questions, we have developed the "reference model". The reference model is based on a set of desktop watershed analyses tools that estimate a number of landscape attributes including channel slope, drainage area, stream temperature, and shallow landslide sensitivity. The model uses these tools to predict the spatial distribution of habitat and its quality and quantity. Then, by relating the habitat to life stage specific survival, the model predicts population dynamics under reference and current conditions, and under proposed restoration scenarios. In applying the reference model, we explicitly link salmon restoration targets and plans to an understanding of the role of physical processes on the historical and current population dynamics. As is true with most models, the reference model's predictions have the greatest value when they can be treated as testable hypotheses. Ongoing restoration projects that

  4. Intraspecific Autochthonous and Allochthonous Resource Use by Zooplankton in a Humic Lake during the Transitions between Winter, Summer and Fall.

    PubMed

    Berggren, Martin; Bergström, Ann-Kristin; Karlsson, Jan

    2015-01-01

    Seasonal patterns in assimilation of externally produced, allochthonous, organic matter into aquatic food webs are poorly understood, especially in brown-water lakes. We studied the allochthony (share biomass of terrestrial origin) in cladoceran, calanoid and cyclopoid micro-crustacean zooplankton from late winter to fall during two years in a small humic lake (Sweden). The use of allochthonous resources was important for sustaining a small population of calanoids in the water column during late winter. However, in summer the calanoids shifted to 100% herbivory, increasing their biomass several-fold by making efficient use of the pelagic primary production. In contrast, the cyclopoids and cladocerans remained at high levels of allochthony throughout the seasons, both groups showing the mean allochthony of 0.56 (range in mean 0.17-0.79 and 0.34-0.75, for the respective group, depending on model parameters). Our study shows that terrestrial organic matter can be an important resource for cyclopoids and cladocerans on an annual basis, forming a significant link between terrestrial organic matter and the higher trophic levels of the food web, but it can also be important for sustaining otherwise herbivorous calanoids during periods of low primary production in late winter.

  5. Intraspecific Autochthonous and Allochthonous Resource Use by Zooplankton in a Humic Lake during the Transitions between Winter, Summer and Fall

    PubMed Central

    Berggren, Martin; Bergström, Ann-Kristin; Karlsson, Jan

    2015-01-01

    Seasonal patterns in assimilation of externally produced, allochthonous, organic matter into aquatic food webs are poorly understood, especially in brown-water lakes. We studied the allochthony (share biomass of terrestrial origin) in cladoceran, calanoid and cyclopoid micro-crustacean zooplankton from late winter to fall during two years in a small humic lake (Sweden). The use of allochthonous resources was important for sustaining a small population of calanoids in the water column during late winter. However, in summer the calanoids shifted to 100% herbivory, increasing their biomass several-fold by making efficient use of the pelagic primary production. In contrast, the cyclopoids and cladocerans remained at high levels of allochthony throughout the seasons, both groups showing the mean allochthony of 0.56 (range in mean 0.17-0.79 and 0.34-0.75, for the respective group, depending on model parameters). Our study shows that terrestrial organic matter can be an important resource for cyclopoids and cladocerans on an annual basis, forming a significant link between terrestrial organic matter and the higher trophic levels of the food web, but it can also be important for sustaining otherwise herbivorous calanoids during periods of low primary production in late winter. PMID:25764501

  6. Late-summer zooplankton community structure, abundance, and distribution in the Hudson Bay system (Canada) and their relationships with environmental conditions, 2003-2006

    NASA Astrophysics Data System (ADS)

    Estrada, Rafael; Harvey, Michel; Gosselin, Michel; Starr, Michel; Galbraith, Peter S.; Straneo, Fiammetta

    2012-08-01

    weakly stratified Arctic-North Atlantic waters coming from southwestern Davis Strait (inflow). In general, the RDA models tested among the HBS regions were very consistent with its general surface circulation pattern for summer conditions in terms of environmental variables and distinct zooplankton assemblages. Overall, zooplankton biomass and diversity indices (H‧, J‧, and S) were lower in the most stratified environment (i.e., HB) than in the deeper (FB) and more dynamic (HS) regions. The results of this work clearly show that the spatial differentiation and structure of the zooplankton communities are strongly influenced by the hydrodynamic conditions in the HBS that, trough their actions on temperature, salinity, stratification, mixing conditions and depth strata, lead to the spatial differentiation of these communities.

  7. Modeling the Effects of Mortality on Sea Otter Populations

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.

    2010-01-01

    Conservation and management of sea otters can benefit from managing the magnitude and sex composition of human related mortality, including harvesting within sustainable levels. Using age and sex-specific reproduction and survival rates from field studies, we created matrix population models representing sea otter populations with growth rates of 1.005, 1.072, and 1.145, corresponding to stable, moderate, and rapid rates of change. In each modeled population, we incrementally imposed additional annual mortality over a 20-year period and calculated average annual rates of change (lambda). Additional mortality was applied to (1) males only, (2) at a 1:1 ratio of male to female, and (3) at a 3:1 ratio of male to female. Dependent pups (age 0-0.5) were excluded from the mortality. Maintaining a stable or slightly increasing population was largely dependent on (1) the magnitude of additional mortality, (2) the underlying rate of change in the population during the period of additional mortality, and (3) the extent that females were included in the additional mortality (due to a polygnous reproductive system where one male may breed with more than one female). In stable populations, additional mortality as high as 2.4 percent was sustainable if limited to males only, but was reduced to 1.2 percent when males and females were removed at ratios of 3:1 or 0.5 percent at ratios of 1:1. In moderate growth populations, additional mortality of 9.8 percent (male-only) and 15.0 percent (3:1 male to female) maximized the sustainable mortality about 3-10 ten-fold over the stable population levels. However, if additional mortality consists of males and females at equal proportions, the sustainable rate is 7.7 percent. In rapid growth populations, maximum sustainable levels of mortality as high as 27.3 percent were achieved when the ratio of additional mortality was 3:1 male to female. Although male-only mortality maximized annual harvest in stable populations, high male biased

  8. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?

    NASA Astrophysics Data System (ADS)

    El-Shabrawy, Gamal M.; Anufriieva, Elena V.; Germoush, Mousa O.; Goher, Mohamed E.; Shadrin, Nickolai V.

    2015-11-01

    Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901: 12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 µg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 µg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m3 in 1974-1977; 356 125 ind./m3 in 1989; 534 000 ind./m3 in 1994-1995; from 965 000 to 1 452 000 ind./m3 in 2006, and 595 000 ind./m3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction of Mnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.

  9. Influence of mesoscale anticyclonic eddies on zooplankton distribution south of the western Aleutian Islands during summer

    NASA Astrophysics Data System (ADS)

    Saito, R.; Yamaguchi, A.; Yasuda, I.; Ueno, H.; Ishiyama, H.; Imai, I.

    2013-12-01

    Mesoscale anticyclonic eddies have been observed south of the Aleutian Islands located between the Bering Sea and the subarctic Pacific. Eddies farther east, in the Gulf of Alaska, are known to transport coastal water and coastal zooplankton to offshore open ocean. The impacts of mesoscale anticyclonic eddies formed south of the western Aleutian Islands (Aleutian eddies) on the zooplankton community are not fully understood. In the present study, we describe zooplankton population structures within an Aleutian eddy and outside the eddy during July 2010. Our field study was conducted at seven stations along 51°15‧N from 171°21‧E to 174°38‧E (western line) and at four stations along 50°40‧N from 176°24‧E to 178°44‧E (eastern line) on 7-8 July 2010. At each station, environmental data (temperature, salinity and fluorescence were measured by CTD/XCTD. Zooplankton samples were collected by vertical tow of 150 m depth to the surface using 100 μm mesh size plankton net. Based on the sea level anomaly (SLA), the western line crossed an anticyclonic eddy but the eastern line did not cross the eddy (Fig. 1). This Aleutian eddy was formed south of Attu Island (52°54‧N, 172°54‧E) in mid-February 2010, and it moved southeastward in the next five months. The SLA near the eddy center, representing the strength of the eddy, continuously increased, and the area oscillated at one to two month periods overlain on a general increase from ~7,000 to ~18,000 km2. Large oceanic copepods, Neocalanus cristatus, Eucalanus bungii and Metridia pacifica were more abundant inside the eddy than the outside. Inside the eddy, the life stage distribution of N. cristatus was advanced than that outside, and Neocalanus spp. had accumulated more lipids. These conditions probably reflect the greater primary production in the eddy, production enhanced by nutrients advected into the eddy. Since the Aleutian eddy was formed in offshore waters and/or eddy-eddy interaction occurred

  10. Evaluating models of population process in a threatened population of Steller’s eiders: A retrospective approach

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-10-11

    The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 in response to perceived declines in abundance throughout their breeding and nesting range. Aerial surveys suggest the breeding population is small and highly variable in number, with zero birds counted in 5 of the last 25 years. Research was conducted to evaluate competing population process models of Alaskan-breeding Steller’s eiders through comparison of model projections to aerial survey data. To evaluate model efficacy and estimate demographic parameters, a Bayesian state-space modeling framework was used and each model was fit to counts from the annual aerial surveys, using sequential importance sampling and resampling. The results strongly support that the Alaskan breeding population experiences population level nonbreeding events and is open to exchange with the larger Russian-Pacific breeding population. Current recovery criteria for the Alaskan breeding population rely heavily on the ability to estimate population viability. The results of this investigation provide an informative model of the population process that can be used to examine future population states and assess the population in terms of the current recovery and reclassification criteria.

  11. Evolutionary adaptation of marine zooplankton to global change.

    PubMed

    Dam, Hans G

    2013-01-01

    Predicting the response of the biota to global change remains a formidable endeavor. Zooplankton face challenges related to global warming, ocean acidification, the proliferation of toxic algal blooms, and increasing pollution, eutrophication, and hypoxia. They can respond to these changes by phenotypic plasticity or genetic adaptation. Using the concept of the evolution of reaction norms, I address how adaptive responses can be unequivocally discerned from phenotypic plasticity. To date, relatively few zooplankton studies have been designed for such a purpose. As case studies, I review the evidence for zooplankton adaptation to toxic algal blooms, hypoxia, and climate change. Predicting the response of zooplankton to global change requires new information to determine (a) the trade-offs and costs of adaptation, (b) the rates of evolution versus environmental change, (c) the consequences of adaptation to stochastic or cyclic (toxic algal blooms, coastal hypoxia) versus directional (temperature, acidification, open ocean hypoxia) environmental change, and (d) the interaction of selective pressures, and evolutionary and ecological processes, in promoting or hindering adaptation.

  12. Lake St. Clair zooplankton: Evidence for post-dreissena changes

    USGS Publications Warehouse

    David, K.A.; Davis, B.M.; Hunter, R.D.

    2009-01-01

    We surveyed the zooplankton of Lake St. Clair at 12 sites over ten dates from May to October 2000. Mean zooplankton density by site and date was 168.6 individuals/L, with Dreissena spp. veligers the most abundant taxon at 122.7 individuals/L. Rotifers, copepods, and cladocerans were far lower in mean abundance than in the early 1970s (rotifers, 20.9/L; copepods, 18.1/L; and cladocerans, 6.8/L). Species richness of zooplankton taxa in 2000 was 147, which was virtually unchanged from that of the first reported survey in 1894. Overall, the decline in abundance was greatest for rotifers (-90%) and about equal for cladocerans (-69%) and copepods (-66%). The decrease in abundance of Daphnia spp. was especially dramatic in Canadian waters. The decline in the southeastern region was significant for all three major groups of zooplankton, whereas in the northwestern region the decline was significant only for rotifers. From June to August 2000, Lake St. Clair open waters were numerically dominated by Dreissena spp. veligers, with a reduced abundance of rotifers and crustaceans compared to pre-Dreissena spp. surveys. Mean nutrient concentrations were not different from the 1970s, but Secchi depth (greater) and chlorophyll a concentration (lower) were. Disproportionate reduction in rotifer abundance is consistent with hypotheses implicating direct consumption by settled Dreissena spp. Reduction of crustaceans is likely due to more complex interactions including removal of nauplii as well as resource competition for phytoplankton.

  13. Zooplankton and Karenia brevis in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lester, Kristen M.; Heil, Cynthia A.; Neely, Merry B.; Spence, Danylle N.; Murasko, Susan; Hopkins, Thomas L.; Sutton, Tracey T.; Burghart, Scott E.; Bohrer, Richard N.; Remsen, Andrew W.; Vargo, Gabriel A.; Walsh, John J.

    2008-01-01

    Blooms of the toxic dinoflagellate Karenia brevis are common in the Gulf of Mexico, yet no in situ studies of zooplankton and K. brevis have been conducted there. Zooplankton abundance and taxonomic composition at non-bloom and K. brevis bloom stations within the Ecology of Harmful Algal Blooms (ECOHAB) study area were compared. At non-bloom stations, the most abundant species of zooplankton were Parvocalanus crassirostris, Oithona colcarva, and Paracalanus quasimodo at the 5-m isobath and P. quasimodo, O. colcarva, and Oikopleura dioica at the 25-m isobath. There was considerable overlap in dominance of zooplankton species between the 5 and 25-m isobaths, with nine species contributing to 90% of abundance at both isobaths. At stations within K. brevis blooms however, Acartia tonsa, Centropages velificatus, Temora turbinata, Evadne tergestina, O. colcarva, O. dioica, and P. crassirostris were dominant. Variations in abundance between non-bloom and bloom assemblages were evident, including the reduction in abundance of three key species within K. brevis blooms.

  14. FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...

  15. Internal models for interpreting neural population activity during sensorimotor control

    PubMed Central

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output. DOI: http://dx.doi.org/10.7554/eLife.10015.001 PMID:26646183

  16. Moving across the border: modeling migratory bat populations

    USGS Publications Warehouse

    Ruscena, Wiederholt; López-Hoffman, Laura; Cline, Jon; Medellin, Rodrigo; Cryan, Paul M.; Russell, Amy; McCracken, Gary; Diffendorfer, Jay; Semmens, Darius J.

    2013-01-01

    The migration of animals across long distances and between multiple habitats presents a major challenge for conservation. For the migratory Mexican free-tailed bat (Tadarida brasiliensis mexicana), these challenges include identifying and protecting migratory routes and critical roosts in two countries, the United States and Mexico. Knowledge and conservation of bat migratory routes is critical in the face of increasing threats from climate change and wind turbines that might decrease migratory survival. We employ a new modeling approach for bat migration, network modeling, to simulate migratory routes between winter habitat in southern Mexico and summer breeding habitat in northern Mexico and the southwestern United States. We use the model to identify key migratory routes and the roosts of greatest conservation value to the overall population. We measure roost importance by the degree to which the overall bat population declined when the roost was removed from the model. The major migratory routes—those with the greatest number of migrants—were between winter habitat in southern Mexico and summer breeding roosts in Texas and the northern Mexican states of Sonora and Nuevo Leon. The summer breeding roosts in Texas, Sonora, and Nuevo Leon were the most important for maintaining population numbers and network structure – these are also the largest roosts. This modeling approach contributes to conservation efforts by identifying the most influential areas for bat populations, and can be used as a tool to improve our understanding of bat migration for other species. We anticipate this approach will help direct coordination of habitat protection across borders.

  17. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance. PMID:23667418

  18. Modelling Food and Population Dynamics in Honey Bee Colonies

    PubMed Central

    Khoury, David S.; Barron, Andrew B.; Myerscough, Mary R.

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance. PMID:23667418

  19. Resource Requirements of the Pacific Leatherback Turtle Population

    PubMed Central

    Jones, T. Todd; Bostrom, Brian L.; Hastings, Mervin D.; Van Houtan, Kyle S.; Pauly, Daniel; Jones, David R.

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924–1112) with the Pacific population consuming 2.1×106 t of jellyfish annually (range 1.0–3.7×106) equivalent to 4.2×108 megajoules (MJ) (range 2.0–7.4×108). Model estimates suggest 2–7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×106 t of jellyfish or 2.2×108 MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output. PMID:23071518

  20. Resource requirements of the Pacific leatherback turtle population.

    PubMed

    Jones, T Todd; Bostrom, Brian L; Hastings, Mervin D; Van Houtan, Kyle S; Pauly, Daniel; Jones, David R

    2012-01-01

    The Pacific population of leatherback sea turtles (Dermochelys coriacea) has drastically declined in the last 25 years. This decline has been linked to incidental capture by fisheries, egg and meat harvesting, and recently, to climate variability and resource limitation. Here we couple growth rates with feeding experiments and food intake functions to estimate daily energy requirements of leatherbacks throughout their development. We then estimate mortality rates from available data, enabling us to raise food intake (energy requirements) of the individual to the population level. We place energy requirements in context of available resources (i.e., gelatinous zooplankton abundance). Estimated consumption rates suggest that a single leatherback will eat upward of 1000 metric tonnes (t) of jellyfish in its lifetime (range 924-1112) with the Pacific population consuming 2.1×10(6) t of jellyfish annually (range 1.0-3.7×10(6)) equivalent to 4.2×10(8) megajoules (MJ) (range 2.0-7.4×10(8)). Model estimates suggest 2-7 yr-old juveniles comprise the majority of the Pacific leatherback population biomass and account for most of the jellyfish consumption (1.1×10(6) t of jellyfish or 2.2×10(8) MJ per year). Leatherbacks are large gelatinous zooplanktivores with consumption to biomass ratios of 96 (up to 192 if feeding strictly on low energy density Cnidarians); they, therefore, have a large capacity to impact gelatinous zooplankton landscapes. Understanding the leatherback's needs for gelatinous zooplankton, versus the availability of these resources, can help us better assess population trends and the influence of climate induced resource limitations to reproductive output. PMID:23071518

  1. A stage-based model of manatee population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Langtimm, C.A.; Kendall, W.L.

    2004-01-01

    A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth rates (8) of 1.037 (95% interval, 1.016?1.056) and 1.062 (1.037?1.081), respectively. The Southwest region has a growth rate of 0.989 (0.946?1.024), suggesting this population has been declining at about 1.1% per year. The estimated growth rate in the Atlantic region is 1.010 (0.988?1.029), but there is some uncertainty about whether adult survival rates have been constant over the last 10 yr; using the mean survival rates from the most recent 5-yr period, the estimated growth rate in this region is 0.970 (0.938?0.998). Elasticity analysis indicates that the most effective management actions should seek to increase adult survival rates. Decomposition of the uncertainty in the growth rates indicates that uncertainty about population status can best be reduced through increased monitoring of adult survival rate.

  2. [Population].

    PubMed

    1979-01-01

    Data on the population of Venezuela between 1975 and 1977 are presented in descriptive tables and graphs. Information is included on the employed population according to category, sex, and type of economic activity, and by sex, age, and area on the employment rate and the total, the economically active, and the unemployed population.

  3. [Zooplankton in north branch waters of Changiiang Estuary].

    PubMed

    Xu, Zhaoli

    2005-07-01

    Based on the investigation data during the high-water (July, 2003) and low-water (January, 2004) periods, a causal analysis was made on the variation of zooplankton distribution in the north branch waters of the Changjiang Estuary. The results showed that in high-water period, the average of zooplankton biomass was 234.38 mg x m(-3), being 141.35 mg x m(-3) in flood tide and 327.40 mg x m(-3) in ebb tide, while in low-water period, it was 188.81 mg x m(-3), being 184.69 mg x m(-3) in flood tide and 192.93 mg x m(-3) in ebb tide. The biomass increased from the east to the west in flood tide, but a contrary trend was observed in ebb tide. The species number did not change obviously both in flood tide and in ebb tide. The value of diversity index (H') was higher in flood tide than in ebb tide. In high-water period, the biomass near the north shore was higher than that near the south shore, but it was contrary in the ebb tide. The difference between the waters of two shores was not obvious in low-water period as in high-water period, though the trend of biomass variation was similar. The variation of zooplankton distribution in the north branch waters of the Changjiang Estuary had a close relation with the seasonal changes of zooplankton biomass outside the Changjiang Estuary and the tide, but not significantly related with the Changjiang runoff water. Coriolis force accounted for the difference of zooplankton biomass in the waters of two shores via tide movement.

  4. Development of zooplankton culture subsystem for a closed ecological recirculating aquaculture system (CERAS)

    NASA Astrophysics Data System (ADS)

    Omori, Katsunori; Oguchi, Mitsuo; Takeuchi, Toshio

    2006-01-01

    Ten parthenogenetic females of Moina macrocopa were placed in small cells with different flow conditions. The cells were opened after three-days of cultivation, and the water fleas in each cell were counted. It appeared that M. macrocopa were cultured effectively in a relatively slow current, 10 cm/min., but the population growth was not significantly influenced by the difference in flow direction. Subsequent, filtration efficiencies of filters with various pore sizes were compared. Four available porous hollow-fiber membrane modules, ACP-1010, AHP-1010, PSP-103, and PMP-102 (Asahi-Kasei Corp.), were tested. The module with the larger pore size initially filtered a greater amount of water but clogged up sooner. ACP-1010, which has the smallest pores, was considered to be suitable to filter condensed algal water due to its durability and stable filtration. An improved zooplankton culture device (IZCD) was designed and constructed based on these examinations. IZCD is a 13.2L airtight device characterized by a short and thick rearing tank and alternate filtration with paired fine hollow-fiber membrane modules. It must be tested and revised to be used in research into the optimal conditions for a zooplankton culture in a closed environment.

  5. Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation.

    PubMed

    Hansson, L A

    2000-11-22

    Ultraviolet (UV) radiation is harmful to all life, and the ongoing depletion of the ozone layer is likely to affect interactions among both terrestrial and aquatic organisms. Some organisms have evolved adaptations to reduce radiation damage, such as the various types of protective pigmentation of freshwater zooplankton. However, strong pigmentation also increases vulnerability to visually hunting predators. Hence, where both UV radiation and predation are intense, zooplankton may be sandwiched between conflicting selective pressures: to be pigmented and to be transparent at the same time. Here, I show that the level of pigmentation in copepods is up to ten times higher in lakes without predatory fishes than where fishes are present. Moreover, animals from the same population exposed to either UV light or predator scent showed a 10% difference in pigmentation after only four days, suggesting that pigmentation is an inducible trait. Hence, individual copepods are not passive victims of selective predation or radiation damage, but adjust the level of pigmentation according to the prevailing threat. The ability to adjust pigmentation level rapidly may be especially useful in situations where risk assessment is difficult due to strong seasonal and spatial variation in risk variables, such as in Arctic regions. With progressive thinning of the ozone layer, the ability of some but not other organisms to adjust protection against UV radiation may lead to counter-intuitive, large-scale alterations in freshwater food webs.

  6. Modelling population growth with delayed nonlocal reaction in 2-dimensions.

    PubMed

    Liang, Dong; Wu, Jianhong; Zhang, Fan

    2005-01-01

    In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.

  7. [Population surveys as management tools and health care models].

    PubMed

    Andrade, Flávia Reis de; Narvai, Paulo Capel

    2013-12-01

    The article briefly systematizes health care models, emphasizes the role of population surveys as a management tool and analyzes the specific case of the Brazilian Oral Health Survey (SBBrasil 2010) and its contribution to the consolidation process of health care models consistent with the principles of the Sistema Único de Saúde (SUS, Public Health Care System). While in legal terms SUS corresponds to a health care model, in actual practice the public policy planning and health action, the system gives rise to a care model which is not the result of legal texts or theoretical formulations, but rather the praxis of the personnel involved. Bearing in mind that the management of day-to-day health affairs is a privileged space for the production and consolidation of health care models, it is necessary to stimulate and support the development of technical and operational skills which are different from those required for the management of care related to individual demands.

  8. Wave trains in a model of gypsy moth population dynamics

    NASA Astrophysics Data System (ADS)

    Wilder, J. W.; Vasquez, D. A.; Christie, I.; Colbert, J. J.

    1995-12-01

    A recent model of gypsy moth [Lymantria dispar (Lepidoptera: Lymantriidae)] populations led to the observation of traveling waves in a one-dimensional spatial model. In this work, these waves are studied in more detail and their nature investigated. It was observed that when there are no spatial effects the model behaves chaotically under certain conditions. Under the same conditions, when diffusion is allowed, traveling waves develop. The biomass densities involved in the model, when examined at one point in the spatial domain, are found to correspond to a limit cycle lying on the surface of the chaotic attractor of the spatially homogeneous model. Also observed are wave trains that have modulating maxima, and which when examined at one point in the spatial domain show a quasiperiodic temporal behavior. This complex behavior is determined to be due to the interaction of the traveling wave and the chaotic background dynamics.

  9. Integration of manatee life-history data and population modeling

    USGS Publications Warehouse

    Eberhardt, L.L.; O'Shea, Thomas J.; O'Shea, Thomas J.; Ackerman, B.B.; Percival, H. Franklin

    1995-01-01

    Aerial counts and the number of deaths have been a major focus of attention in attempts to understand the population status of the Florida manatee (Trichechus manatus latirostris). Uncertainties associated with these data have made interpretation difficult. However, knowledge of manatee life-history attributes increased and now permits the development of a population model. We describe a provisional model based on the classical approach of Lotka. Parameters in the model are based on data from'other papers in this volume and draw primarily on observations from the Crystal River, Blue Spring, and Adantic Coast areas. The model estimates X (the finite rate ofincrease) at each study area, and application ofthe delta method provides estimates of variance components and partial derivatives ofX with respectto key input parameters (reproduction, adult survival, and early survival). In some study areas, only approximations of some parameters are available. Estimates of X and coefficients of variation (in parentheses) of manatees were 1.07 (0.009) in the Crystal River, 1.06 (0.012) at Blue Spring, and 1.01 (0.012) on the Atlantic Coast. Changing adult survival has a major effect on X. Early-age survival has the smallest effect. Bootstrap comparisons of population growth estimates from trend counts in the Crystal River and at Blue Spring and the reproduction and survival data suggest that the higher, observed rates from counts are probably not due to chance. Bootstrapping for variance estimates based on reproduction and survival data from manatees at Blue Spring and in the Crystal River provided estimates of X, adult survival, and rates of reproduction that were similar to those obtained by other methods. Our estimates are preliminary and suggestimprovements for future data collection and analysis. However, results support efforts to reduce mortality as the most effective means to promote the increased growth necessary for the eventual recovery of the Florida manatee

  10. Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem.

    PubMed

    Peerakietkhajorn, Saranya; Kato, Yasuhiko; Kasalický, Vojtěch; Matsuura, Tomoaki; Watanabe, Hajime

    2016-09-01

    How symbioses between bacteria and aquatic animals influence food webs in freshwater ecosystems is a fundamental question in ecology. We investigated symbiosis between a crustacean zooplankton Daphnia magna and its dominant bacterial symbiont Limnohabitans, an abundant and globally distributed freshwater Betaproteobacteria. Aposymbiotic juvenile Daphnia were prepared and exposed to any of four Limnohabitans sp. - Limnohabitans strains DM1, 2KL-3, 2KL-7 and Limnohabitans planktonicus strain II-D5, all previously found in D. magna digestive tract or culture. Re-infected Daphnia were cultured until they produced the first clutch of juveniles. Limnohabitans strain DM1 and L. planktonicus strain II-D5 successfully re-infected Daphnia through single exposure at the first instar juvenile stage. In contrast to aposymbiotic Daphnia that produced non-viable juveniles, re-infected Daphnia produced viable juveniles and increased fecundity to levels of that of symbiotic Daphnia. Re-infected Daphnia did not increase their number of eggs nor growth rates. Limnohabitans strains 2KL-7 and 2KL-3 could not recover fecundity even in multiple exposures during culture. This study shows the functional evidence demonstrating that a single bacterium Limnohabitans regulates fecundity of the consumer Daphnia through symbiosis. Our results indicated that symbiotic relationship between major bacterioplankton and zooplankton is important for maintaining the population of zooplankton in freshwater ecosystems.

  11. Stellar population models based on new generation stellar library

    NASA Astrophysics Data System (ADS)

    Koleva, M.; Vazdekis, A.

    The spectral predictions of stellar population models are not as accurate in the ultra-violet (UV) as in the optical wavelength domain. One of the reasons is the lack of high-quality stellar libraries. The New Generation Stellar Library (NGSL), recently released, represents a significant step towards the improvement of this situation. To prepare NGSL for population synthesis, we determined the atmospheric parameters of its stars, we assessed the precision of the wavelength calibration and characterised its intrinsic resolution. We also measured the Galactic extinction for each of the NGSL stars. For our analyses we used Ulyss, a full spectrum fitting package, fitting the NGSL spectra against the MILES interpolator. As a second step we build preliminary single stellar population models using Vazdekis (2003) synthesis code. We find that the wavelength calibration is precise up to 0.1 px, after correcting a systematic effect in the optical range. The spectral resolution varies from 3 Å in the UV to 10 Å in the near-infrared (NIR), corresponding to a roughly constant reciprocal resolution R=λ/δλ ≈1000 and an instrumental velocity dispersion σ_{ins} ≈ 130 kms. We derived the atmospheric parameters homogeneously. The precision for the FGK stars is 42 K, 0.24 and 0.09 dex for teff, logg and feh, respectively. The corresponding mean errors are 150 K, 0.50 and 0.48 dex for the M stars, and for the OBA stars they are 4.5 percent, 0.44 and 0.18 dex. The comparison with the literature shows that our results are not biased. Our first version of models compares well with models based on optical libraries, having the advantages to be free from artifacts due to the atmosphere. In future we will fine-tune our models by comparing to different models and observations of globular clusters.

  12. Deterministic versus stochastic aspects of superexponential population growth models

    NASA Astrophysics Data System (ADS)

    Grosjean, Nicolas; Huillet, Thierry

    2016-08-01

    Deterministic population growth models with power-law rates can exhibit a large variety of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time explosion). In this setup, selfsimilarity considerations play a key role, together with two time substitutions. Two stochastic versions of such models are investigated, showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes based on the exponentiation of spectrally positive processes, followed by an appropriate time change. The other one is based on stable continuous-state branching processes, given by another Lamperti time substitution applied to stable spectrally positive processes.

  13. A Stochastic Super-Exponential Growth Model for Population Dynamics

    NASA Astrophysics Data System (ADS)

    Avila, P.; Rekker, A.

    2010-11-01

    A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.

  14. Trophic accumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in Casco Bay, Gulf of Maine, April June 1998. I. Toxin levels in A. fundyense and zooplankton size fractions

    NASA Astrophysics Data System (ADS)

    Doucette, Gregory J.; Turner, Jefferson T.; Powell, Christine L.; Keafer, Bruce A.; Anderson, Donald M.

    2005-09-01

    concentrations in the 20-64 μm, A. fundyense-containing size fraction implied fluctuations in the algal toxin cell quota, which ranged from ca. 10 to 2000 fmol STX equiv. cell -1. Some of this variability may reflect the changing presence in this size fraction of grazers (e.g., tintinnids) capable of toxin accumulation, causing an upward bias in A. fundyense toxin cell quota estimates. Overall, the extent of PSP toxin transfer into zooplankton will be determined by a complex interaction among several factors, including A. fundyense and grazer abundance, algal toxin cell quota, and zooplankton community composition. An ability to predict zooplankton toxin accumulation will require further investigation of the relationships between these and other factors, aimed specifically at modeling the process of toxin trophic transfer to grazers and ultimately to their predators.

  15. A paradox in individual-based models of populations

    PubMed Central

    van der Meer, Jaap

    2016-01-01

    The standard dynamic energy budget model is widely used to describe the physiology of individual animals. It assumes that assimilation rate scales with body surface area, whereas maintenance rate scales with body volume. When the model is used as the building block of a population model, only limited dynamical behaviour, the so-called juvenile-driven cycles, emerges. The reason is that in the model juveniles are competitively superior over adults, because juveniles have a higher surface area-to-volume ratio. Maintenance requirements for adults are therefore relatively large, and a reduced assimilation rate as a result of lowered food levels will easily become insufficient. Here, an alternative dynamic energy budget model is introduced that gives rise to adult-driven cycles, which may be closer to what is often observed in reality. However, this comes at the price of a rather odd description of the individual, in that maintenance scales with body area and assimilation rate with body volume, resulting in unbounded exponential body growth. I make a plea to solve the paradox and come up with reliable descriptions at both the individual and the population level. PMID:27413533

  16. A paradox in individual-based models of populations.

    PubMed

    van der Meer, Jaap

    2016-01-01

    The standard dynamic energy budget model is widely used to describe the physiology of individual animals. It assumes that assimilation rate scales with body surface area, whereas maintenance rate scales with body volume. When the model is used as the building block of a population model, only limited dynamical behaviour, the so-called juvenile-driven cycles, emerges. The reason is that in the model juveniles are competitively superior over adults, because juveniles have a higher surface area-to-volume ratio. Maintenance requirements for adults are therefore relatively large, and a reduced assimilation rate as a result of lowered food levels will easily become insufficient. Here, an alternative dynamic energy budget model is introduced that gives rise to adult-driven cycles, which may be closer to what is often observed in reality. However, this comes at the price of a rather odd description of the individual, in that maintenance scales with body area and assimilation rate with body volume, resulting in unbounded exponential body growth. I make a plea to solve the paradox and come up with reliable descriptions at both the individual and the population level. PMID:27413533

  17. Modeling Refuge Effect of Submerged Macrophytes in Lake System.

    PubMed

    Lv, Dongyu; Fan, Meng; Kang, Yun; Blanco, Krystal

    2016-04-01

    This paper considers a significant problem in biological control of algae issue in ecological environment. A four-dimensional dynamic model is carefully formulated to characterize the interactions among phytoplankton, submerged macrophyte, zooplankton, and general fish class in a lake ecosystem. The predation relationship is modeled by Beddington-DeAngelis functional responses derived from the classical Holling time budget arguments. Qualitative analyses of the global dynamics show that the system can generate very rich dynamics with potentially 10 different equilibria and several bistable scenarios. We perform analysis on the existence and local stability of equilibria and explore the refuge effect of macrophyte on the zooplankton with numerical simulations on aquatic ecosystems. We also discuss effective methods of biological control used to restrain the increase of phytoplankton. Our study shows the proposed model could have rich and complex dynamics including but not limited to bistable and chaotic phenomenon. Numerical simulation results demonstrate that both the refuge constant and the density of the macrophytes are two key factors where refuge effects take place. In addition, the intraspecific competition between the macrophyte and the phytoplankton can also affect the macrophyte's refuge effect. Our analytical and simulation results suggest that macrophytes provide structure and shelter against predation for zooplankton such that it could restore the zooplankton population, and that planting macrophyte properly might achieve the purpose of controlling algae growth. PMID:27055658

  18. A Biomass Flow Approach to Population Models and Food Webs

    PubMed Central

    Getz, Wayne M.

    2011-01-01

    The dominant differential equation paradigm for modeling the population dynamics of species interacting in the framework of a food web retains at its core the basic prey-predator and competition models formulation by Alfred J. Lotka (1880–1945) and Vito Volterra (1860–1940) nearly nine decades ago. This paradigm lacks a trophic-level-independent formulation of population growth leading to ambiguities in how to treat populations that are simultaneously both prey and predator. Also, this paradigm does not fundamentally include inertial (i.e. change resisting) processes needed to account for the response of populations to fluctuating resource environments. Here I present an approach that corrects both these deficits and provides a unified framework for accounting for biomass transformation in food webs that include both live and dead components of all species in the system. This biomass transformation formulation (BTW) allows for a unified treatment of webs that include consumers of both live and dead material—both carnivores and carcasivores, herbivores and detritivores—and incorporates scavengers, parasites, and other neglected food web consumption categories in a coherent manner. I trace how BTW is an outgrowth of the metaphysiological growth modeling paradigm and I provide a general compact formulation of BTW in terms of a three-variable differential equation formulation for each species in the food web: viz. live biomass, dead biomass, and a food-intake-related measure called deficit-stress. I then illustrate the application of this new paradigm to provide insights into two-species competition in variable environments and discuss application of BTW to food webs that incorporate parasites and pathogens.

  19. A population model of chaparral vegetation response to frequent wildfires.

    PubMed

    Lucas, Timothy A; Johns, Garrett; Jiang, Wancen; Yang, Lucie

    2013-12-01

    The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.

  20. Modelling Lipid Competition Dynamics in Heterogeneous Protocell Populations

    PubMed Central

    Shirt-Ediss, Ben; Ruiz-Mirazo, Kepa; Mavelli, Fabio; Solé, Ricard V.

    2014-01-01

    Recent experimental work in the field of synthetic protocell biology has shown that prebiotic vesicles are able to ‘steal’ lipids from each other. This phenomenon is driven purely by asymmetries in the physical state or composition of the vesicle membranes, and, when lipid resource is limited, translates directly into competition amongst the vesicles. Such a scenario is interesting from an origins of life perspective because a rudimentary form of cell-level selection emerges. To sharpen intuition about possible mechanisms underlying this behaviour, experimental work must be complemented with theoretical modelling. The aim of this paper is to provide a coarse-grain mathematical model of protocell lipid competition. Our model is capable of reproducing, often quantitatively, results from core experimental papers that reported distinct types vesicle competition. Additionally, we make some predictions untested in the lab, and develop a general numerical method for quickly solving the equilibrium point of a model vesicle population. PMID:25024020

  1. Multimodel robust observer for an uncertain fish population model.

    PubMed

    Ait Kaddour, Achraf; Benjelloun, Khalid; Elalami, Noureddine; El Mazoudi, El Houssine

    2014-10-01

    In this paper, a new method is proposed to design an observer for a nonlinear and uncertain system describing a continuous stage structured model of a harvested fish population. The aim is to get an estimation of the biomass of fishes by stage class. In the studied model the fishing effort is considered as a control term, the stage classes as states and the quantity of captured fish as a measured output. A Takagi-Sugeno multimodel first represents the uncertain non-linear model. Next, we develop a technique for designing a multimodel observer corresponding to this system, which attenuates the effect of modelling uncertainties and measurement noise on the state estimation. The design conditions are given in linear matrix inequalities (LMIs) terms that can be solved efficiently using existing numerical tools. The validity of the proposed method is illustrated by the simulation results.

  2. Modelling Lipid Competition Dynamics in Heterogeneous Protocell Populations

    NASA Astrophysics Data System (ADS)

    Shirt-Ediss, Ben; Ruiz-Mirazo, Kepa; Mavelli, Fabio; Solé, Ricard V.

    2014-07-01

    Recent experimental work in the field of synthetic protocell biology has shown that prebiotic vesicles are able to `steal' lipids from each other. This phenomenon is driven purely by asymmetries in the physical state or composition of the vesicle membranes, and, when lipid resource is limited, translates directly into competition amongst the vesicles. Such a scenario is interesting from an origins of life perspective because a rudimentary form of cell-level selection emerges. To sharpen intuition about possible mechanisms underlying this behaviour, experimental work must be complemented with theoretical modelling. The aim of this paper is to provide a coarse-grain mathematical model of protocell lipid competition. Our model is capable of reproducing, often quantitatively, results from core experimental papers that reported distinct types vesicle competition. Additionally, we make some predictions untested in the lab, and develop a general numerical method for quickly solving the equilibrium point of a model vesicle population.

  3. Modelling lipid competition dynamics in heterogeneous protocell populations.

    PubMed

    Shirt-Ediss, Ben; Ruiz-Mirazo, Kepa; Mavelli, Fabio; Solé, Ricard V

    2014-01-01

    Recent experimental work in the field of synthetic protocell biology has shown that prebiotic vesicles are able to 'steal' lipids from each other. This phenomenon is driven purely by asymmetries in the physical state or composition of the vesicle membranes, and, when lipid resource is limited, translates directly into competition amongst the vesicles. Such a scenario is interesting from an origins of life perspective because a rudimentary form of cell-level selection emerges. To sharpen intuition about possible mechanisms underlying this behaviour, experimental work must be complemented with theoretical modelling. The aim of this paper is to provide a coarse-grain mathematical model of protocell lipid competition. Our model is capable of reproducing, often quantitatively, results from core experimental papers that reported distinct types vesicle competition. Additionally, we make some predictions untested in the lab, and develop a general numerical method for quickly solving the equilibrium point of a model vesicle population. PMID:25024020

  4. Richards-like two species population dynamics model.

    PubMed

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.

  5. Richards-like two species population dynamics model.

    PubMed

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished. PMID:25112794

  6. Information-theoretic model selection and model averaging for closed-population capture-recapture studies

    USGS Publications Warehouse

    Stanley, T.R.; Burnham, K.P.

    1998-01-01

    Specification of an appropriate model is critical to valid stalistical inference. Given the "true model" for the data is unknown, the goal of model selection is to select a plausible approximating model that balances model bias and sampling variance. Model selection based on information criteria such as AIC or its variant AICc, or criteria like CAIC, has proven useful in a variety of contexts including the analysis of open-population capture-recapture data. These criteria have not been intensively evaluated for closed-population capture-recapture models, which are integer parameter models used to estimate population size (N), and there is concern that they will not perform well. To address this concern, we evaluated AIC, AICc, and CAIC model selection for closed-population capture-recapture models by empirically assessing the quality of inference for the population size parameter N. We found that AIC-, AICc-, and CAIC-selected models had smaller relative mean squared errors than randomly selected models, but that confidence interval coverage on N was poor unless unconditional variance estimates (which incorporate model uncertainty) were used to compute confidence intervals. Overall, AIC and AICc outperformed CAIC, and are preferred to CAIC for selection among the closed-population capture-recapture models we investigated. A model averaging approach to estimation, using AIC. AICc, or CAIC to estimate weights, was also investigated and proved superior to estimation using AIC-, AICc-, or CAIC-selected models. Our results suggested that, for model averaging, AIC or AICc. should be favored over CAIC for estimating weights.

  7. Discovering modes of an image population through mixture modeling.

    PubMed

    Sabuncu, Mert R; Balci, Serdar K; Golland, Polina

    2008-01-01

    We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output is a small number of template images that represent different modes in a population. This is in contrast with traditional approaches that assume a single template to construct atlases. We validate and explore the algorithm in two experiments. First, we employ iCluster to partition a data set of 416 whole brain MR volumes of subjects aged 18-96 years into three sub-groups, which mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the second experiment, we run iCluster on a group of 30 patients with dementia and 30 age-matched healthy controls. The algorithm produced three modes that mainly corresponded to a sub-population of healthy controls, a sub-population of patients with dementia and a mixture group that contained both types. These results suggest that the algorithm can be used to discover sub-populations that correspond to interesting structural or functional "modes".

  8. CALIBRATING STELLAR POPULATION MODELS WITH MAGELLANIC CLOUD STAR CLUSTERS

    SciTech Connect

    Noeel, N. E. D.; Carollo, C. M.; Greggio, L.; Renzini, A.; Maraston, C.

    2013-07-20

    Stellar population models are commonly calculated using star clusters as calibrators for those evolutionary stages that depend on free parameters. However, discrepancies exist among different models, even if similar sets of calibration clusters are used. With the aim of understanding these discrepancies, and of improving the calibration procedure, we consider a set of 43 Magellanic Cloud (MC) clusters, taking age and photometric information from the literature. We carefully assign ages to each cluster based on up-to-date determinations, ensuring that these are as homogeneous as possible. To cope with statistical fluctuations, we stack the clusters in five age bins, deriving for each of them integrated luminosities and colors. We find that clusters become abruptly red in optical and optical-infrared colors as they age from {approx}0.6 to {approx}1 Gyr, which we interpret as due to the development of a well-populated thermally pulsing asymptotic giant branch (TP-AGB). We argue that other studies missed this detection because of coarser age binnings. Maraston and Girardi et al. models predict the presence of a populated TP-AGB at {approx}0.6 Gyr, with a correspondingly very red integrated color, at variance with the data; Bruzual and Charlot and Conroy models run within the error bars at all ages. The discrepancy between the synthetic colors of Maraston models and the average colors of MC clusters results from the now obsolete age scale adopted. Finally, our finding that the TP-AGB phase appears to develop between {approx}0.6 and 1 Gyr is dependent on the adopted age scale for the clusters and may have important implications for stellar evolution.

  9. Fossil zooplankton and the historical status of westslope cutthroat trout in a headwater lake of Glacier National Park, Montana

    USGS Publications Warehouse

    Verschuren, D.; Marnell, L.F.

    1997-01-01

    Surviving pure-strain populations of westslope cutthroat trout Oncorhynchus clarki lewisi in headwater lakes of Glacier National Park could play an important role in the managed recovery of regional cutthroat trout fisheries. However, uncertainty exists about whether native trout could have naturally invaded several park lakes where they now occur. This study used paleolimnological techniques to address the question of whether the population of native trout in Avalanche Lake is indigenous or became established through an undocumented introduction. The validity of using fossil diapause eggs (ephippia) of the fish-sensitive cladocerans Daphnia spp. as indicators for the historical presence of zooplanktivorous fish was tested with a survey of live zooplankton and corresponding surface-sediment fossil assemblages in eight Glacier Park lakes with or without trout. Analysis of a sediment core from Avalanche Lake dated by lead radioisotopes, historical wildfires, and a flood allowed reconstruction of zooplankton dynamics from about 1700 A.D. to the present. Fossil Daphnia ephippia were rare or absent in Avalanche Lake sediments deposited before 1910, suggesting intense zooplanktivory due to sustained presence of an indigenous population of native cutthroat trout. Fossil evidence for larger Daphnia populations in the 1930s and early 1940s revealed a temporary disturbance of the lake's normal food web interactions during which zooplanktivory was significantly reduced. This disturbance may have resulted from a collapse of the native trout population caused indirectly by failed attempts between 1915 and 1943 to stock Avalanche Lake with Yellowstone cutthroat trout O. clarki bouvieri.

  10. Pathogen population dynamics in agricultural landscapes: the Ddal modelling framework.

    PubMed

    Papaïx, Julien; Adamczyk-Chauvat, Katarzyna; Bouvier, Annie; Kiêu, Kiên; Touzeau, Suzanne; Lannou, Christian; Monod, Hervé

    2014-10-01

    Modelling processes that occur at the landscape scale is gaining more and more attention from theoretical ecologists to agricultural managers. Most of the approaches found in the literature lack applicability for managers or, on the opposite, lack a sound theoretical basis. Based on the metapopulation concept, we propose here a modelling approach for landscape epidemiology that takes advantage of theoretical results developed in the metapopulation context while considering realistic landscapes structures. A landscape simulator makes it possible to represent both the field pattern and the spatial distribution of crops. The pathogen population dynamics are then described through a matrix population model both stage- and space-structured. In addition to a classical invasion analysis we present a stochastic simulation experiment and provide a complete framework for performing a sensitivity analysis integrating the landscape as an input factor. We illustrate our approach using an example to evaluate whether the agricultural landscape composition and structure may prevent and mitigate the development of an epidemic. Although designed for a fungal foliar disease, our modelling approach is easily adaptable to other organisms.

  11. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling.

    PubMed

    Wang, Jian; Edginton, Andrea N; Avant, Debbie; Burckart, Gilbert J

    2015-10-01

    Selection of the first dose for neonates in clinical trials is very challenging. The objective of this analysis was to assess if a population pharmacokinetic (PK) model developed with data from infants to adults is predictive of neonatal clearance and to evaluate what age range of prior PK data is needed for informative modeling to predict neonate exposure. Two sources of pharmacokinetic data from 8 drugs were used to develop population models: (1) data from all patients > 2 years of age, and (2) data from all nonneonatal patients aged > 28 days. The prediction error based on the models using data from subjects > 2 years of age showed bias toward overprediction, with median average fold error (AFE) for CL predicted/CLobserved greater than 1.5. The bias for predicting neonatal PK was improved when using all prior PK data including infants as opposed to an assessment without infant PK data, with the median AFE 0.91. As an increased number of pediatric trials are conducted in neonates under the Food and Drug Administration Safety and Innovation Act, dose selection should be based on the best estimates of neonatal pharmacokinetics and pharmacodynamics prior to conducting efficacy and safety studies in neonates. PMID:25907280

  12. Aggregate input-output models of neuronal populations.

    PubMed

    Saxena, Shreya; Schieber, Marc H; Thakor, Nitish V; Sarma, Sridevi V

    2012-07-01

    An extraordinary amount of electrophysiological data has been collected from various brain nuclei to help us understand how neural activity in one region influences another region. In this paper, we exploit the point process modeling (PPM) framework and describe a method for constructing aggregate input-output (IO) stochastic models that predict spiking activity of a population of neurons in the "output" region as a function of the spiking activity of a population of neurons in the "input" region. We first build PPMs of each output neuron as a function of all input neurons, and then cluster the output neurons using the model parameters. Output neurons that lie within the same cluster have the same functional dependence on the input neurons. We first applied our method to simulated data, and successfully uncovered the predetermined relationship between the two regions. We then applied our method to experimental data to understand the input-output relationship between motor cortical neurons and 1) somatosensory and 2) premotor cortical neurons during a behavioral task. Our aggregate IO models highlighted interesting physiological dependences including relative effects of inhibition/excitation from input neurons and extrinsic factors on output neurons.

  13. Risk prediction models for hepatocellular carcinoma in different populations

    PubMed Central

    Ma, Xiao; Yang, Yang; Tu, Hong; Gao, Jing; Tan, Yu-Ting; Zheng, Jia-Li; Bray, Freddie; Xiang, Yong-Bing

    2016-01-01

    Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive progression. It places heavy burden on most low and middle income countries to treat HCC patients. Nowadays accurate HCC risk predictions can help making decisions on the need for HCC surveillance and antiviral therapy. HCC risk prediction models based on major risk factors of HCC are useful and helpful in providing adequate surveillance strategies to individuals who have different risk levels. Several risk prediction models among cohorts of different populations for estimating HCC incidence have been presented recently by using simple, efficient, and ready-to-use parameters. Moreover, using predictive scoring systems to assess HCC development can provide suggestions to improve clinical and public health approaches, making them more cost-effective and effort-effective, for inducing personalized surveillance programs according to risk stratification. In this review, the features of risk prediction models of HCC across different populations were summarized, and the perspectives of HCC risk prediction models were discussed as well. PMID:27199512

  14. Neural population models for perception of motion in depth.

    PubMed

    Peng, Qiuyan; Shi, Bertram E

    2014-08-01

    Changing disparity (CD) and interocular velocity difference (IOVD) are two possible mechanisms for stereomotion perception. We propose two neurally plausible models for the representation of motion-in-depth (MID) via the CD and IOVD mechanisms. These models create distributed representations of MID velocity as the responses from a population of neurons selective to different MID velocity. Estimates of perceived MID velocity can be computed from the population response. They can be applied directly to binocular image sequences commonly used to characterize MID perception in psychophysical experiments. Contrary to common assumptions, we find that the CD and IOVD mechanisms cannot be distinguished easily by random dot stereograms that disrupt correlations between the two eyes or through time. We also demonstrate that the assumed spatial connectivity between the units in these models can be learned through exposure to natural binocular stimuli. Our experiments with these developmental models of MID selectivity suggest that neurons selective to MID are more likely to develop via the CD mechanism than the IOVD mechanism.

  15. An integro-PDE model from population genetics

    NASA Astrophysics Data System (ADS)

    Lou, Yuan; Nagylaki, Thomas; Su, Linlin

    We investigate an integro-partial differential equation that models the evolution of the frequencies for two alleles at a single locus under the joint action of migration, selection, and partial panmixia (i.e., global random mating). We extend previous analyses [T. Nagylaki, Clines with partial panmixia, Theor. Popul. Biol. 81 (2012) 45-68] on the maintenance of both alleles from conservative to arbitrary migration and prove the uniqueness and global asymptotic stability of the nontrivial equilibrium. For conservative migration, we show that increasing the rate of panmixia makes it harder to maintain the allele with the smaller average fitness in the population. In terms of the selection function, we estimate the dependence on the panmictic rate of the minimal value of the selection intensity for the persistence of the allele with the smaller average fitness. We also show that, at least in an average sense, increasing panmixia flattens the cline.

  16. Exact Solution of Population Redistributions in a Migration Model

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Wen; Zhang, Li-Jie; Yang, Guo-Hong; Xu, Xin-Jian

    2013-10-01

    We study a migration model, in which individuals migrate from one community to another. The choices of the source community i and the destination one j are proportional to some power of the population of i (kαi) and j (kβj), respectively. Both analytical calculation and numerical simulation show that the population distribution of communities in stationary states is determined by the parameters α and β. The distribution is widely homogeneous with a characteristic size if α > β. Whereas, for α < β, the distribution is highly heterogeneous with the emergence of condensing phenomenon. Between the two regimes, α = β, the distribution gradually shifts from the nonmonotonous (α < 0) to scale-free (α > 0).

  17. Optimization modeling to maximize population access to comprehensive stroke centers

    PubMed Central

    Branas, Charles C.; Kasner, Scott E.; Wolff, Catherine; Williams, Justin C.; Albright, Karen C.; Carr, Brendan G.

    2015-01-01

    Objective: The location of comprehensive stroke centers (CSCs) is critical to ensuring rapid access to acute stroke therapies; we conducted a population-level virtual trial simulating change in access to CSCs using optimization modeling to selectively convert primary stroke centers (PSCs) to CSCs. Methods: Up to 20 certified PSCs per state were selected for conversion to maximize the population with 60-minute CSC access by ground and air. Access was compared across states based on region and the presence of state-level emergency medical service policies preferentially routing patients to stroke centers. Results: In 2010, there were 811 Joint Commission PSCs and 0 CSCs in the United States. Of the US population, 65.8% had 60-minute ground access to PSCs. After adding up to 20 optimally located CSCs per state, 63.1% of the US population had 60-minute ground access and 86.0% had 60-minute ground/air access to a CSC. Across states, median CSC access was 55.7% by ground (interquartile range 35.7%–71.5%) and 85.3% by ground/air (interquartile range 59.8%–92.1%). Ground access was lower in Stroke Belt states compared with non–Stroke Belt states (32.0% vs 58.6%, p = 0.02) and lower in states without emergency medical service routing policies (52.7% vs 68.3%, p = 0.04). Conclusion: Optimal system simulation can be used to develop efficient care systems that maximize accessibility. Under optimal conditions, a large proportion of the US population will be unable to access a CSC within 60 minutes. PMID:25740858

  18. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy

    PubMed Central

    van Wilderen, Luuk J. G. W.; Lincoln, Craig N.; van Thor, Jasper J.

    2011-01-01

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is

  19. The Impact of Fish Predation and Cyanobacteria on Zooplankton Size Structure in 96 Subtropical Lakes

    PubMed Central

    Zhang, Jing; Xie, Ping; Tao, Min; Guo, Longgen; Chen, Jun; Li, Li; XueZhen Zhang; Zhang, Lu

    2013-01-01

    Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1), planktivorous fish-dominated lakes (Type 2), and eutrophic lakes with high cyanobacterial biomass (Type 3). A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where aquaculture is widespread

  20. Population.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    In an effort to help meet the growing interest and concern about the problems created by the rapid growth of population, The International Planned Parenthood Federation has prepared this booklet with the aim of assisting the study of the history and future trends of population growth and its impact on individual and family welfare, national,…

  1. Spatial distribution and feeding of dominant zooplankton species in the Ob River estuary

    NASA Astrophysics Data System (ADS)

    Drits, A. V.; Nikishina, A. B.; Semenova, T. N.; Sergeeva, V. M.; Solovyev, K. A.; Flint, M. V.

    2016-05-01

    The distribution and feeding of dominant mesozooplankton species were studied in the estuary of the Ob River and adjacent inner Kara Sea shelf waters in September 2013. It was shown that the spatial distributions of Cyclops sp., Senecella siberica, Limnocalanus macrurus, Mysis oculata, Drepanopus bungei, Jashnovia tolli and Pseudocalanus sp. are related to the specific characteristics of the hydrographic regime in the estuarine frontal zone. The distributions of Cyclops sp., Senecella siberica, and Pseudocalanus sp. are mainly limited by salinity, while other species inhabit an area with a wide range of salinity values without clear preferences. Peaks of their abundance could be either consolidated or distanced in space. The populations of Jashnovia tolli, Drepanopus bungei, and Pseudocalanus sp. permanently inhabit the layer under the pycnohalocline; the populations of Cyclops sp. and Mysis oculata inhabit the upper mixed layer. Limnocalanus macrurus demonstrates a different vertical distribution pattern: the copepod undertakes diel vertical migrations in the southern part of the estuarine frontal zone; in its northern part, the population is concentrated below the pycnocline during day and night. The differences in the distributions of the studied species determine their feeding behavior and their role in phytoplankton grazing. The most intense utilization of biomass and production of autotrophic phytoplankton by zooplankton occur in the freshened water zone and the adjacent southern periphery of the estuarine frontal zone: the total daily phytoplankton consumption makes up 10-18% of the biomass and 60-380% of primary production. Daily zooplankton consumption of phytoplankton in the estuarine frontal zone decreases to 2-7% of the biomass and to 14% of primary production; in inner shelf waters, the values do not exceed 1% for both phytoplankton biomass and production.

  2. Comparison of multifrequency acoustic and in situ measurements of zooplankton abundances in Knight Inlet, British Columbia.

    PubMed

    Trevorrow, Mark V; Mackas, David L; Benfield, Mark C

    2005-06-01

    An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation. PMID:16018461

  3. Monitored and modeled coral population dynamics and the refuge concept.

    PubMed

    Riegl, B; Purkis, S J; Keck, J; Rowlands, G P

    2009-01-01

    With large-scale impacts on coral reefs due to global climatic change projected to increase dramatically, and suitability of many areas for reef growth projected to decrease, the question arises whether particular settings might serve as refugia that can maintain higher coral populations than surrounding areas. We examine this hypothesis on a small, local scale in Honduras, western Caribbean. Dense coral thickets containing high numbers of the endangered coral Acropora cervicornis occur on offshore banks while being rare on the fringing reef on nearby Roatán. Geomorphological setting and community dynamics were evaluated and monitored from 1996 to 2005. A model of population dynamics was developed to test assumptions derived from monitoring. Coral cover on the fringing reef declined in 1998 from >30% to <20%, but the banks maintained areas of very dense coral cover (32% cover by A. cervicornis on the banks but <1% on the fringing reef). Bathymetry from satellite images showed the banks to be well-separated from the fringing reef, making asexual connectivity between banks and fringing reef impossible but protecting the banks from direct land-runoff during storms. Exposure to SE tradewinds also causes good flushing. Only four A. cervicornis recruits were recorded on the fringing reef over 6 years. Runoff associated with hurricanes caused greater mortality than did bleaching in 1998 and 2005 on the fringing reef, but not on the banks. Since 1870, our analysis suggests that corals on the banks may have been favored during 17 runoff events associated with tropical depressions and storms and potentially also during five bleaching events, but this is more uncertain. Our model suggests that under this disturbance regime, the banks will indeed maintain higher coral populations than the fringing reef and supports the assumption that offshore banks could serve as refugia with the capacity to subsidize depleted mainland populations. PMID:19100585

  4. Monitored and modeled coral population dynamics and the refuge concept.

    PubMed

    Riegl, B; Purkis, S J; Keck, J; Rowlands, G P

    2009-01-01

    With large-scale impacts on coral reefs due to global climatic change projected to increase dramatically, and suitability of many areas for reef growth projected to decrease, the question arises whether particular settings might serve as refugia that can maintain higher coral populations than surrounding areas. We examine this hypothesis on a small, local scale in Honduras, western Caribbean. Dense coral thickets containing high numbers of the endangered coral Acropora cervicornis occur on offshore banks while being rare on the fringing reef on nearby Roatán. Geomorphological setting and community dynamics were evaluated and monitored from 1996 to 2005. A model of population dynamics was developed to test assumptions derived from monitoring. Coral cover on the fringing reef declined in 1998 from >30% to <20%, but the banks maintained areas of very dense coral cover (32% cover by A. cervicornis on the banks but <1% on the fringing reef). Bathymetry from satellite images showed the banks to be well-separated from the fringing reef, making asexual connectivity between banks and fringing reef impossible but protecting the banks from direct land-runoff during storms. Exposure to SE tradewinds also causes good flushing. Only four A. cervicornis recruits were recorded on the fringing reef over 6 years. Runoff associated with hurricanes caused greater mortality than did bleaching in 1998 and 2005 on the fringing reef, but not on the banks. Since 1870, our analysis suggests that corals on the banks may have been favored during 17 runoff events associated with tropical depressions and storms and potentially also during five bleaching events, but this is more uncertain. Our model suggests that under this disturbance regime, the banks will indeed maintain higher coral populations than the fringing reef and supports the assumption that offshore banks could serve as refugia with the capacity to subsidize depleted mainland populations.

  5. Individual-based model of young-of-the-year striped bass population dynamics. II. Factors affecting recruitment in the Potomac River, Maryland

    SciTech Connect

    Cowan, J.H. ); Rose, K.A. ); Rutherford, E.S.; Houde, E.D. )

    1993-05-01

    An individual-based model of the population dynamics of young-of-the-year striped bass Morone saxatilis in the Potomac River, Maryland, was used to test the hypothesis that historically high recruitment variability can be explained by changes in environmental and biological factors that result in relatively small changes in growth and mortality rates of striped bass larvae. The four factors examined were (1) size distribution of female parents, (2) zooplankton prey density during the development of striped bass larvae, (3) density of completing larval white perch M. americana, and (4) temperature during larval development. Simulation results suggest that variations in female size and in prey for larvae alone could cause 10-fold variability in recruitment. But no single factor alone caused changes in vital rates of age-0 fish that could account for the 145-fold variability in the Potomac River index of juvenile recruitment. However, combined positive or negative effects of two or more factors resulted in more than a 150-fold simulated recruitment variability, suggesting that combinations of factors can account for the high observed annual variability in striped bass recruitment success. Higher cumulative mortality of feeding larvae and younger life stages than of juveniles was common to all simulations. supporting the contention that striped bass year-class strength is determined prior to metamorphosis. 76 refs., 7 figs., 4 tabs.

  6. Model of two infectious diseases in nettle caterpillar population

    NASA Astrophysics Data System (ADS)

    Firdausi, F. Z.; Nuraini, N.

    2016-04-01

    Palm oil is a vital commodity to the economy of Indonesia. The area of oil palm plantations in Indonesia has increased from year to year. However, the effectiveness of palm oil production is reduced by pest infestation. One of the pest which often infests oil palm plantations is nettle caterpillar. The pest control used in this study is biological control, viz. biological agents given to oil palm trees. This paper describes a mathematical model of two infectious diseases in nettle caterpillar population. The two infectious diseases arise due to two biological agents, namely Bacillus thuringiensis bacterium and parasite which usually attack nettle caterpillars. The derivation of the model constructed in this paper is obtained from ordinary differential equations without time delay. The equilibrium points are analyzed. Two of three equilibrium points are stable if the Routh-Hurwitz criteria are fulfilled. In addition, this paper also presents the numerical simulation of the model which has been constructed.

  7. Prediction Model for Gastric Cancer Incidence in Korean Population

    PubMed Central

    Kim, Sohee; Shin, Aesun; Yang, Hye-Ryung; Park, Junghyun; Choi, Il Ju; Kim, Young-Woo; Kim, Jeongseon; Nam, Byung-Ho

    2015-01-01

    Background Predicting high risk groups for gastric cancer and motivating these groups to receive regular checkups is required for the early detection of gastric cancer. The aim of this study is was to develop a prediction model for gastric cancer incidence based on a large population-based cohort in Korea. Method Based on the National Health Insurance Corporation data, we analyzed 10 major risk factors for gastric cancer. The Cox proportional hazards model was used to develop gender specific prediction models for gastric cancer development, and the performance of the developed model in terms of discrimination and calibration was also validated using an independent cohort. Discrimination ability was evaluated using Harrell’s C-statistics, and the calibration was evaluated using a calibration plot and slope. Results During a median of 11.4 years of follow-up, 19,465 (1.4%) and 5,579 (0.7%) newly developed gastric cancer cases were observed among 1,372,424 men and 804,077 women, respectively. The prediction models included age, BMI, family history, meal regularity, salt preference, alcohol consumption, smoking and physical activity for men, and age, BMI, family history, salt preference, alcohol consumption, and smoking for women. This prediction model showed good accuracy and predictability in both the developing and validation cohorts (C-statistics: 0.764 for men, 0.706 for women). Conclusions In this study, a prediction model for gastric cancer incidence was developed that displayed a good performance. PMID:26186332

  8. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  9. Modelling biological invasions: Individual to population scales at interfaces.

    PubMed

    Belmonte-Beitia, J; Woolley, T E; Scott, J G; Maini, P K; Gaffney, E A

    2013-10-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility.

  10. Mathematical modeling of glassy-winged sharpshooter population.

    PubMed

    Yoon, Jeong-Mi; Hrynkiv, Volodymyr; Morano, Lisa; Nguyen, Anh Tuan; Wilder, Sara; Mitchell, Forrest

    2014-06-01

    Pierce's disease (PD) is a fatal disease of grapevines which results from an infection by the plant pathogen Xyllela fastidiosa. This bacterium grows in the xylem (water-conducting) vessels of the plant blocking movement of water. PD can kill vines in one year and poses a serious threat to both the California and the expanding Texas wine industries. Bacteria are vectored from one vine to the next by a number of xylem feeding insect species. Of these, the Glassy-winged Sharpshooter (GWSS) is considered to be the primary xylem feeding insect in Texas vineyards. An extensive database of the xylem-feeding population frequencies was collected by USDA-APHIS for Texas vineyards over multiple years. This project focused on a subset of data, GWSS frequencies within 25 vineyards in Edwards Plateau located in central Texas. The proposed model investigates the natural population dynamics and the decline in GWSS, likely the result of pest management campaigns on the insects within the region. The model is a delay Gompertz differential equation with harvesting and immigration terms, and we use the data to estimate the model parameters.

  11. Mathematical modeling of glassy-winged sharpshooter population.

    PubMed

    Yoon, Jeong-Mi; Hrynkiv, Volodymyr; Morano, Lisa; Nguyen, Anh Tuan; Wilder, Sara; Mitchell, Forrest

    2014-06-01

    Pierce's disease (PD) is a fatal disease of grapevines which results from an infection by the plant pathogen Xyllela fastidiosa. This bacterium grows in the xylem (water-conducting) vessels of the plant blocking movement of water. PD can kill vines in one year and poses a serious threat to both the California and the expanding Texas wine industries. Bacteria are vectored from one vine to the next by a number of xylem feeding insect species. Of these, the Glassy-winged Sharpshooter (GWSS) is considered to be the primary xylem feeding insect in Texas vineyards. An extensive database of the xylem-feeding population frequencies was collected by USDA-APHIS for Texas vineyards over multiple years. This project focused on a subset of data, GWSS frequencies within 25 vineyards in Edwards Plateau located in central Texas. The proposed model investigates the natural population dynamics and the decline in GWSS, likely the result of pest management campaigns on the insects within the region. The model is a delay Gompertz differential equation with harvesting and immigration terms, and we use the data to estimate the model parameters. PMID:24506556

  12. Population imbalance in the extended Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Dhar, A.; Kinnunen, J. J.; Törmä, P.

    2016-08-01

    We study the interplay between population imbalance in a two-component fermionic system and nearest-neighbor interaction using the matrix product states method. Our analysis reveals a parameter regime for the existence of the Fulde-Ferrell-Larkin-Ovchinnikov phase. Furthermore, we find distinct evidence for the presence of hidden order in the system. We present an effective model to understand the emergent oscillations in the string correlations due to the imbalance and show how they can become an efficient tool to investigate systems with imbalance.

  13. Modelling population changes in small English urban areas.

    PubMed

    Congdon, P; Shepherd, J

    1986-10-01

    The authors examine processes underlying the growth of small urban areas in England. "There is evidence of 'people-led' growth in environmentally attractive locations (for example, through retirement migration). However, growth of small- and medium-sized towns also reflects employment decentralisation and deconcentration to freestanding or satellite towns, and the extension of commuter hinterlands.... Government policies encouraging growth are also demonstrated to be significant." The processes resulting in population decline in some small towns are identified. "The impact on modelling growth in urban areas of a diversity of causal processes and locational contexts for growth is considered."

  14. Distribution of zooplankton in the Barents Sea in August 2006

    NASA Astrophysics Data System (ADS)

    Dvoretsky, V. G.; Dvoretsky, A. G.

    2010-12-01

    Forty-two mesozooplankton samples were collected in the Barents Sea during the cruise of the R/V Dal'nie Zelentsy in August 2006. In total, 72 taxa of planktic animals were found. The minimal average mesozooplankton abundance was noted in the Murmansk coastal waters in the south of the sea (154 ind./m3), while the maximal was noted in the Arctic waters (1533 ind./m3). The average wet biomass varied from 32 to 830 mg/m3. The zooplankton abundance and biomass exceeded the relevant average long-term parameters by 1.5-2 times and by 1.2-1.4 times, respectively. The mean biodiversity (Shannon's index) of the zooplankton communities was low: H' = 1.62 ± 0.104 bit/ind.

  15. Bacterial bioluminescence as a lure for marine zooplankton and fish

    PubMed Central

    Zarubin, Margarita; Belkin, Shimshon; Ionescu, Michael; Genin, Amatzia

    2012-01-01

    The benefits of bioluminescence for nonsymbiotic marine bacteria have not been elucidated fully. One of the most commonly cited explanations, proposed more than 30 y ago, is that bioluminescence augments the propagation and dispersal of bacteria by attracting fish to consume the luminous material. This hypothesis, based mostly on the prevalence of luminous bacteria in fish guts, has not been tested experimentally. Here we show that zooplankton that contacts and feeds on the luminescent bacterium Photobacterium leiognathi starts to glow, and demonstrate by video recordings that glowing individuals are highly vulnerable to predation by nocturnal fish. Glowing bacteria thereby are transferred to the nutritious guts of fish and zooplankton, where they survive digestion and gain effective means for growth and dispersal. Using bioluminescence as bait appears to be highly beneficial for marine bacteria, especially in food-deprived environments of the deep sea. PMID:22203999

  16. Carbamazepine population pharmacokinetics in children: mixed-effect models.

    PubMed

    Delgado Iribarnegaray, M F; Santo Bueldga, D; García Sánchez, M J; Otero, M J; Falcão, A C; Domínguez-Gil, A

    1997-04-01

    The aim of the authors' study was to investigate the factors affecting carbamazepine (CBZ) clearance (CL) in children with epilepsy. The factors evaluated were total body weight (TBW), age, dose, sex, and phenobarbital (PB) and valproic acid (VA) comedication. A total of 387 steady-state serum concentration samples was analyzed. These were collected during CBZ therapy from 201 children, aged 1-14 years and weighting 9-78 kg. Population CL was calculated by using NONMEM, with a one-compartment model with first-order absorption and elimination. The absorption rate, bioavailability, and volume of distribution were set at values found in the literature. The model found best to describe the data was CL = (0.0122 TBW + 0.0467 Dose) Age0.331 (1.289 PB). The interindividual variability in CL had a variation coefficient (CV) of 11.8%, and the residual error, described by using an additive model, was 1.5 mg/l. The results show that CL increases linearly with TBW and nonlinearly with age; thus older children have a lower CL with respect to TBW than do younger ones. Likewise CL was seen to increase with the increase in the CBZ dose, suggesting a dose-dependent autoinduction of CBZ metabolism. Concomitant PB administration affected CL: however, sex and VA comedication did not affect it significantly. The final regression model for CL, was validated in a different group of 74 children. The standarized prediction error (SPE) was not significantly different from zero (SPE = 0.028), indicating that the model proposed for CL can be used to make accurate dosage recommendations. With these population estimates, CBZ doses that would be suitable for pediatric patients of different ages are proposed.

  17. Flow disturbances generated by feeding and swimming zooplankton

    PubMed Central

    Kiørboe, Thomas; Jiang, Houshuo; Gonçalves, Rodrigo Javier; Nielsen, Lasse Tor; Wadhwa, Navish

    2014-01-01

    Interactions between planktonic organisms, such as detection of prey, predators, and mates, are often mediated by fluid signals. Consequently, many plankton predators perceive their prey from the fluid disturbances that it generates when it feeds and swims. Zooplankton should therefore seek to minimize the fluid disturbance that they produce. By means of particle image velocimetry, we describe the fluid disturbances produced by feeding and swimming in zooplankton with diverse propulsion mechanisms and ranging from 10-µm flagellates to greater than millimeter-sized copepods. We show that zooplankton, in which feeding and swimming are separate processes, produce flow disturbances during swimming with a much faster spatial attenuation (velocity u varies with distance r as u ∝ r−3 to r−4) than that produced by zooplankton for which feeding and propulsion are the same process (u ∝ r−1 to r−2). As a result, the spatial extension of the fluid disturbance produced by swimmers is an order of magnitude smaller than that produced by feeders at similar Reynolds numbers. The “quiet” propulsion of swimmers is achieved either through swimming erratically by short-lasting power strokes, generating viscous vortex rings, or by “breast-stroke swimming.” Both produce rapidly attenuating flows. The more “noisy” swimming of those that are constrained by a need to simultaneously feed is due to constantly beating flagella or appendages that are positioned either anteriorly or posteriorly on the (cell) body. These patterns transcend differences in size and taxonomy and have thus evolved multiple times, suggesting a strong selective pressure to minimize predation risk. PMID:25071196

  18. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean.

    PubMed

    Desforges, Jean-Pierre W; Galbraith, Moira; Ross, Peter S

    2015-10-01

    Microplastics are increasingly recognized as being widespread in the world's oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 μm) than in copepods (556 ± 149 μm) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r (2) = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2-7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults.

  19. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    USGS Publications Warehouse

    Porter, K.G.; Robbins, E.I.

    1981-01-01

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.

  20. Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America)

    PubMed Central

    Kamman, Neil; Williams, Jason; Bugge, Deenie; Taylor, Vivien; Jackson, Brian; Miller, Eric

    2012-01-01

    Trophic transfer of Hg across lakes within a region has been related to multiple environmental factors, but the nature of these relationships across distinct basins within individual large lakes is unknown. We investigated Hg bioaccumulation in zooplankton in basins of differing trophic status in Lake Champlain (Vermont, USA) to determine the strongest predictors of Hg bioaccumulation. Zooplankton were sampled in Malletts Bay (oligotrophic) and Missisquoi Bay (eutrophic) in 2005–2008. Zooplankton in the eutrophic basin had lower concentrations of total Hg and MeHg than those in the oligotrophic basin in all years but 2007, when no bloom occurred in Missisquoi. In addition, Hg concentrations in seston and small zooplankton, sampled during 2009 at 12 sites spanning the lake, decreased with increasing phytoplankton and zooplankton biomass. Thus, Hg bioaccumulation in zooplankton across basins in Lake Champlain is related to trophic status, as observed previously in multiple lake studies. PMID:21995871

  1. Increased zooplankton PAH concentrations across hydrographic fronts in the East China Sea.

    PubMed

    Hung, Chin-Chang; Ko, Fung-Chi; Gong, Gwo-Ching; Chen, Kuo-Shu; Wu, Jian-Ming; Chiang, Hsin-Lun; Peng, Sen-Chueh; Santschi, Peter H

    2014-06-15

    The Changjiang has transported large quantities of polycyclic aromatic hydrocarbons (PAHs) to the East China Sea (ECS), but information of these pollutants in zooplankton is limited. To understand PAHs pollution in zooplankton in the ECS, total concentrations of PAHs in zooplankton from surface waters were measured. Values of PAHs ranged from 2 to 3500 ng m(-3) in the ECS, with highest PAHs levels located at the salinity front between the Changjiang Diluted Water (CDW) and the mid-shelf waters. In contrast, concentrations of zooplankton PAHs in the mid-shelf and outer-shelf waters were significantly lower (2-23 ng m(-3)) than those in the CDW. These results demonstrate that PAHs are conspicuously accumulated in zooplankton at the salinity front between the CDW and the mid-shelf waters. These higher levels of PAHs in zooplankton at the salinity front may be further biomagnified in marine organisms of higher trophic levels through their feeding activities. PMID:24775063

  2. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    PubMed Central

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  3. Effects of temperature on the metabolic stoichiometry of Arctic zooplankton

    NASA Astrophysics Data System (ADS)

    Alcaraz, M.; Almeda, R.; Saiz, E.; Calbet, A.; Duarte, C. M.; Agustí, S.; Santiago, R.; Alonso, A.

    2013-02-01

    We assessed the relationship between zooplankton metabolism (respiration and inorganic N and P excretion) and "in situ" temperature through a grid of stations representing a range of natural temperature variation during the ATOS-Arctic cruise (July 2007). The objective was to explore not only the direct effects of temperature on zooplankton carbon respiratory losses (hereafter CR) and NH4-N and PO4-P excretion rates (hereafter NE and PE, respectively), but also to investigate whether these metabolic pathways responded similarly to temperature, and so how temperature could affect the stoichiometry of the metabolic products. Metabolic rates, normalised to per unit of zooplankton carbon biomass, increased with increasing temperature following the Arrhenius equation. However, the activation energy differed for the various metabolic processes considered. Respiration, CR, was the metabolic activity least affected by temperature, followed by NE and PE, and as a consequence the values of the CR : NE, CR : PE and NE : PE atomic quotients were inversely related to temperature. The effects of temperature on the stoichiometry of the excreted N and P products would contribute to modifying the nutrient pool available for phytoplankton and induce qualitative and quantitative shifts in the size, community structure and chemical composition of primary producers that could possibly translate to the whole Arctic marine food web.

  4. Marine zooplankton studies in Brazil: a brief evaluation and perspectives.

    PubMed

    Lopes, Rubens M

    2007-09-01

    Marine zooplankton research in Brazil has been primarily descriptive, with most studies focusing on community structure analysis and related issues. The composition and spatial distribution of several taxonomic groups are currently well known, although less-abundant and small-sized taxa as well as initial stages of almost all species have received little attention. Some numerically important taxa such as heterotrophic protists, ctenophores, acoel turbellarians and ostracods remain virtually unstudied. Large sectors of the continental shelf have not been sampled in detail, particularly those areas influenced by the North Brazil Current (5 degrees N-15 degrees S). Zooplankton abundance and biomass in offshore waters have seldom been quantified, and information on the distribution and vertical migration of meso- and bathypelagic species are lacking. Additional faunistic assessments must target those less-studied taxa and geographical locations. However, priority in ecological studies should be given to process-oriented investigations aimed at understanding the mechanisms controlling zooplankton distribution, trophic interactions within pelagic food webs and production cycles in relation to the physical environment. An effort should be made to incorporate state-of-the-art sampling technology and analytical methods into future research projects.

  5. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    PubMed

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  6. Biomass of zooplankton estimated by acoustical sensors in the Arabian sea. Final report

    SciTech Connect

    Holliday, D.V.

    1996-11-22

    The long term goal of our overall research program is the development of data-based models to predict ecological relationships of zooplankton, phytoplankton and the physical environment in the sea. The overall objective of the work carried out within the scope of this particular contract was to acoustically measure the dynamics of zooplankton and micronekton in the northern Arabian Sea during several seasons. The scientific focus was to examine the impact, if any, of the two annual monsoons that are thought to drive the ecosystem response in the area. This particular project involved the design and construction of two sensors which were then deployed in the Arabian Sea by several of our co-PIVs in the ONR ARI on Forced Upper Ocean Dynamics during the time period in which the JGOFS program also focused their efforts on the northern Arabian Sea. This contract involved only the development, calibration and maintenance of the instrumentation. The data processing, other than that which has been necessary for the purposes of quality assurance, was not induded in our original proposal.

  7. Chemical Response of the Toxic Dinoflagellate Karenia mikimotoi Against Grazing by Three Species of Zooplankton.

    PubMed

    Dang, Lin-Xi; Li, Yue; Liu, Fei; Zhang, Yong; Yang, Wei-Dong; Li, Hong-Ye; Liu, Jie-Sheng

    2015-01-01

    We investigated the toxicity of Karenia mikimotoi toward three model grazers, the cladoceran Moina mongolica, the copepod Pseudodiaptomus annandalei, and the crustacean Artemia salina, and explored its chemical response upon zooplankton grazing. An induction experiment, where K. mikimotoi was exposed to grazers or waterborne cues from the mixed cultures revealed that K. mikimotoi might be toxic or nutritionally inadequate toward the three grazers. In general, direct exposure to the three grazers induced the production of hemolytic toxins and the synthesis of eicosapentaenoic acid (EPA). Both EPA and the hemolytic toxins from K. mikimotoi decreased the survival rate of the three grazers. In addition, the survival rates of M. mongolica, P. annandalei, and A. salina in the presence of induced K. mikimotoi that had previously been exposed to a certain grazer were lower than their counterparts caused by fresh K. mikimotoi, suggesting that exposure to some grazers might increase the toxicity of K. mikimotoi. The chemical response and associated increased resistance to further grazing suggested that K. mikimotoi could produce deterrents to protect against grazing by zooplankton and that the substances responsible might be hemolytic toxins and EPA. PMID:25523905

  8. Study of a mixed dispersal population dynamics model

    SciTech Connect

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; Klymko, Christine F.; Thomas, Evelyn; Zhao, Bingyu

    2015-07-10

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to die out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.

  9. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  10. Study of a mixed dispersal population dynamics model

    DOE PAGES

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; Klymko, Christine F.; Thomas, Evelyn; Zhao, Bingyu

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to diemore » out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.« less

  11. Noise-induced extinction in Bazykin-Berezovskaya population model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-07-01

    A nonlinear Bazykin-Berezovskaya prey-predator model under the influence of parametric stochastic forcing is considered. Due to Allee effect, this conceptual population model even in the deterministic case demonstrates both local and global bifurcations with the change of predator mortality. It is shown that random noise can transform system dynamics from the regime of coexistence, in equilibrium or periodic modes, to the extinction of both species. Geometry of attractors and separatrices, dividing basins of attraction, plays an important role in understanding the probabilistic mechanisms of these stochastic phenomena. Parametric analysis of noise-induced extinction is carried out on the base of the direct numerical simulation and new analytical stochastic sensitivity functions technique taking into account the arrangement of attractors and separatrices.

  12. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  13. Modelling Oyster Population Response to Variation in Freshwater Input

    NASA Astrophysics Data System (ADS)

    Livingston, R. J.; Lewis, F. G.; Woodsum, G. C.; Niu, X.-F.; Galperin, B.; Huang, W.; Christensen, J. D.; Monaco, M. E.; Battista, T. A.; Klein, C. J.; Howell, R. L.; Ray, G. L.

    2000-05-01

    This paper describes the linkage of a three-dimensional hydrodynamic circulation model with descriptive and experimental biological data concerning oyster (Crassostrea virginica) population dynamics in the Apalachicola Estuary (Florida, U.S.A.). Our intent was to determine the direct and indirect role of Apalachicola River flow in the maintenance of oyster production. Results of a monthly field sampling programme conducted on the oyster reefs in the Apalachicola system during 1985-1986 were used to develop statistical models relating several life-history characteristics of oysters to physical-chemical aspects of water quality. The same life-history characteristics were related statistically to output from a circulation model of Apalachicola Bay. Highest oyster densities and overall bar growth were found in the vicinity of the confluence of high salinity water moving westwards from St George Sound and river-dominated (low salinity) water moving south and eastwards from East Bay. With the exception of models for oyster mortality, the predictive capability of results from the parallel modelling efforts was low. A time-averaged model was developed for oyster mortality during the summer of 1985 by running a regression analysis with averaged predictors derived from the hydrodynamic model and observed (experimental) mortality rates throughout the estuary. A geographic information system was then used to depict the results spatially and to compare the extent of expected mortality in 1985 and 1986. High salinity, relatively low-velocity current patterns, and the proximity of a given oyster bar to entry points of saline Gulf water into the bay were important factors that contribute to increased oyster mortality. Mortality was a major determinant of oyster production in the Apalachicola Estuary with predation as a significant aspect of such mortality. By influencing salinity levels and current patterns throughout the bay, the Apalachicola River was important in controlling

  14. Estimating population trends with a linear model: technical comments

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Royle, J. Andrew

    2004-01-01

    Controversy has sometimes arisen over whether there is a need to accommodate the limitations of survey design in estimating population change from the count data collected in bird surveys. Analyses of surveys such as the North American Breeding Bird Survey (BBS) can be quite complex; it is natural to ask if the complexity is necessary, or whether the statisticians have run amok. Bart et al. (2003) propose a very simple analysis involving nothing more complicated than simple linear regression, and contrast their approach with model-based procedures. We review the assumptions implicit to their proposed method, and document that these assumptions are unlikely to be valid for surveys such as the BBS. One fundamental limitation of a purely design-based approach is the absence of controls for factors that influence detection of birds at survey sites. We show that failure to model observer effects in survey data leads to substantial bias in estimation of population trends from BBS data for the 20 species that Bart et al. (2003) used as the basis of their simulations. Finally, we note that the simulations presented in Bart et al. (2003) do not provide a useful evaluation of their proposed method, nor do they provide a valid comparison to the estimating- equations alternative they consider.

  15. Sexual Reproduction in a Simple Growth Population Model

    NASA Astrophysics Data System (ADS)

    Lemos, Carlos Gentil Oro; Santos, Marcio

    2012-05-01

    One of the most important characteristics in the survival of a species is related to the kind of reproduction responsible for the offspring generation. However, only in the last years the role played by sexual reproduction has been investigated. Then, for a better understanding of this kind of process we introduce, in this work, a surface reaction model that describes the role of the sexual reproduction. In our model two different elements of the species, representing male and female, can interact to reproduce a new element. The sex of this new element is chosen with a given probability and in order to take into account the mortality rate we introduce another kind of individual. The value of the spatial density of this element remains constant during the time evolution of the system. The model is studied using Monte Carlo simulations and mean field approximation. Depending on the values of the control parameters of the model, the system can attain two stationary states: In one of them the population survives and in the other it can be extinguished. Besides, accordingly to our results, the phase diagram of the model shows a discontinuous transition between these two states.

  16. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change. PMID:26895537

  17. Interactive effects of temperature, ultraviolet radiation and food quality on zooplankton alkaline phosphatase activity.

    PubMed

    Wolinski, Laura; Modenutti, Beatriz; Souza, Maria Sol; Balseiro, Esteban

    2016-06-01

    Ultraviolet Radiation (UVR) is a stressor for aquatic organisms affecting enzyme activities in planktonic populations because of the increase in reactive oxygen species. In addition, UVR exposure combined with other environmental factors (i.e. temperature and food quality) could have even higher detrimental effects. In this work, we aimed to determine the effect of UVR on somatic Alkaline Phosphatase Activity (APA) and Glutathione S-Transferase (GST) activity on the cladoceran Daphnia commutata under two different temperatures (10 °C and 20 °C) and under three food qualities (carbon:phosphorus ratios: 1150, 850 and 550). APA is a biomarker that is considered as a P deficiency indicator in zooplankton. Since recovery from UVR damage under dark conditions is an ATP depending reaction we also measured APA during recovery phases. We carried out a laboratory experiment combining different temperatures and food qualities with exposition to UVR followed by luminic and dark phases for recovery. In addition, we exposed organisms to H2O2, to establish if the response on APA to UVR was a consequence of the reactive oxygen species produced these short wavelengths. Our results showed that somatic APA was negatively affected by UVR exposure and this effect was enhanced under high temperature and low food quality. Consistently, GST activity was higher when exposed to UVR under both temperatures. The H2O2 experiments showed the same trend as UVR exposure, indicating that APA is affected mainly by oxidative stress than by direct effect of UVR on the enzyme. Finally, APA was affected in the dark phase of recovery confirming the P demands. These results enlighten the importance of food quality in the interacting effect of UVR and temperature, showing that C:P food ratio could determine the success or failure of zooplanktonic populations in a context of global change.

  18. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa.

    PubMed

    Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar

    2013-07-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.

  19. Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model

    NASA Astrophysics Data System (ADS)

    Bianchi, Daniele; Stock, Charles; Galbraith, Eric D.; Sarmiento, Jorge L.

    2013-04-01

    vertical migration (DVM) of zooplankton and micronekton is widespread in the ocean and forms a fundamental component of the biological pump, but is generally overlooked in global models of the Earth system. We develop a parameterization of DVM in the ocean and integrate it with a size-structured NPZD model. We assess the model's ability to recreate ecosystem and DVM patterns at three well-observed Pacific sites, ALOHA, K2, and EQPAC, and use it to estimate the impact of DVM on marine ecosystems and biogeochemical dynamics. Our model includes the following: (1) a representation of migration dynamics in response to food availability and light intensity; (2) a representation of the digestive and metabolic processes that decouple zooplankton feeding from excretion, egestion, and respiration; and (3) a light-dependent parameterization of visual predation on zooplankton. The model captures the first-order patterns in plankton biomass and productivity across the biomes, including the biomass of migrating organisms. We estimate that realistic migratory populations sustain active fluxes to the mesopelagic zone equivalent to between 15% and 40% of the particle export and contribute up to half of the total respiration within the layers affected by migration. The localized active transport has important consequences for the cycling of oxygen, nutrients, and carbon. We highlight the importance of decoupling zooplankton feeding and respiration and excretion with depth for capturing the impact of migration on the redistribution of carbon and nutrients in the upper ocean.

  20. Nuisance Source Population Modeling for Radiation Detection System Analysis

    SciTech Connect

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial source frequencies, but leave the task of

  1. Zooplankton diversity analysis through single-gene sequencing of a community sample

    PubMed Central

    Machida, Ryuji J; Hashiguchi, Yasuyuki; Nishida, Mutsumi; Nishida, Shuhei

    2009-01-01

    Background Oceans cover more than 70% of the earth's surface and are critical for the homeostasis of the environment. Among the components of the ocean ecosystem, zooplankton play vital roles in energy and matter transfer through the system. Despite their importance, understanding of zooplankton biodiversity is limited because of their fragile nature, small body size, and the large number of species from various taxonomic phyla. Here we present the results of single-gene zooplankton community analysis using a method that determines a large number of mitochondrial COI gene sequences from a bulk zooplankton sample. This approach will enable us to estimate the species richness of almost the entire zooplankton community. Results A sample was collected from a depth of 721 m to the surface in the western equatorial Pacific off Pohnpei Island, Micronesia, with a plankton net equipped with a 2-m2 mouth opening. A total of 1,336 mitochondrial COI gene sequences were determined from the cDNA library made from the sample. From the determined sequences, the occurrence of 189 species of zooplankton was estimated. BLASTN search results showed high degrees of similarity (>98%) between the query and database for 10 species, including holozooplankton and merozooplankton. Conclusion In conjunction with the Census of Marine Zooplankton and Barcode of Life projects, single-gene zooplankton community analysis will be a powerful tool for estimating the species richness of zooplankton communities. PMID:19758460

  2. Toward population management in an integrated care model.

    PubMed

    Maddux, Franklin W; McMurray, Stephen; Nissenson, Allen R

    2013-04-01

    Under the Patient Protection and Affordable Care Act of 2010, accountable care organizations (ACOs) will be the primary mechanism for achieving the dual goals of high-quality patient care at managed per capita costs. To achieve these goals in the newly emerging health care environment, the nephrology community must plan for and direct integrated delivery and coordination of renal care, focusing on population management. Even though the ESRD patient population is a complex group with comorbid conditions that may confound integration of care, the nephrology community has unique experience providing integrated care through ACO-like programs. Specifically, the recent ESRD Management Demonstration Project sponsored by the Centers for Medicare & Medicaid Services and the current ESRD Prospective Payment System with it Quality Incentive Program have demonstrated that integrated delivery of renal care can be accomplished in a manner that provides improved clinical outcomes with some financial margin of savings. Moving forward, integrated renal care will probably be linked to provider performance and quality outcomes measures, and clinical integration initiatives will share several common elements, namely performance-based payment models, coordination of communication via health care information technology, and development of best practices for care coordination and resource utilization. Integration initiatives must be designed to be measured and evaluated, and, consistent with principles of continuous quality improvement, each initiative will provide for iterative improvements of the initiative. PMID:23539229

  3. Toward population management in an integrated care model.

    PubMed

    Maddux, Franklin W; McMurray, Stephen; Nissenson, Allen R

    2013-01-01

    Under the Patient Protection and Affordable Care Act of 2010, accountable care organizations (ACOs) will be the primary mechanism for achieving the dual goals of high-quality patient care at managed per capita costs. To achieve these goals in the newly emerging health care environment, the nephrology community must plan for and direct integrated delivery and coordination of renal care, focusing on population management. Even though the ESRD patient population is a complex group with comorbid conditions that may confound integration of care, the nephrology community has unique experience providing integrated care through ACO-like programs. Specifically, the recent ESRD Management Demonstration Project sponsored by the Centers for Medicare & Medicaid Services and the current ESRD Prospective Payment System with it Quality Incentive Program have demonstrated that integrated delivery of renal care can be accomplished in a manner that provides improved clinical outcomes with some financial margin of savings. Moving forward, integrated renal care will probably be linked to provider performance and quality outcomes measures, and clinical integration initiatives will share several common elements, namely performance-based payment models, coordination of communication via health care information technology, and development of best practices for care coordination and resource utilization. Integration initiatives must be designed to be measured and evaluated, and, consistent with principles of continuous quality improvement, each initiative will provide for iterative improvements of the initiative. PMID:24496184

  4. Model of energetic populations at Ganymede, implications for an orbiter

    NASA Astrophysics Data System (ADS)

    Allioux, Renaud; Louarn, Philippe; André, Nicolas

    2013-04-01

    A model is developed to study the energetic particle populations in Ganymede's magnetosphere. The main objective is to estimate to what extent the moon could protect an orbiter from radiations. Using Liouville's theorem, the phase space density of particles coming from Jupiter's magnetosphere is calculated at any point of Ganymede's environment. Up to energies of ˜50-100 keV for ions and ˜10-20 MeV for electrons, Ganymede's magnetic field appears to be able to form distinctive populations as loss-cones over the polar caps and radiation belts. At larger energies, these features are blurred by Larmor radius effects; the moon absorption simply creates a quasi-isotropic layer of ˜500 km thickness where the flux is reduced by ˜40-50%. The predictions are compared to Galileo measurements. In particular, we demonstrate the importance of the moon sweeping in reducing the flux over the polar caps. Interestingly, this can be accounted for by assuming that the particles bouncing between Jupiter and Ganymede are ideally scattered in pitch angle and permanently re-fill the loss-cone, which increases the precipitation on Ganymede's polar cap. In overall, it is estimated that the radiation dose received by an orbiter of Ganymede will be reduced by more than 50-60% compared to the expected dose at Jupiter/Ganymede distance. This should have a positive impact on the design of a future orbiter of Ganymede.

  5. Complex transition to cooperative behavior in a structured population model.

    PubMed

    Miranda, Luciano; de Souza, Adauto J F; Ferreira, Fernando F; Campos, Paulo R A

    2012-01-01

    Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.

  6. Modeling the Salivary Cortisol Profile in Population Research

    PubMed Central

    Sánchez, Brisa N.; Wu, Meihua; Raghunathan, Trivellore E.; Diez-Roux, Ana V.

    2012-01-01

    In many studies, it has been hypothesized that stress and its biologic consequences may contribute to disparities in rates of cardiovascular disease. However, understanding of the most appropriate statistical methods to analyze biologic markers of stress, such as salivary cortisol, remains limited. The authors explore the utility of various statistical methods in modeling daily cortisol profiles in population-based studies. They demonstrate that the proposed methods allow additional insight into the cortisol profile compared with commonly used summaries of the profiles based on raw data. For instance, one can gain insights regarding the shape of the population average curve, characterize the types of individual-level departures from the average curve, and better understand the relation between covariates and attained cortisol levels or slopes at various points of the day, in addition to drawing inferences regarding common features of the cortisol profile, such as the cortisol awakening response and the area under the curve. The authors compare the inference and interpretations drawn from these methods and use data collected as part of the Multi-Ethnic Study of Atherosclerosis to illustrate them. PMID:23100245

  7. Toward population management in an integrated care model.

    PubMed

    Maddux, Franklin W; McMurray, Stephen; Nissenson, Allen R

    2013-01-01

    Under the Patient Protection and Affordable Care Act of 2010, accountable care organizations (ACOs) will be the primary mechanism for achieving the dual goals of high-quality patient care at managed per capita costs. To achieve these goals in the newly emerging health care environment, the nephrology community must plan for and direct integrated delivery and coordination of renal care, focusing on population management. Even though the ESRD patient population is a complex group with comorbid conditions that may confound integration of care, the nephrology community has unique experience providing integrated care through ACO-like programs. Specifically, the recent ESRD Management Demonstration Project sponsored by the Centers for Medicare & Medicaid Services and the current ESRD Prospective Payment System with it Quality Incentive Program have demonstrated that integrated delivery of renal care can be accomplished in a manner that provides improved clinical outcomes with some financial margin of savings. Moving forward, integrated renal care will probably be linked to provider performance and quality outcomes measures, and clinical integration initiatives will share several common elements, namely performance-based payment models, coordination of communication via health care information technology, and development of best practices for care coordination and resource utilization. Integration initiatives must be designed to be measured and evaluated, and, consistent with principles of continuous quality improvement, each initiative will provide for iterative improvements of the initiative.

  8. Complex Transition to Cooperative Behavior in a Structured Population Model

    PubMed Central

    Miranda, Luciano; de Souza, Adauto J. F.; Ferreira, Fernando F.; Campos, Paulo R. A.

    2012-01-01

    Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior. PMID:22761736

  9. Effect of modelling slum populations on influenza spread in Delhi

    PubMed Central

    Chen, Jiangzhuo; Chu, Shuyu; Chungbaek, Youngyun; Khan, Maleq; Kuhlman, Christopher; Marathe, Achla; Mortveit, Henning; Vullikanti, Anil; Xie, Dawen

    2016-01-01

    Objectives This research studies the impact of influenza epidemic in the slum and non-slum areas of Delhi, the National Capital Territory of India, by taking proper account of slum demographics and residents’ activities, using a highly resolved social contact network of the 13.8 million residents of Delhi. Methods An SEIR model is used to simulate the spread of influenza on two different synthetic social contact networks of Delhi, one where slums and non-slums are treated the same in terms of their demographics and daily sets of activities and the other, where slum and non-slum regions have different attributes. Results Differences between the epidemic outcomes on the two networks are large. Time-to-peak infection is overestimated by several weeks, and the cumulative infection rate and peak infection rate are underestimated by 10–50%, when slum attributes are ignored. Conclusions Slum populations have a significant effect on influenza transmission in urban areas. Improper specification of slums in large urban regions results in underestimation of infections in the entire population and hence will lead to misguided interventions by policy planners. PMID:27687898

  10. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic

    NASA Astrophysics Data System (ADS)

    Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea

    2016-04-01

    A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.

  11. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs

  12. Radiotherapy service delivery models for a dispersed patient population.

    PubMed

    Dunscombe, P; Roberts, G

    2001-01-01

    Access to health care interventions can be impeded when significant patient travel is required. In this economic evaluation we compare, from a societal perspective, three scenarios for the delivery of radiation treatment to an idealized population of 1,600 patients distributed between two urban nodes (1,200 + 400 patients each) separated by up to 500 km. As it is implicitly assumed that the clinical outcome for those patients who access the system is independent of the service delivery model, this study constitutes a cost minimization analysis from a societal perspective. The costs to the health care system are based on an activity costing model developed by us and consistent with recent Canadian studies. The costs to the patient are approximated by a formula that includes direct costs (travel and accommodation) and indirect (time) costs, with the latter based on a human capital approach. A sensitivity analysis has been performed to confirm the robustness of our conclusions both to uncertainties in the input data and to the inclusion of time costs, the estimation of which remains controversial. From a societal cost perspective only, we show that outreach radiotherapy (central comprehensive facility and satellite) is the economically superior service delivery model for separations between 30 km and 170 km. Beyond 170 km, a fully decentralized service would be warranted if the only consideration were societal economic advantage. PMID:11292133

  13. Image-driven population analysis through mixture modeling.

    PubMed

    Sabuncu, Mert R; Balci, Serdar K; Shenton, Martha E; Golland, Polina

    2009-09-01

    We present iCluster, a fast and efficient algorithm that clusters a set of images while co-registering them using a parameterized, nonlinear transformation model. The output of the algorithm is a small number of template images that represent different modes in a population. This is in contrast with traditional, hypothesis-driven computational anatomy approaches that assume a single template to construct an atlas. We derive the algorithm based on a generative model of an image population as a mixture of deformable template images. We validate and explore our method in four experiments. In the first experiment, we use synthetic data to explore the behavior of the algorithm and inform a design choice on parameter settings. In the second experiment, we demonstrate the utility of having multiple atlases for the application of localizing temporal lobe brain structures in a pool of subjects that contains healthy controls and schizophrenia patients. Next, we employ iCluster to partition a data set of 415 whole brain MR volumes of subjects aged 18 through 96 years into three anatomical subgroups. Our analysis suggests that these subgroups mainly correspond to age groups. The templates reveal significant structural differences across these age groups that confirm previous findings in aging research. In the final experiment, we run iCluster on a group of 15 patients with dementia and 15 age-matched healthy controls. The algorithm produces two modes, one of which contains dementia patients only. These results suggest that the algorithm can be used to discover subpopulations that correspond to interesting structural or functional "modes."

  14. Locating and communicating with at-risk populations about emergency preparedness: the vulnerable populations outreach model.

    PubMed

    Klaiman, Tamar; Knorr, Deborah; Fitzgerald, Shannon; Demara, Philip; Thomas, Chad; Heake, George; Hausman, Alice

    2010-10-01

    Vulnerable populations tend to have the worst health outcomes during and after disasters; however, these populations are rarely included in the emergency planning process. In Philadelphia, the Department of Public Health and the Office of Emergency Management have reached out to community-based organizations that serve vulnerable populations to include these key stakeholders in emergency planning. In this article, we outline strategies for locating, engaging, and communicating with vulnerable populations about both organizational and personal emergency preparedness. Such strategies include creating a method for bidirectional communication via a free quarterly health newsletter that is distributed to community-based organizations serving vulnerable populations. We also note successes and next steps from engaging vulnerable populations in the planning process in Philadelphia.

  15. Effects of stochastic population fluctuations in two models of biological macroevolution

    NASA Astrophysics Data System (ADS)

    Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu; Rikvold, Per Arne

    Two mathematical models of macroevolution are studied. These models have population dynamics at the species level, and mutations and extinction of species are also included. The population dynamics are updated by difference equations with stochastic noise terms that characterize population fluctuations. The effects of the stochastic population fluctuations on diversity and total population sizes on evolutionary time scales are studied. In one model, species can make either predator-prey, mutualistic, or competitive interactions, while the other model allows only predator-prey interactions. When the noise in the population dynamics is strong enough, both models show intermittent behavior and their power spectral densities show approximate 1/f fluctuations. In the noiseless limit, the two models have different power spectral densities. For the predator-prey model, 1/f2 fluctuations appears, indicating random-walk like behavior, while the other model still shows 1/f noise. These results indicate that stochastic population fluctuations may significantly affect long-time evolutionary dynamics.

  16. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton

    SciTech Connect

    Malloy, K.D.; Holman, M.A.; Mitchell, D.

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlated with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. 54 refs., 4 figs., 2 tabs.

  17. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton.

    PubMed

    Malloy, K D; Holman, M A; Mitchell, D; Detrich, H W

    1997-02-18

    The detrimental effects of elevated intensities of mid-UV radiation (UVB), a result of stratospheric ozone depletion during the austral spring, on the primary producers of the Antarctic marine ecosystem have been well documented. Here we report that natural populations of Antarctic zooplankton also sustain significant DNA damage [measured as cyclobutane pyrimidine dimers (CPDs)] during periods of increased UVB flux. This is the first direct evidence that increased solar UVB may result in damage to marine organisms other than primary producers in Antarctica. The extent of DNA damage in pelagic icefish eggs correlated with daily incident UVB irradiance, reflecting the difference between acquisition and repair of CPDs. Patterns of DNA damage in fish larvae did not correlate with daily UVB flux, possibly due to different depth distributions and/or different capacities for DNA repair. Clearance of CPDs by Antarctic fish and krill was mediated primarily by the photoenzymatic repair system. Although repair rates were large for all species evaluated, they were apparently inadequate to prevent the transient accumulation of substantial CPD burdens. The capacity for DNA repair in Antarctic organisms was highest in those species whose early life history stages occupy the water column during periods of ozone depletion (austral spring) and lowest in fish species whose eggs and larvae are abundant during winter. Although the potential reduction in fitness of Antarctic zooplankton resulting from DNA damage is unknown, we suggest that increased solar UV may reduce recruitment and adversely affect trophic transfer of productivity by affecting heterotrophic species as well as primary producers. PMID:9037040

  18. EVALUATING HABITAT AS A SURROGATE FOR POPULATION VIABILITY USING A SPATIALLY EXPLICIT POPULATION MODEL

    EPA Science Inventory

    Because data for conservation planning are always limited, surrogates are often substituted for intractable measurements such as species richness or population viability. We examined the ability of habitat quality to act as a surrogate for population performance for both Red-sho...

  19. Networks and Models with Heterogeneous Population Structure in Epidemiology

    NASA Astrophysics Data System (ADS)

    Kao, R. R.

    Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455-462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124-15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289-297, 2008; Robinson et al. in J. R. Soc. Interface 4:669-674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469-476, 2009) and the growing interest in combining contact structure data with phylogenetics to

  20. PHYTOPLANKTON AND ZOOPLANKTON SEASONAL DYNAMICS IN A SUBTROPICAL ESTUARY: IMPORTANCE OF CYANOBACTERIA

    EPA Science Inventory

    Murrell, Michael C. and Emile M. Lores. 2004. Phytoplankton and Zooplankton Seasonal Dynamics in a Subtropical Estuary: Importance of Cyanobacteria. J. Plankton Res. 26(3):371-382. (ERL,GB 1190).

    A seasonal study of phytoplankton and zooplankton was conducted from 1999-20...

  1. Effect of Main-stem Dams on Zooplankton Communities of the Missouri River (USA)

    EPA Science Inventory

    We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, an...

  2. Distribution of zooplankton biomass and potential metabolic activities across the northern Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Fernández-Urruzola, I.; Osma, N.; Packard, T. T.; Gómez, M.; Postel, L.

    2014-11-01

    The distribution of zooplankton biomass and potential metabolic rates, in terms of electron transport system (ETS) and glutamate dehydrogenase (GDH), were analyzed along a cross-shelf transect in waters off Namibia. The highly variable dynamics of upwelling filaments promoted short-term fluctuations in the zooplankton biomass and metabolism. Maximum values were characteristically found over the shelf-break, where zooplankton biomass as dry mass (DM) reached peaks of 64.5 mg m- 3 within the upper 200 m in late August. Two weeks later, the zooplankton-DM decreased by more than a third (19 mg DM m- 3). Zooplankton potential respiration and NH4+ excretion averaged 234 μmol O2 m- 3 d- 1 and 169 μmol NH4+ m- 3 d- 1 in the Namibian shelf, respectively. High protein-specific ETS activities even in the low-chlorophyll waters outside the filament suggested a shift into greater omnivory seaward. In this light, zooplankton elemental and isotopic compositions were used to investigate the pelagic food web interactions. They evidenced spatial changes in the carbon resource for zooplankton as well as changes in the form of nitrogen that fueled the biological production in aging advected waters. Overall, both aspects of zooplankton metabolism impacted the primary productivity at a level less than 10% under all the different oceanographic conditions.

  3. SPATIAL PATTERNS IN ASSEMBLAGE STRUCTURES OF PELAGIC FORAGE FISH AND ZOOPLANKTON IN WESTERN LAKE SUPERIOR

    EPA Science Inventory

    This manuscript reports on the spatial distribution of zooplankton and forage fish in western Lake Superior. Fish and zooplankton assemblages are shown to differ substantially in abundance and size structure both between the open lake and nearshore regions and between two differe...

  4. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.

    PubMed

    Jones, Natalie T; Gilbert, Benjamin

    2016-03-01

    In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues

  5. Viability of marine phytoplankton in zooplankton fecal pellets

    NASA Astrophysics Data System (ADS)

    Fowler, S. W.; Fisher, N. S.

    1983-09-01

    Zooplankton fecal pellets collected from sediment traps or freshly excreted by euphausiids grazing in situ at natural phytoplankton levels in the pelagic Mediterranean were incubated under laboratory conditions and always contained viable marine phytoplankton, usually diatoms. Fecal pellets excreted by euphausiids grazing in the laboratory on unialgal diets also contained living cells, indicating viable gut passage of some species. The rapid sinking of fecal pellets appears to be an effective mechanism for transporting living algae to depth and possibly in seeding marine waters and sediments with such cells.

  6. Cladoceran zooplankton abundance under clear and snow-covered ice

    USGS Publications Warehouse

    DeBates, T.J.; Chipps, S.R.; Ward, M.C.; Werlin, K.B.; Lorenzen, P.B.

    2003-01-01

    We described the distribution of cladoceran zooplankton under the ice in a natural, glacial lake. Local light availability apparently altered the spatial distribution of cladocerans. Light levels measured under snow-covered areas (0.178 lux) were an order of magnitude less than those measured at the same depth under clear ice (1.750 lux). Cladoceran density under snow-covered areas was significantly higher (Bosmina spp.=3.34/L; Daphnia spp.=0.61/L) than cladoceran abundance under clear ice (Bosmina spp.=0.91/L; Daphnia spp.=0.19/L).

  7. New data and tools for integrating discrete and continuous population modeling strategies.

    PubMed

    Koopman, J S; Jacquez, G; Chick, S E

    2001-12-01

    Realistic population models have interactions between individuals. Such interactions cause populations to behave as systems with nonlinear dynamics. Much population data analysis is done using linear models assuming no interactions between individuals. Such analyses miss strong influences on population behavior and can lead to serious errors--especially for infectious diseases. To promote more effective population system analyses, we present a flexible and intuitive modeling framework for infection transmission systems. This framework will help population scientists gain insight into population dynamics, develop theory about population processes, better analyze and interpret population data, design more powerful and informative studies, and better inform policy decisions. Our framework uses a hierarchy of infection transmission system models. Four levels are presented here: deterministic compartmental models using ordinary differential equations (DE); stochastic compartmental (SC) models that relax assumptions about population size and include stochastic effects; individual event history models (IEH) that relax the SC compartmental structure assumptions by allowing each individual to be unique. IEH models also track each individual's history, and thus, allow the simulation of field studies. Finally, dynamic network (DNW) models relax the assumption of the previous models that contacts between individuals are instantaneous events that do not affect subsequent contacts. Eventually it should be possible to transit between these model forms at the click of a mouse. An example is presented dealing with Cryptosporidium. It illustrates how transiting model forms helps assess water contamination effects, evaluate control options, and design studies of infection transmission systems using nucleotide sequences of infectious agents. PMID:11797861

  8. Demographic population model for American shad: will access to additional habitat upstream of dams increase population sizes?

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2012-01-01

    American shad Alosa sapidissima are in decline in their native range, and modeling possible management scenarios could help guide their restoration. We developed a density-dependent, deterministic, stage-based matrix model to predict the population-level results of transporting American shad to suitable spawning habitat upstream of dams on the Roanoke River, North Carolina and Virginia. We used data on sonic-tagged adult American shad and oxytetracycline-marked American shad fry both above and below dams on the Roanoke River with information from other systems to estimate a starting population size and vital rates. We modeled the adult female population over 30 years under plausible scenarios of adult transport, effective fecundity (egg production), and survival of adults (i.e., to return to spawn the next year) and juveniles (from spawned egg to age 1). We also evaluated the potential effects of increased survival for adults and juveniles. The adult female population size in the Roanoke River was estimated to be 5,224. With no transport, the model predicted a slow population increase over the next 30 years. Predicted population increases were highest when survival was improved during the first year of life. Transport was predicted to benefit the population only if high rates of effective fecundity and juvenile survival could be achieved. Currently, transported adults and young are less likely to successfully out-migrate than individuals below the dams, and the estimated adult population size is much smaller than either of two assumed values of carrying capacity for the lower river; therefore, transport is not predicted to help restore the stock under present conditions. Research on survival rates, density-dependent processes, and the impacts of structures to increase out-migration success would improve evaluation of the potential benefits of access to additional spawning habitat for American shad.

  9. [Effects of environmental factors on β diversity of zooplankton community in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay, Zhejiang, China].

    PubMed

    Zhu, Yi-feng; Dai, Mei-xia; Zhou, Xiao-hong; Lin, Xia; Mao, Shuo-qian; Yan, Xiao-jun

    2015-08-01

    Zooplankton samples were seasonally collected at 10 stations in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay. The abundance data from these samples were pooled and further combined with field environmental factors, then generalised dissimilarity modelling (GDM) was used to explore the effects of environmental factors on β diversity of zooplankton community. The results showed that altogether 95 species of zooplankton belonging to 14 taxa were found. In these taxa, small zooplankton with 62.6% of abundance was the main taxa, while copepods dominated in adult groups, which abundance accounted for 35.3%. According to Whittaker's definition and additive partition, a diversity accounted for 36.3% and β diversity 63.7%. Environmental factors explained 43.8% of β diversity, and geographical distance between sampling sites had no effect on β diversity. However, there were still 19.9% of β diversity remained to be explained. After GDM fitting, there were nine environmental variables affecting zooplankton β diversity and explaining 68.8% of β diversity. The variables contributing to β diversity from high to low were seasonal water temperature, dissolved oxygen, seawater temperature increment, conductivity, suspended particulate matter, salinity, transparency, water depth and redox potential, respectively. Seasonal water temperature, dissolved oxygen and seawater temperature increment were the most important factors for driving β diversity changes, and accounted for 23.9%, 13.7% and 9.7% of absolute contribution to the interpretable portion of the β diversity, respectively. When seasonal water temperature, dissolved oxygen and seawater temperature increment were below 25 °C, greater than 5 mg · L(-1) and over 1 °C, respectively, β diversity rapidly increased with the increasing variable gradients. Furthermore, other predictors had little effect on β diversity. PMID:26685620

  10. Reduced growth and survival of larval razorback sucker fed selenium-laden zooplankton

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.; Bullard, F.A.; McDonald, S.F.

    2005-01-01

    Four groups of larval razorback sucker, an endangered fish, were exposed to selenium-laden zooplankton and survival, growth, and whole-body residues were measured. Studies were conducted with 5, 10, 24, and 28-day-old larvae fed zooplankton collected from six sites adjacent to the Green River, Utah. Water where zooplankton were collected had selenium concentrations ranging from <0.4 to 78 ??g/L, and concentrations in zooplankton ranged from 2.3 to 91 ??g/g dry weight. Static renewal tests were conducted for 20 to 25 days using reference water with selenium concentrations of <1.1 ??g/L. In all studies, 80-100% mortality occurred in 15-20 days. In the 28-day-old larvae, fish weight was significantly reduced 25% in larvae fed zooplankton containing 12 ??g/g selenium. Whole-body concentrations of selenium ranged from 3.7 to 14.3 ??g/g in fish fed zooplankton from the reference site (Sheppard Bottom pond 1) up to 94 ??g/g in fish fed zooplankton from North Roadside Pond. Limited information prior to the studies suggested that the Sheppard pond 1 site was relatively clean and suitable as a reference treatment; however, the nearly complete mortality of larvae and elevated concentrations of selenium in larvae and selenium and other elements in zooplankton indicated that this site was contaminated with selenium and other elements. Selenium concentrations in whole-body larvae and in zooplankton from all sites were close to or greater than toxic thresholds where adverse effects occur in fish. Delayed mortality occurred in larvae fed the two highest selenium concentrations in zooplankton and was thought due to an interaction with other elements. ?? 2004 Elsevier Inc. All rights reserved.

  11. Zooplankton size selection relative to gill raker spacing in rainbow trout

    USGS Publications Warehouse

    Budy, P.; Haddix, T.; Schneidervin, R.

    2005-01-01

    Rainbow trout Oncorhynchus mykiss are one of the most widely stocked salmonids worldwide, often based on the assumption that they will effectively utilize abundant invertebrate food resources. We evaluated the potential for feeding morphology to affect prey selection by rainbow trout using a combination of laboratory feeding experiments and field observations in Flaming Gorge Reservoir, Utah-Wyoming. For rainbow trout collected from the reservoir, inter-gill raker spacing averaged 1.09 mm and there was low variation among fish overall (SD = 0.28). Ninety-seven percent of all zooplankton observed in the diets of rainbow trout collected in the reservoir were larger than the interraker spacing, while only 29% of the zooplankton found in the environment were larger than the interraker spacing. Over the size range of rainbow trout evaluated here (200-475 mm), interraker spacing increased moderately with increasing fish length; however, the size of zooplankton found in the diet did not increase with increasing fish length. In laboratory experiments, rainbow trout consumed the largest zooplankton available; the mean size of zooplankton observed in the diets was significantly larger than the mean size of zooplankton available. Electivity indices for both laboratory and field observations indicated strong selection for larger-sized zooplankton. The size threshold at which electivity switched from selection against smaller-sized zooplankton to selection for larger-sized zooplankton closely corresponded to the mean interraker spacing for both groups (???1-1.2 mm). The combination of results observed here indicates that rainbow trout morphology limits the retention of different-sized zooplankton prey and reinforces the importance of understanding how effectively rainbow trout can utilize the type and sizes of different prey available in a given system. These considerations may improve our ability to predict the potential for growth and survival of rainbow trout within and

  12. Secondary production of freshwater zooplankton communities exposed to a fungicide and to a petroleum distillate in outdoor pond mesocosms.

    PubMed

    Bayona, Yannick; Roucaute, Ana; Roucaute, Marc; Gorzerino, Caroline; Cailleaud, Kevin; Lagadic, Laurent; Bassères, Anne; Caquet, Thierry

    2014-04-01

    Ecological risk assessment of chemicals in mesocosms requires measurement of a large number of parameters at the community level. Studies on invertebrate communities usually focus on taxonomic approaches, which only provide insights into taxonomic structure changes induced by chemicals. In the present study, abundance, biomass (B), theoretical production (P), and instantaneous P/B ratio were used as endpoints to assess the effects of the commercial form of the dithiocarbamate fungicide thiram (35 µg/L and 170 µg/L nominal concentrations) and of the hydrocarbon water accommodated fraction (HWAF) of a petroleum distillate (0.01 mg/L, 0.4 mg/L, 2 mg/L, and 20 mg/L loadings) on the zooplankton community in freshwater pond mesocosms. Endpoints were measured during a 4-wk treatment period (1 pulse/wk) followed by a 5-mo posttreatment period to evaluate zooplankton population recovery. The chlorophyll a concentration in water was significantly increased after treatment with HWAF, whereas it was not affected by thiram treatment. Zooplankton abundance-based analysis showed effects on a limited number of taxa, whereas other endpoints (mainly the P/B ratio) revealed that more taxa were impacted, with recovery depending on the chemical and concentration. Exposure to HWAF mainly had a negative impact on cladocerans, which resulted in top-down effects (between cladocerans and phytoplankton). Thiram negatively affected rotifers and copepods, suggesting more direct toxic effects. The results show that the use of secondary production as an endpoint provides a more comprehensive assessment of potential direct and indirect effects of chemicals on a community, and they also support evidence of alteration in functional processes.

  13. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight).

    PubMed

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45'S; 47°33'W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3-0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the "hunger-satiation hypothesis", maximizing feeding and minimizing the chances of being predated.

  14. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight).

    PubMed

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45'S; 47°33'W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3-0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the "hunger-satiation hypothesis", maximizing feeding and minimizing the chances of being predated. PMID:26637179

  15. Diel Vertical Dynamics of Gelatinous Zooplankton (Cnidaria, Ctenophora and Thaliacea) in a Subtropical Stratified Ecosystem (South Brazilian Bight)

    PubMed Central

    Nogueira Júnior, Miodeli; Brandini, Frederico Pereira; Codina, Juan Carlos Ugaz

    2015-01-01

    The diel vertical dynamics of gelatinous zooplankton in physically stratified conditions over the 100-m isobath (~110 km offshore) in the South Brazilian Bight (26°45’S; 47°33’W) and the relationship to hydrography and food availability were analyzed by sampling every six hours over two consecutive days. Zooplankton samples were taken in three depth strata, following the vertical structure of the water column, with cold waters between 17 and 13.1°C, influenced by the South Atlantic Central Water (SACW) in the lower layer (>70 m); warm (>20°C) Tropical Water in the upper 40 m; and an intermediate thermocline with a deep chlorophyll-a maximum layer (0.3–0.6 mg m-3). Two distinct general patterns were observed, emphasizing the role of (i) physical and (ii) biological processes: (i) a strong influence of the vertical stratification, with most zooplankton absent or little abundant in the lower layer. The influence of the cold SACW on the bottom layer apparently restricted the vertical occupation of most species, which typically inhabit epipelagic warm waters. Even among migratory species, only a few (Aglaura hemistoma, Abylopsis tetragona eudoxids, Beroe sp., Thalia democratica, Salpa fusiformis) crossed the thermocline and reached the bottom layer. (ii) A general tendency of partial migrations, with variable intensity depending on the different species and developmental stages; populations tended to be more widely distributed through the water column during daylight, and to become more aggregated in the upper layer during the night, which can be explained based on the idea of the “hunger-satiation hypothesis”, maximizing feeding and minimizing the chances of being predated. PMID:26637179

  16. Disease spread models in wild and feral animal populations: application of artificial life models.

    PubMed

    Ward, M P; Laffan, S W; Highfield, L D

    2011-08-01

    The role that wild and feral animal populations might play in the incursion and spread of important transboundary animal diseases, such as foot and mouth disease (FMD), has received less attention than is warranted by the potential impacts. An artificial life model (Sirca) has been used to investigate this issue in studies based on spatially referenced data sets from southern Texas. An incursion of FMD in which either feral pig or deer populations were infected could result in between 698 and 1557 infected cattle and affect an area of between 166 km2 and 455 km2 after a 100-day period. Although outbreak size in deer populations can be predicted bythe size of the local deer population initially infected, the resulting outbreaks in feral pig populations are less predictable. Also, in the case of deer, the size of potential outbreaks might depend on the season when the incursion occurs. The impact of various mitigation strategies on disease spread has also been investigated. The approach used in the studies reviewed here explicitly incorporates the spatial distribution and relationships between animal populations, providing a new framework to explore potential impacts, costs, and control strategies.

  17. Statistical Mechanics of Population --- The Lattice Lotka-Volterra Model ---

    NASA Astrophysics Data System (ADS)

    Matsuda, H.; Ogita, N.; Sasaki, A.; Sato, K.

    1992-12-01

    To derive the consequence of heritable traits of individual organisms upon the feature of their populations, the lattice Lotka-Volterra model is studied which is defined as a Markov process of the state of the lattice space. A lattice site is either vacant or occupied by an individual of a certain type or species. Transition rates of the process are given in terms of parameters representing the traits of an individual such as intrinsic birth and death and migration rate of each type. Density is a variable defined as a probability that a site is occupied by a certain type. Under a given state of a site the conditional probability of its nearest neighbor site being occupied by a certain type is termed environs density of the site. Mutual exclusion of individuals is already taken into account by the basic assumption of the lattice model. Other interaction between individuals can be taken into account by assuming that the actual birth and death and migration rates are dependent on the environs densities. Extending the notion of ordinary Malthusian parameters, we define Malthusians as dynamical variables specifying the time development of the densities. Conditions for the positive stationary densities and for the evolutional stability (ES) against the invasion of mutant types is given in terms of Malthusians. Using the pair approximation (PA), a simplest decoupling approximation to take account of spatial correlation, we obtain analytical results for stationary densities, and critical parameters for ES in the case of two types. Assuming that the death rate is dependent on the environs density, we derive conditions for the evolution of altruism. Comparing with computer simulation, we discuss the validity of PA and its improvement.

  18. Simulation model of Cryptomonas ovata population dynamics in southern Kootenay Lake, British Columbia

    USGS Publications Warehouse

    Cloern, James E.

    1978-01-01

    The model simulates well the timing and magnitude of all observed population changes and, more importantly, it gives insight into the important mechanisms which regulate population density of C. ovata in this natural system.

  19. Modeling Grade IV Gas Emboli using a Limited Failure Population Model with Random Effects

    NASA Astrophysics Data System (ADS)

    Thompson, Laura A.; Conkin, Johnny; Chhikara, Raj S.; Powell, Michael R.

    2002-05-01

    Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing up to 13 denitrogenation test procedures prior to exposure to a hypobaric environment. The onset time of Grade IV VGE is recorded as contained within certain time intervals. We fit a parametric (lognormal) mixture survival model to the interval-and right-censored data to account for the possibility of a subset of "cured" individuals who are immune to the event. Our model contains random subject effects to account for correlations between repeated measurements on a single individual. Model assessments and cross-validation indicate that this limited failure population mixture model is an improvement over a model that does not account for the potential of a fraction of cured individuals. We also evaluated some alternative mixture models. Predictions from the best fitted mixture model indicate that the actual process is reasonably approximated by a limited failure population model.

  20. Modeling Grade IV Gas Emboli using a Limited Failure Population Model with Random Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Laura A.; Conkin, Johnny; Chhikara, Raj S.; Powell, Michael R.

    2002-01-01

    Venous gas emboli (VGE) (gas bubbles in venous blood) are associated with an increased risk of decompression sickness (DCS) in hypobaric environments. A high grade of VGE can be a precursor to serious DCS. In this paper, we model time to Grade IV VGE considering a subset of individuals assumed to be immune from experiencing VGE. Our data contain monitoring test results from subjects undergoing up to 13 denitrogenation test procedures prior to exposure to a hypobaric environment. The onset time of Grade IV VGE is recorded as contained within certain time intervals. We fit a parametric (lognormal) mixture survival model to the interval-and right-censored data to account for the possibility of a subset of "cured" individuals who are immune to the event. Our model contains random subject effects to account for correlations between repeated measurements on a single individual. Model assessments and cross-validation indicate that this limited failure population mixture model is an improvement over a model that does not account for the potential of a fraction of cured individuals. We also evaluated some alternative mixture models. Predictions from the best fitted mixture model indicate that the actual process is reasonably approximated by a limited failure population model.

  1. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems.

    PubMed

    Vasseur, David A; Fox, Jeremy W; Gonzalez, Andrew; Adrian, Rita; Beisner, Beatrix E; Helmus, Matthew R; Johnson, Catherine; Kratina, Pavel; Kremer, Colin; de Mazancourt, Claire; Miller, Elizabeth; Nelson, William A; Paterson, Michael; Rusak, James A; Shurin, Jonathan B; Steiner, Christopher F

    2014-08-01

    Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities.

  2. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea.

    PubMed

    Collignon, Amandine; Hecq, Jean-Henri; Glagani, François; Voisin, Pierre; Collard, France; Goffart, Anne

    2012-04-01

    Neustonic microplastic and zooplankton abundance was determined in the North Western Mediterranean Sea during a summer cruise between July 9th and August 6th 2010, with a break between July 22 th and 25th due to a strong wind event. Ninety percent of the 40 stations contained microplastic particles (size 0.3-5mm) of various compositions: e.g., filaments, polystyrene, thin plastic films. An average concentration of 0.116 particles/m(2) was observed. The highest abundances (>0.36 particles/m(2)) were observed in shelf stations. The neustonic plastic particles concentrations were 5 times higher before than after the strong wind event which increased the mixing and the vertical repartition of plastic particles in the upper layers of the water column. The values rise in the same order of magnitude than in the North Pacific Gyre. The average ratio between microplastics and mesozooplankton weights was 0.5 for the whole survey and might induce a potential confusion for zooplankton feeders.

  3. Zooplankton-mediated changes of bacterial community structure.

    PubMed

    Jürgens, K; Arndt, H; Rothhaupt, K O

    1994-01-01

    Enclosure experiments in the mesotrophic Schöhsee in northern Germany were designed to study the impact of metazooplankton on components of the microbial food web (bacteria, flagellates, ciliates). Zooplankton was manipulated in 500-liter epilimnetic mesocosms so that either Daphnia or copepods were dominating, or metazooplankton was virtually absent. The bacterial community responded immediately to changes in zooplankton composition. Biomass, productivity, and especially the morphology of the bacteria changed drastically in the different treatments. Cascading predation effects on the bacterioplankton were transmitted mainly by phagotrophic protozoans which had changed in species composition and biomass. When Daphnia dominated, protozoans were largely suppressed and the original morphological structure of the bacteria (mainly small rods and cocci) remained throughout the experiment. Dominance of copepods or the absence of metazoan predators resulted in a mass appearance of bacterivorous protists (flagellates and ciliates). They promoted a fast decline of bacterial abundance and a shift to the predominance of morphologically inedible forms, mainly long filaments. After 3 days they formed 80-90% of the bacterial biomass. The results indicate that metazooplankton predation on phagotrophic protozoans is a key mechanism for the regulation of bacterioplankton density and community structure.

  4. Diel vertical migration of Arctic zooplankton during the polar night

    PubMed Central

    Berge, Jørgen; Cottier, Finlo; Last, Kim S.; Varpe, Øystein; Leu, Eva; Søreide, Janne; Eiane, Ketil; Falk-Petersen, Stig; Willis, Kate; Nygård, Henrik; Vogedes, Daniel; Griffiths, Colin; Johnsen, Geir; Lorentzen, Dag; Brierley, Andrew S.

    2008-01-01

    High-latitude environments show extreme seasonal variation in physical and biological variables. The classic paradigm of Arctic marine ecosystems holds that most biological processes slow down or cease during the polar night. One key process that is generally assumed to cease during winter is diel vertical migration (DVM) of zooplankton. DVM constitutes the largest synchronized movement of biomass on the planet, and is of paramount importance for marine ecosystem function and carbon cycling. Here we present acoustic data that demonstrate a synchronized DVM behaviour of zooplankton that continues throughout the Arctic winter, in both open and ice-covered waters. We argue that even during the polar night, DVM is regulated by diel variations in solar and lunar illumination, which are at intensities far below the threshold of human perception. We also demonstrate that winter DVM is stronger in open waters compared with ice-covered waters. This suggests that the biologically mediated vertical flux of carbon will increase if there is a continued retreat of the Arctic winter sea ice cover. PMID:18948249

  5. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. PMID:23565966

  6. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  7. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  8. The role of dust in models of population synthesis

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Weiss, A.; Salaris, M.; Chiosi, C.

    2013-12-01

    We have employed state-of-the-art evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars and included the effect of circumstellar dust shells on the spectral energy distribution (SED) of AGB stars in order to revise the Padua library of isochrones, which covers an extended range of ages and initial chemical compositions. The major revision involves the thermally pulsing AGB phase, which is now taken from fully evolutionary calculations by Weiss & Ferguson. Two libraries of about 600 AGB dust-enshrouded SEDs each have also been calculated, one for oxygen-rich M stars and one for carbon-rich C stars. Each library accounts for different values of input parameters like the optical depth τ, dust composition and temperature of the inner boundary of the dust shell. These libraries of dusty AGB spectra have been implemented into a large composite library of theoretical stellar spectra, to cover all regions of the Hertzsprung-Russell diagram (HRD) crossed by the isochrones. With the aid of the above isochrones and libraries of stellar SEDs, we have calculated the spectrophotometric properties (SEDs, magnitudes and colours) of single-generation stellar populations (SSPs) for six metallicities, more than 50 ages (from ˜3 Myr to 15 Gyr) and nine choices of the initial mass function. The new isochrones and SSPs have been compared with the colour-magnitude diagrams (CMDs) of field populations in the Large and Small Magellanic Clouds, with particular emphasis on AGB stars, and the integrated colours of star clusters in the same galaxies, using data from the catalogue `Surveying the Agents of Galaxy Evolution' (SAGE). We have also examined the integrated colours of a small sample of star clusters located on the outskirts of M31. The agreement between theory and observations is generally good. In particular, the new SSPs reproduce the red tails of the AGB star distribution in the CMDs of field stars in the Magellanic Clouds. Some discrepancies still

  9. A model of adaptive population migration in South Africa.

    PubMed

    Hattingh, P S

    1989-06-01

    In South Africa, political factors, as well as socioeconomic forces have traditionally shaped the distribution pattern of the population. Economic and political realities have recently brought adaptive changes in government policy with concomitant migration responses. On explaining the model, the author describes 3 recent movements. 2 stem from policy changes as reflected in the national and urban distributional patterns of blacks, and the movement of Indians to the Orange Free State. The 3rd deals with the movement of elderly whites in the city of Pretoria. In the case of the blacks, migration into the white area has been a spontaneous evolutionary adaptation to the presence of strong push factors in the homelands and pull factors in the white area. Since 1910, governments have tried to restrict the influx of blacks by formulating and implementing normative policies of intervention, and since the 1960s, by actively promoting urban development in the homelands. Despite these measures, the numbers of blacks in the white area has swelled to such an extent that the government has adapted by increasing the rights of blacks. Blacks, Asians, and coloreds have also filtered into exclusive, white suburbs, ignoring government legislation. Currently, the government is reacting adaptively by proposing to create free settlement areas, but also normatively by placing more emphasis on areas reserved for specific racial groups. The 2nd example shows that despite efforts by Indians to move into the Orange Free State, progress is very slow. However, the process for adaptive migration to and within the Orange Free State has been set in motion. The 3rd example, that of elderly whites in Pretoria, reflects the migratory behavior of this group in response to the natural process of aging. Here there are no normative policies, but the authorities will probably formulate adaptive policies as the white South African population ages rapidly. Both normative and adaptive government policies

  10. Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.

    PubMed

    Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean

    2012-12-01

    A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments. PMID:23253367

  11. Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.

    PubMed

    Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean

    2012-12-01

    A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments.

  12. Characteristics of a Model K-12 Population Education Program.

    ERIC Educational Resources Information Center

    Stegner, Robert W.

    The population Curriculum Study of the University of Delaware proposes a school program to develop a comprehensive knowledge and understanding of man in his environment. The central theme of the Population Curriculum Study is: MAN IS PART OF A NATURAL SYSTEM, AND IS ULTIMATELY SUBJECT TO THE LIMITS OF THE SYSTEM. We are thinking of population…

  13. An agent-based computational model for tuberculosis spreading on age-structured populations

    NASA Astrophysics Data System (ADS)

    Graciani Rodrigues, C. C.; Espíndola, Aquino L.; Penna, T. J. P.

    2015-06-01

    In this work we present an agent-based computational model to study the spreading of the tuberculosis (TB) disease on age-structured populations. The model proposed is a merge of two previous models: an agent-based computational model for the spreading of tuberculosis and a bit-string model for biological aging. The combination of TB with the population aging, reproduces the coexistence of health states, as seen in real populations. In addition, the universal exponential behavior of mortalities curves is still preserved. Finally, the population distribution as function of age shows the prevalence of TB mostly in elders, for high efficacy treatments.

  14. A stochastic population model to evaluate Moapa dace (Moapa coriacea) population growth under alternative management scenarios

    USGS Publications Warehouse

    Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary

    2015-07-14

    Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in tur

  15. A stochastic population model to evaluate Moapa dace (Moapa coriacea) population growth under alternative management scenarios

    USGS Publications Warehouse

    Perry, Russell W.; Jones, Edward; Scoppettone, G. Gary

    2015-07-14

    Increasing or decreasing the total carrying capacity of all stream segments resulted in changes in equilibrium population size that were directly proportional to the change in capacity. However, changes in carrying capacity to some stream segments but not others could result in disproportionate changes in equilibrium population sizes by altering density-dependent movement and survival in the stream network. These simulations show how our IBM can provide a useful management tool for understanding the effect of restoration actions or reintroductions on carrying capacity, and, in turn, how these changes affect Moapa dace abundance. Such tools are critical for devising management strategies to achieve recovery goals.

  16. Resolving discrepancies between deterministic population models and individual-based simulations.

    PubMed

    Wilson, W G

    1998-02-01

    This work ties together two distinct modeling frameworks for population dynamics: an individual-based simulation and a set of coupled integrodifferential equations involving population densities. The simulation model represents an idealized predator-prey system formulated at the scale of discrete individuals, explicitly incorporating their mutual interactions, whereas the population-level framework is a generalized version of reaction-diffusion models that incorporate population densities coupled to one another by interaction rates. Here I use various combinations of long-range dispersal for both the offspring and adult stages of both prey and predator species, providing a broad range of spatial and temporal dynamics, to compare and contrast the two model frameworks. Taking the individual-based modeling results as given, two examinations of the reaction-dispersal model are made: linear stability analysis of the deterministic equations and direct numerical solution of the model equations. I also modify the numerical solution in two ways to account for the stochastic nature of individual-based processes, which include independent, local perturbations in population density and a minimum population density within integration cells, below which the population is set to zero. These modifications introduce new parameters into the population-level model, which I adjust to reproduce the individual-based model results. The individual-based model is then modified to minimize the effects of stochasticity, producing a match of the predictions from the numerical integration of the population-level model without stochasticity. PMID:18811412

  17. EVALUATION OF OPTICALLY ACQUIRED ZOOPLANKTON SIZE-SPECTRUM DATA AS A POTENTIAL TOOL FOR ASSESSMENT OF CONDITION IN THE GREAT LAKES

    EPA Science Inventory

    An optical zooplankton counter (OPC) potentially provides as assessment tool for zooplankton condition in ecosystems that is rapid, economical, and spatially extensive. We collected zooplankton data with an optical zooplankton counter in 20 near-shore regions of four of the Laure...

  18. Strong Spatial Influence on Colonization Rates in a Pioneer Zooplankton Metacommunity

    PubMed Central

    Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J.

    2012-01-01

    The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18–2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance. PMID:22792241

  19. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  20. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  1. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  2. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night. PMID:26039111

  3. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  4. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  5. A comparison of zooplankton sampling methods in evaluating copper sulfate toxicity in outdoor microcosms

    SciTech Connect

    Hellenbrandt, S.; La Point, T.W.; Shaw, J.L.; Marshall, S.J.; Ratte, H.T.

    1994-12-31

    Six outdoor microcosms (2m{sup 3}) were used to determine copper sulfate effects on epibenthic and planktonic zooplankton community structure. Microcosms were treated three times with CuSO{sub 4} at 0, 50, 100,