Sample records for zr nb ba

  1. The characterisation of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review

    NASA Astrophysics Data System (ADS)

    Harte, Allan; Griffiths, Malcolm; Preuss, Michael

    2018-07-01

    The nature and evolution of the Fe environment in Zr-Nb and Zr-Nb-Sn-Fe systems is essential to alloy performance during corrosion, hardening and irradiation-induced growth. Unfortunately, there is ambiguity in the literature regarding the characterisation of secondary phases in these systems. The presence, or not, of Fe in β-Nb phase has been a source of disagreement. In ternary ZrNbFe intermetallics, identical compositions have been designated as Zr(Nb,Fe)2 or (Zr,Nb)3Fe. We show that while Zr(Nb,Fe)2 is commonly reported, it is not always justified. The cubic phase (Zr,Nb)2Fe is easily identified, but its composition is more variable after low temperature heat treatments. We demonstrate the need for correlative approaches in the assessment of phase composition, crystallography and local Fe environment under different heat treatment regimes. Irradiation effects allow us to draw clues regarding phase designation, but there is diverse behaviour under irradiation due to initial phase composition, irradiation dose rate and temperature.

  2. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  3. Optical and structural characterization of Nb, Zr, Nb/Zr, Zr/Nb thin films on Si3N4 membranes windows

    NASA Astrophysics Data System (ADS)

    Jimenez, K.; Gaballah, A. E. H.; Ahmed, Nadeem; Zuppella, P.; Nicolosi, P.

    2017-05-01

    High brilliance sources in the EUV spectral range such as Synchrotron and Free Electron Lasers (FEL) are widely used in multiple scientific and technological applications thanks to their peculiar characteristics. One main technical problem of FEL is related to the rejection of high harmonics, seed laser, first stage photons, and diffuse light; in order to improve the quality of the beam delivered by these sources, a suitable optical system acting as band-pass filters is necessary. In this paper we discuss the optical and structure characterization of Nb/Zr and Zr/Nb self-stand transmittance filters, designed for 4.5 nm-20 nm wavelength ranges. In order to understand the properties of these bilayers filters, a campaign of measurements has been planned to be performed on Zr and Nb films on Si3N4 membrane windows and silicon substrates, deposited with e- beam deposition technique. Comparison of the results has been planned too. IMD transmittance and reflectance simulations, together with preliminary AFM and reflectance measurements will be shown in this work.

  4. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    NASA Astrophysics Data System (ADS)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  5. Effect of [Li]/[Nb] ratio on composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Liu, Chunrui; Dai, Li; Wang, Luping; Shao, Yu; Yan, Zhehua; Xu, Yuheng

    2018-04-01

    Zr:Yb:Tm:LiNbO3 crystals with various [Li]/[Nb] ratios (0.946, 1.05, 1.20 and 1.38) were grown by the Czochralski technique. Distribution coefficients of Zr4+, Yb3+ and Tm3+ ions were analyzed by the inductively coupled plasma-atomic emission spectrometer (ICP-AES). The influence of [Li]/[Nb] ratio on the composition and defect structure of Zr:Yb:Tm:LiNbO3 crystals was investigated by X-ray diffraction and IR transmission spectrum. The results show that as the [Li]/[Nb] ratio increases in the melt, the distribution coefficients of Yb3+ and Tm3+ ions both increase while that of Zr4+ ion deceases. When the [Li]/[Nb] ratio increases to 1.20 in the melt, Zr:Yb:Tm:LiNbO3 crystal is nearly stoichiometric. In addition, when the [Li]/[Nb] ratio reaches up to 1.38, NbLi4+ are completely replaced and Li+ starts to impel the Zr4+, Yb3+ and Tm3+ into the normal Li sites.

  6. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  7. High-field superconductivity in the Nb-Ti-Zr ternary system

    NASA Astrophysics Data System (ADS)

    Ralls, K. M.; Rose, R. M.; Wulff, J.

    1980-06-01

    Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.

  8. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    NASA Astrophysics Data System (ADS)

    Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.

    2014-10-01

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  9. Molecular dynamics simulation of liquid structure for undercooled Zr-Nb alloys assisted with electrostatic levitation experiments

    NASA Astrophysics Data System (ADS)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2018-06-01

    The liquid structures of undercooled Zr90Nb10, Zr70Nb30 and Zr50Nb50 alloys were studied by molecular dynamics simulation combined with electrostatic levitation experiments. The densities of three alloys were measured by electrostatic levitation to modify the Zr-Nb potential functions by adjusting parameters in potential functions. In simulation, the atomic packing in Zr-Nb alloys was more ordered at lower temperatures. The Voronoi tessellation analyses indicated Nb-centered clusters were easier to form than Zr-centered clusters although the Nb content was less than 50%. The partial pair distribution functions showed that the interactions among Zr atoms are quite different to that among Nb atoms.

  10. Corrosion behavior and oxide properties of Zr 1.1 wt%Nb 0.05 wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Choi, Byung-Kwon; Yoo, Seung Jo; Jeong, Yong Hwan

    2006-12-01

    The corrosion behavior and oxide properties of Zr-1.1 wt%Nb-0.05 wt%Cu (ZrNbCu) and Zircaloy-4 have been investigated. The corrosion rate of the ZrNbCu alloy was much lower than that of the Zirclaoy-4 in the 360 °C water and 360 °C PWR-simulating loop condition without a neutron flux and it was increased with an increase of the final annealing temperature from 470 °C to 570 °C. TEM observations revealed that the precipitates in the ZrNbCu were β-Nb and ZrNbFe-precipitate with β-Nb being more frequently observed and that the precipitates were more finely distributed in the ZrNbCu alloy. It was also observed that the oxides of the ZrNbCu and Zircaloy-4 consisted of two and seven layers, respectively, after 1000 days in the PWR-simulating loop condition and that the thickness of a fully-developed layer was higher in the ZrNbCu than in the Zircaloy-4. It was also found that the β-Nb in ZrNbCu was oxidized more slowly when compared to the Zr(Fe, Cr) 2 in Zirclaoy-4 when the precipitates in the oxide were observed by TEM. Cracks were observed in the vicinity of the oxidized Zr(Fe, Cr) 2, while no cracks were formed near β-Nb which had retained a metallic state. From the results obtained, it is suggested that the oxide formed on the ZrNbCu has a more protective nature against a corrosion when compared to that of the Zircaloy-4.

  11. Effects of thermomechanical processing on the microstructure and mechanical properties of Nb-1Zr-C alloys

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1996-01-01

    A systematic study to evaluate the effects of thermomechanical processing on the microstructure and mechanical properties of Nb-1Zr alloy sheet containing 0.06 and 0.1 wt.%C (PWC-11) was conducted and compared to the results of Nb-1Zr. Coarse orthorhombic Nb2C precipitates were present in all the cast, extruded and cold rolled Nb-Zr samples containing C. After high temperature (greater than 0.5 T(sub m)) exposure (with or without applied stress), the Nb2C transforms to very fine and extremely stable FCC (Zr, Nb)C dispersoid, resulting in a highly creep resistant material. Only ZrO2 precipitates were found in Nb-1Zr. The creep strength of the 0.06C and the 0.1C carbide strengthened alloys were much superior to Nb-1Zr. At 1350 K the strength of the 0.06C alloy was about three times that of Nb-1Zr, while the 0.1C alloy had about five times the creep stress capability of Nb-1Zr. The tensile strength, long term creep strength, and stability of the microstructure of the PWC-11 sheet appear to be independent of the number of 1900 K extrusions performed prior to cold rolling. The microhardness of these single, double and triple extnided PWC-11 sheets also were comparable. The tensile strength of PWC-11 and Nb-1Zr at room temperature and 1350 K were comparable.

  12. Mechanical properties and bio-tribological behaviors of novel beta-Zr-type Zr-Al-Fe-Nb alloys for biomedical applications.

    PubMed

    Hua, Nengbin; Chen, Wenzhe; Zhang, Lei; Li, Guanghui; Liao, Zhenlong; Lin, Yan

    2017-07-01

    The present study prepares novel Zr 70+x Al 5 Fe 15-x Nb 10 (x=0, 5) alloys by arc-melting for potential biomedical application. The mechanical properties and bio-tribological behaviors of the Zr-based alloys are evaluated and compared with biomedical pure Zr. The as-prepared alloys exhibit a microstructure containing a micrometer-sized dendritic beta-Zr phase dispersed in a Zr 2 Fe-typed matrix. It is found that increasing the content of Zr is favorable for the mechanical compatibility with a combination of low Young's modulus, large plasticity, and high compressive strength. The wear resistance of the Zr-Al-Fe-Nb alloys in air and phosphate buffer saline (PBS) solution is superior to that of pure Zr. The wear mechanism of Zr-based alloys sliding in air is controlled by oxidation and abrasive wear whereas that sliding in PBS is controlled by synergistic effects of the abrasive and corrosive wear. Electrochemical measurements demonstrate that the Zr-based alloys are corrosion resistant in PBS. Their bio-corrosion resistance is improved with the increase in Zr content, which is attributed to the enrichment in Zr and decrease in Al concentration in the surface passive film of alloys. The Zr 75 Al 5 Fe 10 Nb 10 exhibits the best corrosion resistance in PBS, which contributes to its superior wear resistance in a simulated body environment. The combination of good mechanical properties, corrosion resistance, and biotribological behaviors of the Zr-Al-Fe-Nb alloys offers them potential advantages in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High temperature dielectrics and defect characteristic of (Nb, Mn, Zr) modified 0.4(Ba0.8Ca0.2)TiO3 - 0.6Bi(Mg0.5Ti0.5)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun

    2018-07-01

    Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.

  14. Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Naoto; Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; Mizoguchi, Takuma

    2014-02-15

    In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that themore » Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.« less

  15. Thermal stability of the microstructure of an aged Nb-Zr-C alloy

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1990-01-01

    The effects of thermal aging with and without an applied stress on the microstructure of a Nb-Zr-C alloy containing 0.9 wt percent Zr and 0.06 wt percent C were studied. Chemical analysis, metallographic examination, energy dispersive x-ray spectra of the bulk material, and chemical and x-ray analyses of the phase-extracted residue were used to characterize the microstructure. The samples examined were from a creep strength study involving hot and cold working, and various combinations of exposure to temperatures ranging from 1350 to 1755 K with and without applied load for times as long as 34,000 plus hours. The results showed that the initial microstructure consisted primarily of orthorombic precipitates of Nb sub 2 C which were partially or completely transformed to face-centered cubic carbides of nb and Zr, (Zr, Nb)C, upon prolonged exposure to elevated temperatures. Furthermore, it was found that the microstructure of the alloy is extremely stable owing to the very finely distributed precipitates throughout its matrix and along the grain boundaries. The lattice parameters of the cubic carbides were determed to vary from 0.458 to 0.465 nm as the Zr/Nb ratio varied from 38/62 to 75/25.

  16. Bone response to a novel Ti-Ta-Nb-Zr alloy.

    PubMed

    Stenlund, Patrik; Omar, Omar; Brohede, Ulrika; Norgren, Susanne; Norlindh, Birgitta; Johansson, Anna; Lausmaa, Jukka; Thomsen, Peter; Palmquist, Anders

    2015-07-01

    Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo. The alloy implants (denoted Ti-Ta-Nb-Zr) were evaluated after 7 days and 28 days in a rat tibia model, with reference to commercially pure titanium grade 4 (denoted Ti). Analyses were performed with respect to removal torque, histomorphometry and gene expression. The Ti-Ta-Nb-Zr showed a significant increase in implant stability over time in contrast to the Ti. Further, the histological and gene expression analyses suggested faster healing around the Ti-Ta-Nb-Zr, as judged by the enhanced remodeling, and mineralization, of the early-formed woven bone and the multiple positive correlations between genes denoting inflammation, bone formation and remodeling. Based on the present experiments, it is concluded that the Ti-Ta-Nb-Zr alloy becomes osseointegrated to at least a similar degree to that of pure titanium implants. This alloy is therefore emerging as a novel implant material for clinical evaluation. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Processing of U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys by sintering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dos Santos, A. M. M.; Ferraz, W. B.; Lameiras, F. S.

    2012-07-01

    To minimize the risk of nuclear proliferation, there is worldwide interest in reducing fuel enrichment of research and test reactors. To achieve this objective while still guaranteeing criticality and cycle length requirements, there is need of developing high density uranium metallic fuels. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing the U-2.5Zr-7.5Nb and U-3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed atmore » 400 MPa and then sintered under a vacuum of about 1x10{sup -4} Torr at temperatures ranging from 1050 deg. to 1500 deg.C. The densities of the alloys were measured geometrically and by hydrostatic method and the phases identified by X ray diffraction (XRD). The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the alloying elements were analyzed by energy dispersive X-ray spectroscopy (EDS). The results obtained showed the fuel density to slightly increase with the sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was observed in the pellets a superficial oxide layer formed during the sintering process. (authors)« less

  18. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO 3-CaZrO 3 system

    NASA Astrophysics Data System (ADS)

    Levin, Igor; Amos, Tammy G.; Bell, Steven M.; Farber, Leon; Vanderah, Terrell A.; Roth, Robert S.; Toby, Brian H.

    2003-11-01

    Phase equilibria in the (1- x)BaZrO 3- xCaZrO 3 system were analyzed using a combination of X-ray and neutron powder diffraction, and transmission electron microscopy. The proposed phase diagram features two extended two-phase fields containing mixtures of a Ba-rich cubic phase and a tetragonal, or orthorhombic Ca-rich phase, all having perovskite-related structures. The symmetry differences in the Ca-rich phases are caused by different tilting patterns of the [ZrO 6] octahedra. In specimens quenched from 1650°C, CaZrO 3 dissolves only a few percent of Ba, whereas the solubility of Ca in BaZrO 3 is approximately 30 at% . The BaZrO 3-CaZrO 3 system features at least two tilting phase transitions, Pm3 m→ I4/ mcm and I4/ mcm→ Pbnm. Rietveld refinements of the Ba 0.8Ca 0.2ZrO 3 structure using variable-temperature neutron powder diffraction data confirmed that the Pm3 m→ I4/ mcm transition corresponds to a rotation of octahedra about one of the cubic axes; successive octahedra along this axis rotate in opposite directions. In situ variable-temperature electron diffraction studies indicated that the transition temperature increases with increasing Ca-substitution on the A-sites, from approximately -120°C at 5 at% Ca to 225°C at 20 at% Ca. Dielectric measurements revealed that the permittivity increases monotonically from 36 for BaZrO 3 to 53 for Ba 0.9Ca 0.1ZrO 3, and then decreases to 50 for Ba 0.8Ca 0.2ZrO 3. This later specimen was the Ca-richest composition for which pellets could be quenched from the single-phase cubic field with presently available equipment. Strongly non-monotonic behavior was also observed for the temperature coefficient of resonant frequency; however, in this case, the maximum occurred at a lower Ca concentration, 0.05⩽ x⩽0.1. The non-linear behavior of the dielectric properties was attributed to two competing structural effects: a positive effect associated with substitution of relatively small Ca cations on the A-sites, resulting

  19. Local environments and transport properties of heavily doped strontium barium niobates Sr0.5Ba0.5Nb2O6

    NASA Astrophysics Data System (ADS)

    Ottini, Riccardo; Tealdi, Cristina; Tomasi, Corrado; Tredici, Ilenia G.; Soffientini, Alessandro; Burriel, Ramón; Palacios, Elías; Castro, Miguel; Anselmi-Tamburini, Umberto; Ghigna, Paolo; Spinolo, Giorgio

    2018-02-01

    Undoped as well as K-doped (40%), Y-doped (40%), Zr-doped (10%), and Mo-doped (12.5%) strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN50) materials have been investigated to explore the effect of heavy doping on the structural and functional properties (thermo-power, thermal and electrical conductivities) both in the as prepared (oxidized) and reduced states. For all materials, the EXAFS spectra at the Nb - K edge can be consistently analyzed with the same model of six shells around the Nb sites. Doping mostly gives a simple size effect on the structural parameters, but doping on the Nb sites weakens the Nb-O bond regardless of dopant size and charge. Shell sizes and Debye-Waller factors are almost unaffected by temperature and oxidation state, and the disorder is of static nature. The functional effects of heavy doping do not agree with a simple model of hole or electron injection by aliovalent substitutions on a large band gap semiconductor. With respect to the undoped samples, doping with Mo depresses the thermal conductivity by 30%, Y doping enhances the electrical conductivity by an order of magnitude, while Zr doping increases the Seebeck coefficient by a factor of 2-3. Globally, the ZT efficiency factor of the K-, Y-, and Zr-doped samples is enhanced at least by one order of magnitude with respect to the undoped or Mo-doped materials.

  20. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, AX; Khatri, N; Liu, YH

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 Kmore » to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.« less

  1. A-site- and/or B-site-modified PbZrTiO3 materials and (Pb, Sr, Ca, Ba, Mg) (Zr, Ti, Nb, Ta)O3 films having utility in ferroelectric random access memories and high performance thin film microactuators

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2001-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  2. Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek

    2018-06-01

    Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.

  3. Large Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr0.2Ti0.8O3 Film Capacitors.

    PubMed

    Sun, Zixiong; Ma, Chunrui; Wang, Xi; Liu, Ming; Lu, Lu; Wu, Ming; Lou, Xiaojie; Wang, Hong; Jia, Chun-Lin

    2017-05-24

    A large energy storage density (ESD) of 30.4 J/cm 3 and high energy efficiency of 81.7% under an electrical field of 3 MV/cm was achieved at room temperature by the fabrication of environmentally friendly lead-free BaZr 0.2 Ti 0.8 O 3 epitaxial thin films on Nb-doped SrTiO 3 (001) substrates by using a radio-frequency magnetron sputtering system. Moreover, the BZT film capacitors exhibit great thermal stability of the ESD from 16.8 J/cm 3 to 14.0 J/cm 3 with efficiency of beyond 67.4% and high fatigue endurance (up to 10 6 cycles) in a wide temperature range from room temperature to 125 °C. Compared to other BaTiO 3 -based energy storage capacitor materials and even Pb-based systems, BaZr 0.2 Ti 0.8 O 3 thin film capacitors show either high ESD or great energy efficiency. All of these excellent results revealed that the BaZr 0.2 Ti 0.8 O 3 film capacitors have huge potential in the application of modern electronics, such as locomotive and pulse power, in harsh working environments.

  4. Skin effect suppression for Cu/CoZrNb multilayered inductor

    NASA Astrophysics Data System (ADS)

    Sato, Noriyuki; Endo, Yasushi; Yamaguchi, Masahiro

    2012-04-01

    The Cu/Co85Zr3Nb12 multilayer is studied as a conductor of a spiral inductor to suppress the skin effect at the 5 GHz range (matches IEEE 802.11 a standard) using negative-permeability in CoZrNb films beyond the ferromagnetic resonance frequency. The skin effect suppression becomes remarkable when the thickness of Cu in each period of the multilayer, tCu, is less than the skin depth of Cu at the targeting frequency. For the 5 GHz operation, tCu ≤ 750 nm. The resistance of the Cu/CoZrNb multilayered spiral inductor decreases as much as 8.7%, while keeping the same inductance of 1.1 nH as that of a similar air core. Accordingly, Q = 16. Therefore, the proposed method can contribute to realize a high-Q spiral inductor. We also study the potentially applicable frequency of this method. Given a soft magnetic material with Ms = 105 emu/cc and Hk = 5 Oe, the method can be applied at 700 MHz, the lowermost carrier frequency band for the 4th generation cellular phone system.

  5. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.

    PubMed

    Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie

    2015-07-01

    A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Effect of Zr substitution on the thermal and mechanical properties of Rh3A (A=Nb,Ta) - A theoretical study

    NASA Astrophysics Data System (ADS)

    Manjula, M.; Sundareswari, M.; Viswanathan, E.

    2018-04-01

    The present study focuses upon the thermal and mechanical properties of Rh3ZrxA1-x (A= Nb,Ta) ternary alloys using ab initio density functional theory where Nb/Ta is substituted by Zr. These ternary alloys were investigated for the first time using elastic moduli, hardness, Debye temperature, Debye average velocity and Gruneisen parameter. Further the ductile/brittle analysis was made by using Cauchy pressure, degree of brittleness and Poisson's ratio. Systematic addition of Zr with Rh3Nb/Ta shows that Rh3Zr0.75Nb0.25, Rh3Zr0.875Nb0.125 and Rh3Zr0.875Ta0.125combinations are more ductile. Further the melting temperature of Rh3Zr0.75Nb0.25(2227 K), Rh3Zr0.875Nb0.125(2200 K) and Rh3Zr0.875Ta0.125 (2134 K) alloys are nearer to those of their parent binary alloys namely Rh3Nb (2636 K) and Rh3Ta (2562 K). Their corresponding density values (10.84 gm/cm3, 10.77 gm/cm3 and 11.09 gm/cm3) are found to be much less than those of their parent materials.

  7. Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recovery.

    PubMed

    Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J

    2015-11-01

    The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.

  8. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    NASA Astrophysics Data System (ADS)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  9. First-principles study of (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Amoroso, Danila; Cano, Andrés; Ghosez, Philippe

    2018-05-01

    (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions are the building blocks of lead-free piezoelectric materials that attract a renewed interest. We investigate the properties of these systems by means of first-principles calculations, with a focus on the lattice dynamics and the competition between different ferroelectric phases. We first analyze the four parent compounds in order to compare their properties and their different tendency towards ferroelectricity. The core of our study is systematic characterization of the binary systems (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 within both the virtual crystal approximation and direct supercell calculations. In the case of Ca doping, we find a gradual transformation from B -site to A -site ferroelectricity due to steric effects that largely determines the behavior of the system. In the case of Zr doping, in contrast, the behavior is eventually dominated by cooperative Zr-Ti motions and the local electrostatics. In addition, our comparative study reveals that the specific microscopic physics of these solids sets severe limits to the applicability of the virtual crystal approximation for these systems.

  10. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  11. Microstructure and Elevated Temperature Properties of a Refractory TaNbHfZrTi Alloy

    DTIC Science & Technology

    2012-01-24

    composition of the TaNbHfZrTi alloy produced by vacuum arc melting Composition Ta Nb Hf Zr Ti at.% 19.68 18.93 20.46 21.23 19.7 wt. % 30.04 14.84 30.82 16.34...metallic materials with higher melting points, such as refractory molybdenum (Mo) and niobium ( Nb ) alloys, are examined as alternatives by academic and...creep resistance are the key properties of these alloys, since considerable alloy softening generally occurs at tempera- tures above *0.5 0.6 Tm

  12. Effects of processing and prolonged high temperature exposure on the microstructure of Nb-1Zr-C sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, R. H.

    1993-01-01

    High temperature stability of the microstructure of Nb-1Zr sheet containing 0.1 and 0.06 wt. percent C was studied as affected by processing and prolonged 1350 K exposure with and without applied stress. Sheets were fabricated by cold rolling bars that were single-, double-, or triple-extruded at 1900 K. Creep samples were double-annealed (1 h at 1755 K + 2 h at 1475 K) prior to testing at 1350 K and 10,000 - 34,500 h. The microstructures of the as-cast, extruded, rolled, DA, and crept samples were characterized using various metallographic and analytical methods. The precipitates were rather coarse Nb2C initially, but transformed to finer (less than or equal to 1 micron) carbides of (Zr, Nb)C with each subsequent high temperature process. The grain size, and the relative amount and morphology of (Zr, Nb)C were found to be affected by the number of extrusions and to some extent by C-content. However, the microstructures of all the crept samples were similar with (Zr, Nb)C distributed throughout the matrix indicating that prolonged exposure to 1350 K gave rise to complete transformation of Nb2C to (Zr, Nb)C regardless of the processing history. These and other observations are presented with the emphasis on the correlation between processing, microstructure, and creep properties.

  13. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  14. Comparison of bio-mineralization behavior of Ti-6Al-4V-1Nb and Zr-1Nb nano-tubes formed by anodization

    NASA Astrophysics Data System (ADS)

    Choi, Yong; Hong, Sun I.

    2014-12-01

    Nano-tubes of titanium and zirconium alloys like Ti-6Al-4V-1Nb and Zr-1Nb were prepared by anodization followed by coating with hydroxylapatite (HA) and their bio-mineralization behaviors were compared to develop a bio-compatible material for implants in orthopedics, dentistry and cardiology. Ti-6Al-4V-1Nb weight gain in a simulated body solution increased gradually. The bigger tube diameter was, the heavier HA was deposited. Surface roughness of both alloys increased highly with the increasing diameter of nano-tube. Their surface roughness decreased by HA deposition due to the removal of the empty space of the nano-tubes. Zr-1Nb alloy had faster growth of nano-tubes layers more than Ti-6Al-4V-1Nb alloy.

  15. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)

    DTIC Science & Technology

    2011-10-01

    slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti

  16. Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} and Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} (0{<=}x{<=}1): synthesis, structure and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumal, M.; Jawahar, I.N.; Surendiran, K.P.

    2002-11-20

    Oxides belonging to the families Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} and Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} were synthesized by the solid state reaction route. Sintering temperatures of 1300 deg. C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425 deg. C hexagonally ordered structures were obtained for Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} over the entire range (0{<=}x{<=}1) of composition, while for Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} the ordered structure exists in a limited range (0{<=}x{<=}0.5). The dielectric constant is close to 30 for the Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9} family of oxides while the Mg analoguesmore » have lower dielectric constant of {approx}18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba{sub 3}ZnTa{sub 2-x}Nb{sub x}O{sub 9}; for Ba{sub 3}MgTa{sub 2-x}Nb{sub x}O{sub 9} it varies between 12 and 14. The 'Zn' compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the 'Mg' analogues.« less

  17. Mechanical Properties of Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System (Postprint)

    DTIC Science & Technology

    2014-04-01

    PROPERTIES OF LOW-DENSITY, REFRACTORY MULTI-PRINCIPAL ELEMENT ALLOYS OF THE Cr– Nb –Ti–V– Zr SYSTEM (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...element alloys of the Cr– Nb –Ti–V– Zr systemO.N. Senkov n, S.V. Senkova, D.B. Miracle, C. Woodward Air Force Research Laboratory, Materials and...densities below 7.0 g/cm3 have recently been produced by alloying Nb (rNb¼8.57 g/cm3) with four low density refractory elements, V (rV¼6.11 g/cm3), Zr

  18. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.

    PubMed

    Rao, X; Chu, C L; Zheng, Y Y

    2014-06-01

    Porous Ti-Nb-Zr alloys with different porosities from 6.06 to 62.8% are prepared by a two-step foaming powder metallurgy method using TiH2, Nb, and Zr powders together with 0 to 50wt% of NH4HCO3. The effects of the amounts of Nb and Zr as well as the sintering temperature (1473 to 1673K) on their phase composition, porosity, morphology, and mechanical characteristics are investigated. By controlling the porosity, Nb and Zr concentrations as well as the sintering temperature, porous Ti-Nb-Zr alloys with different mechanical properties can be obtained, for example, the hardness between 290 and 63HV, the compressive strength between 1530.5 and 73.4MPa, and the elastic modulus between 10.8 and 1.2GPa. The mechanical properties of the sintered porous Ti-Nb-Zr alloys can be tailored to match different requirements for the human bones and are thus potentially useful in the hard tissue implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.

    PubMed

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol

    2013-03-01

    In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.

  20. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  1. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  2. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  3. A-SITE-AND/OR B-SITE-MODIFIED PBZRTIO3 MATERIALS AND (PB, SR, CA, BA, MG) (ZR, TI,NB, TA)O3 FILMS HAVING UTILITY IN FERROELECTRIC RANDOM ACCESS MEMORIES AND HIGH PERFORMANCE THIN FILM MICROACTUATORS

    NASA Technical Reports Server (NTRS)

    Bilodeau, Steven (Inventor); Baum, Thomas H. (Inventor); Roeder, Jeffrey F. (Inventor); Chen, Ing-Shin (Inventor)

    2004-01-01

    A modified PbZrTiO.sub.3 perovskite crystal material thin film, wherein the PbZrTiO.sub.3 perovskite crystal material includes crystal lattice A-sites and B-sites at least one of which is modified by the presence of a substituent selected from the group consisting of (i) A-site substituents consisting of Sr, Ca, Ba and Mg, and (ii) B-site substituents selected from the group consisting of Nb and Ta. The perovskite crystal thin film material may be formed by liquid delivery MOCVD from metalorganic precursors of the metal components of the thin film, to form PZT and PSZT, and other piezoelectric and ferroelectric thin film materials. The thin films of the invention have utility in non-volatile ferroelectric memory devices (NV-FeRAMs), and in microelectromechanical systems (MEMS) as sensor and/or actuator elements, e.g., high speed digital system actuators requiring low input power levels.

  4. Thermal stability and specular reflection behaviour of CoNbZr-based bottom spin valves with nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Lee, Seong-Rae

    2004-06-01

    The thermal stability and specularity aspects of a CoNbZr-based bottom spin valve (SV) employing a nano-oxide layer (NOL) were investigated. The magnetoresistance (MR) ratio of the as-deposited CoNbZr-based bottom SV increased by 62% (from 6.3 to 10.2%) with incorporation of the NOL. The enhancement of the MR ratio was considered to be due to the specular effect ( increased from 0.722 to 1.363 cm) of the NOL. The MR ratio of a Ta-based bottom SV decreased by about 45% (from 6.9 to 3.8%) when the samples were annealed at 300 °C for 240 min. By contrast, the MR ratio of the CoNbZr-based bottom SV with NOL increase d by 14 % (from 10.2 to 11.7%). The root mean square roughness value of the CoNbZr layer (0.07 nm) was superior to that of the Ta layer (0.43 nm). Although Mn in IrMn diffused out to the surface through the active layers resulting in the formation of Mn oxide at the surface in the CoNbZr-based bottom SV, no trace of Mn was found in the active layers and no significant degradation occurred.

  5. Microstructure and mechanical properties of the NiNbZrTiAl amorphous alloys with 10 and 25 at.% Nb content.

    PubMed

    Czeppe, T; Ochin, P; Sypień, A; Major, L

    2010-03-01

    The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.

  6. Primary radiation damage of Zr-0.5%Nb binary alloy: atomistic simulation by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tikhonchev, M.; Svetukhin, V.; Kapustin, P.

    2017-09-01

    Ab initio calculations predict high positive binding energy (˜1 eV) between niobium atoms and self-interstitial configurations in hcp zirconium. It allows the expectation of increased niobium fraction in self-interstitials formed under neutron irradiation in atomic displacement cascades. In this paper, we report the results of molecular dynamics simulation of atomic displacement cascades in Zr-0.5%Nb binary alloy and pure Zr at the temperature of 300 K. Two sets of n-body interatomic potentials have been used for the Zr-Nb system. We consider a cascade energy range of 2-20 keV. Calculations show close estimations of the average number of produced Frenkel pairs in the alloy and pure Zr. A high fraction of Nb is observed in the self-interstitial configurations. Nb is mainly detected in single self-interstitial configurations, where its fraction reaches tens of percent, i.e. more than its tenfold concentration in the matrix. The basic mechanism of this phenomenon is the trapping of mobile self-interstitial configurations by niobium. The diffusion of pure zirconium and mixed zirconium-niobium self-interstitial configurations in the zirconium matrix at 300 K has been simulated. We observe a strong dependence of the estimated diffusion coefficients and fractions of Nb in self-interstitials produced in displacement cascades on the potential.

  7. The effects of preparation conditions for a BaNbO2 N photocatalyst on its physical properties.

    PubMed

    Hisatomi, Takashi; Katayama, Chisato; Teramura, Kentaro; Takata, Tsuyoshi; Moriya, Yosuke; Minegishi, Tsutomu; Katayama, Masao; Nishiyama, Hiroshi; Yamada, Taro; Domen, Kazunari

    2014-07-01

    BaNbO2 N is a semiconductor photocatalyst active for water oxidation under visible-light irradiation up to λ=740 nm. It is important to understand the nitridation processes of precursor materials to form BaNbO2 N to tune the physical properties and improve the photocatalytic activity. Comprehensive experiments and analyses of temperatures, durations, ammonia flow rates, and barium/niobium ratios in the precursor during the nitridation process reveals that faster ammonia flow rates and higher barium/niobium ratios in the precursors help to suppress reduction of pentavalent niobium ions in the nitridation products and that the use of a precursor prepared by a soft-chemistry route allows the production of BaNbO2 N at lower temperatures in shorter times than the use of physical mixtures of BaCO3 and Nb2 O5 because the niobium species is dispersed among the barium species. BaNbO2 N prepared by the soft-chemistry route exhibits comparatively higher activity than that prepared from physical mixtures of BaCO3 and Nb2 O5 , probably because of lower nitridation temperatures, which suppress excessive dissociation of ammonia, and thereby reduce pentavalent niobium ions, and intimate interaction of niobium and barium sources, which lowers the densities of mid-gap states associated with defects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    PubMed

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  9. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  10. Ba{sub 6}Nb{sub 4}RuO{sub 18}” and “LaBa{sub 4}Nb{sub 3}RuO{sub 15}” – The structural consequences of substituting paramagnetic cations into A{sub n}B{sub n−1}O{sub 3n} cation-deficient perovskite oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamil, Elynor L.; Morgan, Harry W.T.; Hayward, Michael A., E-mail: michael.hayward@chem.ox.ac.uk

    The B-cation deficient perovskite phases Ba{sub 6}Nb{sub 4}RuO{sub 18} and LaBa{sub 4}Nb{sub 3}RuO{sub 15} were prepared by ceramic synthesis. Neutron powder diffraction analysis indicates that rather than the 6-layer and 5-layer cation-deficient perovskite structures expected for these phases (by analogy to the known structures of Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}) they adopt 5-layer and 4-layer B-cation deficient perovskite structures respectively, and are better described as Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}. The factors that lead to the compositionally analogous Nb/Ru and Nb/Ti phases adopting different structures are discussed on themore » basis of the difference between d{sup 0} and non-d{sup 0} transition metal cations. - Graphical abstract: The ruthenium-containing B-cation deficient perovskite phases, Ba{sub 5}Nb{sub 3.33}Ru{sub 0.81}O{sub 15} and Ba{sub 3.16}La{sub 0.84}Nb{sub 2.36}Ru{sub 0.72}O{sub 12}, adopt 5-layer and 4-layer structures respectively, rather than the 6-layer and 5-layer cation-deficient structures adopted by the analogous titanium-containing phases Ba{sub 6}Nb{sub 4}TiO{sub 18} and LaBa{sub 4}Nb{sub 3}TiO{sub 15}. Display Omitted - Highlights: • B-cation deficient perovskite containing paramagnetic cations. • B-cation deficient structure determined by neutron powder diffraction. • Low ‘solubility’ of BaRuO{sub 3} in Ba{sub 5}Nb{sub 4}O{sub 15} leads to novel structure.« less

  11. Creep Strength of Nb-1Zr for SP-100 Applications

    NASA Astrophysics Data System (ADS)

    Horak, James A.; Egner, Larry K.

    1994-07-01

    Power systems that are used to provide electrical power in space are designed to optimize conversion of thermal energy to electrical energy and to minimize the mass and volume that must be launched. Only refractory metals and their alloys have sufficient long-term strength for several years of uninterrupted operation at the required temperatures of 1200 K and above. The high power densities and temperatures at which these reactors must operate require the use of liquid-metal coolants. The alloy Nb-1 wt % Zr (Nb-lZr), which exhibits excellent corrosion resistance to alkali liquid-metals at high temperatures, is being considered for the fuel cladding, reactor structural, and heat-transport systems for the SP-100 reactor system. Useful lifetime of this system is limited by creep deformation in the reactor core. Nb-lZr sheet procured to American Society for Testing and Materials (ASTM) specifications for reactor grade and commercial grade has been processed by several different cold work and annealing treatments to attempt to produce the grain structure (size, shape, and distribution of sizes) that provides the maximum creep strength of this alloy at temperatures from 1250 to 1450 K. The effects of grain size, differences in oxygen concentrations, tungsten concentrations, and electron beam and gas tungsten arc weldments on creep strength were studied. Grain size has a large effect on creep strength at 1450 K but only material with a very large grain size (150 μm) exhibits significantly higher creep strength at 1350 K. Differences in oxygen or tungsten concentrations did not affect creep strength, and the creep strengths of weldments were equal to, or greater than, those for base metal.

  12. The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals

    NASA Astrophysics Data System (ADS)

    Xin, Fei-fei

    2017-11-01

    The ultraviolet (UV) band edge photorefractivity of LiNbO3:Zr at 325 nm has been investigated. The experimental results show that the resistance against photorefraction at 325 nm is quite obvious but not as strong as that at 351 nm, when the doping concentration of Zr reaches 2.0 mol%. It is reported that the photorefractivity in other tetravalently doped LiNbO3 crystals, such as LiNbO3:Hf and LiNbO3:Sn, is enhanced dramatically with doping concentration over threshold. Here we give an explicit explanation on such seemly conflicting behaviors of tetravalently doped LiNbO3, which is ascribed to the combined effect of increased photoconductivity and the absorption strength of the band edge photorefractive centers.

  13. Electrochemical Characteristics of Cell Cultured Ti-Nb-Zr Alloys After Nano-Crystallized Si-HA Coating.

    PubMed

    Jeong, Yong-Hoon; Choe, Han-Cheol

    2015-01-01

    The aim of this study was to investigate the electrochemical characteristics of nano crystallized Si-HA coating on Ti-Nb-Zr alloy after human osteoblast like (HOB) cell attachment. The Ti-Nb-Zr alloy was manufactured with 35 wt.% of Nb and 10 wt.% of Zr by arc melting furnace to appropriate physical properties as biomaterials. The HA and Si-substituted coatings were prepared by electron-beam physical vapor deposition method with 0.5, 0.8 and 1.2 wt.% of Si contents, and nano aging treatment was performed 500 degrees C for 1 h. The characteristics of coating surface were analyzed by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. To evaluate of cell attachment on cell cultured surface, the potentiodynamic test was performed on the surface using HOB cells. The results showed that the Si-HA coating surface showed higher tendency of cell attachment than that of single HA coating, corrosion resistance value was increased by dense of cell attachment.

  14. Hysteretic Characteristics of Pulsed Laser Deposited 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3/ZnO Bilayers.

    PubMed

    Silva, J P B; Wang, J; Koster, G; Rijnders, G; Negrea, R F; Ghica, C; Sekhar, K C; Moreira, J Agostinho; Gomes, M J M

    2018-05-02

    In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO 3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.

  15. Dielectric and modulus studies of polycrystalline BaZrO3 ceramic

    NASA Astrophysics Data System (ADS)

    Saini, Deepash S.; Singh, Sunder; Kumar, Anil; Bhattacharya, D.

    2018-05-01

    In the present work, dielectric and modulus studies of polycrystalline BaZrO3 ceramic, prepared by modified combustion method followed by conventional sintering, are investigated over the frequency range of 100 Hz to 106 Hz at different temperatures from 250 to 500 °C in air. The high value of dielectric constant (ɛ' ˜ 103) of BaZrO3 at high temperature and low frequency can be attributed to the Maxwell-Wagner polarization mechanism as well as to the thermally activated mechanism of charge carriers. Electric modulus reveal two type relaxations in the 250 °C to 800 °C temperature region as studied at different frequencies over 100 Hz to 106 Hz in air.

  16. Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.

    PubMed

    Xue, Pengfei; Li, Yan; Li, Kangming; Zhang, Deyuan; Zhou, Chungen

    2015-05-01

    Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti-19Zr-10Nb-1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti-19Zr-10Nb-1Fe alloy is composed of α' and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress-strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading-unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti-19Zr-10Nb-1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti-19Zr-10Nb-1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  18. An intermetallic powder-in-tube approach to increased flux-pinning in Nb 3Sn by internal oxidation of Zr

    DOE PAGES

    Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.; ...

    2017-11-28

    We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less

  19. An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr

    NASA Astrophysics Data System (ADS)

    Motowidlo, L. R.; Lee, P. J.; Tarantini, C.; Balachandran, S.; Ghosh, A. K.; Larbalestier, D. C.

    2018-01-01

    We report on the development of multifilamentary Nb3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO2 powder is mixed with Cu5Sn4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filament tubes. Initial results show an average grain size of ˜38 nm in the A15 layer, compared to the 90-130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. There is a shift in the peak of the pinning force curve from H/H irr of ˜0.2 to ˜0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.

  20. An intermetallic powder-in-tube approach to increased flux-pinning in Nb 3Sn by internal oxidation of Zr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motowidlo, Leszek R.; Lee, P. J.; Tarantini, C.

    We report on the development of multifilamentary Nb 3Sn superconductors by a versatile powder-in-tube technique (PIT) that demonstrates a simple pathway to a strand with a higher density of flux-pinning sites that has the potential to increase critical current density beyond present levels. The approach uses internal oxidation of Zr-alloyed Nb tubes to produce Zr oxide particles within the Nb 3Sn layer that act as a dispersion of artificial pinning centres (APCs). In this design, SnO 2 powder is mixed with Cu 5Sn 4 powder within the PIT core that supplies the Sn for the A15 reaction with Nb1Zr filamentmore » tubes. Initial results show an average grain size of ~38 nm in the A15 layer, compared to the 90–130 nm of typical APC-free high-J c strands made by conventional PIT or Internal Sn processing. Furthermore, there is a shift in the peak of the pinning force curve from H/H irr of ~0.2 to ~0.3 and the pinning force curves can be deconvoluted into grain boundary and point-pinning components, the point-pinning contribution dominating for the APC Nb-1wt%Zr strands.« less

  1. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  2. Composition, response to pressure, and negative thermal expansion in M IIB IVF 6 (M = Ca, Mg; B = Zr, Nb) [Composition, response to pressure, and negative thermal expansion in A IIB IVF 6; A - Ca, Mg, B - Zr, Nb

    DOE PAGES

    Hester, Brett R.; Hancock, Justin C.; Lapidus, Saul H.; ...

    2016-12-27

    CaZrF 6 has recently been shown to combine strong negative thermal expansion (NTE) over a very wide temperature range (at least 10–1000 K) with optical transparency from mid-IR into the UV range. Variable-temperature and high-pressure diffraction has been used to determine how the replacement of calcium by magnesium and zirconium by niobium(IV) modifies the phase behavior and physical properties of the compound. Similar to CaZrF 6, CaNbF 6 retains a cubic ReO 3-type structure down to 10 K and displays NTE up until at least 900 K. It undergoes a reconstructive phase transition upon compression to ~400 MPa at room temperature and pressure-induced amorphization above ~4 GPa. Prior to the first transition, it displays very strong pressure-induced softening. MgZrF 6 adopts a cubic ( Fmmore » $$\\bar{3}$$m) structure at 300 K and undergoes a symmetry-lowering phase transition involving octahedral tilts at ~100 K. Immediately above this transition, it shows modest NTE. Its’ thermal expansion increases upon heating, crossing through zero at ~500 K. Unlike CaZrF 6 and CaNbF 6, it undergoes an octahedral tilting transition upon compression (~370 MPa) prior to a reconstructive transition at ~1 GPa. Cubic MgZrF 6 displays both pressure-induced softening and stiffening upon heating. MgNbF 6 is cubic ( Fm$$\\bar{3}$$m) at room temperature, but it undergoes a symmetry-lowering octahedral tilting transition at ~280 K. It does not display NTE within the investigated temperature range (100–950 K). Furthermore the replacement of Zr(IV) by Nb(IV) leads to minor changes in phase behavior and properties, the replacement of the calcium by the smaller and more polarizing magnesium leads to large changes in both phase behavior and thermal expansion.« less

  3. Composition, response to pressure, and negative thermal expansion in M IIB IVF 6 (M = Ca, Mg; B = Zr, Nb) [Composition, response to pressure, and negative thermal expansion in A IIB IVF 6; A - Ca, Mg, B - Zr, Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, Brett R.; Hancock, Justin C.; Lapidus, Saul H.

    CaZrF 6 has recently been shown to combine strong negative thermal expansion (NTE) over a very wide temperature range (at least 10–1000 K) with optical transparency from mid-IR into the UV range. Variable-temperature and high-pressure diffraction has been used to determine how the replacement of calcium by magnesium and zirconium by niobium(IV) modifies the phase behavior and physical properties of the compound. Similar to CaZrF 6, CaNbF 6 retains a cubic ReO 3-type structure down to 10 K and displays NTE up until at least 900 K. It undergoes a reconstructive phase transition upon compression to ~400 MPa at room temperature and pressure-induced amorphization above ~4 GPa. Prior to the first transition, it displays very strong pressure-induced softening. MgZrF 6 adopts a cubic ( Fmmore » $$\\bar{3}$$m) structure at 300 K and undergoes a symmetry-lowering phase transition involving octahedral tilts at ~100 K. Immediately above this transition, it shows modest NTE. Its’ thermal expansion increases upon heating, crossing through zero at ~500 K. Unlike CaZrF 6 and CaNbF 6, it undergoes an octahedral tilting transition upon compression (~370 MPa) prior to a reconstructive transition at ~1 GPa. Cubic MgZrF 6 displays both pressure-induced softening and stiffening upon heating. MgNbF 6 is cubic ( Fm$$\\bar{3}$$m) at room temperature, but it undergoes a symmetry-lowering octahedral tilting transition at ~280 K. It does not display NTE within the investigated temperature range (100–950 K). Furthermore the replacement of Zr(IV) by Nb(IV) leads to minor changes in phase behavior and properties, the replacement of the calcium by the smaller and more polarizing magnesium leads to large changes in both phase behavior and thermal expansion.« less

  4. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    PubMed

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  5. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M = Ta, Nb) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi

    2014-09-01

    Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.

  6. Synthesis and morphology of Ba1-xRE2x/3Nb2O6 nanocrystals with tungsten bronze structure in RE2O3-BaO-Nb2O5-B2O3 glasses (RE: Sm, Eu, Gd, Dy, Er)

    NASA Astrophysics Data System (ADS)

    Ida, H.; Shinozaki, K.; Honma, T.; Oh-ishi, K.; Komatsu, T.

    2012-12-01

    Ba1-xRE2x/3Nb2O6 nanocrystals with a tetragonal tungsten bronze (TTB) structure are synthesized using a conventional glass crystallization technique in 2.3RE2O3-27.4BaO-34.3Nb2O5-36B2O3 (mol%) (RE=Sm, Eu, Gd, Dy, and Er) glasses. One sharp crystallization peak is observed at ∼670 °C in both powdered and bulk glasses, and the formation of Ba1-xRE2x/3Nb2O6 nanocrystals with unit cell parameters of a∼1.24 nm and c∼0.39 nm was confirmed. It is found from high resolution transmission electron microscope observations that the morphology of Ba1-xRE2x/3Nb2O6 nanocrystals is ellipsoidal. Their average particle size is in the range of 15-60 nm and decreases with decreasing ionic radius of RE3+ being present in the precursor glasses. The optical transparent crystallized glass (bulk) shows the total photoluminescence (PL) quantum yield of 53% in the visible region of Eu3+ ions, suggesting a high potential of Ba1-xRE2x/3Nb2O6 nanocrystals as PL materials.

  7. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  8. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  9. Synthesis and electrical characterization of BaZr0.9Ho0.1O3-δ electrolyte ceramic for IT - SOFCs

    NASA Astrophysics Data System (ADS)

    Saini, Deepash S.; Singh, Lalit K.; Bhattacharya, D.

    2018-04-01

    A cost-effective modified combustion method using citric acid and glycine has recently been developed to synthesize high quality, and nanosized BaZr0.9Ho0.1O3 ceramic powder. BaZr0.9Ho0.1O3-δ ceramic powder was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). XRD pattern of BaZr0.9Ho0.1O3-δ ceramic sintered at 1600 °C has shown that pure phase of BaZr0.9Ho0.1O3-δ with cubic Pm3¯m space group symmetry. The transmission electron microscopic investigation has shown that the particle size of the powder calcined at 1100 °C was in the range 30-80 nm. The FESEM image of sintered pellet at 1600 °C for 4 h reveals porous nature of BaZr0.9Ho0.1O3-δ with 83.7 relative density. Impedance analysis reveal three type relaxations in the temperature range 250 °C to 500 °C as studied at different frequencies over 100 Hz to 1 MHz in air. The grain boundary conductivity of BaZr0.9Ho0.1O3-δ ceramic is found lower then grain (bulk) conductivity due to core-space charge layer behavior in grain boundary.

  10. Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    NASA Astrophysics Data System (ADS)

    Xing, Y. M.; Li, K. A.; Zhang, Y. H.; Zhou, X. H.; Wang, M.; Litvinov, Yu. A.; Blaum, K.; Wanajo, S.; Kubono, S.; Martínez-Pinedo, G.; Sieverding, A.; Chen, R. J.; Shuai, P.; Fu, C. Y.; Yan, X. L.; Huang, W. J.; Xu, X.; Tang, X. D.; Xu, H. S.; Bao, T.; Chen, X. C.; Gao, B. S.; He, J. J.; Lam, Y. H.; Li, H. F.; Liu, J. H.; Ma, X. W.; Mao, R. S.; Si, M.; Sun, M. Z.; Tu, X. L.; Wang, Q.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhang, P.; Zhou, X.; Zhan, W. L.; Litvinov, S.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Fröhlich, C.; Rauscher, T.; Thielemann, F.-K.; Sun, B. H.; Sun, Y.; Dai, A. C.; Xu, F. R.

    2018-06-01

    Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr-Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.

  11. Comparisons of immersion and electrochemical properties of highly biocompatible Ti-15Zr-4Nb-4Ta alloy and other implantable metals for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Okazaki, Yoshimitsu; Nagata, Hiroyuki

    2012-12-01

    Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti-15Zr-4Nb-4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy. The potential (E10) indicating a current density of 10 μA cm-2 estimated from the anodic polarization curve was significantly higher for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy and other metals. Moreover, the oxide film (4-7 nm thickness) formed on the Ti-15Zr-4Nb-4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti-15Zr-4Nb-4Ta was higher than that of Ti-6Al-4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti-15Zr-4Nb-4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.

  12. Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho

    2004-12-01

    The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.

  13. Observation of superconductivity in BaNb2S5

    NASA Astrophysics Data System (ADS)

    Smith, M. G.; Neumeier, J. J.

    2018-06-01

    Bulk superconductivity is reported in BaNb2S5 at the transition temperature Tc = 0.85(1) K. The electrical resistivity ρ versus T is metallic with ρ(2 K) = 42.4 μΩ cm. The magnetic susceptibility is paramagnetic, with temperature-independent contributions due to diamagnetism, Pauli paramagnetism, and Van Vleck paramagnetism; a Curie-Weiss contribution appears to be impurity related. Hall effect measurements show that the majority charge carriers are electrons with charge-carrier concentration n(3 K) = 2.40(2) × 1021 cm-3. Specific heat measurements reveal an electronic specific heat coefficient γ = 11.2(1) mJ/mol K2, a Debye temperature ΘD = 126.4(8) K, and an energy gap associated with the superconducting state of Eg = 0.184(4) meV. Measurements of ρ(T) in magnetic field provide the upper critical magnetic field of about 3055(74) Oe as T → 0 K, which was used to estimate the coherence length ξ = 6.21(15) nm. The results allow classification of BaNb2S5 as a Type II, BCS superconductor in the dirty limit.

  14. ac impedance analysis of a Ni-Nb-Zr-H glassy alloy with femtofarad capacitance tunnels

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Seto, M.; Inoue, A.

    2010-01-01

    A Nyquist diagram of a (Ni0.36Nb0.24Zr0.40)90H10 glassy alloy shows a semitrue circle, indicating that it is a conducting material with a total capacitance of 17.8 μF. The Bode plots showing the dependencies of its real and imaginary impedances, and phase on frequency suggest a simpler equivalent circuit having a resistor in parallel with a capacitor. Dividing the total capacitance (17.8 μF) by the capacitance of a single tunnel (0.9 fF), we deduced that this material has a high number of dielectric tunnels, which can be regarded as regular prisms separated from the electric-conducting distorted icosahedral Zr5Ni5Nb3 clusters by an average of 0.225 nm.

  15. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  16. Thin films sputtered from Ba{sub 2}NdFeNb{sub 4}O{sub 15} multiferroic targets on BaFe{sub 12}O{sub 19} coated substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodeux, Romain; Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac; Michau, Dominique, E-mail: dominique.michau@icmcb.cnrs.fr

    2016-09-15

    Highlights: • Synthesis of Ba{sub 2}NdFeNb{sub 4}O{sub 15}/BaFe{sub 12}O{sub 19} (BaM) heterostructures by RF magnetron sputtering. • Growth of TTB layer were retained regardless of the underlayer (Pt bottom electrode or BaM). • Dielectric and magnetic properties were obtained from the Pt/TTB/BaM/Pt stacks. - Abstract: Ba{sub 2}NdFeNb{sub 4}O{sub 15} tetragonal tungsten bronze (TTB)/BaFe{sub 12}O{sub 19} (BaM) hexaferrite bilayers have been grown by RF magnetron sputtering on Pt/TiO{sub 2}/SiO{sub 2}/Si (PtS) substrates. The BaM layer is textured along (0 0 1) while the TTB layer is multioriented regardless of the PtS or BaM/PtS substrate. Dielectric properties of TTB films are similarmore » to those of bulk, i.e., ε ∼ 150 and a magnetic hysteresis loop is obtained from TTB/BaM bilayers, thanks to the BaM component. This demonstrates the possibility of transferring to 2 dimensional structures the composite multiferroic system TTB/BaM previously identified in 3 dimensional bulk ceramics.« less

  17. The effect of hydrogen content on ballistic transport behaviors in the Ni-Nb-Zr-H glassy alloys.

    PubMed

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni(0.39)Nb(0.25)Zr(0.35))(100-) (x)H(x) (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr(5)Nb(5)Ni(3) clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena.

  18. The Effect of Hydrogen Content on Ballistic Transport Behaviors in the Ni-Nb-Zr-H Glassy Alloys

    PubMed Central

    Fukuhara, Mikio; Umemori, Yoshimasa

    2012-01-01

    The electronic transport behaviors of (Ni0.39Nb0.25Zr0.35)100−xHx (0 ≤ x < 23.5) glassy alloys with subnanostructural icosahedral Zr5Nb5Ni3 clusters have been studied as a function of hydrogen content. These alloys show semiconducting, electric current-induced voltage (Coulomb) oscillation and ballistic transport behaviors. Coulomb oscillation and ballistic transport occur at hydrogen contents between 6.7 and 13.5 at% and between 13.5 and 21.2 at%, respectively. These results suggest that the localization effect of hydrogen in the clusters plays an important role in various electron transport phenomena. PMID:22312246

  19. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  20. Phase transition temperature in the Zr-rich corner of Zr-Nb-Sn-Fe alloys

    NASA Astrophysics Data System (ADS)

    Canay, M.; Danón, C. A.; Arias, D.

    2000-08-01

    The influence of small composition changes on the phase transformation temperature of Zr-1Nb-1Sn-0.2(0.7)Fe alloys was studied in the present work, by electrical resistivity measurements and metallographic techniques. For the alloy with 0.2 at.% Fe we have determined Tα↔α+β=741°C and Tα+β↔β=973°C, and for the 0.7 at.% Fe the transformation temperatures were T α↔α+β=712°C and T α+β↔β=961°C. We have verified that the addition of Sn stabilized the β phase.

  1. Structural and dielectric characteristics of Ba3Ln3Ti5Nb5O30 (Ln = La, Nd, Sm) filled tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Wang; Gao, Ting Ting; Zhu, Xiao Li; Chen, Xiang Ming

    2018-03-01

    In the present work, the structural, dielectric and relaxor ferroelectric properties were investigated for Ba3Ln3Ti5Nb5O30 (Ln = La, Nd, Sm) ceramics. The filled tungsten bronze phase with space group P4/mbm was confirmed for all compositions, while a small amount of secondary phase was detected in Ba3Nd3Ti5Nb5O30 and Ba3Sm3Ti5Nb5O30. The typical relaxor ferroelectric behaviors were observed: a broad peak of dielectric constant shifting to higher temperatures and decreasing its magnitude with increasing frequency and the frequency dispersion obeying the Vogel-Fulcher relationship. The P-E (polarization-electric field) hysteresis loops were obtained for Ba3Ln3Ti5Nb5O30 (Ln = La, Nd, Sm) ceramics at low temperatures. The nanoscale ferroelectric 180° domains with strip-like shape were observed in the paraelectric matrix at room temperature, where the commensurate structural modulations were determined in the domains and incommensurate ones were determined in the matrix. The significant differences were determined between the present ceramics and Ba4Ln2Ti4Nb6O30 and Ba5LnTi3Nb7O30 because of the different distribution patterns of A1 and A2 cations.

  2. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    PubMed

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β <47¯1> β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β <110> β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β <110> β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Synthesis and morphology of Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals with tungsten bronze structure in RE{sub 2}O{sub 3}-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses (RE: Sm, Eu, Gd, Dy, Er)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ida, H.; Shinozaki, K.; Honma, T.

    2012-12-15

    Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals with a tetragonal tungsten bronze (TTB) structure are synthesized using a conventional glass crystallization technique in 2.3RE{sub 2}O{sub 3}-27.4BaO-34.3Nb{sub 2}O{sub 5}-36B{sub 2}O{sub 3} (mol%) (RE=Sm, Eu, Gd, Dy, and Er) glasses. One sharp crystallization peak is observed at {approx}670 Degree-Sign C in both powdered and bulk glasses, and the formation of Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals with unit cell parameters of a{approx}1.24 nm and c{approx}0.39 nm was confirmed. It is found from high resolution transmission electron microscope observations that the morphology of Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals is ellipsoidal. Their average particlemore » size is in the range of 15-60 nm and decreases with decreasing ionic radius of RE{sup 3+} being present in the precursor glasses. The optical transparent crystallized glass (bulk) shows the total photoluminescence (PL) quantum yield of 53% in the visible region of Eu{sup 3+} ions, suggesting a high potential of Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals as PL materials. - Graphical abstract: This figure shows a TEM photograph for the heat-treated (667 Degree-Sign C, 3 h) sample of 2.3Dy{sub 2}O{sub 3}-27.4BaO-34.3Nb{sub 2}O{sub 5}-36B{sub 2}O{sub 3}. An ellipsoidal-shaped Ba{sub 1-x}Dy{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystal with diameters of 17 and 28 nm is observed. The ellipsoidal morphology is a common feature in Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals synthesized by the crystallization of 2.3RE{sub 2}O{sub 3}-27.4BaO-34.3Nb{sub 2}O{sub 5}-36B{sub 2}O{sub 3} glasses. Highlights: Black-Right-Pointing-Pointer Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals with a tetragonal tungsten bronze structure are synthesized. Black-Right-Pointing-Pointer A glass crystallization technique was applied. Black-Right-Pointing-Pointer The morphology of Ba{sub 1-x}RE{sub 2x/3}Nb{sub 2}O{sub 6} nanocrystals

  4. The depolarization performances of 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 ceramics under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Su, Rigu; Nie, Hengchang; Liu, Zhen; Peng, Ping; Cao, Fei; Dong, Xianlin; Wang, Genshui

    2018-02-01

    Several 0.97PbZrO3-0.03Ba(Mg1/3Nb2/3)O3 (0.97PZ-0.03BMN) ceramics were prepared via the columbite precursor method. Their microstructures and pressure-dependent ferroelectric and depolarization performances were then studied. The X-ray diffraction patterns of ground and fresh samples indicate that a main rhombohedral symmetry crystal structure is present in the bulk and that it sits alongside a trace quantity of an orthorhombic antiferroelectric phase that results from the effect of grinding on the surface. The remanent polarization (Pr) of the 0.97PZ-0.03BMN reached 32.4 μC/cm2 at 4.5 kV/mm and ambient pressure. In an in situ pressure-induced current measurement, more than 91% of the retained Pr of the pre-poled sample was released when the pressure was increased from 194 MPa to 238 MPa. That this pressure-driven depolarization should be attributed to the pressure-induced ferroelectric-antiferroelectric phase transition is supported by the emergence of double P-E loops at high hydrostatic pressures. Moreover, the 0.97PZ-0.03BMN ceramics exhibit no temperature-induced phase transitions and little related polarization loss up to 125 °C, which suggests that Pr has excellent thermal stability. The sharp depolarization behavior at low pressures and excellent temperature stability reveal that our 0.97PZ-0.03BMN ceramics exhibit superior performances in mechanical-electrical energy conversion applications.

  5. Synthesis and Characterization of a Perovskite Barium Zirconate (BaZrO[subscript 3]): An Experiment for an Advanced Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Thananatthanachon, Todsapon

    2016-01-01

    In this experiment, the students explore the synthesis of a crystalline solid-state material, barium zirconate (BaZrO3) by two different synthetic methods: (a) the wet chemical method using BaCl[subscript 2]·2H[subscript 2]O and ZrOCl[subscript 2]·8H[subscript 2]O as the precursors, and (b) the solid-state reaction from BaCO[subscript 3] and…

  6. Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.

    2008-12-01

    The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.

  7. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    NASA Astrophysics Data System (ADS)

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-01

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of α-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  8. Partitioning of Nb, Mo, Ba, Ce, Pb, Th and U between immiscible carbonate and silicate liquids: Evaluating the effects of P2O5,F, and carbonate composition

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1993-01-01

    Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.

  9. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications

    PubMed Central

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin

    2018-01-01

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517

  10. The Mechanical Properties and In Vitro Biocompatibility of PM-Fabricated Ti-28Nb-35.4Zr Alloy for Orthopedic Implant Applications.

    PubMed

    Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui

    2018-03-30

    A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.

  11. Dynamic recrystallization behavior of a biomedical Ti-13Nb-13Zr alloy.

    PubMed

    Bobbili, Ravindranadh; Madhu, V

    2016-06-01

    The dynamic recrystallization (DRX) behavior of a biomedical titanium Ti-13Nb-13Zr alloy has been investigated using the high temperature compression tests under wide range of strain rates (0.001-1/s) and temperatures 900-1050°C. A constitutive equation represented as a function of temperature, strain rate and true strain is developed and the hot deformation apparent activation energy is calculated about 534kJ/mol. By considering the exponential relationship between work-hardening rate (θ) and stress, a new mathematical model was proposed for predicting flow stress up to the critical strain during hot deformation. The mathematical model for predicting flow stress up to the critical strain exhibits better consistency and accuracy. The DRX kinetic equation of Ti-13Nb-13Zr alloy is described as XDRX=1-exp[-0.32(Ɛ-ƐcƐ(*))(2.3)] . The DRX kinetic model was validated by microstructure observation. It was also found that the process of DRX was promoted by decreasing strain rate and increasing deformation temperature. Eventually, the continuous dynamic recrystallization (CDRX) was identified to be the DRX mechanism using transmission electron microscope (TEM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Enhanced stability of Zr-doped Ba(CeTb)O(3-δ)-Ni cermet membrane for hydrogen separation.

    PubMed

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-07-25

    A mixed protonic and electronic conductor material BaCe(0.85)Tb(0.05)Zr(0.1)O(3-δ) (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe(0.95)Tb(0.05)O(3-δ) membrane due to the Zr doping.

  13. Phase diagram, chemical stability and physical properties of the solid-solution Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunstan, Matthew T., E-mail: m.dunstan@chem.usyd.edu.au; Southon, Peter D.; Kepert, Cameron J.

    Through the construction of the Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9} phase diagram, it was discovered that the unique high-temperature {gamma} phase is a thermodynamic intermediate between the low-temperature {alpha} phase (Sr{sub 4}Ru{sub 2}O{sub 9}-type) and a 6H-perovskite. Refined site occupancies for the {gamma} phase across the Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9} solid-solution indicate that Nb preferentially occupies the tetrahedral sites over the octahedral sites in the structure. When annealed in a CO{sub 2}-rich atmosphere, all of the phases studied absorb large amounts of CO{sub 2} at high temperatures between {approx}700 and 1300 K. In situ controlled-atmosphere diffraction studies show thatmore » this behaviour is linked to the formation of BaCO{sub 3} on the surface of the material, accompanied by a Ba{sub 5}(Nb,Ta){sub 4}O{sub 15} impurity phase. In situ diffraction in humid atmospheres also confirms that these materials hydrate below {approx}1273K, and that this plays a critical role in the various reconstructive phase transitions as well as giving rise to proton conduction. - Graphical abstract: Thermodynamic phase diagram of Ba{sub 4}Nb{sub 2-x}Ta{sub x}O{sub 9}. Highlights: > {gamma}-Ba{sub 4}Nb{sub 2}O{sub 9} phase is a structural intermediate between the {alpha} and 6H-perovskite phases. > Ba{sub 4}Nb{sub 2}O{sub 9} and Ba{sub 4}Ta{sub 2}O{sub 9} decompose at high temperatures in the presence of CO{sub 2}. > These materials all absorb between 5% and 6% of CO{sub 2} by mass between {approx}800 and 1200 K.« less

  14. Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment

    NASA Astrophysics Data System (ADS)

    Mondol, S.; Makineni, S. K.; Kumar, S.; Chattopadhyay, K.

    2018-07-01

    This paper presents a detailed investigation on the effect of small amount of Nb and Zr additions to 2219 Al alloy coupled with a novel three-stage heat treatment process. The main aim of the work is to increase the high temperature strength of 2219 alloy by introducing thermally stable L12 type ordered precipitates in the matrix as well as by reducing the coarsening of metastable strengthening θ″ and θ' precipitates. To achieve this, small amounts of Nb and Zr are added to 2219 alloy melt and retained in solid solution by suction casting in a water-cooled copper mould having a cooling rate of 102 to 103 K/s. The suction cast alloy is directly aged at 673 K (400 °C) to form L12 type ordered coherent Al3Zr precipitates. Subsequently, the alloy is solution treated at 808 K (535 °C) for 30 minutes to get supersaturation of Cu in the matrix without significantly affecting the Al3Zr precipitates. Finally, the alloy is aged at 473 K (200 °C), which results in the precipitation of θ″ and θ'. Microstructural characterization reveals that θ″ and θ' are heterogeneously precipitated on pre-existing uniformly distributed Al3Zr precipitates, which leads to a higher number density of these precipitates. This results in a significant increase in strength at room temperature as well as at 473 K (200 °C) as compared to the 2219 alloy. Furthermore, the alloy remains thermally stable after prolonged exposure at 473 K (200 °C), which is attributed to the elastic strain energy minimization by the conjoint Al3Zr/ θ' or Al3Zr/ θ″ precipitates, and the high Zr and Nb solute-vacancy binding energy, retarding the growth and coarsening of θ″ and θ' precipitates.

  15. Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment

    NASA Astrophysics Data System (ADS)

    Mondol, S.; Makineni, S. K.; Kumar, S.; Chattopadhyay, K.

    2018-05-01

    This paper presents a detailed investigation on the effect of small amount of Nb and Zr additions to 2219 Al alloy coupled with a novel three-stage heat treatment process. The main aim of the work is to increase the high temperature strength of 2219 alloy by introducing thermally stable L12 type ordered precipitates in the matrix as well as by reducing the coarsening of metastable strengthening θ″ and θ' precipitates. To achieve this, small amounts of Nb and Zr are added to 2219 alloy melt and retained in solid solution by suction casting in a water-cooled copper mould having a cooling rate of 102 to 103 K/s. The suction cast alloy is directly aged at 673 K (400 °C) to form L12 type ordered coherent Al3Zr precipitates. Subsequently, the alloy is solution treated at 808 K (535 °C) for 30 minutes to get supersaturation of Cu in the matrix without significantly affecting the Al3Zr precipitates. Finally, the alloy is aged at 473 K (200 °C), which results in the precipitation of θ″ and θ'. Microstructural characterization reveals that θ″ and θ' are heterogeneously precipitated on pre-existing uniformly distributed Al3Zr precipitates, which leads to a higher number density of these precipitates. This results in a significant increase in strength at room temperature as well as at 473 K (200 °C) as compared to the 2219 alloy. Furthermore, the alloy remains thermally stable after prolonged exposure at 473 K (200 °C), which is attributed to the elastic strain energy minimization by the conjoint Al3Zr/θ' or Al3Zr/θ″ precipitates, and the high Zr and Nb solute-vacancy binding energy, retarding the growth and coarsening of θ″ and θ' precipitates.

  16. Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Zhang, Jihua; Wei, Meng; Dong, Xiangxiang; Huang, Jiapeng; Wu, Kaituo; Chen, Hongwei

    2018-02-01

    (1 - x) (Ba0.65Sr0.35TiO3)-xBiNbO4 (x = 0.0-0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization-electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

  17. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  18. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less

  19. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  20. A-Site Cation Substitutions in Strained Y-Doped BaZrO 3 Multilayer Films Leading to Fast Proton Transport Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aruta, Carmela; Han, Chu; Zhou, Si

    Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO 3 grown by pulsed lased deposition on NdGaO 3. Our study shows that our BaZr 0.8Y 0.2O 3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba 2+, and that these substitutional defects agglomerate forming columnarmore » regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.« less

  1. Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.

    2018-02-01

    To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.

  2. Effects of the accumulated annealing parameter on the corrosion characteristics of a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy

    NASA Astrophysics Data System (ADS)

    Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, In Sup

    2000-07-01

    Corrosion behavior, hydrogen pickup, oxide microstructure, and precipitate characterization have been studied in order to investigate the effect of the accumulated annealing parameter on the corrosion characteristics in a Zr-Nb-Sn-Fe-Cr alloy. An autoclave corrosion test was carried out in 400°C steam for 300 days on the Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy, which had been given 18 different accumulated annealing parameters. The corrosion rate increased with increasing the accumulated annealing parameter. To investigate the crystal structure of oxide layer, the corroded specimens were prepared to have an equal oxide thickness (˜1.6 μm) by controlling exposure time. The relative fraction of tetragonal ZrO 2 also decreased gradually with increasing accumulated annealing parameter. From the hydrogen analysis of the corroded samples for 300 days, it was observed that, with increasing the size of precipitates, the hydrogen pickup was enhanced. It was revealed from transmission electron microscope (TEM) observation of the oxide that the larger precipitates still remained to be oxidized in the oxide layer and had undergone a reduction of Fe/Cr ratio from 2.1 to 1.5. The oxidation of the precipitates in the oxide gave rise to a volume expansion at the precipitate-oxide interface. This volume change could lead to the transformation in the oxide phase from tetragonal ZrO 2 to monoclinic ZrO 2 and in oxide structure from columnar grain to equiaxed grain. The precipitate in a Zr-0.5Nb-1.0Sn-0.5Fe-0.25Cr alloy is composed of Nb, Fe, and Cr and the Nb content in the precipitate increase with increasing accumulated annealing parameter. Thus, it can be thought that Nb within precipitates plays a key role in the microstructural change of oxide.

  3. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  4. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  5. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    NASA Astrophysics Data System (ADS)

    Selvamanickam, V.; Chen, Y.; Shi, T.; Liu, Y.; Khatri, N. D.; Liu, J.; Yao, Y.; Xiong, X.; Lei, C.; Soloveichik, S.; Galstyan, E.; Majkic, G.

    2013-03-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm-2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m-3. The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  6. Understanding cation ordering and oxygen vacancy site preference in Ba3CaNb2O9 from first-principles

    NASA Astrophysics Data System (ADS)

    Ding, Hepeng; Virkar, Anil; Liu, Feng

    2014-03-01

    We investigate the physical mechanism underlying the formation of the B-site cation ordering and the oxygen vacancy site selection in Ba3CaNb2O9 using density functional theory calculations. We found that either cation site exchange or oxygen vacancy formation induces negligible lattice strain. This implies that the ionic radius plays an insignificant role in governing these two processes. Furthermore, the electrostatic interactions are found dominant in the ordering of mixed valence species on one or more sites, the ionic bond strength is identified as the dominant force in governing both the 1:2 B-site cation ordering along the <111>direction and the oxygen vacancy site preference in Ba3CaNb2O9. Specifically, the cation ordering can be rationalized by the increased mixing bonding energy of the Ca-O-Nb bonds over the Ca-O-Ca and Nb-O-Nb bonds, i.e., 1/2(Ca-O-Ca + Nb-O-Nb) Nb while oxygen vacancy prefers a site to minimize the electrostatic energy and to break the weaker B-O-B bond. Funded by DOE EFRC Grant Number DE-SC0001061 as a flow through from the University of South Carolina.

  7. Dielectric relaxation in 0-3 PVDF-Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, K. P., E-mail: kpchandra23@gmail.com; Singh, Rajan; Kulkarni, A. R., E-mail: ajit2957@gmail.com

    2016-05-06

    (1-x)PVDF-xBa(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15 were prepared using melt-mixing technique. The crystal symmetry, space group and unit cell dimensions were determined from the XRD data of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} using FullProf software, whereas crystallite size and lattice strain were estimated using Williamson-Hall approach. The distribution of Ba(Fe{sub 1/2}Nb{sub 1/2})O{sub 3} particles in the PVDF matrix were examined on the cryo-fractured surfaces using a scanning electron microscope. Cole-Cole and pseudo Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Filler concentration dependent real and imaginary parts ofmore » dielectric constant as well as ac conductivity data followed definite trends of exponential growth types of variation.« less

  8. Crystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Moon, Keon Ho; Avdeev, Maxim; Kim, Young-Il

    2017-10-01

    Oxynitride type complex perovskites AM0.2Nb0.8O3-xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm 3 ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3-xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3-xNx had wider band gaps (1.76-2.15 eV for A = Sr and 1.65-2.10 eV for A = Ba), but significantly lower sub-gap absorption.

  9. Proximity to a ferroelectric instability in Ba1-xCaxZrO3

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Christen, H. M.; Biegalski, M. D.; Singh, D. J.

    2010-09-01

    Ferroelectricity in ABO3 perovskites driven by A-site disorder is seen as a powerful approach toward lead-free piezoelectrics and ferroelectrics as well as to forming multiferroic compounds. Here we investigate the Ba1-xCaxZrO3 solid solution by structural and dielectric measurements on pulsed laser deposition grown films and by first principles calculations. Films on SrRuO3-coated SrTiO3 substrates are studied for x between 0 and 0.44. Despite the expectation that the Ca-ions assume off-center positions in the perovskite lattice, dielectric measurements show no evidence for ferroelectricity. This behavior is explained by first principles supercell calculations that show ferroelectricity at expanded volume but a rapid suppression thereof as the volume is reduced, thus indicating that our paraelectric Ba1-xCaxZrO3 films are close to a ferroelectric instability. These results demonstrate the important interplay between unit cell volume and ferroelectricity arising from off-centered ions.

  10. Incommensurate and commensurate modulations of Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd) tungsten bronzes and the ferroelectric domain structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Min Min; Li, Kun; Zhu, Xiao Li

    2015-04-07

    Incommensurate and commensurate structural modulations of Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd) tungsten bronze ceramics were investigated by using a cooling holder equipped transmission electron microscopy in the temperature range from 100 K to 363 K. The incommensurate modulation was observed in both Ba{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30} and Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30} at room temperature, while there was a transition from incommensurate tilted structure to commensurate superstructure for Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30} with decreasing temperature. The incommensurate and commensurate modulations were determined by the A-site occupancy of Ba and R cations. The A-site disorder resulted in larger incommensurabilitymore » parameter δ and the diffusion of the satellite reflection spots. The effect of A-site disorder on the coupling between long-range dipolar order and the commensurate modulation was also discussed. The obvious ferroelectric 180° domains with spike-like shape parallel to c axis were observed for Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30}, while no macro ferroelectric domain was determined for Ba{sub 5}LaTi{sub 3}Nb{sub 7}O{sub 30}.« less

  11. High strength Sn-Mo-Nb-Zr alloy tubes and method of making same

    DOEpatents

    Cheadle, Brian A.

    1977-01-01

    Tubes for use in nuclear reactors fabricated from a quaternary alloy comprising 2.5-4.0 wt% Sn, 0.5-1.5 wt% Mo, 0.5-1.5 wt% Nb, balance essentially Zr. The tubes are fabricated by a process of hot extrusion, heat treatment, cold working to size and age hardening, so as to produce a microstructure comprising elongated .alpha. grains with an acicular transformed .beta. grain boundary phase.

  12. Structure and Electrical-Transport Relations in Ba(Zr,Pr)O3-δ Perovskites.

    PubMed

    Antunes, Isabel; Amador, Ulises; Alves, Adriana; Correia, Maria Rosário; Ritter, Clemens; Frade, Jorge Ribeiro; Pérez-Coll, Domingo; Mather, Glenn C; Fagg, Duncan Paul

    2017-08-07

    Members of the perovskite solid solution BaZr 1-x Pr x O 3-δ (0.2 ≤ x ≤ 0.8) with potential high-temperature electrochemical applications were synthesized via mechanical activation and high-temperature annealing at 1250 °C. Structural properties were examined by Rietveld analysis of neutron powder diffraction and Raman spectroscopy at room temperature, indicating rhombohedral symmetry (space group R3̅c) for members x = 0.2 and 0.4 and orthorhombic symmetry (Imma) for x = 0.6 and 0.8. The sequence of phase transitions for the complete solid solution from BaZrO 3 to BaPrO 3 is Pm3̅m → R3̅c → Imma → Pnma. The structural data indicate that Pr principally exists as Pr 4+ on the B site and that oxygen content increases with higher Pr content. Electrical-conductivity measurements in the temperature range of 250-900 °C in dry and humidified (pH 2 O ≈ 0.03 atm) N 2 and O 2 atmospheres revealed an increase of total conductivity by over 2 orders of magnitude in dry conditions from x = 0.2 to x = 0.8 (σ ≈ 0.08 S cm -1 at 920 °C in dry O 2 for x = 0.8). The conductivity for Pr contents x > 0.2 is attributable to positively charged electronic carriers, whereas for x = 0.2 transport in dry conditions is n-type. The change in conduction mechanism with composition is proposed to arise from the compensation regime for minor amounts of BaO loss changing from predominantly partitioning of Pr on the A site to vacancy formation with increasing Pr content. Conductivity is lower in wet conditions for x > 0.2 indicating that the positive defects are, to a large extent, charge compensated by less mobile protonic species. In contrast, the transport mechanism of the Zr-rich composition (x = 0.2), with much lower electronic conductivity, is essentially independent of moisture content.

  13. Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumdar, P., E-mail: m.pallab@gmail.com; Singh, S.B.; Chakraborty, M.

    2010-12-15

    Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedicalmore » Ti-alloys.« less

  14. Effect of calcium pyrophosphate on microstructural evolution and in vitro biocompatibility of Ti-35Nb-7Zr composite by spark plasma sintering.

    PubMed

    Zhang, L; Tan, J; He, Z Y; Jiang, Y H

    2018-09-01

    β-type Ti-35Nb-7Zr alloy has attracted considerable attentions as a bone implant material. The alloy, however, has poor bioactivity, which difficult to form a strong osseointegration between the bone tissues. Combining Ti alloy with a bioactive and biodegradable ceramic has been of interest to researchers. But the large difference in physicochemical property of high-melting metal and ceramic elements would bring the manufacturing restriction. In this work, Ti-35Nb-7Zr-CPP composites were fabricated with mechanical alloy of Ti, Nb, Zr and Nano calcium pyrophosphate (CPP) powders mixture followed by spark plasma sintering (SPS) routes. The effect of CPP ceramic on microstructural evolution and in vitro biocompatibility were investigated. As the addition of CPP (10-30 wt%), ceramic elements spreading towards the matrix, the generated metal-ceramic bioactive phases CaTiO 3 are observed well consolidated with β-Ti matrix. With the CPP increasing, Ca and P atoms rapidly migrated to the β-Ti matrix to form granulated Ti 5 P 3 , which leads to the increasing porosity (10%-18%) in the composites. The results demonstrated that the favorable cell viability (the cell proliferation rates were higher than 100%) and growth inside the pores of the composites arise from the rough micro-porous surface and the release of bioactive metal-ceramic phase ions into the biological environment. The enhanced bioactivity and microstructural evolution behaviors of the Ti-35Nb-7Zr-CPP composites may provide a strategy for designing and fabricating multifunctional implants. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Study on ( n,t) Reactions of Zr, Nb and Ta Nuclei

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2012-04-01

    The world faces serious energy shortages in the near future. To meet the world energy demand, the nuclear fusion with safety, environmentally acceptability and economic is the best suited. Fusion is attractive as an energy source because of the virtually inexhaustible supply of fuel, the promise of minimal adverse environmental impact, and its inherent safety. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Because, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. And also, the success of fusion power system is dependent on performance of the first wall, blanket or divertor systems. So, the performance of structural materials for fusion power systems, understanding nuclear properties systematic and working out of ( n,t) reaction cross sections are very important. Zirconium (Zr), Niobium (Nb) and Tantal (Ta) containing alloys are important structural materials for fusion reactors, accelerator-driven systems, and many other fields. In this study, ( n,t) reactions for some structural fusion materials such as 88,90,92,94,96Zr, 93,94,95Nb and 179,181Ta have been investigated. The calculated results are discussed andcompared with the experimental data taken from the literature.

  16. Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics.

    PubMed

    Ferluccio, Daniella A; Smith, Ronald I; Buckman, Jim; Bos, Jan-Willem G

    2018-02-07

    The half-Heuslers NbCoSn and NbCoSb have promising thermoelectric properties. Here, an investigation of the NbCo 1+y Sn 1-z Sb z (y = 0, 0.05; 0 ≤ z ≤ 1) solid-solution is presented. In addition, the p-type doping of NbCoSn using Ti and Zr substitution is investigated. Rietveld analysis reveals the gradual creation of Nb vacancies to compensate for the n-type doping caused by the substitution of Sb in NbCoSn. This leads to a similar valence electron count (∼18.25) for the NbCo 1+y Sn 1-z Sb z samples (z > 0). Mass fluctuation disorder due to the Nb vacancies strongly decreases the lattice thermal conductivity from 10 W m -1 K -1 (z = 0) to 4.5 W m -1 K -1 (z = 0.5, 1). This is accompanied by a transition to degenerate semiconducting behaviour leading to large power factors, S 2 /ρ = 2.5-3 mW m -1 K -2 and figures of merit, ZT = 0.25-0.33 at 773 K. Ti and Zr can be used to achieve positive Seebeck values, e.g. S = +150 μV K -1 for 20% Zr at 773 K. However, the electrical resistivity, ρ 323K = 27-35 mΩ cm, remains too large for these materials to be considered useful p-type materials.

  17. Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications.

    PubMed

    Zhang, Qingmeng; Luo, Jun; Tang, Qun; Han, Dongfang; Zhou, Yi; Du, Jun

    2012-11-01

    Nanocomposite dielectrics in 6PbO-4BaO-20Na2O-40Nb2O5-30SiO2 system were prepared via melt-quenching followed by controlled crystallization. X-ray diffraction studies reveal that Pb2Nb2O7, Ba,NaNb5O15, NaNbO3 and PbNb2O6 phases are formed from the as-quenched glass annealed in temperature range from 700 degrees C to 850 degrees C. Ba2NaNb5O15, Pb2Nb2O7 crystallizes at 700 degrees C and then Pb2Nb2O7 disappears at 850 degrees C, while PbNb2O6 and NaNbO3 are formed at 850 degrees C. Microstructural observation shows that the crystallized particles are nanometer-sized and randomly distributed with glass matrix being often found at grain boundaries. The dielectric constant of the nanocomposites formed at different crystallization temperatures shows good frequency and electric field stability. The breakdown strength is slightly decreased when the glass-ceramics thickness is varied from 1 mm to 4 mm. The corresponding energy density could reach 2.96 J/cm3 with a breakdown strength of 58 kV/mm for thickness of 1 mm.

  18. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  19. High-temperature Mechanical Properties and Microstructure of ZrTiHfNbMox (x=0.5, 1.0, 1.5) Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.

  20. Re-entrant relaxor behavior of Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd, Sm) tungsten bronze ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kun; Li Zhu, Xiao; Qiang Liu, Xiao

    2013-03-18

    Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd, Sm) tungsten bronze ceramics were prepared, and the dielectric and ferroelectric properties were investigated over a broad temperature range. The relaxor nature was determined for all compositions in their permittivity curves, and a second anomaly of the dielectric loss (tan {delta}) was observed around 250 K in Ba{sub 5}NdTi{sub 3}Nb{sub 7}O{sub 30} and around 275 K in Ba{sub 5}SmTi{sub 3}Nb{sub 7}O{sub 30}. Both the maximum and remanent polarization tended to decrease and vanish at low temperatures in the ferroelectric phase for all compositions, which was referred to as the low temperaturemore » re-entrant relaxor behavior. The remanent polarization increased with decreasing temperature first and then reached the maximum value at the re-entrant temperature (T{sub r}). For Ba{sub 5}RTi{sub 3}Nb{sub 7}O{sub 30} (R = La, Nd, Sm), T{sub r} decreased with the radius of R{sup 3+} cations and the applied field amplitude.« less

  1. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  3. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  4. Investigation of static properties of medical alloys Ti-(20-30)Nb-(10-13)Ta-5Zr

    NASA Astrophysics Data System (ADS)

    Sergienko, K. V.; Sevost’yanov, M. A.; Konushkin, S. V.; Nasakina, E. O.; Baikin, A. S.; Shatova, L. A.; Kolmakov, A. G.

    2018-04-01

    In the work, static properties of TiNbTaZr titanium alloy were carried out. The search for a NiTi alloy replacement is necessary for medical products to eliminate the negative effects of nickel on the body. Conclusions are drawn about the adequacy of the mechanical properties of the test alloy for use in stent implants.

  5. B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide

    NASA Astrophysics Data System (ADS)

    Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong

    2018-06-01

    Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.

  6. Features of structure formation in the low modulus quasi-single crystal from Zr-25%Nb alloy at cold rolling

    NASA Astrophysics Data System (ADS)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Babich, Y.; Zaripova, M.; Krapivka, N.

    2018-05-01

    The paper presents the results of investigation of the regularities of the structure and texture formation during rolling of single crystals of Zr-25%Nb alloy differing in their initial orientations relative to the external principal directions in the rolled plate: normal (ND) and rolling directions (RD). The features of rolled single crystals with initial orientations of planes {001}, {011} or {111} parallel to the rolling plane and different crystallographic directions along RD are considered. A comparison of the peculiarities of plastic deformation in a polycrystalline alloy of the same composition is made. For the samples studied, a decrease in the lattice parameter of the β-phase has been recorded, the minimum of the parameter being observed for different degrees of deformation, varying from 20 to 50%. Observed decrease in the unit cell parameter can be connected with the precipitation of the α(α')-Zr phase from the deformed nonequilibrium β-phase of the Zr-25%Nb alloy, i.e. change in the composition of the solid solution. Distributions of the increase in the dimensions of the deformed single crystal along RD and the transverse direction (TD) with its deformation up to 30% in thickness, which indicate the anisotropy of the plasticity of single crystals during their rolling, are constructed on stereographic projection. It is shown, that the deformation of single crystals occurs practically without increasing of their dimensions in the <110> direction with a total thickness deformation of up to 30%. Direction <110> is characterized by maximum hardening (microhardness) with indentation along it, which causes low plasticity of deformed and annealed foils from Zr-25%Nb alloy at the stretching along and across RD, that is connected with the features of their crystallographic texture.

  7. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    NASA Astrophysics Data System (ADS)

    Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel

    2016-11-01

    A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  8. Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO 2

    DOE PAGES

    Perriot, R.; Liu, X. -Y.; Stanek, C. R.; ...

    2015-01-08

    The diffusivity of the solid fission products (FP) Zr (Zr 4+), Ru (Ru 4+, Ru 3+), Ce (Ce 4+), Y (Y 3+), La (La 3+), Sr (Sr 2+) and Ba (Ba 2+) by a vacancy mechanism has been calculated, using a combination of density functional theory (DFT) and empirical potential (EP) calculations. The activation energies for the solid fission products are compared to the activation energy for Xe fission gas atoms calculated previously. Apart from Ru, the solid fission products all exhibit higher activation energy than Xe. Furthermore, for all solid FPs except Y 3+, the migration of the FPmore » has lower barrier than the migration of a neighboring U atom, making the latter the rate limiting step for direct migration. An indirect mechanism, consisting of two successive migrations around the FP, is also investigated. The calculated diffusivities show that most solid fission products diffuse with rates similar to U self-diffusion. But, Ru, Ba and Sr exhibit faster diffusion than the other solid FPs, with Ru 3+ and Ru 4+ diffusing even faster than Xe for T < 1200 K. The diffusivities correlate with the observed fission product solubility in UO 2, and the tendency to form metallic and oxide second phase inclusions.« less

  9. [Radioactive nuclides in the marine environment--distribution and behaviour of 95Zr, 95Nb originated from fallout].

    PubMed

    Yamato, A; Miyagawa, N; Miyanaga, N

    1984-07-01

    To investigate behaviour of 95Zr, 95Nb in the marine environment, various samples have been collected and measured by means of Ge(Li) gamma-ray spectrometry and/or radiochemical analysis during a period from 1974 to 1982 at coastal area of Tokai-mura, Ibaraki prefecture. Concentration of the nuclides in seaweeds increased remarkably after atmospheric nuclear detonation by P.R. of China, and the activity ratio between the nuclides changed by time was not fit well by the transient decay equation. Concentration variation in sea water was smaller than that in sea weeds, and the minimum change in sea sediment. Increase of concentration in these environmental samples was observed in chronological order of sea water, sea weeds then sediment after detonations, suggesting that the uptake of the nuclides by these sea weeds from sea water is faster than that via root. Observed concentration factors on the nuclides by sea weeds were calculated from the observed concentrations in sea water and sea weeds. Maximum values on 95Zr and 95Nb were 2110, 2150, respectively for Ecklonia cava and Eisenia bicyclis.

  10. Effects of shot-peening and atmospheric-pressure plasma on aesthetic improvement of Ti-Nb-Ta-Zr alloy for dental applications

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Suzuki, Yuu; Ito, Michiko; Yamada, Motoko; Matsutake, Sinpei; Takashima, Seigo; Sato, Hisashi; Watanabe, Yoshimi

    2018-01-01

    Ti and Ti alloys are widely used for biomedical applications such as artificial joints and dental devices because of their good mechanical properties and biochemical compatibility. However, dental devices made of Ti and Ti alloys do not have the same color as teeth, so they are inferior to ceramics and polymers in terms of aesthetic properties. In a previous study, Ti-29Nb-13Ta-4.6Zr was coated with a white Ti oxide layer by heat treatment to improve its aesthetic properties. Shot-peening is a severe plastic deformation process and can introduce a large shear strain on the peened surface. In this study, the effects of shot-peening and atmospheric-pressure plasma on Ti-29Nb-13Ta-4.6Zr were investigated to form a white layer on the surface for dental applications.

  11. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    PubMed

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques.

    PubMed

    Secchi, Valeria; Franchi, Stefano; Santi, Marta; Vladescu, Alina; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Dettin, Monica; Zamuner, Annj; Iucci, Giovanna; Battocchio, Chiara

    2018-03-07

    In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

  13. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques

    PubMed Central

    Franchi, Stefano; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Zamuner, Annj

    2018-01-01

    In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization. PMID:29518968

  14. Origin of high thermoelectric performance of FeNb1−xZr/HfxSb1−ySny alloys: A first-principles study

    PubMed Central

    Zhang, Xiwen; Wang, Yuanxu; Yan, Yuli; Wang, Chao; Zhang, Guangbiao; Cheng, Zhenxiang; Ren, Fengzhu; Deng, Hao; Zhang, Jihua

    2016-01-01

    The previous experimental work showed that Hf- or Zr-doping has remarkably improved the thermoelectric performance of FeNbSb. Here, the first-principles method was used to explore the possible reason for such phenomenon. The substitution of X (Zr/Hf) atoms at Nb sites increases effective hole-pockets, total density of states near the Fermi level (EF), and hole mobility to largely enhance electrical conductivity. It is mainly due to the shifting the EF to lower energy and the nearest Fe atoms around X atoms supplying more d-states to hybrid with X d-states at the vicinity of the EF. Moreover, we find that the X atoms indirectly affect the charge distribution around Nb atoms via their nearest Fe atoms, resulting in the reduced energy difference in the valence band edge, contributing to enhanced Seebeck coefficients. In addition, the further Bader charge analysis shows that the reason of more holes by Hf-doping than Zr in the experiment is most likely derived from Hf atoms losing less electrons and the stronger hybridization between Hf atoms and their nearest Fe atoms. Furthermore, we predict that Hf/Sn co-doping may be an effective strategy to further optimize the thermoelectric performance of half-Heusler (HH) compounds. PMID:27604826

  15. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    PubMed

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  16. Characterization of the microstructure of Nb-1wt.%Zr-0.1wt.%C tubes as affected by thermomechanical processing

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1993-01-01

    Microstructure of Nb-1Zr-0.1C tubes were characterized as affected by extrusion temperature of the tube shell and its thermomechanical processing to tubing. Two tube shells of about 40-mm outside diameter (OD) and 25-mm inside diameter (ID) were extruded 8:1 from a vacuum arc-melted ingot at 1900 and 1550 K. Two different OD tubes of approximately 0.36-mm wall thickness were fabricated from each tube shell by a series of 26 cold drawing operations with two in process anneals. The microstructure of tube shells and the tubing before and after a 2-step heat treatment were characterized. Residue extracted chemically from each sample was also analyzed to identify the precipitates. The results concerning the effect of the initial extrusion temperature and subsequent processing on the microstructure of the tubes are presented together with a review of results from similar work on Nb-1Zr-0.1C sheet stock.

  17. Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-δ electrolyte Protonic Ceramic Fuel Cell

    NASA Astrophysics Data System (ADS)

    Nasani, Narendar; Ramasamy, Devaraj; Mikhalev, Sergey; Kovalevsky, Andrei V.; Fagg, Duncan P.

    2015-03-01

    The present work deals with the fabrication and electrochemical characterisation of a potential protonic ceramic fuel cell based on a Ni-BaZr0.85Y0.15O3-δ anode supported thin film proton conducting BaCe0.4Zr0.4Y0.2O3-δ electrolyte with a Pr2NiO4+δ cathode. Anode and electrolyte materials were prepared by an acetate-H2O2 combustion method. A thin (∼5 μm), dense and crack free BaCe0.4Zr0.4Y0.2O3-δ electrolyte film was successfully obtained on a porous anode support by spin coating and firing at 1450 °C. Maximum power densities of 234, 158, 102 and 63 mW cm-2 at 700, 650, 600 and 550 °C, respectively were achieved for the Ni-BaZr0.85Y0.15O3-δ/BaCe0.4Zr0.4Y0.2O3-δ/Pr2NiO4+δ single cell under fuel cell testing conditions. Electrode polarisation resistance was assessed at open circuit conditions by use of electrochemical impedance spectroscopy (EIS) and is shown to dominate the area specific resistance at low temperatures. Postmortem analysis by scanning electron microscopy (SEM), reveals that no delamination occurs at anode/electrolyte or electrolyte/cathode interfaces upon cell operation.

  18. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Chan, W. K.; Wilkens, B.; Gilchrist, H.; Sands, T.; Tarascon, J. M.; Keramidas, V. G.; Fork, D. K.; Lee, J.; Safari, A.

    1992-09-01

    Fatigue and retention characteristics of ferroelectric lead zirconate titanate thin films grown with Y-Ba-Cu-O(YBCO) thin-film top and bottom electrodes are found to be far superior to those obtained with conventional Pt top electrodes. The heterostructures reported here have been grown in situ by pulsed laser deposition on yttria-stabilized ZrO2 buffer [100] Si and on [001] LaAlO3. Both the a- and c-axis orientations of the YBCO lattice have been used as electrodes. They were prepared using suitable changes in growth conditions.

  19. Effect of two-stage sintering on dielectric properties of BaTi0.9Zr0.1O3 ceramics

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Rani, Renu; Kumar, Parveen; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-09-01

    The effect of two-stage sintering on the dielectric properties of BaTi0.9Zr0.1O3 ceramics prepared by solid state route was investigated and is presented here. It has been found that under suitable two-stage sintering conditions, dense BaTi0.9Zr0.1O3 ceramics with improved electrical properties can be synthesized. The density was found to have a value of 5.49 g cc-1 for normally sintered samples, whereas in the case of the two-stage sintered sample it was 5.85 g cc-1. Dielectric measurements were done as a function of frequency and temperature. A small decrease in the Curie temperature was observed with modification in dielectric loss for two-stage sintered ceramic samples.

  20. Self-assembled Co-BaZrO 3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars

    DOE PAGES

    Huang, Jijie; Li, Leigang; Lu, Ping; ...

    2017-05-11

    A simple one-step pulsed laser deposition (PLD) method has been applied to grow self-assembled metal-oxide nanocomposite thin films. The as-deposited Co-BaZrO 3 films show high epitaxial quality with ultra-fine vertically aligned Co nanopillars (diameter <5 nm) embeded in BZO matrix. The diameter of the nanopillars can be further tuned by varying the deposition frequency. The metal and oxide phases grow separately without inter-diffusion or mixing. Taking advantage of this unique structure, a high saturation magnetization of ~1375 emu/cm 3 in the Co- BaZrO 3 nanocomposites has been achieved and further confirmed by Lorentz microscopy imaging in TEM. Furthermore, the coercivitymore » values of this nanocomposite thin films range from 600 Oe (20 Hz) to 1020 Oe (2 Hz), which makes the nanocomposite an ideal candidate for high-density perpendicular recording media.« less

  1. Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie V.; Petranovskaya, A. L.; Gorbyk, P. P.; Korduban, A. M.; Markovsky, P. E.; Ivasishin, O. M.

    2015-08-01

    A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)—synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.

  2. TEM study on a new Zr-(Fe, Cu) phase in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cu alloy

    NASA Astrophysics Data System (ADS)

    Liu, Yushun; Qiu, Risheng; Luan, Baifeng; Hao, Longlong; Tan, Xinu; Tao, Boran; Zhao, Yifan; Li, Feitao; Liu, Qing

    2018-06-01

    A new Zr-(Fe, Cu) phase was found in furnace-cooled Zr-1.0Sn-0.3Nb-0.3Fe- 0.1Cu alloy and alloys aged at 580 °C for 10min, 2 h and 10 h. Electron diffraction experiment shows the crystal structure of this phase to be body-centered tetragonal with unit cell dimensions determined to be a = b = 6.49 Å, c = 5.37 Å. Its possible space groups have been discussed and the reason accounting for its formation is believed to be the addition of Cu according to the atom-level images. In addition, no crystal structural or chemical composition changes were observed throughout the aging process.

  3. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  4. Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.

    2011-07-01

    The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.

  5. Effect of Laser Powder Bed Fusion Parameters on the Microstructure and Texture Development in Superelastic Ti-18Zr-14Nb Alloy

    NASA Astrophysics Data System (ADS)

    Kreitcberg, A.; Brailovski, V.; Sheremetyev, V.; Prokoshkin, S.

    2017-12-01

    The effect of different laser powder bed fusion (L-PBF) parameters on the phase composition, microstructure, and crystallographic texture of Ti-18Zr-14Nb alloy was studied. Two levels of laser power, scanning speed, and hatching space were used, while the layer thickness was kept constant. The resulting volume energy density was ranged from 20 to 60 J/mm3, and the build rate, from 12 to 36 cm3/h. The manufactured coupons were analyzed by X-ray diffractometry, transmission, and scanning electron microscopy. It was found that the greater influence observed on the microstructure and texture development was caused by the value of laser power, while the lowest, by that of hatching space. Based on the results obtained, the processing optimization strategy aimed at improving the density, superelastic, and fatigue properties of the L-PBF manufactured Ti-18Zr-14Nb alloy was proposed.

  6. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    PubMed Central

    Kumar, Madhan; Drew, Robin; Al-Aqeeli, Nasser

    2017-01-01

    The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO4)2 compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material. PMID:29280956

  7. Experimental determination of the phase relationships in Zr/2.5 8.0 at% Nb/0 6.7 at% Al alloys with 750 at ppm 0 and 250 at ppm N between 730 900° C

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bolcich, J.

    1990-11-01

    Zr alloys with 2.5 to 8.0 at% Nb and 0 to 6.7 at% Al were subjected to dynamic and static treatments between 730-900° C and studied by qualitative and quantitative optical metallography, electrical resistance, X-ray diffractometry and electron microanalysis. The experimental data were analyzed by taking into account the effects of oxygen and nitrogen impurities. The main results for Zn-Nb-Al alloys with 750 at ppm O and 250 at ppm N are the following: (i) Equilibrium relationships are established between the α (hcp), β (bcc) and Zr 3Al (Cu 3Au) phases along isothermal sections at 730, 771 and 800°C. (ii) The β/ α + β boundaries are determined along iso-aluminum vertical sections at 6.7, 3.3 and 0 at% Al. (iii) The addition of Al to Zr-Nb alloys increases the solubility of Nb in the α phase, its maximum value at 730° C being about 0.7-0.8 at% for 4 at% Al. (iv) Solubility values for Al in the α-phase of Zr-Al were estimated by extrapolation from ternary alloys. These estimates help to solve an existing discrepancy in the Zr-Al system.

  8. Effect of ambient oxygen on the photoluminescence of sol-gel-derived nanocrystalline ZrO2:Eu,Nb

    NASA Astrophysics Data System (ADS)

    Puust, Laurits; Kiisk, Valter; Eltermann, Marko; Mändar, Hugo; Saar, Rando; Lange, Sven; Sildos, Ilmo; Dolgov, Leonid; Matisen, Leonard; Jaaniso, Raivo

    2017-06-01

    The development of inorganic nanophosphors is an active research field due to many applications, including optical gas sensing materials. We found a systematic dependence of the photoluminescence (PL) of europium (Eu3+) impurity ions in zirconia (ZrO2) nanocrystals on the ambient oxygen concentration in a O2/N2 mixture at normal pressure. Europium-doped ZrO2 powders were synthesized via a sol-gel route. Heat-treatment at 1200 °C resulted in a well-developed monoclinic phase (XRD crystallite size of ~50 nm) and an intense PL of Eu3+ ions residing in the dominant phase (Eu3+ was excited directly at 395 or 464 nm). Co-doping with niobium resulted in a narrowing of the PL emission lines. Only Nb5+ was detected by XPS and is believed to charge-compensate Eu3+ activators throughout the material leading to a more regular crystal lattice. At room temperature, the exposure to oxygen suppressed the Eu3+ fluorescence, whereas, at elevated temperatures (300 °C), the effect was reversed. At 300 °C and under a focused continuous laser beam, a substantial PL response (>50%) was achieved when switching 100% of N2 for 100% of O2. PL decay kinetics clearly showed that at 300 °C fluorescence quenching centers were induced within the material by oxygen desorption. The relatively fast (<5 min) and sub-linear PL response to the changes of oxygen concentration shows that ZrO2:Eu,Nb is a promising PL-based oxygen sensing material over a wide-range of oxygen pressures.

  9. First-principles phase stability at high temperatures and pressure in Nb 90Zr 10 alloy

    DOE PAGES

    Landa, A.; Soderlind, P.

    2016-08-18

    The phase stability of Nb 90Zr 10 alloy at high temperatures and compression is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics (SCAILD) approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of the body-centered cubic phase, which results in formation of a rhombohedral phase at around 50 GPa, will prevail significant heating. As a result, the body-centered cubic structure will recover before melting at ~1800 K.

  10. DFT investigation of electronic structures and magnetic properties of halides family MeHal3 (Me=Ti, Mo,Zr,Nb, Ru, Hal=Cl,Br,I) one dimensional structures

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.

    2017-10-01

    Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.

  11. Electron paramagnetic resonance of Nb-doped BaTiO3 ceramics with positive temperature coefficient of resistivity

    NASA Astrophysics Data System (ADS)

    Jida, Shin'suke; Miki, Toshikatsu

    1996-11-01

    Paramagnetic centers in Nb-doped BaTiO3 ceramics are measured at 77-500 K by electron paramagnetic resonance (EPR) for investigating the role of the centers on the well-known positive temperature coefficient of resistivity (PTCR) effect (PTCR at the Curie temperature). EPR detects four signals; an anisotropically broad singlet signal at g=2.005, a sextet signal due to Mn2+, a Cr3+ signal, and a Ti3+ signal. The former two signals arise in the rhombohedral and cubic phases, but disappear in the tetragonal and orthorhombic phases. The Cr3+ signal appears in all of the phases, while the Ti3+ signal is detected only at low temperatures. The singlet signal also arises in undoped, barium-deficient BaTiO3 ceramics, therefore the signal is attributable to barium-vacancy-associated centers rather than Nb4+ ions or Fe3+ ions proposed by several authors. In this article, we propose that the singlet signal is due to vacancy-pairs of VBa-F+ type, i.e., the vacancy pair of VBa-VO capturing one electron. The electrical resistivity data show a polaronic character of low-temperature conduction and a high resistivity jump around the Curie temperature. The low-temperature polaronic conduction is explained in terms of electron-hopping between Ti4+ and Ti3+ ions. The resistivity jump at the Curie temperature occurs along with the EPR intensity increase of the singlet signal, the Mn2+ signal and the Cr3+ signal. We conclude that the PTCR of Nb-doped BaTiO3 ceramics is strongly associated with the trap activation of the VBa-VO vacancy-pairs and manganese centers at the tetragonal-to-cubic transition.

  12. Transitions of the type 2s-2p in oxygenlike Y, Zr, and Nb

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Brown, C. M.; Feldman, U.; Seely, J. F.; Reader, J.

    1986-01-01

    Transitions of the type 2s-2p in the oxygenlike ions Y XXXII, Zr XXXIII, and Nb XXXIV were identified in spectra recorded at the University of Rochester's Omega laser facility. Solid targets were spherically irradiated by 24 beams of frequency-tripled (351-nm) Nd-glass laser radiation. The spectra were photographed with a 3-m grazing-incidence spectrograph. The identified transitions of the oxygenlike ions are in the range 30 to 73 A. The wavelengths for the magnetic-dipole transitions within the 2s2p4 ground configurations of these ions are predicted from the experimental energy levels.

  13. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    NASA Astrophysics Data System (ADS)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  14. Analyses of Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2000-01-01

    A high performance, Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cell design is presented. The cell measures 41.27 mm in diameter, is 125.3 mm high, and has eight BASE tubes connected electrically in series. The hot structure of the cell (hot plate, BASE tubes support plate, hot plenum wall, evaporator standoff, evaporator wick, and side wall facing the BASE tubes) is made of Nb-1Zr. The cold structure of the cell (condenser, interior cylindrical thermal radiation shield, the casing and the wick of the liquid sodium return artery, and side wall above the BASE tubes) is made of the stronger, lower thermal conductivity niobium alloy C-103. This cell, which weighs 163.4 g, could deliver 7.0 We at 17% efficiency and load voltage of 3.3 V, when using TiN BASE electrodes characterized by B=75 A.K1/2/m2.Pa and G=50 and assuming BASE/electrode contact resistance of 0.06 Ω-cm2 and leakage resistance of the BASE braze structure of 3 Ω. For these performance parameters and when the interior cylindrical C-103 thermal radiation shield is covered with low emissivity rhodium, the projected specific mass of the cell is 23.4 g/We. The BASE brazes and the evaporator temperatures were below the recommended limits of 1123 K and 1023 K, respectively. In addition, the temperature margin in the cell was at least + 20 K. When electrodes characterized by B=120 A.K1/2/m2.Pa and G=10 were used, the cell power increased to 8.38 We at 3.5 V and efficiency of 18.8%, for a cell specific mass of 19.7 g/We. Issues related to structure strength of the cell and the performance degradation of the BASE and electrodes are not addressed in this paper. .

  15. Electronic structure and bonding interactions in Ba1- x Sr x Zr0.1Ti0.9O3 ceramics

    NASA Astrophysics Data System (ADS)

    Mangaiyarkkarasi, Jegannathan; Sasikumar, Subramanian; Saravanan, Olai Vasu; Saravanan, Ramachandran

    2017-06-01

    An investigation on the precise electronic structure and bonding interactions has been carried out on Ba1- x Sr x Zr0.1Ti0.9O3 (short for BSZT, x = 0, 0.05, 0.07 and 0.14) ceramic systems prepared via high-temperature solid state reaction technique. The influence of Sr doping on the BSZT structure has been examined by characterizing the prepared samples using PXRD, UV-visible spectrophotometry, SEM and EDS. Powder profile refinement of X-ray data confirms that all the synthesized samples have been crystallized in cubic perovskite structure with single phase. Charge density distribution of the BSZT systems has been completely analyzed by the maximum entropy method (MEM). Co-substitution of Sr at the Ba site and Zr at the Ti site into the BaTiO3 structure presents the ionic nature between Ba and O ions and the covalent nature between Ti and O ions, revealed from MEM calculations. Optical band gap values have been evaluated from UV-visible absorption spectra. Particles with irregular shapes and well defined grain boundaries are clearly visualized from SEM images. The phase purity of the prepared samples is further confirmed by EDS qualitative spectral analysis.

  16. Electrical resistance oscillations during plastic deformation in A Ti-Al-Nb-Zr alloy at 4·2 K

    NASA Astrophysics Data System (ADS)

    Nikiforenko, V. N.; Lavrentev, F. F.

    1986-10-01

    The serrated plastic flow in titanium alloy containing 5% Al, 2·5% Zr and 2% Nb has been investigated by measuring its electrical resistance and applying selective chemical etching. The electrical resistance was found to oscillate under active deformation at 4·2 K. Analysis of the possible causes seems to indicate a dominant role of break by dislocation pile-ups through obstacles, viz second phase precipitates and grain boundaries.

  17. Two-Dimensional Nb-Based M 4 C 3 Solid Solutions (MXenes)

    DOE PAGES

    Yang, Jian; Naguib, Michael; Ghidiu, Michael; ...

    2015-10-15

    Two new two-dimensional Nb 4C 3-based solid solutions (MXenes), (Nb 0.8,Ti 0.2) 4C 3T x and (Nb 0.8,Zr 0.2) 4C 3T x (where T is a surface termination) were synthesizedas confirmed by X-ray diffractionfrom their corresponding MAX phase precursors (Nb 0.8,Ti 0.2) 4AlC 3 and (Nb 0.8,Zr 0.2) 4AlC 3. In our report we discuss Zr-containing MXene. We also studied intercalation of Li ions into these two compositions, and Nb 4C 3T x in order to determine the potential of those materials for energy storage applications. Lithiation and delithiation peaks at 2.26 and 2.35 V, respectively, appeared in the casemore » of Nb 4C 3T x, but were not present in Nb 2CT x. After 20 cycles at a rate of C/4, the specific capacities of (Nb 0.8,Ti 0.2) 4C 3T xand (Nb 0.8,Ti 0.2) 4C 3T x were 158 and 132 mAh/g, respectively, both slightly lower than the capacity of Nb 4C 3T x.« less

  18. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    PubMed Central

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-01-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563

  19. A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect

    NASA Astrophysics Data System (ADS)

    Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.

    2016-08-01

    The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 -CoFe2O4 bulk composites with similar content of the ferrite phase.

  20. Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr)

    NASA Astrophysics Data System (ADS)

    Sandeep, K.; Thomas, Jijimon K.; Solomon, Sam

    2018-04-01

    A nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr) system has been synthesized by a modified combustion technique. The cation-deficient calzirtite (Ca2Ti2Zr5O16) is found to be a tetragonal structure with the space group I4(1)/acd. The average size of the particle from the transmission electron microscopy image is estimated to be 23.30 nm and 20.16 nm for Ca2Ti2Zr5O16 and Ba2Ti2Zr5O16, respectively. The optical bandgap calculated using a Tauc plot is between 3.01 eV and 3.46 eV. Raman and Fourier transform infrared spectroscopy (FTIR) studies were carried out to confirm the phase purity of the sample. The scanning electron microscopy (SEM) image of a Ca2Ti2Zr5O16 sample sintered at 1360°C for 3 h shows minimum porosity with 96% of the theoretical density. The frequency-dependent dielectric study shows that the dielectric constant is maximized at low frequencies and decreases as the frequency increases. The Cole-Cole plot reveals that the material exhibits conduction due to the contributions of grain, grain boundary and electrode effects. The photoluminescence spectra of the samples were recorded and the transitions causing emission have been identified.

  1. Synthesis, crystal structure and ionic conductivity of the Ba3Mo1-xWxNbO8.5 solid solution

    NASA Astrophysics Data System (ADS)

    Bernasconi, Andrea; Tealdi, Cristina; Mühlbauer, Martin; Malavasi, Lorenzo

    2018-02-01

    Ba3MoNbO8.5 compound has been recently discovered as novel oxide ionic conductor with a structure that is a hybrid between 9R hexagonal perovskite and palmierite. In this work, the full substitution of Mo with W has been demonstrated as possible, without altering significantly the conductivity of the material. The crystal structure of the Ba3Mo1-xWxNbO8.5 solid solution (with x equals 0, 0.25, 0.5, 0.75 and 1) has been investigated by X-ray powder diffraction, showing a reduction of the unit cell by increasing the molybdenum content, despite the larger size of tungsten compared to molybdenum. Neutron powder diffraction measurements have been performed, indicating different levels of contribution of 9R polytype and of palmierite to the hybrid structure of the material as a function of the W-content.

  2. 3D surface topography study of the biofunctionalized nanocrystalline Ti-6Zr-4Nb/Ca-P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowicz, J., E-mail: jaroslaw.jakubowicz@put.poznan.pl; Adamek, G.; Jurczyk, M.U.

    2012-08-15

    In this work surface of the sintered Ti-6Zr-4Nb nanocrystalline alloy was electrochemically biofunctionalized. The porous surface was produced by anodic oxidation in 1 M H{sub 3}PO{sub 4} + 2%HF electrolyte at 10 V for 30 min. Next the calcium-phosphate (Ca-P) layer was deposited, onto the formed porous surface, using cathodic potential - 5 V kept for 60 min in 0.042 M Ca(NO{sub 3}){sub 2} + 0.025 M (NH{sub 4}){sub 2}HPO{sub 4} + 0.1 M HCl electrolyte. The deposited Ca-P layer anchored in the pores. The biofunctionalized surface was studied by XRD, SEM and EDS. In vitro tests culture of normalmore » human osteoblast (NHOst) cells showed very good cells proliferation, colonization and multilayering. Using optical profiler, roughness and hybrid 3D surface topography parameters were estimated. Correlation between surface composition, morphology, roughness and biocompatibility results was done. It has been shown by us that surface with appropriate chemical composition and topography, after combined electrochemical anodic and cathodic surface treatment, supports osteoblast adhesion and proliferation. 3D topography measurements using optical profiler play a key role in the biomaterials surface analysis. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline Ti-6Zr-4Nb/Ca-P material was produced for hard tissue implant applications. Black-Right-Pointing-Pointer Calcium-phosphate results in surface biofunctionalization. Black-Right-Pointing-Pointer The biofunctionalized surface shows good in-vitro behavior.« less

  3. Synthesis and Thermodynamic Stability of Ba2B‧B″O6 and Ba3B*B″2O9 Perovskites Using the Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Virkar, Anil V.

    1999-12-01

    A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.

  4. The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton; Mitchell, Roger

    2002-01-01

    crystallize included accessory zircon and thorite. Sr-rich loparite also precipitated relatively early serving as a major repository for Sr, REE, and Nb. During the agpaitic stage, diverse titano- and zircono-silicates (barytolamprophyllite, eudialyte, wadeite, and rinkite, among others) consumed most of the Ba, Sr, Ti, Zr, and Nb still remaining in the melt. The final stage in the evolution of the pegmatites involved interaction of the earlier-formed mineral assemblages with deuteric fluids. In common with the Rocky Boy pegmatites, Sr-REE-Na-rich fluorapatite, Ba-Fe titanates and REE-bearing carbonates (ancylite, calcio-ancylite, and bastnäsite-parisite series) are chief products of the deuteric stage. The alteration of the primary mineral assemblages by deuteric fluids also produced muscovite-zeolite pseudomorphs after nepheline, replacement of wadeite and eudialyte by catapleiite-group minerals, re-deposition of Ba in the form of hyalophane, baotite, and benitoite, and cation leaching from rinkite, eudialyte, and loparite. The mineralogy of the pegmatites from Gordon Butte, other potassic complexes, and sodic agpaitic occurrences is compared in detail.

  5. Introduction of BaSnO3 and BaZrO3 artificial pinning centres into 2G HTS wires based on PLD-GdBCO films. Phase I of the industrial R&D programme at SuperOx

    NASA Astrophysics Data System (ADS)

    Chepikov, V.; Mineev, N.; Degtyarenko, P.; Lee, S.; Petrykin, V.; Ovcharov, A.; Vasiliev, A.; Kaul, A.; Amelichev, V.; Kamenev, A.; Molodyk, A.; Samoilenkov, S.

    2017-12-01

    An industrial R&D programme is ongoing at SuperOx, aimed at improving 2G HTS wire performance in magnetic field. We introduce perovskite artificial pinning centres (APC) into the HTS layer matrix. In contrast to most studies described in the literature, we use the high rate production processing parameters and PLD equipment at SuperOx. This paper reports the results of Phase I of this programme. We fabricated 2G HTS wires by pulsed laser deposition of GdBCO films doped with 6%, 12% and 18% (molar) of BaSnO3 and 6% (molar) of BaZrO3, and compared their performance with an undoped reference sample. The depositions were carried out at production growth rates of 375, 560 and 750 nm min-1 by varying laser pulse frequency. BaZrO3 and BaSnO3 formed columnar semi-coherent nanoinclusions in the GdBCO film matrix. The average transverse size of the nanocolumns was about 5 nm, and their volume density correlated with the dopant concentration. All doped samples exhibited much lower angular anisotropy of in-field critical current and higher lift-factors than the undoped sample. Samples containing 6% BaSnO3 and deposited at the lower growth rates, had higher I c than the undoped sample in the entire temperature range, in a wide range of magnetic field (B//c). The sample containing 6% BaZrO3 had higher I c than the undoped sample at 20 and 4.2 K. These results are an encouraging start of our programme, as they show a positive impact of APC introduced into 2G HTS wires fabricated at production throughput. Phase II work will be focussed on maximising the improvements in specific temperature and field conditions, as well as on the verification of reproducibility of the improvements in production wires.

  6. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    NASA Astrophysics Data System (ADS)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  7. Investigation of reduced (Srx,Ba1-x)Nb 2O6 as a ferroelectric-based thermoelectric

    NASA Astrophysics Data System (ADS)

    Bock, Jonathan A.

    A comprehensive study of a novel type of thermoelectric - a heavily doped material from a ferroelectric base composition - is presented. Due to the low-lying optic modes and scattering of phonons at domain walls, ferroelectrics make interesting candidates for thermoelectrics. The example of (Srx,Ba1-x)Nb2O6-delta (SBN) is explored in detail due to a report of an impressive thermoelectric figure of merit in single crystals. The goal of this research is to understand the source of the large figure of merit in SBN. In attempts to do this, the electron transport mechanism, the coupling between electron transport and ferroelectricity, the phase equilibria, and the single crystalline thermoelectric properties were investigated under various reduction conditions. It was found that the electron transport properties of a normal ferroelectric SBN can be well explained by activation of electrons into the conduction band from a localized impurity band. SBN can be shifted between a normal and relaxor ferroelectric by changing the Sr:Ba ratio. This property of SBN was utilized to study the effect of relaxor ferroelectricity on electron transport. Within the relaxor ferroelectric regime, a change in the activation energy for electronic conduction and an abnormal temperature dependence of the Seebeck coefficient were found. These properties are attributed to Anderson localization caused by the relaxor ferroelectricity. This is not thought to be the cause of the large thermoelectric figure of merit. The electron transport-ferroelectric coupling was also studied in oxygen deficient (Bax,Sr1-x)TiO3-delta (BST). A metallic-like to nonmetallic transition occurs at the ferroelectric transition, and the temperature of the metallic-like to nonmetallic transition can be shifted via Sr doping. The temperature shift on Sr doping is equivalent to the shift in the paraelectric ferroelectric transition temperature in unreduced samples, showing that the ferroelectric transition is the cause of

  8. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  9. Dielectric maximum temperature non-monotonic behavior in unaxial Sr0.75Ba0.25Nb2O6 relaxor seen via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2011-08-01

    [100] oriented Sr0.75Ba0.25Nb2O6 relaxor crystals have been studied by means of acoustic emission (AE) over a wide 20-400 °C temperature range. Both the Burns temperature, Td = 350 °C, and the intermediate temperature, T* = 183°C, and the susceptibility maximum temperature, Tm (59 °C on heating and 47 °C on cooling), have been successfully detected. Dependent upon the external electric field, the Tm exhibits a local minimum near 0.25 kV/cm accompanied by pronounced AE maximum in a manner which had recently been detected in Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 by Dul'kin et al. [Appl. Phys. Lett. 94, 252904 (2009)] and in Pb(Sc1/2Ta1/2)O3 by Dul'kin et al. [Phys. Rev. B 82, 180101(R) (2010)], whereas the T* increases monotonically, similar to that which had recently been revealed in BaTiO3 by Dul'kin et al. [Appl. Phys. Lett. 97, 032903 (2010)] with a rate of 7.5 K cm/kV. An observed Tm behavior is discussed from the point of view of the existence of the random electric field components along the [100] direction in Sr0.75Ba0.25Nb2O6 crystals.

  10. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Min; Mok, Yong-Kyoon; Sohn, Dong-Seong

    2017-12-01

    In this study, high-temperature steam oxidation experiments were performed at 1012-1207 °C on Zr-1Nb-1Sn-0.1Fe fuel cladding tubes to study their weight gains and microstructural characteristics. Many specimens were tested at each test temperature, and the results were reproducible and reliable. It is often debated whether the Zr-1Nb-1Sn-0.1Fe alloy follows the weight gain correlation developed by Cathcart and Pawel (C-P correlation) at around 1000 °C. According to our results, the C-P correlation overpredicts the weight gain at around 1000 °C, and this observation agrees well with the data reported by Westinghouse. In addition, the microstructures of the specimens were analyzed using scanning electron microscopy, and it was found that circumferential cracks are formed at the oxide-metal interface only at around 1000 °C. In previous studies, it has been postulated that cracks in the oxide promote the oxidation process, but it appears that the circumferential cracks at the oxide-metal interface decrease the oxidation rate before the breakaway oxidation occurs by disturbing the diffusion of oxygen. The oxidation rate reduction due to the circumferential cracks appears to be the reason for the overprediction of the C-P correlation at around 1000 °C.

  11. In vitro bio-functional performances of the novel superelastic beta-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy.

    PubMed

    Ion, Raluca; Gordin, Doina-Margareta; Mitran, Valentina; Osiceanu, Petre; Dinescu, Sorina; Gloriant, Thierry; Cimpean, Anisoara

    2014-02-01

    The materials used for internal fracture fixations and joint replacements are mainly made of metals which still face problems ranging from higher rigidity than that of natural bone to leaching cytotoxic metallic ions. Beta (β)-type titanium alloys with low elastic modulus made from non-toxic and non-allergenic elements are desirable to reduce stress shielding effect and enhance bone remodeling. In this work, a new β-type Ti-23Nb-0.7Ta-2Zr-0.5N alloy with a Young's modulus of approximately 50 GPa was designed and characterized. The behavior of MC3T3-E1 pre-osteoblasts on the new alloy, including adhesion, proliferation and differentiation, was evaluated by examining the cytoskeleton, focal adhesion formation, metabolic activity and extracellular matrix mineralization. Results indicated that the pre-osteoblast cells exhibited a similar degree of attachment and growth on Ti-23Nb-0.7Ta-2Zr-0.5N and Ti-6Al-4V. However, the novel alloy proved to be significantly more efficient in sustaining mineralized matrix deposition upon osteogenic induction of the cells than Ti-6Al-4V control. Further, the analysis of RAW 264.7 macrophages cytokine gene and protein expression indicated no significant inflammatory response. Collectively, these findings suggest that the Ti-23Nb-0.7Ta-2Zr-0.5N alloy, which has an increased mechanical biocompatibility with bone, allows a better osteogenic differentiation of osteoblast precursor cells than Ti-6Al-4V and holds great potential for future clinical prosthetic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Regulation of depletion layer width in Pb(Zr,Ti)O3/Nb:SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jie Wang, Zhan; Cui, Jian Zhong; Zhang, Zhi Dong

    2018-05-01

    Improving the tunability of depletion layer width (DLW) in ferroelectric/semiconductor heterostructures is important for the performance of some devices. In this work, 200-nm-thick Pb(Zr0.4Ti0.6)O3 (PZT) films were deposited on different Nb-doped SrTiO3 (NSTO) substrates, and the tunability of DLW at PZT/NSTO interfaces were studied. Our results showed that the maximum tunability of the DLW was achieved at the NSTO substrate with 0.5 wt% Nb. On the basis of the modified capacitance model and the ferroelectric semiconductor theory, we suggest that the tunability of the DLW in PZT/NSTO heterostructures can be attributed to a delicate balance of the depletion layer charge and the ferroelectric polarization charge. Therefore, the performance of some devices related to the tunability of DLW in ferroelectric/semiconductor heterostructures can be improved by modulating the doping concentration in semiconducting electrode materials.

  13. Vibrational micro-energy harvesters utilizing Nb-doped Pb(Zr,Ti)O3 films on stainless steel substrates

    NASA Astrophysics Data System (ADS)

    Van Minh, L.; Sano, T.; Fujii, T.; Kuwano, H.

    2016-11-01

    This work presents the micromachined energy harvesters using Nb-doped Pb(Zr,Ti)O3 (PNZT) films grown directly on the stainless steel substrates (SUS430). Piezoelectric materials on metallic substrates have been attracted to practical and robust energy harvesters. Nb-doped PZT films with (001)-preferred orientation grown on SUS substrates provided excellent properties for energy harvesting - high piezoelectric coefficient (e 31 = -10.6 C/m2) and low dielectric permittivity (ɛr = 373). The PNZT-based micro-energy harvester comprising a cantilever of 1.7 mm× 5 mm × 0.05 mm and a proof mass of 3 mm× 5 mm × 47 mm achieved the normalized power density (NPD) of 2.87 mW.g-2.cm-3. It is the highest performance among the published SUS-based energy harvesters, being closer to the best Si- based energy harvesters.

  14. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dynamic Recrystallization Behavior of Zr-1Sn-0.3Nb Alloy During Hot Rolling Process

    NASA Astrophysics Data System (ADS)

    Zhao, Siyu; Liu, Huiqun; Lin, Gaoyong; Jiang, Yilan; Xun, Jian

    2017-11-01

    Zirconium alloys are advanced materials with properties that are greatly affected by their crystalline structure. To investigate this, sheets of Zr-1Sn-0.3Nb alloy were hot rolled with different reductions (10%, 30%, 50%, and 60%) at 1023 K and 1073 K to investigate the alloy's dynamic recrystallization behavior. Recrystallization kinetics was observed via electron backscattering diffraction and transmission electron microscopy, and the results were compared with estimates based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. The values of the JMAK exponent n and k increased with the rolling temperature. The estimates and microstructural observations of dynamic recrystallization (DRX) kinetics were in good agreement.

  16. Characterization of oxygen vacancies and their migration in Ba-doped Pb(Zr0.52Ti0.48)O3 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhang, M. F.; Wang, Y.; Wang, K. F.; Zhu, J. S.; Liu, J.-M.

    2009-03-01

    We investigate in detail the migration kinetics of oxygen vacancies (OVs) in Ba-doped Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectrics by complex impedance spectroscopy. The temperature dependent dc-electrical conductivity σdc suggests that Ba doping into PZT can lower significantly the density of OVs, leading to the distinctly decreased σdc and slightly enhanced activation energy U for the migration of OVs, thus benefiting the polarization fatigue resistance. Furthermore, the polarization fluctuation induced by the relaxation of OVs is reduced by the Ba doping. The Cole-Cole fitting to the dielectric loss manifests strong correlation among OVs, and the migration of OVs appears to be a collective behavior.

  17. Dielectric and phonon spectroscopy of Nb-doped Pb(Zr1-yTiy)O3-CoFe2O4 composites

    NASA Astrophysics Data System (ADS)

    Sakanas, Aurimas; Nuzhnyy, Dmitry; Grigalaitis, Robertas; Banys, Juras; Borodavka, Fedir; Kamba, Stanislav; Ciomaga, Cristina Elena; Mitoseriu, Liliana

    2017-06-01

    Broad-band dielectric and phonon response of Nb-doped (1-x)Pb(Zr1-yTiy)O3-xCoFe2O4 composites with x = 10%-30% was investigated between 0.1 MHz and 100 THz. At room temperature, a broad distribution of relaxation times causes a constant dielectric loss below 1 GHz. Above room temperature, a strong Maxwell-Wagner relaxation process dominates below 1 GHz due to the conductivity of CoFe2O4 (CF). Two additional relaxation processes are seen between 1 GHz and 1 THz. The lower-frequency one, coming from domain wall motion, disappears above TC ≈ 650 K. The higher-frequency component slows down on heating towards TC, because it is the central mode, which drives the ferroelectric phase transition. Time-domain THz transmission and infrared reflectivity spectra reveal a mixture of polar phonons from both ferroelectric Nb-doped Pb(Zr,Ti)O3 (PZTN) and magnetic CoFe2O4 (CF) components, while the micro-Raman scattering spectra allow to study phonons from both components separately. Similar temperature behavior of phonons as in the pure PZTN and CF was observed. While in CoFe2O4 the Raman-active phonons gradually reduce their intensities on heating due to increasing conductivity and related reduced Raman-scattering volume, some phonons in PZTN disappear above TC due to change of selection rules in the paraelectric phase. Like in the pure Pb(Zr,Ti)O3, the soft phonon and central modes were also observed.

  18. Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.

    PubMed

    Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2009-06-28

    The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.

  19. Calcium hydride synthesis of Ti-Nb-based alloy powders

    NASA Astrophysics Data System (ADS)

    Kasimtsev, A. V.; Shuitsev, A. V.; Yudin, S. N.; Levinskii, Yu. V.; Sviridova, T. A.; Alpatov, A. V.; Novosvetlova, E. E.

    2017-09-01

    The metallothermic (calcium hydride) synthesis of Ti-Nb alloy powders alloyed with tantalum and zirconium is experimentally studied under various conditions. Chemical, X-ray diffraction, and metallographic analyses of the synthesized products show that initial oxides are completely reduced and a homogeneous β-Ti-based alloy powder forms under the optimum synthesis conditions at a temperature of 1200°C. At a lower synthesis temperature, the end products have a high oxygen content. The experimental results are used to plot the thermokinetic dependences o formation of a bcc solid solution at various times of isothermal holding of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at %) alloys. The physicochemical and technological properties of the Ti-22Nb-6Ta and Ti-22Nb-6Zr alloy powders synthesized by calcium hydride reduction under the optimum conditions are determined.

  20. (Nbx, Zr1-x)4AlC3 MAX Phase Solid Solutions: Processing, Mechanical Properties, and Density Functional Theory Calculations.

    PubMed

    Lapauw, Thomas; Tytko, Darius; Vanmeensel, Kim; Huang, Shuigen; Choi, Pyuck-Pa; Raabe, Dierk; Caspi, El'ad N; Ozeri, Offir; To Baben, Moritz; Schneider, Jochen M; Lambrinou, Konstantina; Vleugels, Jozef

    2016-06-06

    The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

  1. Thickness and Nb-doping effects on ferro- and piezoelectric properties of highly a-axis-oriented Nb-doped Pb(Zr0.3Ti0.7)O3 films

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng

    2008-09-01

    Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.

  2. Effect of concurrent Mg/Nb-doping on dielectric properties of Ba0.45Sr0.55TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Reich, Michael; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-08-01

    Composition, microstructure, and dielectric properties of undoped and Ba(Mg1/3Nb2/3)O3 (BMN) doped Ba0.45Sr0.55TiO3 (BST) thin films deposited via rf. magnetron sputtering on platinized alumina substrates have been investigated. The analysis of microstructure has shown that despite the sizable effect of doping on the residual stress, the latter is partially compensated by the thermal expansion coefficient mismatch, and its influence on the BST film crystal structure is insignificant. It was revealed that BMN doped film demonstrated an average (over 2000 devices) of 52.5% tunability at 640 kV/cm, which is ˜8% lower than the value for the undoped film. This drop is associated with the presence of Mg ions in BMN; however, the effect of Mg doping is partially compensated by that of Nb ions. The decrease in grain size upon doping may also contribute to the tunability drop. Doping with BMN allows achievement of a compensation concentration yielding no free carriers and resulting in significant leakage current reduction when compared with the undoped film. In addition, the presence of large amounts of empty shallow traps related to NbTi• allows localizing free carriers injected from the contacts thus extending the device control voltage substantially above 10 V.

  3. Influence of boron addition to Ti-13Zr-13Nb alloy on MG63 osteoblast cell viability and protein adsorption.

    PubMed

    Majumdar, P; Singh, S B; Dhara, S; Chakraborty, M

    2015-01-01

    Cell proliferation, cell morphology and protein adsorption on near β-type Ti-13Zr-13Nb (TZN) alloy and Ti-13Zr-13Nb-0.5B (TZNB) composite have been investigated and compared to evaluate the effect of boron addition which has been added to the Ti alloy to improve their poor tribological properties by forming in situ TiB precipitates. MG63 cell proliferation on substrates with different chemistry but the same topography was compared. The MTT assay test showed that the cell viability on the TZN alloy was higher than the boron containing TZNB composite after 36 h of incubation and the difference was pronounced after 7 days. However, both the materials showed substantially higher cell attachment than the control (polystyrene). For the same period of incubation in fetal bovine serum (FBS), the amount of protein adsorbed on the surface of boron free TZN samples was higher than that in the case of boron containing TZNB composite. The presence of boron in the TZN alloy influenced protein adsorption and cell response and they are lower in TZNB than in TZN as a result of the associated difference in chemical characteristics. Copyright © 2014. Published by Elsevier B.V.

  4. Electrical characterization of Mn doped-(Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, A.; Materials Research Laboratory, Institute of Physics & Electronics, University of Peshawar, 25120; Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD

    2015-12-15

    Highlights: • Solid state processing of the (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. • Mn incorporated on the Ti-site into the host lattice of (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1−x}O{sub 3}. • NTCR behavior was observed in the sintered samples. - Abstract: (Ba{sub 0.3}Sr{sub 0.7})Mn{sub x}(Ti{sub 0.9}Zr{sub 0.1}){sub 1-x}O{sub 3} (x = 0.00, 0.013, 0.015 and 0.05) ceramics were prepared by solid state sintering route at the 1500 °C for 6 h in air. Effect of Mn substitution on the structure of Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} perovskite was investigated systematically. Dielectric and impedancemore » spectroscopic studies were conducted to understand the electronic microstructure of the Ba{sub 0.3}Sr{sub 0.7}(Ti0{sub .9}Zr{sub 0.1}){sub 1−x}O{sub 3} ceramics. Sample with x = 0.05 showed the highest dielectric constant (ϵ{sub r} = 1826) and low dielectric loss (tanδ = 0.001) at 10 kHz, around the room temperature, while the sample with x = 0.00 showed good microwave (MW) dielectric properties (Qf{sub o} = 838 and ϵ{sub r} = 550). The impedance spectroscopic analysis confirmed the electrical homogeneity of the samples with x = 0.013, 0.015 and 0.05, where grain boundaries dominated the conduction mechanism. Similarly, the sample with x = 0.00 was found to possess both grain boundary and bulk resistive contributions.« less

  5. Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains

    NASA Astrophysics Data System (ADS)

    Yang, Daeyeol; Kang, Soo-Bin; Lim, Ji-Ho; Yoon, Songhyeon; Ryu, Jungho; Choi, Jong-Jin; Velayutham, Thamil Selvi; Kim, Hyungsun; Jeong, Dae-Yong

    2017-09-01

    We studied the temperature stable high-energy storage capacitors. Sr0.5Ba0.5Nb2O6 (SBN) is the lead-free ferroelectric solid solution between BaNb2O6 and SrNb2O6. By doping Dy into SBN, the Curie temperature was lowered and dielectric constant was increased. To improve the breakdown behavior of Dy-doped SBN, the aerosoldeposition(AD) was applied to fabricate the dense films with nano-sized grains. These nano-grain give a large number of grain boundaries, suppressing the electron conduction in ceramics. The dielectric constant and breakdown electric field of the AD films annealed at 650 °C were measured as 2307 and 9.9 MV/m, while bulk were 1080 and 4 MV/m. Energy density and efficiency of the AD films annealed at 650 °C were also enhanced as 0.65 J/cc and 90.2% and bulk were 0.08 J/cc and 72.1%, respectively. In addition, the dielectric constant of AD film annealed at 550 °C and 650 °C were quite stable up to 150 °C.

  6. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    NASA Astrophysics Data System (ADS)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  7. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 < x < 2.0 were prepared by pulsed direct-current (DC) sputtering using substrate bias in a controlled oxygen and argon environment. These films were systematically alloyed with Ti, Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  8. Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1990-01-01

    Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.

  9. Dielectric properties of BaMg1/3Nb2/3O3 doped Ba0.45Sr0.55Tio3 thin films for tunable microwave applications

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Pokhodnya, Konstantin

    2015-11-01

    Ba(Mg1/3Nb2/3)O3 (BMN) doped and undoped Ba0.45Sr0.55TiO3 (BST) thin films were deposited via radio frequency magnetron sputtering on Pt/TiO2/SiO2/Al2O3 substrates. The surface morphology and chemical state analyses of the films have shown that the BMN doped BST film has a smoother surface with reduced oxygen vacancy, resulting in an improved insulating properties of the BST film. Dielectric tunability, loss, and leakage current (LC) of the undoped and BMN doped BST thin films were studied. The BMN dopant has remarkably reduced the dielectric loss (˜38%) with no significant effect on the tunability of the BST film, leading to an increase in figure of merit (FOM). This is attributed to the opposing behavior of large Mg2+ whose detrimental effect on tunability is partially compensated by small Nb5+ as the two substitute Ti4+ in the BST. The coupling between MgTi″ and VO•• charged defects suppresses the dielectric loss in the film by cutting electrons from hopping between Ti ions. The LC of the films was investigated in the temperature range of 300-450K. A reduced LC measured for the BMN doped BST film was correlated to the formation of defect dipoles from MgTi″, VO•• and NbTi• charged defects. The carrier transport properties of the films were analyzed in light of Schottky thermionic emission (SE) and Poole-Frenkel (PF) emission mechanisms. The result indicated that while the carrier transport mechanism in the undoped film is interface limited (SE), the conduction in the BMN doped film was dominated by bulk processes (PF). The change of the conduction mechanism from SE to PF as a result of BMN doping is attributed to the presence of uncoupled NbTi• sitting as a positive trap center at the shallow donor level of the BST.

  10. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Maiwa, Hiroshi

    2017-10-01

    The electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics (BZT and BST, respectively) were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops had shapes similar to those of the strain-electric field (s-E) loops. The measured temperature changes (ΔTs) at around 30 °C of the BZT ceramics sintered at 1450 °C and BST ceramics sintered at 1600 °C upon the release of the electric field from 30 kV/cm to 0 were 0.34 and 0.57 K, respectively. The temperature dependences of the electromechanical and electrocaloric properties were investigated. The BZT ceramics sintered at 1450 °C exhibited the largest electromechanical and electrocaloric properties at around 30 °C, which corresponds to the phase transition temperature. BST is more temperature dependent than BZT. BST ceramics sintered at 1600 °C exhibited the largest electromechanical and electrocaloric properties at around 29 °C, which is about 10 °C higher than the phase transition temperature.

  11. Electrical and magnetic properties of 0-3 Ba(Fe1/2Nb1/2)O3/PVDF composites

    NASA Astrophysics Data System (ADS)

    Ranjan, Hars; Mahto, Uttam K.; Chandra, K. P.; Kulkarni, A. R.; Prasad, A.; Prasad, K.

    Lead-free Ba(Fe1/2Nb1/2)O3/PVDF 0-3 composites were fabricated using melt-mixing technique. X-ray diffraction, scanning electron microscopy, dielectric, impedance, ac conductivity, magnetic force microscopy (MFM) and vibrating sample magnetometer studies were undertaken to characterize the samples. Average crystallite size of the Ba(Fe1/2Nb1/2)O3 powder, estimated using Williamson-Hall approach, was found to be ˜42nm. The filler particles of ˜0.5-1μm were found to disperse in the polymer matrix of all the composites. Filler concentration-dependent values of real and imaginary parts of complex permittivity showed increasing trend and were seen to follow Bruggeman and Furukawa equations. The data for ac conductivity exhibited negative temperature coefficient of resistance character of the test materials and were found to obey Jonscher’s power law. The correlated barrier hopping model was found to explain satisfactorily the mechanism of charge transport occurring in the system. MFM confirmed the presence of magnetic phases in the composites. Typical magnetization versus applied field curves indicated the possibility of magnetoelectric coupling in the system. Hence, the present composites have shown themselves as potential multi-functional candidate materials for use in high density data storage applications.

  12. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  13. Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites

    NASA Astrophysics Data System (ADS)

    Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.

    2017-11-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.

  14. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-05-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  15. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

    NASA Astrophysics Data System (ADS)

    Chen, Zhangqi; Liu, Zi-Kui; Zhao, Ji-Cheng

    2018-07-01

    Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

  16. Effects of Dopant on the Dielectric Properties of CaZrO3 Ceramic Sintered in a Reducing Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, W. S.; Su, C. Y.; Lee, Y. C.; Lin, S. P.; Yang, Tony

    2006-07-01

    In this study, the influence of CaZrO3 doped with three dopants, SiO2, MnO, and Nb2O5, and then sintered in a reducing atmosphere on microstructure, phase formation, and electrical properties is investigated. SiO2 plays the role of sintering aid to enhance the density of CaZrO3 leading to better performance of electrical properties as a function of SiO2 content. MnO, and Nb2O5 were incorporated into the Zr-site of CaZrO3 to make stoichometric CaZrO3 into non-stoichiometric CaZrO3 with Zr excess resulting in the formation of a second phase, CaZr4O9, which has a lower dielectric constant (13) in comparison with that of the main phase of CaZrO3 (32). Thus, the dielectric constant of CaZrO3 doped with Nb2O5, or MnO is decreased markedly. In addition, Mn+2 incorporated into Zr-sites of CaZrO3 plays the role of acceptor, which compensates for the number of conduction electrons and contributes to better performance of electrical properties such as insulation resistance and \\tanδ. Conversely, Nb+5 incorporated into Zr-sites of CaZrO3 plays the role of donor and provides more conduction electrons, leading to poor performance of electrical properties.

  17. Superconducting transition temperature in the Y(1-x)M(x)Ba2Cu3O(y) system

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeyuki; Yamazaki, Tsutomu; Sekine, Ryuuta; Koukitsu, Akinori; Seki, Hisashi

    1989-04-01

    Experimental results are presented for the inclusion of compositional additives, M, to the sintered high-temperature superconductor Y(1-x)M(x)Ba2Cu3O(y); M can be the oxides of Mg, Ce, Gd, Yb, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi, and Te, as well as Li, Na, K, Ca, Sr, and La carbonates. Temperature dependence of the electrical resistance was measured down to about 80 K. Attention is given to the influence of ionic radius and the valence of the M species.

  18. Dielectric Studies of Samarium Modified (Pb)(Zr, Ti, Fe, Nb)O3 Ceramic System

    NASA Astrophysics Data System (ADS)

    Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    Here we report the investigations on Sm-substituted PZTFN (Pb1-xSmxZr0.588Ti0.392Fe0.01Nb0.01O3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C-400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ɛ), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ɛRT) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm-doping.

  19. Role of A-site Ca and B-site Zr substitution in BaTiO3 lead-free compounds: Combined experimental and first principles density functional theoretical studies

    NASA Astrophysics Data System (ADS)

    Keswani, Bhavna C.; Saraf, Deepashri; Patil, S. I.; Kshirsagar, Anjali; James, A. R.; Kolekar, Y. D.; Ramana, C. V.

    2018-05-01

    We report on the combined experimental and theoretical simulation results of lead-free ferroelectrics, Ba(1-x)CaxTiO3 (x = 0.0-0.3) and BaTi(1-y)ZryO3 (y = 0.0-0.2), synthesized by standard solid state reaction method. First principles density functional calculations are used to investigate the electronic structure, dynamical charges, and spontaneous polarization of these compounds. In addition, the structural, ferroelectric, piezoelectric, and dielectric properties are studied using extensive experiments. The X-ray diffraction and temperature dependent Raman spectroscopy studies indicate that the calcium (Ca) substituted compositions exhibit a single phase crystal structure, while zirconium (Zr) substituted compositions are biphasic. The scanning electron micrographs reveal the uniform and highly dense microstructure. The presence of polarization-electric field and strain-electric field hysteresis loops confirms the ferroelectric and piezoelectric nature of all the compositions. Our results demonstrate higher values for polarization, percentage strain, piezoelectric coefficients, and electrostrictive coefficient compared to those existing in the literature. For smaller substitutions of Ca and Zr in BaTiO3, a direct piezoelectric coefficient (d33) is enhanced, while the highest d33 value (˜300 pC/N) is observed for BaTi0.96Zr0.04O3 due to the biphasic ferroelectric behavior. Calculation of Born effective charges indicates that doping with Ca or Zr increases the dynamical charges on Ti as well as on O and decreases the dynamical charge on Ba. An increase in the dynamical charges on Ti and O is ascribed to the increase in covalency of Ti-O bond that reduces the polarizability of the crystal. A broader range of temperatures is demonstrated to realize the stable phase in the Ca substituted compounds. The results indicate enhancement in the temperature range of applicability of these compounds for device applications. The combined theoretical and experimental study is

  20. Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Tae; Lee, Tae Hyuk; Jo, Nam Chan; Nersisyan, Hayk H.; Chun, Byong Sun; Lee, Hyuk Hee; Lee, Jong Hyeon

    2013-05-01

    Zirconium (Zr) has commonly been used as a cladding material of nuclear fuel. Moreover, it is regarded as the only material that can be used for nuclear fuel cladding because it has the lowest neutron capture cross section of any metal element and because it has high corrosion resistance and size stability. In this study, Hf-free Zr tubes (Zr-1Nb-1Sn-0.1Fe) were used as anode materials and electrorefining was performed in a LiF-KF eutectic 6 wt.% ZrF4 molten fluoride salt system. As a result of electrolysis, Zr scrap metal was recycled into pure Zr with low levels of impurities, and the size and density of the Zr deposit was controlled using applied current density.

  1. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in

    2014-06-23

    The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.

  2. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  3. Microscopic origins of the large piezoelectricity of leadfree (Ba,Ca)(Zr,Ti)O3

    NASA Astrophysics Data System (ADS)

    Nahas, Yousra; Akbarzadeh, Alireza; Prokhorenko, Sergei; Prosandeev, Sergey; Walter, Raymond; Kornev, Igor; Íñiguez, Jorge; Bellaiche, L.

    2017-06-01

    In light of directives around the world to eliminate toxic materials in various technologies, finding lead-free materials with high piezoelectric responses constitutes an important current scientific goal. As such, the recent discovery of a large electromechanical conversion near room temperature in (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 compounds has directed attention to understanding its origin. Here, we report the development of a large-scale atomistic scheme providing a microscopic insight into this technologically promising material. We find that its high piezoelectricity originates from the existence of large fluctuations of polarization in the orthorhombic state arising from the combination of a flat free-energy landscape, a fragmented local structure, and the narrow temperature window around room temperature at which this orthorhombic phase is the equilibrium state. In addition to deepening the current knowledge on piezoelectricity, these findings have the potential to guide the design of other lead-free materials with large electromechanical responses.

  4. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P2{sub 1}ma) to establish double loop hysteresis in lead-free (1−x)NaNbO{sub 3}-xSrZrO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hanzheng, E-mail: hug17@psu.edu; Randall, Clive A.; Shimizu, Hiroyuki

    A new lead-free antiferroelectric solid solution system, (1−x)NaNbO{sub 3}-xSrZrO{sub 3}, was rationalized through noting the crystal chemistry trend, of decreasing the tolerance factor and an increase in the average electronegativity of the system. The SrZrO{sub 3} doping was found to effectively stabilize the antiferroelectric (P) phase in NaNbO{sub 3} without changing its crystal symmetry. Preliminary electron diffraction and polarization measurements were presented which verified the enhanced antiferroelectricity. In view of our recent report of another lead-free antiferroelectric system (1−x)NaNbO{sub 3}-xCaZrO{sub 3} [H. Shimizu et al. “Lead-free antiferroelectric: xCaZrO{sub 3} - (1−x)NaNbO{sub 3} system (0 ≤ x ≤ 0.10),” Dalton Trans.more » (published online)], the present results point to a general strategy of utilizing tolerance factor to develop a broad family of new lead-free antiferroelectrics with double polarization hysteresis loops. We also speculate on a broad family of possible solid solutions that could be identified and tested for this important type of dielectric.« less

  5. Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy.

    PubMed

    Duarte, Laís T; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2009-05-01

    Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.

  6. The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Cui, Wenfang; Song, Xiu; Zhou, Lian

    2015-08-01

    A nanostructured surface layer was successfully performed on a biomedical β-type TiNbZrFe alloy by surface mechanical attrition treatment (SMAT). The results reveal that the surface layer along the depth from treated surface to strain-free matrix could be divided into an outer nanocrystalline layer (0-30 μm), a high-density dislocation region (30-200 μm) and an inner region with low-density dislocations and twins (200-700 μm) when the surface was treated for 60 min. The microhardness of the surface layer is enhanced and increases with increasing treatment time. Although the {1 1 2} <1 1 1> twin coordinates the deformations with dislocations, this coordination only occurs in the low strain area and cannot affect the nanocrystalline formation. The self-nanocrystallization of TiNbZrFe alloy is mainly attributed to dislocation movements. First, the dislocations start to move and easily form dislocation bands along certain crystal directions; then, multiple slips of dislocations gradually form dislocation tangles; after that, high-density dislocation tangles increases, which divides primary grains into many small domain areas. As high strain energies accumulate on the interfaces among these areas, the lattice rotation can be driven between the adjacent small domain areas, finally resulting in a large number of nanocrystalline regions with low or large angle grain boundaries.

  7. Investigation of the photosensitivity of LiNbO3:BaFeO3 crystal

    NASA Astrophysics Data System (ADS)

    Darwish, Abdalla M.; Koplitz, Brent D.; Jackson, E.; Jalbout, F.; Jalbout, A.; Aggarwal, Mohan D.

    2002-01-01

    Ferromagnetic resonance (FMR) absorptions from six fine particle-samples of barium ferrite were studied over a temperature range of -195 degree(s)C to 500 degree(s)C. It was found that the shape of the FMR absorption signal is affected by the particle shape and crystalline anisotropy of each sample. From this analysis, the first magnetic anisotropy constant K1 was estimated approximately as a function of temperature. The estimation suggested that the value of K1 was sensitive to the condition of preparation of fine powders. In addition the photosensitivity of the LiNbO3:BaFe doped crystal was enhanced, suggesting the importance of Barium Ferrite powder as a potential candidate with NOL materials.

  8. Structural transformation in antiferroelectric PbZrO3-relaxor ferroelectric Pb(Ni1/3Nb2/3)O3 solid solution system

    NASA Astrophysics Data System (ADS)

    Wirunchit, S.; Vittayakorn, N.

    2008-07-01

    The solid solution between the antiferroelectric (AFE) PbZrO3 (PZ) and the relaxor ferroelectric (FE) Pb(Ni1/3Nb2/3)O3 (PNN) was synthesized by the columbite precursor method. The crystal structure, phase transformations, and dielectric and thermal properties of (1-x )PZ-xPNN where x =0.00-0.30 were investigated. With these data, the FE phase diagram between PZ and PNN has been established. The crystal structure data obtained from X-ray diffraction indicate that the solid solution PZ-PNN, where x =0.00-0.30, successively transforms from orthorhombic to rhombohedral symmetry with an increase in the PNN concentration. The AFE phase→FE phase transition occurs in compositions of 0.00⩽x⩽0.08. The AFE →FE phase transition shifts to lower temperatures with higher compositions of x. The FE phase temperature range width increases with increased PNN. Apparently the replacement of the Zr4+ ion by Ni2+/Nb5+ ions decreases the driving force for an antiparallel shift of Pb2+ ions because they interrupt the translational symmetry and facilitates the appearance of a rhombohedral FE phase when the amount of PNN is higher than 8mol%.

  9. Anisotropy of the Irreversibility Field for Zr-doped (Y,Gd)Ba 2<\\sub>Cu3<\\sub>O<7-x<\\sub> Thin Films up to 45 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarantini, C.; Jaroszynski, J.; Kametani, F.

    2011-01-01

    The anisotropic irreversibility fieldBIrr of twoYBa2Cu3O7 x thin films dopedwith additional rare earth (RE)= (Gd, Y) and Zr and containing strong correlated pins (splayed BaZrO3 nanorods and RE2O3 anoprecipitates) has been measured over a very broad range up to 45 T at temperatures 56 K < T < Tc. We found that the experimental angular dependence of BIrr ( ) does not follow the mass anisotropy scaling BIrr ( ) = BIrr (0)(cos2 + 2 sin2 ) 1/2, where = (mc/mab)1/2 = 5 6 for the RE-doped Ba2Cu3O7 x (REBCO) crystals, mab and mc are the effective masses along themore » ab plane and the c-axis, respectively, and is the angle between B and the c-axis. For B parallel to the ab planes and to the c-axis correlated pinning strongly enhances BIrr , while at intermediate angles, BIrr ( ) follows the scaling behavior BIrr ( ) (cos2 + 2 RP sin2 ) 1/2 with the effective anisotropy factor RP 3 significantly smaller than the ass anisotropy would suggest. In spite of the strong effects of c-axis BaZrO3 nanorods, we found even greater enhancements of BIrr for fields along the ab planes than for fields parallel to the c-axis, as well as different temperature dependences of the correlated pinning contributions to BIrr for B//ab and B//c. Our results show that the dense and strong pins, which can now be incorporated into REBCO thin films in a controlled way, exert major and diverse effects on the measured vortex pinning anisotropy and the irreversibility field over wide ranges of B and T . In particular, we show that the relative contribution of correlated pinning to BIrr for B//c increases as the temperature increases due to the suppression of thermal fluctuations of vortices by splayed distribution of BaZrO3 nanorods.« less

  10. Ba0.06(Na,Bi)0.94Ti1-x(Ni1/3Nb2/3)xO3 ceramics: X-ray diffraction and infrared spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Prasad, Ashutosh; Chandra, K. P.; Prasad, K.

    2018-05-01

    Non-lead ceramic samples of Ba0.06(Na0.5Bi0.5)0.94Ti1-x(Ni1/3Nb2/3)xO3; 0 ≤ x ≤ 1.0 were prepared by standard high temperature ceramic synthesis method. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba0.06(Na0.5Bi0.5)0.94TiO3 has a monoclinic structure with space group P4/m while B0.06(Na0.5Bi0.5)0.94(Ni1/3Nb2/3)O3 has tetragonal (pseudo-cubic) structure with space group P4/mmm. Partial replacement of Ti4+ ion by pseudo-cation (Ni1/33 +Nb2/3 5 +) 4 + resulted in the change of unit cell structure from monoclinic to tetragonal. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain sizes with the increase of (Ni1/33 +Nb2/3 5 +) 4 + content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  11. Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane

    NASA Astrophysics Data System (ADS)

    Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin

    2015-03-01

    NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.

  12. Mechanical properties of a Gum-type Ti-Nb-Zr-Fe-O alloy

    NASA Astrophysics Data System (ADS)

    Nocivin, Anna; Cinca, Ion; Raducanu, Doina; Cojocaru, Vasile Danut; Popovici, Ion Alexandru

    2017-08-01

    A new Gum-type alloy (Ti-Nb-Zr-Fe-O) in which Fe is used instead of Ta was subjected to a particular thermomechanical processing scheme to assess whether its mechanical characteristics (fine β-grains with high strength and low modulus) render it suitable as a biomedical implant material. After a homogenization treatment followed by cold-rolling with 50% reduction, the specimens were subjected to one of three different recrystallization treatments at 1073, 1173, and 1273 K. The structural and mechanical properties of all of the treated specimens were analyzed. The mechanical characterization included tensile tests, microhardness determinations, and fractography by scanning electron microscopy. The possible deformation mechanisms were discussed using the \\overline {Bo} - \\overline {Md} diagram. By correlating all of the experimental results, we concluded that the most promising processing variant corresponds to recrystallization at 1073 K, which can provide suitable mechanical characteristics for this type of alloys: high yield and ultimate tensile strengths (1038 and 1083 MPa, respectively), a low modulus of elasticity (62 GPa), and fine crystalline grain size (approximately 50 μm).

  13. Fluoride barriers in Nb/Pb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.

    1985-03-01

    Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.

  14. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites

    USGS Publications Warehouse

    Gottfried, D.; Greenland, L.P.; Campbell, E.Y.

    1968-01-01

    Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A

  15. Electrical properties and phase transition of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruea-In, C.; Rujijanagul, G., E-mail: rujijanagul@yahoo.com

    2015-09-15

    Highlights: • Properties of of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics were investigated. • Small amount of dopant produced a large change in dielectric and phase transition. • A phase diagram of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics was proposed. • Dielectric tunability increased with increasing x concentration. - Abstract: In this work, properties of Ba(Zr{sub 0.05}Ti{sub 0.95}){sub 1−x}(Fe{sub 0.5}Ta{sub 0.5}){sub x}O{sub 3} ceramics with 0.00≤ x ≤0.07 were investigated. The ceramics were fabricated by a solid state reaction technique. X-ray diffraction analysis indicated that all samples exhibited single phase perovskite. Examination of themore » dielectric spectra revealed that the Fe and Ta additives promoted a diffuse phase transition, and the two phase transition temperatures, as observed in the dielectric curve of pure Ba(Zr{sub 0.05}Ti{sub 0.95})O{sub 3}, merged into a single phase transition temperature for higher x concentrations. The transformation was confirmed by ferroelectric measurements. In addition, the doped ceramics exhibited high relative dielectric tunability, especially for higher x concentration samples.« less

  16. Compositional Design of Dielectric, Ferroelectric and Piezoelectric Properties of (K, Na)NbO₃ and (Ba, Na)(Ti, Nb)O₃ Based Ceramics Prepared by Different Sintering Routes.

    PubMed

    Eiras, José A; Gerbasi, Rosimeire B Z; Rosso, Jaciele M; Silva, Daniel M; Cótica, Luiz F; Santos, Ivair A; Souza, Camila A; Lente, Manuel H

    2016-03-08

    Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO₃, such as (K, Na)NbO₃ (KNN) and (Ba, Na)(Ti, Nb)O₃ (BTNN) families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS) and high-energy ball milling (HEBM), following heat treatments (calcining and sintering), in oxidative (O₂) atmosphere have been used to prepare single phase highly densified KNN ("pure" and Cu 2+ or Li 1+ doped), with theoretical densities ρ th > 97% and BTNN ceramics (ρ th - 90%), respectively. Using BTTN ceramics with a P 4 mm perovskite-like structure, we showed that by increasing the NaNbO₃ content, the ferroelectric properties change from having a relaxor effect to an almost "normal" ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients ( k 15 , g 15 and d 15 ) improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu 2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects.

  17. Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte

    NASA Astrophysics Data System (ADS)

    Farrakhov, R. G.; Mukaeva, V. R.; Fatkullin, A. R.; Gorbatkov, M. V.; Tarasov, P. V.; Lazarev, D. M.; Babu, N. Ramesh; Parfenov, E. V.

    2018-01-01

    This research is aimed at improvement of corrosion properties for Zr-1Nb alloy via plasma electrolytic oxidation (PEO). The coatings obtained in DC, pulsed unipolar and pulsed bipolar modes were assessed using SEM, XRD, PDP and EIS techniques. It was shown that pulsed unipolar mode provides the PEO coatings having promising combination of the coating thickness, surface roughness, porosity, corrosion potential and current density, and charge transfer resistance, all contributing to corrosion protection of the zirconium alloy for advanced fuel cladding applications.

  18. Dynamic Octahedral Breathing in Oxygen-Deficient Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) Perovskite Performing as a Cathode in Intermediate-Temperature SOFC.

    PubMed

    Gong, Yudong; Sun, Chunwen; Huang, Qiu-an; Alonso, Jose Antonio; Fernández-Díaz, Maria Teresa; Chen, Liquan

    2016-03-21

    Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.

  19. Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merrigan, Michael A.; Sena, J. Tom

    1998-01-01

    The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.

  20. Effect of divalent Ba cation substitution with Sr on coupled ‘multiglass’ state in the magnetoelectric multiferroic compound Ba3NbFe3Si2O14

    PubMed Central

    Rathore, Satyapal Singh; Vitta, Satish

    2015-01-01

    (Ba/Sr)3NbFe3Si2O14 is a magneto-electric multiferroic with an incommensurate antiferromagnetic spiral magnetic structure which induces electric polarization at 26 K. Structural studies show that both the compounds have similar crystal structure down to 6 K. They exhibit a transition, TN at 26 K and 25 K respectively, as indicated by heat capacity and magnetization, into an antiferromagnetic state. Although Ba and Sr are isovalent, they exhibit very different static and dynamic magnetic behaviors. The Ba-compound exhibits a glassy behavior with critical slowing dynamics with a freezing temperature of ~35 K and a critical exponent of 3.9, a value close to the 3-D Ising model above TN, in addition to the invariant transition into an antiferromagnetic state. The Sr-compound however does not exhibit any dispersive behavior except for the invariant transition at TN. The dielectric constant reflects magnetic behavior of the two compounds: the Ba-compound has two distinct dispersive peaks while the Sr-compound has a single dispersive peak. Thus the compounds exhibit coupled ‘multiglass’ behavior. The difference in magnetic properties between the two compounds is found to be due to modifications to super exchange path angle and length as well as anti-site defects which stabilize either ferromagnetic or antiferromagnetic interactions. PMID:25988657

  1. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  2. Electrical properties of Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, K. Amar, E-mail: karn190@gmail.com; Chandra, K. P., E-mail: kpchandra23@gmail.com; Dubey, K., E-mail: kirandubey45@yahoo.com

    2016-05-06

    Polycrystalline Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} was prepared using a high-temperature solid-state reaction method. X-ray diffraction analysis indicated the formation of a single-phase cubic structure having space group Pm3m. AC impedance plots as a function of frequency at different temperatures were used to analyse the electrical behaviour of the sample, which indicated the negative temperature coefficient of resistance character. Complex impedance analysis targeted non-Debye type dielectric relaxation. Frequency dependent ac conductivity data obeyed Jonscher’s power law. The apparent activation energy was estimated to be 0.97 eV at 1 kHz.

  3. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS.

    PubMed

    Petrov, Panayot; Russell, Ben; Douglas, David N; Goenaga-Infante, Heidi

    2018-01-01

    Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg -1 ) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93 Zr at very low (ng kg -1 ) levels in the presence of high levels (μg kg -1 ) of the isobaric interferents 93 Nb and 93 Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH 3 /He/H 2 or H 2 /O 2 , and suitable mass shifts, the signal from the 93 Nb and 93 Mo isobaric interferences on 93 Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93 Zr was 1.3 × 10 -5  Bq g -1 (equivalent to 0.14 ng kg -1 ). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93 Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93 Zr measurements. Graphical abstract Interference-free determination of 93 Zr in the presence of high concentrations of isobaric 93 Mo and 93 Nb by ICP-MS/MS.

  4. Magnetic phase diagram and multiferroicity of Ba 3 MnNb 2 O 9 : A spin - 5 2 triangular lattice antiferromagnet with weak easy-axis anisotropy

    DOE PAGES

    Lee, M.; Choi, E. S.; Huang, X.; ...

    2014-12-01

    Here we have performed magnetic, electric, thermal and neutron powder diffraction (NPD) experiments as well as density functional theory (DFT) calculations on Ba 3MnNb 2 O 9. All results suggest that Ba 3MnNb 2 O 9 is a spin-5/2 triangular lattice antiferromagnet (TLAF) with weak easy-axis anisotropy. At zero field, we observed a narrow two-step transition at T N1 = 3.4 K and T N2 = 3.0 K. The neutron diffraction measurement and the DFT calculation indicate a 120 spin structure in ab plane with out-of-plane canting at low temperatures. With increasing magnetic field, the 120 spin structure evolves intomore » up-up-down (uud) and oblique phases showing successive magnetic phase transitions, which fits well to the theoretical prediction for the 2D Heisenberg TLAF with classical spins. Ultimately, multiferroicity is observed when the spins are not collinear but suppressed in the uud and oblique phases.« less

  5. Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    PubMed Central

    Osiceanu, Petre; Gloriant, Thierry

    2015-01-01

    The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology. PMID:26583096

  6. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-07-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  7. Effect of Cold Deformation and Annealing on the Microstructure and Tensile Properties of a HfNbTaTiZr Refractory High Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Pilchak, A. L.; Semiatin, S. L.

    2018-05-01

    The microstructure and tensile properties of HfNbTaTiZr after cold working and annealing were investigated. Cold work was introduced by axial compression followed by rolling resulting in a total thickness reduction of 89 pct without any evidence of cracking. The cold-worked material retained a single-phase microstructure and had a room temperature tensile yield stress σ 0.2 = 1438 MPa, peak true stress σ p = 1495 MPa, and true fracture strain ɛ f = 5 pct. Annealing at 800 °C for up to 256 hours resulted in the precipitation of Nb and Ta rich particles with a BCC crystal structure inside a Hf-and-Zr-enriched BCC matrix. The second phase particles nucleated heterogeneously inside deformation bands and slip lines and coarsened during annealing. Analysis of the coarsening behavior suggested that kinetics were controlled by the diffusion of Nb and Ta. In the two-phase material, σ 0.2 and σ p decreased from 1159 to 1071 MPa and from 1174 to 1074 MPa, respectively, with an increase in particle diameter from 0.18 to 0.72 μm, while ɛ f remained between 5 and 8 pct. Full recrystallization and normal grain growth, with the activation energy of 238 kJ/mol and activation volume of 5.3 to 9.6 m3/mol, occurred during annealing above 1000 °C. After heat treatment at this temperature, the alloy was characterized by a single-phase BCC structure with σ 0.2 = 1110 to 1115 MPa, σ p = 1160 to 1195 MPa, and ɛ f = 12 to 19 pct with the maximum values attained after annealing for 1 hour.

  8. Effect of europium ion concentration on the structural and photoluminescence properties of novel Li2BaZrO4: Eu3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Ahemen, I.; Dejene, F. B.; Kroon, R. E.; Swart, H. C.

    2017-12-01

    This work reports the influence of Eu3+ ion concentration on the structure and photoluminescence properties of Li2BaZrO4 nanocrystals including its intrinsic quantum efficiency (IQE). Chemical bath method was employed in the synthesis procedure. X-ray diffraction results showed tetragonal phase for Eu3+ ion concentration in the range 1 and 7 mol% and cubic phase at 8 mol%. The presence of barium oxide (BaO) was confirmed from selected area electron diffraction (SAED). The excitation spectra for these phosphors consisted of broad charge transfer (CT) bands due to the combination of Zr4+ - O2- and Eu3+-O2- charge transfer states. Superimposed on the CT band were direct excitation levels of Eu3+ and Ba2+ ions, in the range 320-450 nm. At high Eu3+ ions concentrations, the intensities of CT bands decreased because some of the ions were coordinated with Ba2+ ions. Photoluminescence emissions for all the doped samples at room temperature appeared to be entirely from intraconfigurational Eu3+ emissions and depended both on the site symmetry as well as the ion concentration. The quadrupole-quadrupole multipolar process was found to be solely responsible for the luminescence quenching. The intensity parameters (Ω2 ,Ω4), asymmetry ratio, R0 and the average decay lifetime of the nanocrystals showed dependence on concentration. High internal quantum efficiency (IQE) values were obtained at low Eu3+ ion concentrations, but efficiency decreased with increasing ion concentration. The CIE coordinates values were comparable to existing red phosphors and in combination with the high IQE make this phosphor a good candidate for red light emitting applications.

  9. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    DTIC Science & Technology

    2016-10-14

    Nematic Liquid Crystals allowing for rapidly changing moving pictures during the time frame below about 5-10 ms. Ferroelectric Liquid Crystals (FLCs...could fill this gap bearing some advantages over Nematic Liquid Crystals , mainly a fast switching time in the microsecond range, better optical...AFRL-RX-WP-JA-2017-0210 FERROELECTRIC BaTiO3 AND LiNbO3 NANOPARTICLES DISPERSED IN FERROELECTRIC LIQUID CRYSTAL MIXTURES: ELECTROOPTIC

  10. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.

    2015-02-01

    To determine partitioning of C between upper mantle silicate minerals and basaltic melts, we executed 26 experiments between 0.8 and 3 GPa and 1250-1500 °C which yielded 37 mineral/glass pairs suitable for C analysis by secondary ion mass spectrometry (SIMS). To enhance detection limits, experiments were conducted with 13C-enriched bulk compositions. Independent measurements of 13C and 12C in coexisting phases produced two C partition coefficients for each mineral pair and allowed assessment of the approach to equilibrium during each experiment. Concentrations of C in olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and garnet (gt) range from 0.2 to 3.5 ppm, and resulting C partition coefficients for ol/melt, opx/melt, cpx/melt and gt/melt are, respectively, 0.0007 ± 0.0004 (n = 2), 0.0003 ± 0.0002 (n = 45), 0.0005 ± 0.0004 (n = 17) and 0.0001 ± 0.00007 (n = 5). The effective partition coefficient of C during partial melting of peridotite is 0.00055 ± 0.00025, and therefore C is significantly more incompatible than Nb, slightly more compatible than Ba, and, among refractory trace elements, most similar in behavior to U or Th. Experiments also yielded partition coefficients for F and H between minerals and melts. Combining new and previous values of DFmineral/melt yields bulk DFperidotite/melt = 0.011 ± 0.002, which suggests that F behaves similarly to La during partial melting of peridotite. Values of DHpyx/melt correlate with tetrahedral Al along a trend consistent with previously published determinations. Small-degree partial melting of the mantle results in considerable CO2/Nb fractionation, which is likely the cause of high CO2/Nb evident in some Nb-rich oceanic basalts. CO2/Ba is much less easily fractionated, with incompatible-element-enriched partial melts having lower CO2/Ba than less enriched basalts. Comparison of calculated behavior of CO2, Nb, and Ba to systematics of oceanic basalts suggests that depleted (DMM-like) sources have 75 ± 25

  11. AMS of 93Zr: Passive absorber versus gas-filled magnet

    NASA Astrophysics Data System (ADS)

    Hain, Karin; Deneva, Boyana; Faestermann, Thomas; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Koll, Dominik; Korschinek, Gunther; Ludwig, Peter; Sergeyeva, Victoria; Thiollay, Nicolas

    2018-05-01

    Two different isobar separation techniques were tested for the detection of the long-lived fission product 93Zr (T1/2 = 1.64 · 106 a) using Accelerator Mass Spectrometry (AMS), i.e. a passive absorber and a gas-filled magnet, respectively. Both techniques were used in combination with a Time-of-Flight path for the identification of the stable neighboring isotopes 92Zr and 94Zr. The passive absorber was represented by a stack of silicon nitride foils for high flexibility regarding the thickness for optimal isobar separation. Ion beams with a large variety of energies, between 80 and 180 MeV, were provided for this experiment by the tandem accelerator at the Maier-Leibnitz Laboratory in Garching, Germany. With these beams, the stopping powers of 93Zr and 93Nb as a function of energy were determined experimentally and compared to the results obtained with the simulation program SRIM. Considerable discrepancies regarding the energy dependence of the two stopping power curves relative to each other were found. The lowest detection limit for 93Zr achieved with the passive absorber setup was 93Zr/Zr = 1 · 10-10. In comparison, by optimizing the gas-filled magnet set-up, 93Nb was suppressed by around six orders of magnitude and a detection limit of 93Zr/Zr = 5 · 10-11 was obtained. To our knowledge, these results represent the lowest detection limit achieved for 93Zr until now.

  12. Structure, microstructure and infrared studies of Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-NaNbO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Sumit K., E-mail: sumit.sxc13@gmail.com; Singh, S. N., E-mail: snsphyru@gmail.com; Prasad, K., E-mail: k.prasad65@gmail.com

    2016-05-06

    Lead-free solid solutions (1-x)Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3}-xNaNbO{sub 3} (0 ≤ x ≤ 1.0) were prepared by conventional ceramic fabrication technique. X-ray diffraction and Rietveld refinement analyses of these ceramics were carried out using X’Pert HighScore Plus software to determine the crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that NaNbO{sub 3} with orthorhombic structure was completely diffused into Ba{sub 0.06}(Na{sub 1/2}Bi{sub 1/2}){sub 0.94}TiO{sub 3} lattice having the rhombohedral-tetragonal symmetry. EDS and SEM studies were carried out in order to evaluate the quality and purity of the compounds. SEM images showed a change in grain shapemore » with the increase of NaNbO{sub 3} content. FTIR spectra confirmed the formation of solid solution.« less

  13. Corrosion resistance of new beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr in artificial saliva solution

    NASA Astrophysics Data System (ADS)

    Gunawarman; Giatmana, D. D.; Ilhamdi; Affi, J.; Fonna, S.; Niinomi, M.; Nakai, M.

    2018-05-01

    The corrosion resistance of Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti-6Al-4V alloys in oral cavity environment were studied by investigating its corrosion rate in artificial saliva solution. Corrosion measurement was conducted in 600 ml solution of Fusayama-Meyer artificial saliva containing 0.4g NaCl, 0.4g KCl, 0.795g CaCl2.2H2O, 0.69g NaH2PO4, and 1 g urea using a potentiostat controlled by a personal computer. The solution was maintained at pH 5.2 and controlled the temperature of 37°C to imitate oral cavity condition. After corrosion test, specimen surfaces were examined by SEM and EDX. The results show that the average corrosion rate of TNTZ and Ti-6Al-4V is 4,5×10-9 mmy-1 and 6,4×10-8 mmy-1, respectively, indicating that the corrosion resistance of TNTZ is slightly better than Ti-6Al-4V. This is suggested mainly due to the formation of multiple layers of Ti, Nb and Zr oxides in the surface of TNTZ. However, the formation of micro-pitting corrosion is more severe in TNTZ as compared to that of Ti-6Al-4V. The intense pitting corrosion in TNTZ is found strongly corresponded to its high impurities content and wide elemental segregation. It is recommended, therefore, a longer homogenizing process is required in TNTZ for reducing pitting corrosion attack. However, the details of corrosion mechanism are needed to be explored further.

  14. Effect of strain on evolution of dynamic recrystallization in Nb-1 wt%Zr-0.1 wt%C alloy at 1500 and 1600 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, A.N.

    Uniaxial compression tests were carried out on Nb-1 wt%Zr-0.1 wt%C alloy at temperature of 1500 and 1600 °C and strain rate of 0.1 s{sup −1} to study the evolution of dynamic recrystallization with strain. Electron back scatter diffraction was used to quantify the microstructural evolution. Nb-1Zr-0.1C alloy showed a necklace structure at a strain of 0.9 when deformed at 1500 °C and at strain of 0.6 when deformed at 1600 °C, both at strain rate of 0.1 s{sup −1}. This suggested the occurrence of dynamic recrystallization. At 1500 °C and strain of 0.9 the local average misorientation and the grainmore » orientation spread was low confirming the presence of dynamic recrystallization at this deformation condition. At both 1500 and 1600 °C and all measured strains the recrystallized grains had a strong fiber component of <001>. - Highlights: • Necklace formation of dynamically recrystallized grains occurred at strain of 0.6 and 0.9 for 1500 and 1600 °C, respectively. • Equiaxed microstructures were seen with increase in strain for both 1500 and 1600 °C. • At large strains the predominant recrystallized texture evolved to <001> pole.« less

  15. Nb sbnd Th sbnd Zr mineralization in microgranite—microsyenite at Jabal Tawlah, Midyan region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Drysdall, Alan R.; Douch, Colin J.

    A composite sill of mineralized and highly radioactive microgranite—microsyenite caps Jabal Tawlah, a low ridge in the extreme NW of the Arabian Shield. The leucocratic composition, distribution of quartz and low K 2O:Na 2O ratios indicate that deuteric processes, including separation of a silica-rich phase and albitization, played a major role. Mineralization is in the form of a disseminated enrichment in Nb, Ta, Sn, Th, Y, heavy REE and Zr. Four Y- and heavy REE-bearing minerals, gagarinite [NaCaY(F,Cl) 6], fergusonite [(Y,Er,Ce,Fe)(Nb,Ta,Ti)O 4], xenotime and yttrian fluorite, as well as zircon, columbite, thorite, sphalerite, galena, pyrite, ilmenite, hematite, limonite, magnetite, goethite, siderite, possible chrysocolla and an MnO-bearing mineral have been identified. The geochemical signature of the mineralization is similar to that which distinguishes alkali granites from other granitic rocks. Jabal az Zuhd, a major plutonic complex consisting largely of alkali granite, crops out only 5 km NW of Jabal Tawlah. However, there is no other evidence of possible derivation from a parental alkali granite magma. Reserves indicated by outcrop dimensions and three drill-hole intersections are 6.4 million tonnes to an average depth of 65 m below wadi level, grading 0.34% Nb, 0.52% Y, 0.47% Zn and approximately 4% zircon (plus 175 ppm Ta, 380 ppm Sn, 700 ppm Th and heavy REE).

  16. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  17. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    NASA Astrophysics Data System (ADS)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  18. TEM analysis of irradiation-induced interaction layers in coated UMo/X/Al trilayer systems (X= Ti, Nb, Zr, and Mo)

    NASA Astrophysics Data System (ADS)

    Chiang, H.-Y.; Wiss, T.; Park, S.-H.; Dieste-Blanco, O.; Petry, W.

    2018-02-01

    Uranium-molybdenum (UMo) alloy powder embedded in an Al matrix is considered as a promising candidate for fuel conversion of research reactors. A modified system with a diffusion barrier X as coating, UMo/X/Al trilayer (X = Ti, Zr, Nb, and Mo), has been investigated to suppress interdiffusion between UMo and the Al matrix. The trilayer systems were tested by swift heavy ion irradiation, the thereby created interaction zone has been analyzed by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX). Detailed structural characterization are presented and compared to earlier μ-XRD analysis.

  19. Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    NASA Astrophysics Data System (ADS)

    Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.

    2016-03-01

    In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.

  20. Ferroelectric, elastic, piezoelectric, and dielectric properties of Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3 Pb-free ceramics

    NASA Astrophysics Data System (ADS)

    Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen

    2017-07-01

    We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.

  1. Compositional Design of Dielectric, Ferroelectric and Piezoelectric Properties of (K, Na)NbO3 and (Ba, Na)(Ti, Nb)O3 Based Ceramics Prepared by Different Sintering Routes

    PubMed Central

    Eiras, José A.; Gerbasi, Rosimeire B. Z.; Rosso, Jaciele M.; Silva, Daniel M.; Cótica, Luiz F.; Santos, Ivair A.; Souza, Camila A.; Lente, Manuel H.

    2016-01-01

    Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO3, such as (K, Na)NbO3 (KNN) and (Ba, Na)(Ti, Nb)O3 (BTNN) families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS) and high-energy ball milling (HEBM), following heat treatments (calcining and sintering), in oxidative (O2) atmosphere have been used to prepare single phase highly densified KNN (“pure” and Cu2+ or Li1+ doped), with theoretical densities ρth > 97% and BTNN ceramics (ρth ~ 90%), respectively. Using BTTN ceramics with a P4mm perovskite-like structure, we showed that by increasing the NaNbO3 content, the ferroelectric properties change from having a relaxor effect to an almost “normal” ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients (k15, g15 and d15) improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects. PMID:28773304

  2. Flexible tensile strain sensor based on lead-free 0.5Ba (Ti0.8Zr0.2) O3-0.5(Ba0.7Ca0.3) TiO3 piezoelectric nanofibers

    NASA Astrophysics Data System (ADS)

    Xing, Lindong; Zhu, Ruijian; Wang, Zengmei; Wang, Fengxia; Kimura, Hideo

    2017-09-01

    Here, we report our study results of a flexible piezoelectric tensile strain sensor which is fabricated by synthesizing 0.5Ba (Zr0.2Ti0.8) O3-0.5(Ba0.7Ca0.3) TiO3 (0.5BZT-0.5BCT) nanofibers via an electrospinning process. Our nanofibers show an ultrahigh d33 of 275 pm V-1. 0.5BZT-0.5BCT nanofibers and MW-CNTs are dispersed in polydimethylsiloxane (PDMS) to fabricate a highly stretchable and flexible tensile sensor, and the multiple roles of the MW-CNTs are probed and demonstrated. This nanofiber-based piezoelectric tensile strain sensor shows great resolution and sensitivity under external mechanical deformation. It is suitable for applications in complex environments.

  3. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lead-free piezoelectric (K,Na)NbO3-based ceramic with planar-mode coupling coefficient comparable to that of conventional lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato

    2017-06-01

    We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.

  5. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com; Saha, Sujoy; Kumari, Premlata

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strengthmore » between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.« less

  6. Strong anisotropy of electric field effects on uniaxial relaxor ferroelectric Sr0.75Ba0.25Nb2O6 crystals proved by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2018-01-01

    [001] oriented Sr0.75Ba0.25Nb2O6 uniaxial relaxor ferroelectric crystals have been studied by acoustic emission in the temperature range of 20÷200 °C and under an external electric field up to 1 kV/cm. Under the application of an electric field the temperature of a dielectric maximum exhibits a nontrivial behavior: it remains constant at first, secondly steep decreases down to some threshold field, and thirdly starts to increase as a field enhances, whereas the same temperature of a dielectric maximum under a bias electric field to [100] oriented Sr0.75Ba0.25Nb2O6 crystals exhibits a smoothed minimum before the start to increase as a field enhances (E. Dul'kin et al., J. Appl. Phys. 110, 044106 (2011)). Such a difference of electric field effects in c- and a-cut crystals is discussed from the viewpoint of random-bond-random-field model of relaxor ferroelectrics. By the comparison between experimental and theoretical data, a dipole moment of the PNR was estimated to be 0.1 (C cm).

  7. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2017-01-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  8. Interaction of ultra-depleted MORBs with plagioclase: implications for CO2/Ba ratios

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Hauri, E.; Saal, A. E.; Perfit, M. R.; Hekinian, R.

    2017-12-01

    Carbon in Earth's upper mantle can significantly reduce its solidus temperature, which in turn can affect other physical properties through generation of partial melt. Carbon content in the depleted upper mantle can be estimated using ultra-depleted mid-ocean ridge basalt (UD-MORB) glasses and melt inclusions that are undersaturated in CO2. CO2 has been shown to behave as a highly incompatible element during mantle melting both through natural samples and experiments. Given its highly incompatible behavior, CO2/Ba and CO2/Nb ratios in CO2 undersaturated UD-MORBs have been used to estimate the CO2/Ba and CO2/Nb ratios and carbon content in Earth's upper mantle. A potential issue with part of this approach is the effect of melt-plagioclase chemical interaction on the CO2/Ba ratios in UD-MORBs. Plagioclase is ubiquitous in the oceanic crust and is enriched in Ba relative to other phases. Chemical interactions (assimilation and/or diffusion) between MORB melts and plagioclase bearing rocks have been shown to affect the Ba (and Sr and Eu) concentrations in MORBs, implying that such processes may also affect their CO2/Ba ratio. Hence, understanding the effect of chemical interaction between plagioclase and UD-MORBs is important for having better constraints on CO2/Ba ratio and carbon content in Earth's upper mantle. In this study, we report on the compositions of olivine-hosted melt inclusions and glasses from the Siqueiros and Garrett transform faults. A subset of melt inclusions in lavas from both transform faults show potential signatures of chemical interaction with plagioclase such as low CO2/Ba, Nb/Ba, and Nd/Sr. CO2 degassing cannot explain the low CO2/Ba ratio in the samples as they are undersaturated in CO2. To better understand the effect of chemical interaction with plagioclase on the composition of UD-MORBs, we model end-member scenarios, which are (1) assimilation of plagioclase and (2) diffusion of elements from plagioclase into the UD-MORBs. In general

  9. Phase transition behavior of (K,Na)NbO3-based high-performance lead-free piezoelectric ceramic composite with different phase compositions depending on Na fraction

    NASA Astrophysics Data System (ADS)

    Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi

    2018-01-01

    The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.

  10. The modification of BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.2}O{sub 3–δ} with copper oxide: Effect on the structural and transport properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyagaeva, Yu. G.; Vdovin, G. K.; Nikolaenko, I. V.

    2016-06-15

    The effect of the content of CuO additive on the sinterability, phase composition, microstructure, and electrical properties of BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.2}O{sub 3–δ} proton-conducting material is studied. Ceramic samples were produced by the citrate–nitrate synthesis method with the addition of 0, 0.25, 0.5, and 1% CuO. It is shown that the relative density of the samples containing 0.5 and 1% CuO is higher than 94% at a sintering temperature of 1450°C, whereas the relative density of the material is no higher than 85% at a lower content of the sintering additive. From the data of X-ray diffraction analysis and scanningmore » electron microscopy, it is established that the introduction of a small CuO content (0.25%) is inadequate for single-phase and high-dense ceramics to be formed. The conductivity and scanning electron microscopy data show that the sample with BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.2}O{sub 3–δ} + 0.5% CuO composition possesses high total and ionic conductivities as well as a high degree of microstructural stability after hydrogen reduction of the ceramics. The citrate–nitrate method modified by the introduction of a small CuO content can be recommended for the production of single-phase, gas-tight, and high-conductivity electrolytes based on both BaCeO{sub 3} and BaZrO{sub 3}.« less

  11. Site Redistribution, Partial Frozen-in Defect Chemistry, and Electrical Properties of Ba1-x(Zr,Pr)O3-δ.

    PubMed

    Antunes, Isabel; Mikhalev, Sergey; Mather, Glenn Christopher; Kharton, Vladislav Vadimovich; Figueiras, Fábio Gabriel; Alves, Adriana; Rodrigues, Joana; Correia, Maria Rosário; Frade, Jorge Ribeiro; Fagg, Duncan Paul

    2016-09-06

    Changes in nominal composition of the perovskite (ABO3) solid solution Ba1-x(Zr,Pr)O3-δ and adjusted firing conditions at very high temperatures were used to induce structural changes involving site redistribution and frozen-in point defects, as revealed by Raman and photoluminescence spectroscopies. Complementary magnetic measurements allowed quantification of the reduced content of Pr. Weak dependence of oxygen stoichiometry with temperature was obtained by coulometric titration at temperatures below 1000 °C, consistent with a somewhat complex partial frozen-in defect chemistry. Electrical conductivity measurements combined with transport number and Seebeck coefficient measurements showed prevailing electronic transport and also indicated trends expected for partial frozen-in conditions. Nominal Ba deficiency and controlled firing at very high temperatures allows adjustment of structure and partial frozen-in defect chemistry, opening the way to engineer relevant properties for high-temperature electrochemical applications.

  12. Low temperature anomalous field effect in SrxBa1-xNb2O6 uniaxial relaxor ferroelectric seen via acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, E.; Kojima, S.; Roth, M.

    2012-04-01

    Sr0.75Ba0.25Nb2O6 [100]-oriented uniaxial tungsten bronze relaxor crystals have been studied by means of dedicated acoustic emission during their thermal cycling in 150-300 K temperature range under dc electric field (E). A 1st order transition in a modulated incommensurate tetragonal phase has been successfully detected at Tmi = 198 K on heating and Tmi = 184 K on cooling, respectively. As field E enhances, a thermal hysteresis gradually narrows and vanishes in the critical point at Eth = 0.31 kV/cm, above which a phase transition becomes to 2nd order. The Tmi(E) dependence looks as a V-shape dip, not similar that previously has been looked as a smeared minimum between both the two polar and nonpolar tetragonal phases near Tm = 220 ÷ 230 K in the same crystals (Dul'kin et al., J Appl. Phys. 110, 044106 (2011)). Due to such a V-shape dip is characteristic for Pb-based multiaxial perovskite relaxor, a rhombohedral phase is waited to be induced by a field E in the critical point temperature range. The emergence of this rhombohedral phase as a crucial evidence of an orthorhombic phase presumably existing within the modulated incommensurate tetragonal phase in tungsten bronze SrxBa1-xNb2O6 relaxor is discussed.

  13. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Li, G. P.; Cheng, G. M.; Li, Y. L.; Yang, K.

    2009-02-01

    Ti-22.4Nb-0.73Ta-2.0Zr-1.34O (at. %) alloy after cold compression to ˜5.2% strain was investigated. The alloy exhibited multiple plastic deformation mechanisms, including the stress-induced α″ martensitic (SIM α″) and ω phase transformations, 1/2⟨111⟩ dislocations slipping on the {112}β planes as well as {332}⟨113⟩β and {112}⟨111⟩β twinning, which have not previously been reported to coexist in a titanium alloy. It was also found that β phase with the {200} planes vertical to the compression direction was almost completely consumed away by a β →SIM α″ transformation, and a (100) texture of SIM α″ formed.

  14. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.

    PubMed

    Sheremetyev, V; Brailovski, V; Prokoshkin, S; Inaekyan, K; Dubinskiy, S

    2016-01-01

    Ti-22Nb-6Zr (at.%) alloy with different processing-induced microstructures (highly-dislocated partially recovered substructure, polygonized nanosubgrained (NSS) dislocation substructure, and recrystallized structure) was subjected to strain-controlled tension-tension fatigue testing in the 0.2...1.5% strain range (run-out at 10^6 cycles). The NSS alloy obtained after cold-rolling with 0.3 true strain and post-deformation annealing at 600 °C showed the lowest Young's modulus and globally superior fatigue performance due to the involvement of reversible stress-induced martensitic transformation in the deformation process. This NSS structure appears to be suitable for biomedical applications with an extended variation range of loading conditions (orthopedic implants). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  16. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  17. Effect of Substitution (Ta, Al, Ga) on the Conductivity of Li7La3Zr2O12

    DTIC Science & Technology

    2012-01-30

    xTax012). Conductivity data was not included in their report. Similarly to Ta, Nb substitution for Zr should also lower the Li content of the LLZO and a...high Li ion conductivity (0.8 mS cm−1 at 298 K) cubic garnet sample has been reported with Nb substitution for Zr by Ohta et al. [15]. However, Ta is...substitution for Zr follows this approach and it is desirable for a couple rea- sons. First, Ta is stable relative to Li [13]. Second, Ta substitution

  18. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    DOEpatents

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  19. Tailoring Ba3Ca1.18Nb1.82O9-δ with NiO as electrolyte for proton-conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwen; Guo, Enyan; Wei, Zhaoling; Wang, Huiqiang

    2018-01-01

    A strategy of tailoring Ba3Ca1.18Nb1.82O9-δ (BCN) is proposed, aiming to improve the sinterability and conductivity of BCN material for fuel cell applications. The new Ba3Ca1.18Nb1.77Ni0.05O9-δ (BCNNi) material shows a significant improvement in sinterability compared with BCN, leading to a high densification for BCNNi after sintering at as low as 1400 °C. In addition, the BCNNi exhibits a conductivity of 4.59 × 10-3 S cm-1 at 700 °C that is not only higher than that for BCN which only reaches 3.45 × 10-3 S cm-1 at the same temperature but also shows a significant improvement compared with that for BCN-based materials in literature reports. As a result, the cell with the BCNNi electrolyte shows a peak power density of 84 mW cm-2 at 700 °C which is also one of the largest ever reported for this type of cells. Further electrochemical studies indicate that the high conductivity of BCNNi electrolyte membrane benefits the fuel cell performance.

  20. Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectric AxBa1-xNb2O6 (A: Sr,Ca)

    NASA Astrophysics Data System (ADS)

    Ruiz-Fuertes, J.; Gomis, O.; Segura, A.; Bettinelli, M.; Burianek, M.; Mühlberg, M.

    2018-01-01

    In this letter, we have investigated the electronic structure of AxBa1-xNb2O6 relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to paraelelectric phase transition at 4 GPa, the light scattering produced by micro- and nano-ferroelectric domains at 3.3 eV in Ca0.28Ba0.72Nb2O6 has been probed. The direct bandgap remains virtually constant under compression with a drop of only 0.01 eV around the phase transition. Interestingly, we have also found that light scattering by the polar nanoregions in the paraelectric phase is comparable to the dispersion due to ferroelectric microdomains in the ferroelectric state. Finally, we have obtained that the bulk modulus of the ferroelectric phase of Ca0.28Ba0.72Nb2O6 is B0 = 222(9) GPa.

  1. Trace element composition of rutile and Zr-in-rutile thermometry in meta-ophiolitic rocks from the Kazdağ Massif, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, Fırat; Zack, Thomas

    2016-08-01

    In northwest Turkey, ophiolitic meta-gabbros are exposed on the Kazdağ Massif located in the southern part of the Biga Peninsula. Trace element composition of rutile and Zr-in-rutile temperatures were determined for meta-gabbros from the Kazdağ Massif. The Zr content of all rutiles range from 176 to 428 ppm and rutile grains usually have a homogeneous Zr distribution. The rutile grains from studied samples in the Kazdağ Massif are dominated by subchondritic Nb/Ta (11-19) and Zr/Hf ratios (20-33). Nb/Ta and Zr/Hf show positive correlation, which is probably produced by silicate fractionation. The Nb/Ta and Zr/Hf ratios increase with a decrease in Ta and Hf contents. The core of rutile grains are generally characterized by low Nb/Ta ratios of 17-18 whereas the rims exhibit relatively high Nb/Ta ratios of 19-23. Trace element analyses in rutile suggest that these rutile grains were grown from metamorphic fluids. The P-T conditions of meta-gabbros were estimated by both Fe-Mg exchange and Zr-in-rutile thermometers, as well as by the Grt-Hb-Plg-Q geothermobarometer. The temperature range of 639 to 662 °C calculated at 9 kbar using the Zr-in-rutile thermometer is comparable with temperature estimates of the Fe-Mg exchange thermometer, which records amphibolite-facies metamorphism of intermediate P-T conditions. The P-T conditions of meta-ophiolitic rocks suggest that they occur as a different separate higher-pressure tectonic slice in the Kazdağ metamorphic sequence. Amphibolite-facies metamorphism resulted from northward subduction of the İzmir-Ankara branch of the Neo-Tethyan Ocean under the Sakarya Zone. Metamorphism was followed by internal imbrication of the Kazdağ metamorphic sequence resulting from southerly directed compression during the collision.

  2. Non-Debye domain-wall-induced dielectric response in Sr0.61-xCexBa0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Kleemann, W.; Dec, J.; Miga, S.; Woike, Th.; Pankrath, R.

    2002-06-01

    Two different non-Debye dielectric spectra are observed in a polydomain relaxor-ferroelectric Sr0.61-xBa0.39Nb2O6:Ce3+x single crystal in the vicinity of its transition temperature, Tc~320 K. At infralow frequencies the susceptibility varies as χ*~ω-β, β~0.2, and is attributed to an irreversible creep-like viscous motion of domain walls, while logarithmic dispersion due to reversible wall relaxation [T. Nattermann, Y. Shapir, and I. Vilfan, Phys. Rev. B 42, 8577 (1990)] occurs at larger ω.

  3. Density functional calculations of carbon substituting for Zr in barium zirconate

    NASA Astrophysics Data System (ADS)

    Al-Hadidi, Meaad; Goss, J. P.; Al-Ani, Oras A.; Briddon, P. R.; Rayson, M. J.

    2017-06-01

    Oxide perovskites such as BaZrO3 possess many significant properties which render them useful in many technological and scientific applications such as sensors, optoelectronics, laser frequency doubling and high capacity memory cells. Several methods are used to grow BaZrO3 crystal, and organic species that may be present during growth lead to carbon contamination. We have investigated, using density-functional theory, the role of carbon impurities on the structural, electrical and electronic properties of carbon substituting of Zr in cubic barium zirconate. The local vibrational modes of the defect centre has been calculated and we suggest it is a feasible route to experimental identification

  4. Modified ring stretch tensile testing of Zr-1Nb cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.B.; Majumdar, S.; Ruther, W.E.

    1998-03-01

    In a round robin effort between the US Nuclear Regulatory Commission, Institut de Protection et de Surete Nucleaire in France, and the Russian Research Centre-Kurchatov Institute, Argonne National Laboratory conducted 16 modified ring stretch tensile tests on unirradiated samples of zr-1Nb cladding, which is used in Russian VVER reactors. Test were conducted at two temperatures (25 and 400 C) and two strain rates (0.001 and 1 s{sup {minus}1}). At 25 C and 0.001 s{sup {minus}1}, the yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), and total elongation (TE) were 201 MPa, 331 MPa, 18.2%, and 57.6%, respectively. Atmore » 400 C and 0.001 s{sup {minus}1}, the YS, UTS, UE, and TE were 109 MPa, 185 MPa, 15.4%, and 67.7%, respectively. Finally, at 400 C and 1 s{sup {minus}1}, the YS, UTS, UE, and TE were 134 MPa, 189 MPa, 18.9%, and 53.4%, respectively. The high strain rate tests at room temperature were not successful. Test results proved to be very sensitive to the amount of lubrication used on the inserts; because of the large contact area between the inserts and specimen, too little lubrication leads to significantly higher strengths and lower elongations being reported. It is also important to note that only 70 to 80% of the elongation takes place in the gauge section, depending on specimen geometry. The appropriate percentage can be estimated from a simple model or can be calculated from finite-element analysis.« less

  5. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.

    PubMed

    Lin, Chia-Wei; Ju, Chien-Ping; Chern Lin, Jiin-Huey

    2005-06-01

    The purpose of the present study is to compare the high-cycle fatigue behavior of newly developed Ti-7.5Mo alloy with that of c.p. Ti, Ti-13Nb-13Zr and Ti-6Al-4V alloys in their as-cast state. Experimental results indicate that Ti-6Al-4V and c.p. Ti have higher stress-controlled fatigue resistance but lower strain-controlled fatigue resistance than Ti-7.5Mo and Ti-13Nb-13Zr. Among four materials Ti-7.5Mo demonstrates the best strain-controlled fatigue performance. The fracture surfaces of the present materials are comprised of three morphologically distinct zones: crack initiation zone, crack propagation zone, and the final-stage overload zone. The fatigue cracks almost always initiate from casting-induced surface/subsurface pores. A river pattern is observed in the propagation zone. In the overload zone dimples are typically observed. Three factors most significantly affecting the fatigue performance of the present materials are the presence of the casting-induced surface/subsurface pores; the location of the pores; and the inherent mechanical properties of the materials.

  6. Dielectric properties of PVDF/0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 composites

    NASA Astrophysics Data System (ADS)

    Pandey, Bablu K.; Chandra, K. P.; Kolte, Jayant; Kulkarni, A. R.; Jayaswal, S. K.; Prasad, K.

    2018-05-01

    Ceramic powder of 0.50(Ba0.7Ca0.3)TiO3-0.50Ba(Zr0.2Ti0.8)O3(BCZT50) at morphotropic phase boundary composition was prepared usingsolid-statesynthesis technique followed by extensive high energy ball milling. The crystal symmetry, space group and unit cell dimensions were determined from the X-raydiffraction data of BCZT50 using FullProf software andthe average crystallite size was estimated using Williamson-Hall approach. FTIR spectra confirmed the formation of perovskite type solid solutions. The prepared ceramic powder was utilized to prepare lead-free (1- x)PVDF/xBCZT50 ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15, 0.20, 0.25 were prepared using melt- mixing technique. The distribution of BCZT50 particles in the PVDF matrix were examined using anoptical microscope. Filler concentration dependent real and imaginary parts of dielectric constant data followed exponential growth types of variation. The low value of tanδ(˜10-2) can be advantageous forsensing/detectionapplications.

  7. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  8. Effects of Er3+ and Pr3+ Substitution on Structural, Dielectric, Ferroelectric and Photoluminescence Properties of the BaTi0.9Zr0.1O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Zouari, I.; Sassi, Z.; Seveyrat, L.; Perrin, V.; Zghal, S.; Abdelmoula, N.; Lebrun, L.; Khemakhem, H.

    2017-07-01

    BaTi0.9Zr0.1O3 (BZT), Ba1- x Ln2 x/3□ x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Er3+) (BZT-Er) and Ba1- x Ln2 x/3□ x/3Ti0.9Zr0.1O3 (with x = 0.5% mol and Ln = Pr3+) (BZT-Pr) were prepared via the conventional solid-state reaction method. X-ray diffraction showed that all these ceramics were in the single perovskite phase at room temperature (RT). The temperature dependence of dielectric behavior was investigated in the temperature range 25-225°C and exhibited a classical ferroelectric behavior. A slight decrease of the Curie temperature ( T C) with Pr3+ and Er3+ substitution was observed in addition to an increase in the maximum dielectric permittivity ( \\varepsilon_{r {max} }^' }} ) of about 40% for the BZT-Er. At RT, the ferroelectric and piezoelectric coefficients were decreased for BZT-Pr, but were maintained for BZT-Er with a piezoelectric coefficient ( d 33) of 185 pC/N, a planar electromechanical coupling factor of 30%, and a remanent polarization of 11.6 μC/cm2. The Raman bands as a function of temperature confirmed the paraelectric-ferroelectric phase transition of all those ceramics. The photoluminescence spectra showed that strong red (615 nm and 645 nm) and bright green (523 nm and 545 nm) emission bands were obtained, under excitation by laser at 488 nm at RT, for BZT-Pr and BZT-Er, respectively. These multifunctional materials showed a significant technological promise in coupling device applications.

  9. Electrocaloric effects in the lead-free Ba (Zr ,Ti )O3 relaxor ferroelectric from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhijun; Prokhorenko, Sergei; Prosandeev, Sergey; Nahas, Y.; Wang, D.; Íñiguez, Jorge; Defay, E.; Bellaiche, L.

    2017-07-01

    Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba (Zr0.5Ti0.5)O3 (BZT) relaxor ferroelectric. We find that the EC coefficient varies nonmonotonically with the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT's polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in nonergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.

  10. Optical and vibrational spectroscopy of Ba0.85Ca0.15Zr0.1Ti0.9O3 modified lithium borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Viswanath, Pamarti; Prashanth, Sadhu Sai Pavan; Molli, Muralikrishna; Wicram, Jaschin Prem; Sai Muthukumar, V.

    2018-04-01

    Glass ceramics are excellent replacement for single crystalline materials which are expensive and difficult to fabricate. In this context, we have attempted to fabricate glass nanocomposites comprising of Lithium Borate glass matrix embedded with lead free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT). Both of these functional materials are known to exhibit excellent ferroelectric behavior and are currently explored for various device applications. We have prepared these novel glass nanocomposite using melt-quenching techniquein various chemical composition involving different molar ratio. x(Ba0.85Ca0.15Zr0.1Ti0.9O3)-(1-x)(Li2O.2B2O3) where (x=0.1,0.2,0.3,0.4). The as-quenched samples exhibited amorphous nature as revealed by X-ray Diffraction studies. With the increase in BCZT content we have observed significant alteration in optical bandgap and Urbach energy. The tailoring of optical properties by tuning the structure was probed by Raman vibrational spectroscopy which confirmed the dominant role played by BCZT as a network modifier in these borate glasses. Concomitantly, these glass nanocomposites were found to be excellent UV absorbers.

  11. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    NASA Astrophysics Data System (ADS)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  12. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

    PubMed

    Alhussein, Akram; Achache, Sofiane; Deturche, Regis; Sanchette, Frederic; Pulgarin, Cesar; Kiwi, John; Rtimi, Sami

    2017-04-01

    This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded within ∼75min. The films deposited by magnetron sputtering are chemically homogenous. The film roughness evaluated by atomic force spectroscopy (AFM) on the TNTZ-Cu 8.3 at.% Cu sample presented an RMS-value of 20.1nm being the highest RMS of any Cu-sputtered TNTZ sample. The implication of the RMS value found for this sample leading to the fastest interfacial bacterial inactivation kinetics is also discussed. Values for the Young's modulus and hardness are reported for the TNTZ films in the presence of various Cu-contents. Evaluation of the bacterial inactivation kinetics of E. coli under low intensity actinic hospital light and in the dark was carried out. The stable repetitive bacterial inactivation was consistent with the extremely low Cu-ion release from the samples of 0.4 ppb. Evidence is presented by the bacterial inactivation dependence on the applied light intensity for the intervention of Cu as semiconductor CuO during the bacterial inactivation at the TNTZ-Cu interface. The mechanism of CuO-intervention under light is suggested based on the pH/and potential changes registered during bacterial disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  14. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  15. Piezoelectric properties and temperature stability of Mn-doped Pb(Mg1/3Nb2/3)-PbZrO3-PbTiO3 textured ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Cho, Kyung-Hoon; Priya, Shashank

    2012-03-01

    In this letter, we report the electromechanical properties of textured 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 (PMN-PZT) composition which has relatively high rhombohedral to tetragonal (R-T) transition temperature (TR-T of 160 °C) and Curie temperature (TC of 234 °C) and explore the effect of Mn-doping on this composition. It was found that MnO2-doped textured PMN-PZT ceramics with 5 vol. % BaTiO3 template (T-5BT) exhibited inferior temperature stability. The coupling factor (k31) of T-5BT ceramic started to degrade from 75 °C while the random counterpart showed a very stable tendency up to 180 °C. This degradation was associated with the "interface region" formed in the vicinity of BT template. MnO2 doped PMN-PZT ceramics textured with 3 vol. % BT and subsequently poled at 140 °C (T-3BT140) exhibited very stable and high k31 (>0.53) in a wide temperature range from room temperature to 130 °C through reduction in the interface region volume. Further, the T-3BT140 ceramic exhibited excellent hard and soft combinatory piezoelectric properties of d33 = 720 pC/N, k31 = 0.53, Qm = 403, tan δ = 0.3% which are very promising for high power and magnetoelectric applications.

  16. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    DOEpatents

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (<10 minutes), use of commercially available materials, film production under ambient conditions, ease of lanthanum dissolution at high concentrations, and no heating requirements during solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  17. Domain structures and local switching in lead-free piezoceramics Ba0.85Ca0.15Ti0.90Zr0.10O3

    NASA Astrophysics Data System (ADS)

    Turygin, A. P.; Neradovskiy, M. M.; Naumova, N. A.; Zayats, D. V.; Coondoo, I.; Kholkin, A. L.; Shur, V. Ya.

    2015-08-01

    Lead-free piezoelectrics are becoming increasingly important in view of environmental problems of currently used lead-based perovskites such as lead zirconate titanate (PZT). One of the recent candidates for PZT replacement, solid solutions of BaZr0.2Ti0.8O3 and Ba0.7Ca0.3TiO3, are investigated in this work by piezoresponse force microscopy. Coexistence of the tetragonal and rhombohedral phases in this material is observed, which probably gives rise to easy polarization switching due to multiple domain states. The period of observed domain lamella scales with the grain size obeying well-known square root dependence characteristic of BaTiO3 ceramics. Domain switching and relaxation are investigated at the nanoscale as a function of the applied voltage and duration of the applied voltage pulses. The observed distortion of piezoresponse hysteresis loops near grain boundaries is attested to the increased concentration of defects. Nanoscale piezoelectric properties of these materials are discussed.

  18. Unique dielectric tunability of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spreitzer, Matjaž; Suvorov, Danilo; Chen, Xiang Ming

    2016-08-01

    The tunable dielectric properties of Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 antiferroelectric ceramics were investigated, and high relative tunability of 49% was obtained at 25 °C under a low bias electric field of 50 kV/cm. Abrupt changes and a significant hysteresis in dielectric constant and dielectric loss against bias electric field were observed, which are very different from the previously reported antiferroelectric materials. The unique dielectric tunability is attributed to the square-shaped double hysteresis loop and indicates the possible applications in some special tunable devices, such as an electrically-controlled switch. Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 ceramics also exhibit unique dielectric tunability at -5 °C. Abrupt changes in dielectric constant and dielectric loss were observed when the bias electric field increased to 31 kV/cm for the fresh sample, which is similar to the antiferroelectric-like dielectric tunability at 25 °C. However, the dielectric tunability was ferroelectric-like in the following measurement. This response is consistent with the hysteresis loop and can be explained by the electric field-assisted irreversible antiferroelectric-ferroelectric phase transition.

  19. Microstructure and Texture Evolutions of Biomedical Ti-13Nb-13Zr Alloy Processed by Hydrostatic Extrusion

    NASA Astrophysics Data System (ADS)

    Ozaltin, K.; Panigrahi, A.; Chrominski, W.; Bulutsuz, A. G.; Kulczyk, M.; Zehetbauer, M. J.; Lewandowska, M.

    2017-11-01

    A biomedical β-type Ti-13Nb-13Zr (TNZ) (wt pct) ternary alloy was subjected to severe plastic deformation by means of hydrostatic extrusion (HE) at room temperature without intermediate annealing. Its effect on microstructure, mechanical properties, phase transformations, and texture was investigated by light and electron microscopy, mechanical tests (Vickers microhardness and tensile tests), and XRD analysis. Microstructural investigations by light microscope and transmission electron microscope showed that, after HE, significant grain refinement took place, also reaching high dislocation densities. Increases in strength up to 50 pct occurred, although the elongation to fracture left after HE was almost 9 pct. Furthermore, Young's modulus of HE-processed samples showed slightly lower values than the initial state due to texture. Such mechanical properties combined with lower Young's modulus are favorable for medical applications. Phase transformation analyses demonstrated that both initial and extruded samples consist of α' and β phases but that the phase fraction of α' was slightly higher after two stages of HE.

  20. Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Shigemoto, Hokuto; Fujio, Yuki; Nagase, Toshimi; Aida, Yasuhiro; Umeda, Keiichi; Akiyama, Morito

    2017-09-01

    Aluminum nitride (AlN) is one of piezoelectric materials, which are eagerly anticipated for use in microelectromechanical systems (MEMS) applications such as communication resonators, sensors, and energy harvesters. AlN is particularly excellent in generated voltage characteristics for the MEMS rather than oxide piezoelectric materials such as lead zirconium titanate Pb(Zr, Ti)O3. However, it is necessary to improve the piezoelectric properties of AlN in order to advance the performance of the MEMS. We dramatically increased the piezoelectric coefficient d33 of AlN films by simultaneously adding magnesium (Mg) and niobium (Nb). The d33 of Mg39.3Nb25.0Al35.7N is 22 pC/N, which is about four times that of AlN. The d33 is increased by Mg and Nb simultaneous addition, and is not increased by Mg or Nb single addition. Interestingly, the Nb has multiple chemical states, and which are influenced by the Mg concentration.

  1. Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).

    PubMed

    Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill

    2015-01-28

    (Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed.

  2. Measurements of the electrical resistance and the hydrogen depth distribution for Ni 60Nb 20Zr 20 amorphous alloy before and after hydrogen charging

    NASA Astrophysics Data System (ADS)

    Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa

    2005-02-01

    A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.

  3. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  4. Improvement of the field-trapping capabilities of bulk Nd Ba Cu O superconductors using Ba Cu O substrates

    NASA Astrophysics Data System (ADS)

    Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato

    2006-07-01

    We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.

  5. Strength design of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys based on empirical electron theory of solids and molecules

    NASA Astrophysics Data System (ADS)

    Li, Y. K.; Chen, Y. W.; Cheng, X. W.; Wu, C.; Cheng, B.

    2018-05-01

    In this paper, the valence electron structure parameters of Zr(x)Ti(x)Hf(x)Nb(x)Mo(x) alloys were calculated based on the empirical electron theory of solids and molecules (EET), and their performance through these parameters were predicted. Subsequently, the alloys with special valence electron structure parameters were prepared byarc melting. The hardness and high-temperature mechanical properties were analyzed to verify the prediction. Research shows that the influence of shared electron number nA on the strongest bond determines the strength of these alloys and the experiments are consistent with the theoretical prediction.

  6. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. II. In situ transmission electron microscopy study of deformation mechanism change of a Zr-2.5Nb alloy upon heavy ion irradiation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei; Daymond, Mark R.; Yao, Zhongwen

    2015-03-14

    The effect of heavy-ion irradiation on deformation mechanisms of a Zr-2.5Nb alloy was investigated by using the in situ transmission electron microscopy deformation technique. The gliding behavior of prismatic < a > dislocations has been dynamically observed before and after irradiation at room temperature and 300 degrees C. Irradiation induced loops were shown to strongly pin the gliding dislocations. Unpinning occurred while loops were incorporated into or eliminated by < a > dislocations. In the irradiated sample, loop depleted areas with a boundary parallel to the basal plane trace were found by post-mortem observation after room temperature deformation, supporting themore » possibility of basal channel formation in bulk neutron irradiated samples. Strong activity of pyramidal slip was also observed at both temperatures, which might be another important mechanism to induce plastic instability in irradiated zirconium alloys. Finally, {01 (1) over bar1}< 0 (1) over bar 12 > twinning was identified in the irradiated sample deformed at 300 degrees C.« less

  7. Two-Step Reactive Aid Sintering of BaZr0.8Y0.2O3- δ Proton-Conducting Ceramics

    NASA Astrophysics Data System (ADS)

    Wang, Siwei; Chen, Yan; Zhang, Lingling; Ren, Cong; Chen, Fanglin; Brinkman, Kyle S.

    2015-12-01

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr0.8Y0.2O3- δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. In this paper, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO3 and B2O3-Li2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improved to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. The bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.

  8. Two-Step Reactive Aid Sintering of BaZr 0.8Y 0.2O 3-δ Proton-Conducting Ceramics

    DOE PAGES

    Wang, Siwei; Chen, Yan; Zhang, Lingling; ...

    2015-10-14

    Ceramic-based proton conductors enable high-temperature hydrogen economy applications such as hydrogen separation membranes, fuel cells, and steam electrolyzers. BaZr 0.8Y 0.2O 3-δ (BZY) proton-conducting oxide possesses the highest level of proton conductivity reported to date, but poor sinterability hinders its widespread utilization. Here, we report a two-step reactive aid sintering (TRAS) method involving the introduction of BaCO 3 and B 2O 3-Li 2O for the preparation of dense BZY ceramics sintered at 1500°C. The resulting BZY samples showed a pure perovskite structure with a dramatic increase in the relative density to 91.5%. In addition, the shrinkage during sintering was improvedmore » to 19.3% by a TRAS method as compared to 2.6% by the conventional solid date reaction method. Moreover, the bulk conductivity was improved due to enhanced densification, while the grain boundary conductivity decreased due to the blocking behavior of the sintering aid resulting in a decrease in the total conductivity of the samples.« less

  9. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1988-01-01

    NbAL3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al2O3 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAlY coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  10. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1989-01-01

    NbAl3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al203 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAly coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  11. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-03-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  12. α″ Martensite and Amorphous Phase Transformation Mechanism in TiNbTaZr Alloy Incorporated with TiO2 Particles During Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Ran, Ruoshi; Liu, Yiwei; Wang, Liqiang; Lu, Eryi; Xie, Lechun; Lu, Weijie; Wang, Kuaishe; Zhang, Lai-Chang

    2018-06-01

    This work studied the formation of the α″ martensite and amorphous phases of TiNbTaZr alloy incorporated with TiO2 particles during friction stir processing. Formation of the amorphous phase in the top surface mainly results from the dissolution of oxygen, rearrangement of the lattice structure, and dislocations. High-stress stemming caused by dislocations and high-stress concentrations at crystal-amorphous interfaces promote the formation of α″ martensite. Meanwhile, an α″ martensitic transformation is hindered by oxygen diffusion from TiO2 to the matrix, thereby increasing resistance to shear.

  13. Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.

    PubMed

    Chiu, Yi-Hsuan; Lai, Ting-Hsuan; Chen, Chun-Yi; Hsieh, Ping-Yen; Ozasa, Kazunari; Niinomi, Mitsuo; Okada, Kiyoshi; Chang, Tso-Fu Mark; Matsushita, Nobuhiro; Sone, Masato; Hsu, Yung-Jung

    2018-05-01

    Poor kinetics of hole transportation at the electrode/electrolyte interface is regarded as a primary cause for the mediocre performance of n-type TiO 2 photoelectrodes. By adopting nanotubes as the electrode backbone, light absorption and carrier collection can be spatially decoupled, allowing n-type TiO 2 , with its short hole diffusion length, to maximize the use of the available photoexcited charge carriers during operation in photoelectrochemical (PEC) water splitting. Here, we presented a delicate electrochemical anodization process for the preparation of quaternary Ti-Nb-Ta-Zr-O mixed-oxide (denoted as TNTZO) nanotube arrays and demonstrated their utility in PEC water splitting. The charge-transfer dynamics for the electrodes was investigated using time-resolved photoluminescence, electrochemical impedance spectroscopy, and the decay of open-circuit voltage analysis. Data reveal that the superior photoactivity of TNTZO over pristine TiO 2 originated from the introduction of Nd, Ta, and Zr elements, which enhanced the amount of accessible charge carriers, modified the electronic structure, and improved the hole injection kinetics for expediting water splitting. By modulating the water content of the electrolyte employed in the anodization process, the wall thickness of the grown TNTZO nanotubes can be reduced to a size smaller than that of the depletion layer thickness, realizing a fully depleted state for charge carriers to further advance the PEC performance. Hydrogen evolution tests demonstrate the practical efficacy of TNTZO for realizing solar hydrogen production. Furthermore, with the composition complexity and fully depleted band structure, the present TNTZO nanotube arrays may offer a feasible and universal platform for the loading of other semiconductors to construct a sophisticated heterostructure photoelectrode paradigm, in which the photoexcited charge carriers can be entirely utilized for efficient solar-to-fuel conversion.

  14. Fine-grained BaZr0.2Ti0.8O3 thin films for tunable device applications

    NASA Astrophysics Data System (ADS)

    Ying, Z.; Yun, P.; Wang, D. Y.; Zhou, X. Y.; Song, Z. T.; Feng, S. L.; Wang, Y.; Chan, H. L. W.

    2007-04-01

    A study of the structure and in-plane dielectric properties of BaZr0.2Ti0.8O3 thin film epitaxially grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) single-crystal substrates through pulsed-laser deposition has been carried out. X-ray diffraction measurements revealed a good crystallinity and tensile in-plane stress in the film. Fine grains with an average size of ˜20 nm were observed using atomic force microscopy. Curie temperature of the film was found to be ˜120 °C, which is 100 °C higher than that of the ceramic. Butterfly-shaped C-V curve confirmed the in-plane ferroelectric state in the film. A large dielectric tunability of ˜50% was found in the film.

  15. SUPERNOVA NEUTRINO NUCLEOSYNTHESIS OF THE RADIOACTIVE {sup 92}Nb OBSERVED IN PRIMITIVE METEORITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, T.; Chiba, S.; Iwamoto, N.

    2013-12-10

    The isotope {sup 92}Nb decays to {sup 92}Zr with a half-life of 3.47 × 10{sup 7} yr. Although this isotope does not exist in the current solar system, initial abundance ratios for {sup 92}Nb/{sup 93}Nb at the time of solar system formation have been measured in primitive meteorites. The astrophysical origin of this material, however, has remained unknown. In this Letter, we present new calculations which demonstrate a novel origin for {sup 92}Nb via neutrino-induced reactions in core-collapse supernovae (ν-process). Our calculated result shows that the observed ratio of {sup 92}Nb/{sup 93}Nb ∼ 10{sup –5} can be explained by the ν-process.

  16. Structure and electrical properties of <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Ye, S. K.; Fuh, J. Y. H.; Lu, L.

    2012-06-01

    <001> textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) lead-free piezoelectric ceramics were prepared by templated-grain growth method using BaTiO3 as template. The degree of orientation and the microstructure of the ceramics with different amount of template were investigated. The electrical properties of the textured-ceramics in the optimized condition were dramatically enhanced compared with randomly-oriented BCTZ ceramics. The textured BCTZ ceramics showed high piezoelectric constants d33 = 470 pC/N and d31 = -170 pC/N, and high electromechanical coupling factors kp = 44% and k31 = 22%. In addition, the Curie point of the textured ceramics revealed an increase with the template content.

  17. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE PAGES

    Palumbo, O.; Trequattrini, F.; Pal, N.; ...

    2017-02-01

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  18. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, O.; Trequattrini, F.; Pal, N.

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  19. Experimental determination of carbon partitioning between upper mantle minerals and silicate melts: initial results and comparison to trace element partitioning (Nb, Rb, Ba, U, Th, K)

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.; Davis, F. A.; Withers, A. C.; Fogel, M. L.

    2012-12-01

    Inventories of C in the mantle and magmatic fluxes of C between the mantle and the Earth's outer envelopes are poorly constrained in part owing to challenges in determining undegassed C concentrations of pristine basalts. Saal et al. [1] proposed that the behavior of Nb could be used as a proxy for C, owing to apparently similar behavior of the two elements in Siqueiros Transform MORB, but higher C/Nb ratios in popping rocks [2] call into question the applicability of the C/Nb proxy. Here, we present experimentally determined carbon partition coefficients (D's) between nominally volatile-free mantle minerals (olivine, OL; orthopyroxene, OPX; clinopyroxene, CPX; garnet, GA) and melts at 0.8-3 GPa, and 1250-1500°C. We conducted piston-cylinder experiments using an olivine-tholeiite + 4 wt% CO2, doped with Nb, Rb, U, Th, and 13C to enhance detection limits. To promote growth of crystals big enough for SIMS analyses, experiments were either long (<6 days), or at an initial higher temperature (T) before cooling slowly to a target T. We also produced SIMS calibration glass standards with varying amounts of C, and subject to ongoing analyses. We analyzed carbon (12C, 13C), H, F, and trace elements (Nb, Rb, Ba, U, Th, K) of both mineral phases and quenched liquids in subsets of experimental runs (21 in graphite-lined Pt-capsules, 6 in Fe-doped Pt-lined capsules) using both Cameca IMS 6F and NanoSIMS instruments. D's measured for 12C and 13C are close to 5x10-4, in most cases D13C>D12C, but a few have the opposite. Continuous exchange of the liquid (initially rich in 13C) with the graphite capsules (rich in 12C) may yield D's with 13C>12C. D's with 12C>13C are likely owing to either low count rates or comparatively high analytical contamination. Concentrations in minerals vary from 0.20-3.46 ppm for C, 25-176 ppm for H2O, and 0.05-1.21 ppm for F, whereas liquids tend to much higher values (C≤0.9 wt%; H2O≤1.5 wt%; F≤34 ppm; P≤0.25 wt%; S≤43 ppm; Cl≤77 ppm

  20. Enhanced Proton Conductivity in Y-Doped BaZrO3 via Strain Engineering.

    PubMed

    Fluri, Aline; Marcolongo, Aris; Roddatis, Vladimir; Wokaun, Alexander; Pergolesi, Daniele; Marzari, Nicola; Lippert, Thomas

    2017-12-01

    The effects of stress-induced lattice distortions (strain) on the conductivity of Y-doped BaZrO 3 , a high-temperature proton conductor with key technological applications for sustainable electrochemical energy conversion, are studied. Highly ordered epitaxial thin films are grown in different strain states while monitoring the stress generation and evolution in situ. Enhanced proton conductivity due to lower activation energies is discovered under controlled conditions of tensile strain. In particular, a twofold increased conductivity is measured at 200 °C along a 0.7% tensile strained lattice. This is at variance with conclusions coming from force-field simulations or the static calculations of diffusion barriers. Here, extensive first-principles molecular dynamic simulations of proton diffusivity in the proton-trapping regime are therefore performed and found to agree with the experiments. The simulations highlight that compressive strain confines protons in planes parallel to the substrate, while tensile strain boosts diffusivity in the perpendicular direction, with the net result that the overall conductivity is enhanced. It is indeed the presence of the dopant and the proton-trapping effect that makes tensile strain favorable for proton conduction.

  1. Impedance spectroscopy studies on lead free Ba1-xMgx(Ti0.9Zr0.1)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ben Moumen, S.; Neqali, A.; Asbani, B.; Mezzane, D.; Amjoud, M.; Choukri, E.; Gagou, Y.; El Marssi, M.; Luk'yanchuk, Igor A.

    2018-06-01

    Ba1-xMgx(Ti0.9Zr0.1)O3 (x = 0.01 and 0.02) ceramics were prepared using the conventional solid state reaction. Rietveld refinement performed on X-ray diffraction patterns indicates that the samples are tetragonal crystal structure with P4mm space group. By increasing Mg content from 1 to 2% the unit cell volume decreased. Likewise, the grains size is greatly reduced from 10 μm to 4 μm. The temperature dependence of dielectric constants at different frequencies exhibited typical relaxor ferroelectric characteristic, with sensitive dependence in frequency and temperature for ac conductivity. The obtained activation energy values were correlated to the proposed conduction mechanisms.

  2. Correlation and comparison of Nb/sub 2/ lymphoma cell bioassay with radioimmunoassay for human prolactin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, M.G.; Spirtos, N.J.; Moghissi, K.S.

    Serum samples from groups of men and women with normal and elevated prolactin (PRL) levels were assayed by radioimmunoassay (RIA) and by Nb/sub 2/ lymphoma cell bioassay (BA) for the presence of PRL. Because the Nb/sub 2/ lymphoma cells respond to both PRL and growth hormone, BA for PRL activity was carried out before and after neutralization of growth hormone in the serum samples. There were excellent correlations between RIA and BA both in euprolactinemic and hyperprolactinemic subjects. On an absolute basis, RIA and BA values were similar in the euprolactinemic group (6.6 +/- 0.8 versus 6.2 +/- 1.0), whereasmore » in the hyperprolactinemic group, RIA values were significantly higher than the BA results. The two assay systems also appeared to correlate better in women who were hyperprolactinemic, with obvious menstrual cycle disturbances, than in hyperprolactinemic women without menstrual cycle disturbances.« less

  3. Production and properties of high strength Ni free Zr-based BMGs

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Wang, W. H.

    2014-06-01

    Bulk metallic glasses (BMGs) are well known for very attractive physical, mechanical and thermal properties. Zr-based BMGs are used as structural materials in sports goods, electronics, jewelry, medical and aerospace applications. Ni free Zr48Cu36Al8M8 (M = Nb, Ti and Ta) BMGs are successfully synthesized by Cu mold casting technique. Differential scanning calorimetery (DSC) results show that the Zr48Cu36Al8Nb8 BMG have good thermal stability, wide supercooled liquid region of 80 K and contain the double stage crystallization. The alloy has fracture strength of 1.953 GPa. Shear angle was measured to be in the range of 43.5±5° for the alloy studied. Vicker's hardness of the BMGs was found to be over 500 Hv for the as cast alloy which enhanced about 11 % more by annealing up to 600 °C/20 min. Intersected shear bands were observed. The observed promising mechanical and thermal properties showed that BMG studied can be used for industrial applications.

  4. The geochemical and genetic role of organic substances in postmagmatic derivatives of alkaline plutons

    NASA Astrophysics Data System (ADS)

    Ermolaeva, V. N.; Chukanov, N. V.; Pekov, I. V.; Kogarko, L. N.

    2009-12-01

    Solid bituminous substances (SBS) are common components of the late hydrothermal mineral assemblages of peralkaline pegmatites. SBS are formed in a reductive setting as a result of progressive sorption of minor carbon-bearing molecules (CO, CO2, CH4, C2H6, C2H4, etc.), their polymerization, transformation into aromatic compounds (reformation), and selective oxidation on microporous zeolite-like Ti-, Nb-, and Zrsilicates serving as sorbents and catalysts. The oxygen-bearing aromatic compounds with hydrophile functional groups (-OH, -C=O, -COOH, -COO) act as complexing agents with respect to Th, REE, U, Zr, Ti, Nb, Ba, Sr, Ca, resulting in transfer of these bitumenophile elements under low-temperature hydrothermal conditions in the form of water-soluble macroassociates of the micelle type. Th, REE, and to a lesser extent, U, Zr, Ti, and Nb concentrate at the late stage of the hydrothermal process as microphases impregnating SBS or macroscopic segregations of Th and REE minerals. At the final stage, homogeneous SBS break down into organic (partly together with Ca, Sr, Ba, and Pb) and mineral (with Th, Ln, Y, Ti, Nb, Ca, Na, K, Si) microphases.

  5. High permittivity and low loss ceramics in the BaO-SrO-Nb{sub 2}O{sub 5} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreemoolanadhan, H.; Sebastian, M.T.; Mohanan, P.

    1995-06-01

    A new group of compounds with composition (Ba{sub 5{minus}X}Sr{sub x})Nb{sub 4}O{sub 15}, having high permittivity and low loss have been prepared and characterized in the microwave frequency region. X-ray diffraction studies showed that monophase compound existed for all values of x from 0 to 5. Microwave dielectric properties such as {var_epsilon}{sub r} and {tau}{sub f} showed smooth variation with x, while the unloaded quality factor (Q{sub u}) showed remarkable improvement with x. A range of ceramic dielectric resonators (DR) with 40 < {var_epsilon}{sub r} < 50, {minus}10 < {tau}{sub f} < +10 and Q {times} f > 10,000 can bemore » obtained in this system.« less

  6. Properties and Degradation of Polarization Reversal of Soft BaTiO3 Ceramics for Ferroelectric Thin-Film Devices

    NASA Astrophysics Data System (ADS)

    Thongrueng, Jirawat; Tsuchiya, Toshio; Masuda, Yoichiro; Fujita, Shigetaka; Nagata, Kunihiro

    1999-09-01

    Soft BaTiO3 ceramics having a very low coercive field of 65 V/mm were prepared by substituting 9 mol% Hf Zr for the Ti-site of BaTiO3, for applications to ferroelectric thin-film devices. Electrical properties of the soft BaTiO3 ceramics were measured and compared with those of normal BaTiO3 ceramics. By substituting Hf Zr for Ti-site, the phase transition temperatures were controlled, and we could select the preferred crystal structure from the tetragonal, orthorhombic and rhombohedral phases at room temperature. In addition, the preparation and characterization of the soft BaTiO3 thin-films using a sol-gel process were carried out.

  7. Annealing induced effect on the physical properties of ion-beam sputtered 0.5 Ba(Zr0.2Ti0.8)O3 - 0.5 (Ba0.7Ca0.3)TiO3-δ ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Oliveira, M. J. S.; Silva, J. P. B.; Veltruská, Kateřina; Matolín, V.; Sekhar, K. C.; Moreira, J. Agostinho; Pereira, M.; Gomes, M. J. M.

    2018-06-01

    This work reports thermal annealing induced effect on the structural, optical, chemical and ferroelectric properties of ion-beam sputtered lead-free ferroelectric 0.5 Ba(Zr0.2Ti0.8)O3 - 0.5 (Ba0.7Ca0.3)TiO3-δ (0.5BZT-0.5BCT) thin films. X-ray diffraction studies reveal that the tetragonality increases with the annealing temperature (Ta), while photoluminescence and X-ray photoelectron spectroscopy studies confirm that this effect is associated with the annihilation of the oxygen vacancies as well as changes in the Ba2+ coordination. The films annealed at 750 °C show a remarkable remnant polarization of Pr = 45.0 μC/cm2, with a coercive field of 32 kV/cm. The temperature dependence of the spontaneous polarization of the 0.5BZT-0.5BCT film reveals a mean field behavior of the polarization and the fatigue study reveals that Pr only decreases 3% after passing 109 cycles. Therefore the high remnant polarization and its high Pr stability make these films as promising candidates for memory applications.

  8. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. II. In situ transmission electron microscopy study of deformation mechanism change of a Zr-2.5Nb alloy upon heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen

    2015-03-14

    The effect of heavy-ion irradiation on deformation mechanisms of a Zr-2.5Nb alloy was investigated by using the in situ transmission electron microscopy deformation technique. The gliding behavior of prismatic 〈a〉 dislocations has been dynamically observed before and after irradiation at room temperature and 300 °C. Irradiation induced loops were shown to strongly pin the gliding dislocations. Unpinning occurred while loops were incorporated into or eliminated by 〈a〉 dislocations. In the irradiated sample, loop depleted areas with a boundary parallel to the basal plane trace were found by post-mortem observation after room temperature deformation, supporting the possibility of basal channel formation inmore » bulk neutron irradiated samples. Strong activity of pyramidal slip was also observed at both temperatures, which might be another important mechanism to induce plastic instability in irradiated zirconium alloys. Finally, (011{sup ¯}1)〈01{sup ¯}12〉 twinning was identified in the irradiated sample deformed at 300 °C.« less

  9. Epitaxial YBa2Cu3O7-x nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions

    NASA Astrophysics Data System (ADS)

    Obradors, X.; Puig, T.; Li, Z.; Pop, C.; Mundet, B.; Chamorro, N.; Vallés, F.; Coll, M.; Ricart, S.; Vallejo, B.; Pino, F.; Palau, A.; Gázquez, J.; Ros, J.; Usoskin, A.

    2018-04-01

    Superconducting nanocomposites are the best material choice to address the performance required in power applications and magnets working under high magnetic fields. However, it is still challenging to sort out how to achieve the highest superconducting performance using attractive and competitive manufacturing processes. Colloidal solutions have been recently developed as a novel and very promising low cost route to manufacture nanocomposite coated conductors. Well dispersed and stabilized preformance nanoparticle solutions are first prepared with high concentrations and then mixed with the YBa2Cu3O7 metalorganic precursor solutions to generate colloidal solutions to grow the nanocomposite films. Here we demonstrate, for the first time, that non-reactive BaZrO3 and BaHfO3 perovskite preformed nanoparticles are suitable for growing high quality thin and thick films, and coated conductors with a homogeneous distribution and controlled particle size using this fabrication method. Additionally, we extend the nanoparticle content of the nanocomposites up to 20%-25% mol without any degradation of the superconducting properties. Thick nanocomposite films, up to 0.8 μm, have been prepared with a single deposition of low-fluorine solutions using an ink jet printing dispenser and we demonstrate that the preformed nanoparticles display only a very limited coarsening during the growth process and so high critical current densities J c (B) under high magnetic fields. These films show the highest critical currents achieved so far based on the colloidal solution approach, I c = 220 A/cm-w at 77 K and self-field, and they still have a high potential for further increase in the film thickness. Finally, we also show that nanocomposite YBa2Cu3O7-BaZrO3 coated conductors based on an alternating beam assisted deposited YSZ buffer layer on stainless steel metallic substrates can be developed based on these novel colloidal solutions. Non-reactive preformed oxide perovskite

  10. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  11. The Effect of 24c-site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7-xLa3-xAxZr2O12 Garnet-Based Ceramic Electrolyte

    DTIC Science & Technology

    2012-12-27

    Another super-valent substitution scheme involves either Nb (5þ) or Ta (5þ) on the 16a site ( Zr 4þ), that reduces the Li content and/or increases Li...substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb $ Zr ¼ V0Li (4) Likewise, super-valent substitution on the 24c (La 3þ) is...Substitution of La with Ce stabilizes the cubic LLZO garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super

  12. Lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Malakooti, Mohammad H; Tang, Haixiong; Sodano, Henry A

    2016-03-07

    Lead-free piezoelectric nanowires (NWs) show strong potential in sensing and energy harvesting applications due to their flexibility and ability to convert mechanical energy to electric energy. Currently, most lead-free piezoelectric NWs are produced through low yield synthesis methods and result in low electromechanical coupling, which limit their efficiency as energy harvesters. In order to alleviate these issues, a scalable method is developed to synthesize perovskite type 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) NWs with high piezoelectric coupling coefficient. The piezoelectric coupling coefficient of the BZT-BCT NWs is measured by a refined piezoresponse force microscopy (PFM) testing method and shows the highest reported coupling coefficient for lead-free piezoelectric nanowires of 90 ± 5 pm V(-1). Flexible nanocomposites utilizing dispersed BZT-BCT NWs are fabricated to demonstrate an energy harvesting application with an open circuit voltage of up to 6.25 V and a power density of up to 2.25 μW cm(-3). The high electromechanical coupling coefficient and high power density demonstrated with these lead-free NWs produced via a scalable synthesis method shows the potential for high performance NW-based devices.

  13. Data on processing of Ti-25Nb-25Zr β-titanium alloys via powder metallurgy route: Methodology, microstructure and mechanical properties.

    PubMed

    Ueda, D; Dirras, G; Hocini, A; Tingaud, D; Ameyama, K; Langlois, P; Vrel, D; Trzaska, Z

    2018-04-01

    The data presented in this article are related to the research article entitled "Cyclic Shear behavior of conventional and harmonic structure-designed Ti-25Nb-25Zr β-titanium alloy: Back-stress hardening and twinning inhibition" (Dirras et al., 2017) [1]. The datasheet describes the methods used to fabricate two β-titanium alloys having conventional microstructure and so-called harmonic structure (HS) design via a powder metallurgy route, namely the spark plasma sintering (SPS) route. The data show the as-processed unconsolidated powder microstructures as well as the post-SPS ones. The data illustrate the mechanical response under cyclic shear loading of consolidated alloy specimens. The data show how electron back scattering diffraction(EBSD) method is used to clearly identify induced deformation features in the case of the conventional alloy.

  14. Study of low-modulus biomedical β Ti-Nb-Zr alloys based on single-crystal elastic constants modeling.

    PubMed

    Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin

    2016-09-01

    CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Investigation of structural, ferroelectric, piezoelectric and dielectric properties of Ba0.92Ca0.08TiO3-BaTi0.96Zr0.04O3 lead-free electroceramics

    NASA Astrophysics Data System (ADS)

    Keswani, Bhavna C.; Patil, S. I.; Kolekar, Y. D.

    2018-04-01

    Lead free ferroelectric with composition 0.55Ba0.92Ca0.08TiO3-0.45BaTi0.96Zr0.04O3 (BCT8-BZT4) was synthesized by solid state reaction method and investigated their structural, ferroelectric, piezoelectric and dielectric properties. X-ray diffraction analysis shows that BCT8-BZT4 ceramic possess both tetragonal (space group P4mm) and orthorhombic (space group Amm2) crystal structure which was further confirmed from Raman spectra spectroscopy. The micronized grains were observed from scanning electron micrographs while the presence of polarization-electric field hysteresis loop confirms ferroelectric nature of BCT8-BZT4 ceramic. Higher values of maximum polarization (Pmax = 22.27 μC/cm2), remnant polarization (Pr = 11.61 μC/cm2), coercive electric field (Ec = 4.77 kV/cm) and direct piezoelectric coefficient (d33) approximately 185 pC/N were observed. The real part of dielectric constant with frequency shows the usual dielectric dispersion behaviour at RT. The observed properties show that the lead free BCT8-BZT4 ceramic is suitable for ferroelectric memory device, piezoelectric sensor, capacitor, etc. applications.

  16. Phase transition hysteresis and anomalous Curie-Weiss behavior of ferroelectric tetragonal tungsten bronzes Ba2RETi2Nb3O15:RE=Nd,Sm

    NASA Astrophysics Data System (ADS)

    Prades, Marta; Beltrán, Héctor; Masó, Nahum; Cordoncillo, Eloisa; West, Anthony R.

    2008-11-01

    The ferroelectric tetragonal tungsten bronze (TTB) phases, Ba2RETi2Nb3O15:RE=Nd,Sm, were prepared by low temperature solvothermal synthesis. The permittivity versus temperature data of sintered ceramics show two unusual features: first, a hysteresis of 50-100 °C between values of the Curie temperature Tc on heat-cool cycles and second: a huge depression in the Curie-Weiss temperature T0. Both effects are attributed to the complex nature of their TTB-related crystal structures with different superstructures above and below Tc and the difficulty in nucleating ferroelectric domains on cooling through Tc. Several factors may contribute to the latter difficulty: first, the structures contain two sets of crystallographic sites for the "active" Ti, Nb ions; second, the distribution of Ti and Nb over these two sets of sites is not random but partially ordered; and third, below Tc a weak commensurate superstructure perpendicular to the polar c&barbelow; axis is present, but above Tc a weak incommensurate superstructure in a similar orientation is present. Hence the formation of the ferroelectric structure on cooling requires both nucleation of polar domains involving two sets of cation sites and structural change from an incommensurate to a commensurate supercell.

  17. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  18. Cation ordering/disordering kinetics in Ba3CoNb2O9: An in situ study using synchrotron x-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Mallinson, P. M.; Claridge, J. B.; Rosseinsky, M. J.; Ibberson, R. M.; Wright, J. P.; Fitch, A. N.; Price, T.; Iddles, D. M.

    2007-11-01

    In situ synchrotron x-ray powder diffraction has been used to study the kinetics of cation ordering and disordering in the microwave dielectric electroceramic Ba3CoNb2O9 with a time resolution of 15s. The method enables the order/disorder temperature (To /d) in this material of 1430°C to be directly observed. The changes in the rate and degree of cation ordering and in the growth of ordered domains between samples ordered from standard precursor material and then subsequently reordered following an annealing period above To /d show that small changes in precursor order state and phase assemblage strongly influence the final domain size.

  19. Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy

    NASA Astrophysics Data System (ADS)

    Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah

    2016-03-01

    In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.

  20. Batisite, Na2BaTi2(Si4O12)O2, from Inagli massif, Aldan, Russia: crystal-structure refinement and high-temperature X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zolotarev, Andrey A.; Zhitova, Elena S.; Gabdrakhmanova, Faina A.; Krzhizhanovskaya, Maria G.; Zolotarev, Anatoly A.; Krivovichev, Sergey V.

    2017-12-01

    The crystal structure of batisite, Na2BaTi2 (Si4O12)O2, from the Inagli massif (Aldan, Yakutia, Russia) was refined to R 1 = 0.032 for 1449 unique observed reflections. The mineral is orthorhombic, Imma, a = 8.0921(5), b = 10.4751(7), c = 13.9054(9) Å, V = 1178.70(13) Å3. The mineral is based upon three-dimensional titanosilicate framework consisting of chains of corner-sharing MO6 octahedra ( M = Ti, Nb, Fe and Zr) and vierer chains of corner-sharing SiO4 tetrahedra. Both chains are parallel to the a axis and are linked by sharing peripheral O atoms. The octahedral chains display disorder of M atoms and bridging O sites related to the out-of-center distortion of octahedral geometry around Ti4+ cations. Electron microprobe analysis gives SiO2 39.46, TiO2 24.66, BaO 21.64, Na2O 7.56, K2O 4.38, Fe2O3 0.90, ZrO2 0.66, Nb2O5 0.36, (H2O)calc 0.58, sum 99.76 wt%. The seven strongest X-ray powder-diffraction lines [listed as d in Å (I) hkl] are: 8.39 (94) 011, 3.386 (56) 031, 3.191 (36) 123, 2.910 (46) 222, 2.896 (100) 024, 2.175 (45) 035, 1.673 (57) 055. The thermal behaviour of batisite in the temperature range from 25 to 950 °C was studied using high-temperature powder X-ray diffraction. The thermal expansion coefficients along the principal crystallographic axes are: α a = 14.4 × 10-6, α b = 8.7 × 10-6, α c = 8.4 × 10-6, α V = 31.5 °C-1 for the temperature range 25-500 °C and α a = 19.6 × 10-6, α b = 9.1 × 10-6, α c = 8.8 × 10-6, α V = 37.6 °C-1 for the temperature range 500-900 °C. The direction of maximal thermal expansion is parallel to the chains of both MO6 octahedra and SiO4 tetrahedra, which can be explained by the stretching of silicate chains due to the increasing thermal vibrations of the Ba2+ cations. At 1000 °C, the titanosilicate framework in batisite collapses with the formation of fresnoite, Ba2TiSi2O7O.

  1. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  2. The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO3/3Y-TZP Composites

    PubMed Central

    Li, Jing; Cui, Bencang; Wang, Huining; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Composite ceramics BaTiO3/3Y-TZP containing 0 mol %, 3 mol %, 5 mol %, 7 mol %, and 10 mol % BaTiO3 have been prepared by conventional sintering and spark-plasma sintering (SPS), respectively. Analysis of the XRD patterns and Raman spectra reveal that the phase composition of t-ZrO2, m-ZrO2, and BaTiO3 has been obtained. Our results indicate that SPS can be effective for the decrease in grain size and porosity compared with conventional sintering, which results in a lower concentration of m-ZrO2 and residual stress. Therefore, the fracture toughness is enhanced by the BaTiO3 phase through the SPS technique, while the behavior was impaired by the piezoelectric second phase through conventional sintering. PMID:28773445

  3. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites

    NASA Astrophysics Data System (ADS)

    Moreno, J. A.; Molina, J. F.; Bea, F.; Abu Anbar, M.; Montero, P.

    2016-08-01

    The relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios in A-type felsic rocks from the Ediacaran Katerina Ring Complex, northernmost Arabian-Nubian Shield (ANS; S. Sinai, Egypt), are investigated in this work to understand their behavior during generation of highly evolved granitic magmas and to explore the nature of magma sources. Textural and compositional relationships of cognate Th-REE- and Nb-Ta-accessory minerals in Katerina felsic rocks show that chevkinite-group minerals (CGM), monazite, thorite, allanite and xenotime formed from residual liquids in quartz syenite porphyries, quartz monzonites and peralkaline granites, whereas in aluminous granites, allanite and monazite crystallized early, and thorite and columbite formed from residual liquids. Relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios with Zr/Hf ratios in the aluminous granites and with Be abundances in the peralkaline granites suggest a decrease in La/Nb and Ce/Pb ratios in the former, and in Y/Nb and La/Nb ratios in the latter with crystallization progress. This contrasts with absence of systematic variations of Th/Nb and Ce/Pb ratios in the peralkaline compositions and of Y/Nb ratio in the aluminous ones. In this latter, Th/Nb ratio can present a significant decrease only in highly evolved compositions. An analysis of Y/Nb, Th/Nb, La/Nb and Ce/Pb relationships in worldwide OIB and subduction-related magmatic suites reveals that A-type felsic rocks with (Th/Nb)N < 1.3, (La/Nb)N < 1.3, and (Ce/Pb)N > 1 may have A1-type affinity, and those with (Th/Nb)N > 2, (La/Nb)N > 2, and (Ce/Pb)N < 1 tend to present A2-type affinity. The crystal fractionation of Th-LREE- and Nb-Ta-accessory minerals and mixing of components derived from the two granite groups may cause deviations from these compositional limits that can be evaluated using constraints imposed by Th/Nb-La/Nb, Ce/Pb-Th/Nb and Ce/Pb-La/Nb relationships in OIB and subduction-related magmatic suites. Three mantle sources might have been

  4. Imaging and engineering the nanoscale-domain structure of a Sr0.61Ba0.39Nb2O6 crystal using a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Terabe, K.; Takekawa, S.; Nakamura, M.; Kitamura, K.; Higuchi, S.; Gotoh, Y.; Gruverman, A.

    2002-09-01

    We have investigated the ferroelectric domain structure formed in a Sr0.61Ba0.39Nb2O6 single crystal by cooling the crystal through the Curie point. Imaging the etched surface structure using a scanning force microscope (SFM) in both the topographic mode and the piezoresponse mode revealed that a multidomain structure of nanoscale islandlike domains was formed. The islandlike domains could be inverted by applying an appropriate voltage using a conductive SFM tip. Furthermore, a nanoscale periodically inverted-domain structure was artificially fabricated using the crystal which underwent poling treatment.

  5. Crystal orientation dependence of the dielectric properties for epitaxial BaZr0.15Ti0.85O3 thin films

    NASA Astrophysics Data System (ADS)

    Miao, J.; Yuan, J.; Wu, H.; Yang, S. B.; Xu, B.; Cao, L. X.; Zhao, B. R.

    2007-01-01

    Epitaxial Ba0.15Zr0.85TiO3 (BZT) ferroelectric thin films with (001), (011), and (111) orientations were, respectively, grown on La0.67Sr0.33MnO3 (LSMO) buffered LaAlO3 substrates by pulsed laser deposition method. The dc electric-field dependence of permittivity and dielectric loss of (001)-, (011)-, and (111)-oriented BZT/LSMO heterostructures obeys the Johnson formula, and the ac electric-field dependence of that obeys the Rayleigh law under the subswitching field region. The anisotropic dielectric properties are attributed to the higher mobility of the charge carriers, the concentration of mobile interfacial domain walls, and boundaries in the (111)-oriental films than in the (110)- and (100)-oriented films.

  6. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-03-01

    Titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) are widely used for implants, which are characterized by high elastic modulus (∼110 GPa) with (α + β) structure and that may induce undesirable stress shielding effect and immune responses associated with the presence of toxic elements. In this regard, we have combined the attributes of a new alloy design and the concept of additive manufacturing to fabricate 3D scaffolds with an interconnected porous structure. The new alloy is a β-type Ti-24Nb-4Zr-8Sn (Ti2448) alloy with significantly reduced modulus. In the present study, we explore the biological response of electron beam melted low modulus Ti2448 alloy porous mesh structure through the elucidation of bioactivity and osteoblast functions. The cellular activity was explored in terms of cell-to-cell communication involving proliferation, spreading, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. The formation of fine apatite-like crystals on the surface during immersion test in simulated body fluid confirmed the bioactivity of the scaffold surface, which provided the favorable osteogenic microenvironment for cell-material interaction. The combination of unique surface chemistry and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and a favorable osteogenic micro-environment for incorporation (on-growth and in-growth) of osteoblasts. The proliferation and differentiation of pre-osteoblasts and their ability to form a well mineralized bone-like extracellular matrix (ECM) by secreting bone markers (ALP, calcium, etc.) over the struts of the scaffold point toward the determining role of unique surface chemistry and 3D architecture of the Ti2448 alloy mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 859-870, 2017. © 2016 Wiley Periodicals, Inc.

  7. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.

    PubMed

    Raducanu, D; Vasilescu, E; Cojocaru, V D; Cinca, I; Drob, P; Vasilescu, C; Drob, S I

    2011-10-01

    In this work, a multi-elementary Ti-10Zr-5Nb-5Ta alloy, with non-toxic alloying elements, was used to develop an accumulative roll bonding, ARB-type procedure in order to improve its structural and mechanical properties. The alloy was obtained by cold crucible semi-levitation melting technique and then was ARB deformed following a special route. After three ARB cycles, the total deformation degree per layer is about 86%; the calculated medium layer thickness is about 13 μm. The ARB processed alloy has a low Young's modulus of 46 GPa, a value very close to the value of the natural cortical bone (about 20 GPa). Data concerning ultimate tensile strength obtained for ARB processed alloy is rather high, suitable to be used as a material for bone substitute. Hardness of the ARB processed alloy is higher than that of the as-cast alloy, ensuring a better behaviour as a implant material. The tensile curve for the as-cast alloy shows an elastoplastic behaviour with a quite linear elastic behaviour and the tensile curve for the ARB processed alloy is quite similar with a strain-hardening elastoplastic body. Corrosion behaviour of the studied alloy revealed the improvement of the main electrochemical parameters, as a result of the positive influence of ARB processing. Lower corrosion and ion release rates for the ARB processed alloy than for the as-cast alloy, due to the favourable effect of ARB thermo-mechanical processing were obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Lattice dynamics, phase transition, and tunable fundamental band gap of photovoltaic (K,Ba)(Ni,Nb)O3 -δ ceramics from spectral measurements and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Chuanqian; Wang, Fang; Sun, Yuyun; Jiang, Kai; Gong, Shijing; Hu, Zhigao; Zhou, Zhiyong; Dong, Xianlin; Chu, Junhao

    2018-03-01

    Ferroelectrics have long been recognized as one of the candidate class of materials for applications in photovoltaic devices. Recently, ferroelectric perovskite (K,Ba) (Ni,Nb) O3 -δ has been successfully synthesized and demonstrated to have a near-optimal band gap (1.39 eV), exhibiting good photovoltaic performance. However, the connection between the structural order-disorder transformation, electronic structure, bulk photovoltaic, and photocatalytic properties remains not well understood. Here, we investigate the phase transition evolutions of lead-free [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (KBNNO x , x =0 -0.5 ) ceramics via x-ray diffraction (XRD), Raman scattering, and computational evidences. The lattice dynamics and the origin of the successive rhombohedral→orthorhombic→tetragonal→cubic phase transitions have been systemically explored based on temperature-dependent XRD peak positions and phonon modes under different geometries. Moreover, the differences in the phase transition temperature and interior structure between the solid solution x =0.2 and the end member x =0 highlight local and nonlocal characteristics, which are helpful for understanding the photovoltaic mechanisms. Additionally, the robust photocatalytic decoloration effect on methylene blue can further confirm the photon-generated carrier behavior in the partly structural disordered orthorhombic phase. This identification of structural phases, combined with the ability to perform photocatalytic decoloration, give some insights on promising oxide applications as semiconducting ferroelectric absorbers and carrier-separating layers in photocatalytic or photovoltaic devices.

  9. Generating mixed morphology BaZrO3 artificial pinning centers for strong and isotropic pinning in BaZrO3-Y2O3 double-doped YBCO thin films

    NASA Astrophysics Data System (ADS)

    Chen, Shihong; Sebastian, Mary Ann; Gautam, Bibek; Wilt, Jamie; Chen, Yanbin; Sun, Lei; Xing, Zhongwen; Haugan, Timothy; Wu, Judy

    2017-12-01

    High concentration artificial pinning centers (APCs), such as BaZrO3 nanorods (BZO 1D APCs) aligned along the c-axis of the high temperature superconductor YBa2Cu3O7 (YBCO) can provide strong pinning of magnetic vortices and are desirable for applications in high magnetic fields. Unfortunately, in YBCO films with single-doping (SD) of BZO 1D APCs, a monotonic decreasing superconducting T c and critical current density J c(H) with BZO doping has been observed due to strain field overlap at high-concentration perfectly c-axis aligned BZO 1D APCs. In order to resolve this issue, double-doping (DD) of 2-6 vol% BZO 1D APCs and 3.0 vol% Y2O3 nanoparticles (Y2O3-NPs) in YBCO films has been explored to promote BZO-NR orientation misalignment from the c-axis. Remarkably, a monotonic increasing J c(H) with BZO 1D APCs concentration has been obtained in the BZO DD samples. Such a microstructure change is evidenced in the much smaller c-lattice parameter expansion of 0.103% in the DD samples as opposed to 0.511% in the SD counterparts and reduced c-axis alignment of the BZO 1D APCs as revealed in TEM. This yields a mixed 1D + 2D + 3D APC morphology and enhanced isotropic pinning with respect to the orientation of the H-field in the BZO DD samples.

  10. Phase transition behaviours near the triple point for Pb-free (1 - x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics

    NASA Astrophysics Data System (ADS)

    Gao, Jinghui; Dai, Ye; Hu, Xinghao; Ke, Xiaoqin; Zhong, Lisheng; Li, Shengtao; Zhang, Lixue; Wang, Yu; Wang, Dong; Wang, Yan; Liu, Yongbin; Xiao, Hu; Ren, Xiaobing

    2016-08-01

    The reason for the large electromechanical response in Pb-free piezoceramic Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 (BZT-BCT) still remains controversial, and a central issue is whether or not the multi-phase-coexisting point (triple point) in the phase diagram is a thermodynamic tricritical point. In this letter, we study the phase transition behaviour for the ferro-para transitions of BZT-BCT specimens in the vicinity of a triple point. Our results show that latent heat and thermal hysteresis approach zero, while the permittivity peak value is maximized close to the triple-point composition, which suggests that the triple point exhibits nearly tricritical transition behaviours in the BZT-BCT system. Further, the TEM result shows that the domain width is minimized with composition approaching the triple point, which indicates a reduction of the domain wall energy possibly relevant to the tricriticality of the triple point. A sixth-order Landau energy modeling shows that the triple tricritical point provides a free-energy state of near-vanishing polarization anisotropy and thus enhances the piezoelectric response for such a material system.

  11. Dielectric studies of (x) NiFe2O4 + (1 - x) BaTi0.9Zr0.1O3 (where x = 0, 0.25, 0.50, 0.75 and 1)

    NASA Astrophysics Data System (ADS)

    Wadhwani, Kiran; Srivastava, Subodh; Mathur, Shubhra

    2018-05-01

    We present the room temperature dielectric studies of the samples in the series (x) NiFe2O4 + (1-x) BaTi0.9Zr0.1O3 (where x = 0, 0.25, 0.50, 0.75 and 1) containing nickel ferrite and Zr substituted barium titanate as the ferroelectric phase and their magnetoelectric (ME) composites in mixed in different molar ratios. Solid state diffusion has been used for the synthesis of samples. Powder X-ray diffraction (XRD) confirms the formation of ferrite and ferroelectric phases and their presence in all three composites with no impurity traces. Room temperature dielectric measurements have been made as a function of frequency (ranging from 100 Hz to 1 MHz).

  12. Synthesis, structural and electrical studies of Ba1-xSrxCe0.65Zr0.25Pr0.1O3-δ electrolyte materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Madhuri Sailaja, J.; Murali, N.; Margarette, S. J.; Mammo, Tulu Wegayehu; Veeraiah, V.

    2018-03-01

    This paper is discussed Sr doping effect on the microstructure, chemical stability and conductivity of Ba1-xSrxCe0.65Zr0.25Pr0.1O3-δ (0 ≤ x ≤ 0.2) electrolyte prepared by sol-gel method. The lattice constants and unit cell volumes are found to decrease as Sr atomic percentage increased in accordance with the Vegard law, confirming the formation of solid solution with orthorhombic structure. Among them all the synthesized samples are showed a conductivity with different atmosphere values at 500 °C. Ba0.92Sr0.08Ce0.65Zr0.25Pr0.1O3-δ recorded highest conductivity with a value of 3.3 × 10-6 S/cm (dry air) & 3.41 × 10-6 S/cm (wet air with 3% relative humidity) at 500 °C due to its smaller lattice volume, larger grain size and lower activation energy that led to excessive increase in conductivity. All pellets exhibited good chemical stability when exposed to air and H2O atmospheres. This study elucidates that the composition will be a promising electrolyte material for use as SOFC at intermediate temperatures if Sr doping is limited to small amounts.

  13. Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9-xZr0.1CuxO3 ceramics synthesized by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Hunpratub, Sitchai; Phokha, Sumalin; Maensiri, Santi; Chindaprasirt, Prinya

    2016-04-01

    Ba0.85Ca0.15Ti0.9Zr0.1-xCuxO3 (BCTZC) nanopowders were synthesized using a hydrothermal method after which they were pressed into discs and sintered in air at 1300 °C for 3 h to form ceramic samples. The phase and microstructure of the powder and ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the ceramic samples exhibited a tetragonal structure and that CuO, BaZrO3 or CaTiO3 impurity phases, which had been present in the powder samples, were not observed. The average grain sizes in the ceramic samples were found to be 17.0, 16.1, 20.0, 18.1 and 19.6 μm for Cu mole fractions x of 0.002, 0.004, 0.006, 0.008 and 0.01, respectively. The dielectric constants, ferroelectric hysteresis loops and piezoelectric charge coefficients of the BCZTC ceramic samples were also investigated. Optimum values for the relative dielectric constant (ɛ‧), tan δ and piezoelectric charge coefficient (d33) of the samples were 3830, 0.03 and 306 pC/N, respectively, in the Cu mole fraction samples with x = 0.002.

  14. Search for the β decay of 96Zr

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2016-01-01

    96Zr and 48Ca are unique among double-β decay candidate nuclides in that they may also undergo single-β decay. In the case of 96Zr, the single-β decay mode is dominated by the fourth-forbidden β decay with a 119 keV Q value. A search was conducted for the β decay of 96Zr by observing the decay of the daughter 96Nb nucleus. Two coaxial high-purity germanium detectors were used in coincidence to detect the γ-ray cascade produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 days of data with a 17.91 g enriched sample. No counts were seen above background, producing a limit of T1/2 > 2.4 ×1019 year. This is the first experimental search that is able to discern between the β decay and the double-β decay to an excited state of 96Zr.

  15. Bizarre dielectric anomalies in magnetoelectric composites of CoFe2O4 and BaTi0.9Zr0.1O3

    NASA Astrophysics Data System (ADS)

    Mathur, Shubhra; Srivastava, Subodh; Surve, Sachin; Wadhwani, Kiran; Singh Rajaura, Rajveer; Dolia, S. N.

    2017-12-01

    The magnetoelectric (ME) composites containing cobalt ferrite as the magnetic phase and Zr substituted (10 atomic % occupancy) barium titanate as the ferroelectric counterpart having the general formula (x) CoFe2O4  +  (1  -  x) BaTi0.9Zr0.1O3 (where x  =  0, 0.25, 0.50, 0.75 and 1) have been synthesised by the conventional solid state diffusion route. Powder x-ray diffraction of thus prepared materials confirms the presence of ferrite and ferroelectric phases and their concurrent existence in all three composites without showing traces of any superfluous phase. Dielectric measurements have been recorded as a function of frequency (ranging from 100 Hz to 1 MHz) at room temperature and temperature (from 325 K up to a maximum of 825 K). In composites, relative permittivity and loss tangent curves with variable temperature show upsurge of bizarre anomalies which can be associated to the defect modes existing in the form of oxygen ion vacancies rather than ascribing it to the benchmark ferro to paraeletric transition.

  16. Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics for Pyroelectric Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Moolchand; Singh, V. P.; Singh, Shatrughan; Azad, Puneet; Ilahi, Bouraoui; Madhar, Niyaz Ahamad

    2018-05-01

    Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ferroelectric ceramics were fabricated using a solid-state reaction consisting of BCZT and poly(methyl methacrylate)(PMMA) (2%, 4%, 8% and 10% by wt.%) as a pore former. By increasing the PMMA content from 0% to 10%, porosity increased from 8% to 29%. It was found that the dielectric constant (ɛ r ) decreased and the dielectric loss (tanδ) increased with increasing porosity. At 29% porosity, ɛ r of the BCZT was found to decrease more, from 3481 to 1117 at 5 kHz and at room temperature. The dielectric constant and volume-specific heat capacity decreased with the increase in porosity which ultimately improved the pyroelectric figure-of-merits (FOMs). Further, the pyroelectric FOMs were estimated and found to be improved at optimum porosity.

  17. Synthesis of new visible light active photocatalysts of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M' = Nb, Ta): a band gap engineering strategy based on electronegativity of a metal component.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Park, Hyunwoong; Choi, Wonyong; Kim, Sung Jin; Kim, Sun Jin; Choy, Jin-Ho

    2005-08-11

    We have synthesized new, efficient, visible light active photocatalysts through the incorporation of highly electronegative non-transition metal Pb or Sn ions into the perovskite lattice of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M = Sn, Pb; M' = Nb, Ta). X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that tetravalent Pb or Sn ions exist in the B-site of the perovskite lattice, along with In and Nb/Ta ions. According to diffuse UV-vis spectroscopic analysis, the Pb-containing quaternary metal oxides Ba(In(1/3)Pb(1/3)M'(1/3))O3 possess a much narrower band gap (E(g) approximately 1.48-1.50 eV) when compared to the ternary oxides Ba(In(1/2)M'(1/2))O3 (E(g) approximately 2.97-3.30 eV) and the Sn-containing Ba(In(1/3)Sn(1/3)M'(1/3))O3 derivatives (E(g) approximately 2.85-3.00 eV). Such a variation of band gap energy upon the substitution is attributable to the broadening of the conduction band caused by the dissimilar electronegativities of the B-site cations. In contrast to the ternary or the Sn-substituted quaternary compounds showing photocatalytic activity under UV-vis irradiation, the Ba(In(1/3)Pb(1/3)M'(1/3))O3 compounds induce an efficient photodegradation of 4-chlorophenol under visible light irradiation (lambda > 420 nm). The present results highlight that the substitution of electronegative non-transition metal cations can provide a very powerful way of developing efficient visible light harvesting photocatalysts through tuning of the band structure of a semiconductive metal oxide.

  18. Rietveld refinement, dielectric and magnetic properties of Nb modified Bi0.80Ba0.20FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Jangra, Sandhaya; Sanghi, Sujata; Agarwal, Ashish; Rangi, Manisha

    2018-05-01

    Bi0.80Ba0.20Fe0.95Nb0.05O3 ceramic has been prepared via conventional solid state reaction method. Structure analysis was carried out by X-ray diffraction (XRD) technique at room temperature. XRD pattern confirmed the crystalline nature of prepared sample. Rietveld analysis used for further structural investigations and confirmed the existence of rhombohedral symmetry (R3c space group). The dielectric response shows dispersion at lower frequency range and becomes frequency independent at high frequency. The approximation of conduction mechanism is determined by the temperature dependent behavior of frequency exponent `s'. Fitting results suggests the applicability of small polaron conduction mechanism at lower temperatures and CBH model at higher temperature. Room temperature magnetic measurements give the evidence of significant enhancement in magnetic properties with remanent magnetization (Mr = 0.1218 emu/g) and coercive field (Hc = 3.5342 kOe).

  19. Phenol-photodegradation on ZrO2. Enhancement by semiconductors.

    PubMed

    Karunakaran, C; Dhanalakshmi, R; Gomathisankar, P

    2012-06-15

    On illumination with light of wavelength 365 nm phenol undergoes degradation on the surface of ZrO(2). The rate of degradation enhances linearly with the concentration of phenol and also the light intensity but decreases with increase of pH. The photonic efficiency of degradation is higher with illumination at 254 nm than with 365 nm. The diffuse reflectance spectral study suggests phenol-sensitized activation of ZrO(2) with 365 nm light. TiO(2), Fe(2)O(3), CuO, ZnO, ZnS, Nb(2)O(5) and CdO particles enhance the photodegradation on ZrO(2), indicating inter-particle charge-transfer. Determination of size of the particles under suspension, by light scattering technique, shows agglomeration of particles supporting the proposition of charge-transfer between particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.

    2009-02-01

    Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.

  1. Crystal structure characteristics, dielectric loss, and vibrational spectra of Zn-rich non-stoichiometric Ba[(Zn1/3Nb2/3)1-x Zn x ]O3 ceramics

    NASA Astrophysics Data System (ADS)

    Li, Jianzhu; Xing, Chao; Qiao, Hengyang; Chen, Huiling; Yang, Jun; Dong, Helei; Shi, Feng

    2017-07-01

    Zn-Rich non-stoichiometric Ba(Zn1/3Nb2/3)1-x Zn x O3 (BZNZ) (x  =  0.01, 0.02, 0.03, 0.04) ceramics were prepared by the solid-state reaction method at 1500 °C for 2 h. The crystal structures and morphologies were analyzed by x-ray diffraction (XRD) and scanning electron microscopy. The vibration modes were obtained by Raman scattering spectroscopy and Fourier transform far-infrared (FTIR) reflectance spectroscopy. Rietveld refinement was performed for the XRD data. The relationship between crystal structures, dielectric properties, and phonon modes was analyzed in detail. XRD results show that the main phase is Ba(Zn1/3Nb2/3)O3. The Raman results displayed that the ordering structure of BZNZ transformed from 1:2 to 1:1 when x changed from 0.02 to 0.04, and the dielectric losses have a positive correlation with the full width at half maximum values of the A 1g(O) and E g(O) modes. The FTIR spectra were analyzed by the Kramers-Krönig method to obtain the real parts (ɛ‧) and the imaginary parts (ɛ″) of the dielectric constant. When x  =  0.02, the sample possesses uniform grains with clear boundaries and the lowest dielectric loss value (tanδ  =  5.5  ×  10‒4) due to the largest packing fraction.

  2. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  3. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  4. Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy

    PubMed Central

    Larianovsky, Natalya; Katz-Demyanetz, Alexander; Eshed, Eyal; Regev, Michael

    2017-01-01

    This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these properties. The main findings are that the HIP process is responsible for the appearance of a Hexagonal Close Packed (HCP) phase that is dispersed differently in these two castings. The HIP process also led to a considerable increase in the mechanical properties of both materials under compression, with values found to be higher than those reported in the literature. Contrary to the compression properties, both materials were found to be highly brittle under tension, either during room temperature tension tests or creep tests conducted at 282 °C. Fractography yielded brittle fracture without any evidence of plastic deformation prior to fracture. PMID:28773245

  5. Effect of heat treatment on the optical properties of perovskite BaZr0.5Ce0.3Y0.2O3-δ ceramic prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Xing, Bohang; Cheng, Zhi; Wang, Cao; Zhao, Zhe

    2017-09-01

    The effect of heat treatment on the in-line transmittance of BaZr0.5Ce0.3Y0.2O3-δ (BZCY532) ceramics prepared by spark plasma sintering method was investigated. The loss of Ba in transparent BZCY532 ceramics is the key reason for the loss of transmittance during the annealing process. This problem can be effectively alleviated by using a powder bed of BZCY532. Heat treatment atmospheres, wet air and dry air, were also found to be critical for obtaining high quality transparent ceramics. A highly transparent BZCY532 ceramic with the in-line transmittance (Tin) of 71.4% at 2000 nm can be obtained by using SPS method followed by an annealing in powder bed at 1500 °C in wet air.

  6. The effect of annealing temperature on the properties of powder metallurgy processed Ti-35Nb-2Zr-0.5O alloy.

    PubMed

    Málek, Jaroslav; Hnilica, František; Veselý, Jaroslav; Smola, Bohumil; Medlín, Rostislav

    2017-11-01

    Ti-35Nb-2Zr-0.5O (wt%) alloy was prepared via a powder metallurgy process (cold isostatic pressing of blended elemental powders and subsequent sintering) with the primary aim of using it as a material for bio-applications. Sintered specimens were swaged and subsequently the influence of annealing temperature on the mechanical and structural properties was studied. Specimens were annealed at 800, 850, 900, 950, and 1000°C for 0.5h and water quenched. Significant changes in microstructure (i.e. precipitate dissolution or grain coarsening) were observed in relation to increasing annealing temperature. In correlation with those changes, the mechanical properties were also studied. The ultimate tensile strength increased from 925MPa (specimen annealed at 800°C) to 990MPa (900°C). Also the elongation increased from ~ 13% (800°C) to more than 20% (900, 950, and 1000°C). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Over 15 MA/cm2 of critical current density in 4.8 µm thick, Zr-doped (Gd,Y)Ba2Cu3Ox superconductor at 30 K, 3T.

    PubMed

    Majkic, Goran; Pratap, Rudra; Xu, Aixia; Galstyan, Eduard; Selvamanickam, Venkat

    2018-05-03

    An Advanced MOCVD (A-MOCVD) reactor was used to deposit 4.8 µm thick (Gd,Y)BaCuO tapes with 15 mol% Zr addition in a single pass. A record-high critical current density (J c ) of 15.11 MA/cm 2 has been measured over a bridge at 30 K, 3T, corresponding to an equivalent (I c ) value of 8705 A/12 mm width. This corresponds to a lift factor in critical current of ~11 which is the highest ever reported to the best of author's knowledge. The measured critical current densities at 3T (B||c) and 30, 40 and 50 K, respectively, are 15.11, 9.70 and 6.26 MA/cm 2 , corresponding to equivalent Ic values of 8705, 5586 and 3606 A/12 mm and engineering current densities (J e ) of 7068, 4535 and 2928 A/mm 2 . The engineering current density (J e ) at 40 K, 3T is 7 times higher than that of the commercial HTS tapes available with 7.5 mol% Zr addition. Such record-high performance in thick films (>1 µm) is a clear demonstration that growing thick REBCO films with high critical current density (J c ) is possible, contrary to the usual findings of strong J c degradation with film thickness. This achievement was possible due to a combination of strong temperature control and uniform laminar flow achieved in the A-MOCVD system, coupled with optimization of BaZrO 3 nanorod growth parameters.

  8. Influence of hydride orientation on fracture toughness of CWSR Zr-2.5%Nb pressure tube material between RT and 300 °C

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.

    2017-05-01

    An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.

  9. Structural, dielectric and magnetic studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Khader, S. Abdul; Giridharan, N. V.; Chaudhuri, Arka; Sankarappa, T.

    2016-05-01

    The Magneto-electric composites (x) Mg0.2Cu0.3Zn0.5Fe2O4 + (1-x) Ba0.8Zr0.2TiO3 (x=15%,30%,45%) were synthesized by sintering mixtures of highly ferroelectric Ba0.8Zr0.2TiO3 (BZT) and highly magneto-strictive component Mg0.2Cu0.3Zn0.5Fe2O4 (MCZF). The presences of two phases in magneto-electric composites were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated spinel cubic structure for MCZF ferrite and tetragonal perovskite structure for BZT and, both spinel and pervoskite structures for synthesized composites. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). Frequency dependent dielectric properties of synthesized composites were measured from 100 Hz to 1 MHz at RT using HIOKI LCR HI-TESTER. The dielectric dispersion is observed at lower frequencies for the synthesized ME composites. The magnetic properties of synthesized composites were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization increases along with the ferrite content.

  10. Research Update: Enhancement of figure of merit for energy-harvesters based on free-standing epitaxial Pb(Zr0.52Ti0.48)0.99Nb0.01O3 thin-film cantilevers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh D.; Houwman, Evert; Dekkers, Matthijn; Schlom, Darrell; Rijnders, Guus

    2017-07-01

    All-oxide free-standing cantilevers were fabricated with epitaxial (001)-oriented Pb(Zr0.52Ti0.48)O3 (PZT) and Pb(Zr0.52Ti0.48)0.99Nb0.01O3 (PNZT) as piezoelectric layers and SrRuO3 electrodes. The ferroelectric and piezoelectric hysteresis loops were measured. From the zero-bias values, the figure-of-merits (FOMs) for piezoelectric energy harvesting systems were calculated. For the PNZT cantilever, an extremely large value FOM = 55 GPa was obtained. This very high value is due to the large shifts of the hysteresis loops such that the zero-bias piezoelectric coefficient e31f is maximum and the zero-bias dielectric constant is strongly reduced compared to the value in the undoped PZT device. The results show that by engineering the self-bias field the energy-harvesting properties of piezoelectric systems can be increased significantly.

  11. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Qin, Lin; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  12. Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti-29Nb-13Ta-4.6Zr alloy

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yusuke; Niinomi, Mitsuo; Nakai, Masaaki; Tsutsumi, Harumi; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2012-12-01

    Micro-arc oxidation (MAO) was performed on a β-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) in this study to improve its bioactivity in a body fluid and its hard-tissue compatibility. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate and magnesium acetate was characterized using various surface analyses. The oxide layer was mainly composed of two types of TiO2 (rutile and anatase), and it also contained Ca, P, and Mg, which were incorporated from the electrolyte during the treatment. The calcium phosphate formation on the surface of the specimens after immersion in Hanks' solution was evaluated to determine the bioactivity of TNTZ with and without MAO treatment. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas only a small amount of precipitate was observed on TNTZ without treatment. Thus, the MAO treatment is a promising method to improve the bioactivity and hard-tissue compatibility of TNTZ.

  13. BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe 2O 5+ δ layered perovskite cathode

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xue, Xingjian

    A new anode-supported SOFC material system Ni-BZCYYb|BZCYYb|PBFO is investigated, in which a cobalt-free layered perovskite oxide, PrBaFe 2O 5+ δ (PBFO), is synthesized and employed as a novel cathode while the synthesized BZCYYb is used as an electrolyte. The cell is fabricated by a simple dry-pressing/co-sintering process. The cell is tested and characterized under intermediate temperature range from 600 to 700 °C with humified H 2 (∼3% H 2O) as fuel, ambient air as oxidant. The results show that the open-circuit potential of 1.006 V and maximal power density of 452 mW cm -2 are achieved at 700 °C. The polarization resistance of the electrodes is 0.18 Ω cm 2 at 700 °C. Compared to BaZr 0.1Ce 0.7Y 0.1O 3- δ, the conductivity of co-doped barium zirconate-cerate BZCYYb is significantly improved. The ohmic resistance of single cell is 0.37 Ω cm 2 at 700 °C. The results indicate that the developed Ni-BZCYYb|BZCYYb|PBFO cell is a promising functional material system for SOFCs.

  14. STUDY OF BIFERROIC PROPERTIES IN THE La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 COMPLEX PEROVSKITE

    NASA Astrophysics Data System (ADS)

    Cardona-Vásquez, J. A.; Gómez, M. E.; Landínez-Téllez, D. A.; Roa-Rojas, J.

    2013-10-01

    In this paper, details of synthesis and structural, morphological, electrical, and magnetic characterization of the new La0.37Ca0.17Ba0.43Mn0.52Ti0.44Zr0.04O3 multiferroic complex perovskite are reported. Mixtures with 50% mass of ferromagnetic lanthanum calcium manganite La0.67Ca0.33MnO3 and ferroelectric barium-lanthanum zirconate titanate Ba0.9La0.067Ti0.91Zr0.09 O3 were prepared by the solid state reaction technique. Patterns of X-ray diffraction showed that the materials have reacted resulting in a new perovskite-like structure with tetragonal symmetry, space group P4mm(#99). The structure of the material was refined using the Rietveld method through the GSAS code. ZFC and FC magnetization curves show the occurrence of two phase transitions at 42.25 K and 203.9 K which have been associated with two different magnetic regimes. Hysteresis curves measured confirm that the relationship between the applied field and the magnetization does not evidence a linear behavior. These curves also show that in the low temperature regime the magnetic memory of the material is greater than in the high temperature region. AC impedance as a function of temperature measurements show the same two regions observed in the magnetization curves. The ferroelectric behavior with relative permittivity of 153.12 is observed by polarization curves performed at room temperature in the synthesized materials.

  15. Interfacial Energy Transfer during Gamma Radiolysis of Water on the Surface of ZrO2 and Some Other Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Alexandrov, Alexandr B.; Vall, Andrey I.

    Effect of oxide interface on 60Co gamma radiolysis of water molecules was studied. Based on the molecular hydrogen yield when compared with that from the radiolysis of pure gas-phase water, all tested oxides can be classified into three groups: (i) inhibitors - MnO2, Co3O4, CuO and Fe2O3; (ii) oxides with H2 yields, which are similar to or slightly greater than radiolysis of pure gas-phase water - MgO, CaO, SrO, BaO, ZnO, CdO, Cu2O, NiO, Cr2O3, Al2O3, CeO2, SiO2, TiO2, Nb2O5 and WO3; (iii) promoters - Ga2O3, Y2O3, La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Yb2O3, Er2O3, HfO2, and ZrO2. H2O radiolysis enhancementmore » for ZrO2 and other promoters is result of effective energy transfer at the oxide/water interface, presumably due to migration of excitons to the surface and their resonant coupling with the H2O adsorption complex. Plot''effective H2 yield vs. band-gap (Eg) energy'' shows a maximum near 5 eV.« less

  16. Microstructural investigation of plastically deformed Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy by X-ray diffraction and transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirras, G., E-mail: dirras@univ-paris13.fr; Gubicza, J.; Heczel, A.

    2015-10-15

    The microstructure evolution in body-centered cubic (bcc) Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy during quasi-static compression test was studied by X-ray line profile analysis (XLPA) and transmission electron microscopy (TEM). The average lattice constant and other important parameters of the microstructure such as the mean crystallite size, the dislocation density and the edge/screw character of dislocations were determined by XLPA. The elastic anisotropy factor required for XLPA procedure was determined by nanoindentation. XLPA shows that the crystallite size decreased while the dislocation density increased with strain during compression, and their values reached about 39 nm and 15more » × 10{sup 14} m{sup −2}, respectively, at a plastic strain of ~ 20%. It was revealed that with increasing strain the dislocation character became more screw. This can be explained by the reduced mobility of screw dislocations compared to edge dislocations in bcc structures. These observations are in line with TEM investigations. The development of dislocation density during compression was related to the yield strength evolution. - Highlights: • Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy was processed by arc-melting. • The mechanical was evaluated by RT compression test. • The microstructure evolution was studied by XLPA and TEM. • With increasing strain the dislocation character became more screw. • The yield strength was related to the development of the dislocation density.« less

  17. Photoelectron imaging spectroscopy of niobium mononitride anion NbN{sup −}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkdemir, Cuneyt; Department of Physics, Faculty of Science, Erciyes University, Kayseri 38039; Gunaratne, K. Don Dasitha

    2016-07-21

    In this gas-phase photoelectron spectroscopy study, we present the electron binding energy spectrum and photoelectron angular distributions of NbN{sup −} by the velocity-map imaging technique. The electron binding energy of NbN{sup −} is measured to be 1.42 ± 0.02 eV from the X band maximum which defines the 0-0 transition between ground states of anion and neutral. Theoretical binding energies which are the vertical and adiabatic detachment energies are computed by density functional theory to compare them with experiment. The ground state of NbN{sup −} is assigned to the {sup 2}Δ{sub 3/2} state and then the electronic transitions originating frommore » this state into X{sup 3}Δ{sub Ω} (Ω = 1-3), a{sup 1}Δ{sub 2}, A{sup 3}Σ{sub 1}{sup −}, and b{sup 1}Σ{sub 0}{sup +} states of NbN are reported to interpret the spectral features. As a prospective study for catalytic materials, spectral features of NbN{sup −} are compared with those of isovalent ZrO{sup −} and Pd{sup −}.« less

  18. Chemically stable ceramic-metal composite membrane for hydrogen separation

    DOEpatents

    Chen, Fanglin; Fang, Shumin; Brinkman, Kyle S.

    2017-06-27

    A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr.sub.1-x-yY.sub.xT.sub.yO.sub.3-.delta. where 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, (x+y)>0; 0.ltoreq..delta..ltoreq.0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.

  19. The Effect of 24c-Site (A) Cation Substitution on the Tetragonal-Cubic Phase Transition in Li7-xLa3-xAxZr2O12 Garnet-Based Ceramic Electrolyte

    DTIC Science & Technology

    2013-01-01

    with Al [16,20]. In KrogereVink notation, the relationships for Ta and Nb substitution for Zr are as follows [20,22,23]: Ta$ Zr ¼ V0Li (3) Nb ...garnet phase. < CeO2 precipitation at grain boundaries increases grain boundary resistance . < Super-valent cation substitution likely stabilizes the...Introduction Li-ion batteries have played a vital role in the development of current generation mobile devices, microelectronics and electric vehicles [1]. Due

  20. Energy Harvesting Characteristics from Water Flow by Piezoelectric Energy Harvester Device Using Cr/Nb Doped Pb(Zr,Ti)O3 Bimorph Cantilever

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Bum; Kim, Chang Il; Jeong, Young Hun; Cho, Jeong-Ho; Paik, Jong-Hoo; Nahm, Sahn; Lim, Jong Bong; Seong, Tae-Hyeon

    2013-10-01

    A water flow energy harvester, which can convert water flow energy to electric energy, was fabricated for its application to rivers. This harvester can generate power from the bending and releasing motion of piezoelectric bimorph cantilevers. A Pb(Zr0.54Ti0.46)O3 + 0.2 wt % Cr2O3 + 1.0 wt % Nb2O5 (PZT-CN) thick film and a 250-µm-thick stainless steel were used as a bimorph cantilever. The electrical impedance matching was achieved across a resistive load of 1 kΩ. Four bimorph cantilevers can generate power from 5 to 105 rpm. The output powers were steadily increased by increasing the rpm. The maximum output power was 68 mW by 105 rpm. It was found that the water flow energy harvester can generate 58 mW by a flow velocity of (2 m/s) from the stream with the four bimorph cantilevers.

  1. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    NASA Astrophysics Data System (ADS)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl "hot" particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  2. Structural, microstructural, dielectric and ferroelectric properties of lead free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic

    NASA Astrophysics Data System (ADS)

    Sharma, Sarita; Sharma, Hakikat; Negi, N. S.

    2018-05-01

    Lead free Ba0.85Ca0.15Zr0.1Ti0.9O3(BCTZ) ceramic has been synthesized by sol-gel method. Properties of material are studied at different sintering temperatures for 5 hours. Structural and microstructural properties are analyzed by using X-ray diffractrometer (XRD) and scanning electron microscopy (SEM) at annealing temperature of 850°C and 1050°C XRD pattern confirm the perovskite structure of the material without any unwanted phases crystalinity increased with increase of sintering temperature so as roughness and porosity is decreased as shown by SEM micrographs. There is large improvement in density with rise of sintering temperature which also leads to drastic change in ferroelectric and dielectric properties.

  3. High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic

    NASA Astrophysics Data System (ADS)

    Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine

    2017-10-01

    The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.

  4. Selective generation of laser-induced periodic surface structures on Al2O3-ZrO2-Nb composites

    NASA Astrophysics Data System (ADS)

    Kunz, Clemens; Bartolomé, José F.; Gnecco, Enrico; Müller, Frank A.; Gräf, Stephan

    2018-03-01

    Laser-induced periodic surface structures (LIPSS) were selectively fabricated on the metal phase of Al2O3-nZrO2-Nb (78.3-1.7-20 vol.%) ceramic matrix composites. For this purpose, sample surfaces were irradiated with fs-laser pulses (τ = 300 fs, λ = 1025 nm) of different laser peak fluences ranging from 0.23 to 0.40 J/cm2. The structured surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and by measuring the water contact angle. Well-pronounced LIPSS with a period of Λ ≈ 750 nm and a height of h ≈ 263 nm were found solely on the metal phase of the composite when applying the highest fluence whereas no structural and chemical modifications were found on the surface of the ceramic matrix. This can be explained by the different light absorption behaviour of both phases, which results in different ablation thresholds. The water contact angle of composite surfaces was successfully reduced from 68.4° for untreated samples to 40.9° for structured samples. Selectively structured composites with adjustable wettability are of particular interest for biomedical and tribological applications.

  5. Processing, characterization, and in vitro/in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr alloys.

    PubMed

    Bottino, Marco C; Coelho, Paulo G; Henriques, Vinicius A R; Higa, Olga Z; Bressiani, Ana H A; Bressiani, José C

    2009-03-01

    This article presents details of processing, characterization and in vitro as well as in vivo evaluations of powder metallurgy processed Ti-13Nb-13Zr samples with different levels of porosity. Sintered samples were characterized for density, crystalline phases (XRD), and microstructure (SEM and EDX). Samples sintered at 1000 degrees C showed the highest porosity level ( approximately 30%), featuring open and interconnected pores ranging from 50 to 100 mum in diameter but incomplete densification. In contrast, samples sintered at 1300 and 1500 degrees C demonstrated high densification with 10% porosity level distributed in a homogeneous microstructure. The different sintering conditions used in this study demonstrated a coherent trend that is increase in temperature lead to higher sample densification, even though densification represents a drawback for bone ingrowth. Cytotoxicity tests did not reveal any toxic effects of the starting and processed materials on surviving cell percentage. After an 8-week healing period in rabbit tibias, the implants were retrieved, processed for nondecalcified histological evaluation, and then assessed by backscattered electron images (BSEI-SEM) and EDX. Bone growth into the microstructure was observed only in samples sintered at 1000 degrees C. Overall, a close relation between newly formed bone and all processed samples was observed. (c) 2008 Wiley Periodicals, Inc.

  6. Pressure-induced elastic, electronic and optical properties of Ba(Mg1/3Nb2/3)O3 using first principles calculations

    NASA Astrophysics Data System (ADS)

    Islam, A. K. M. Farid Ul; Liton, M. N. H.; Anowar, M. G. M.

    2018-06-01

    The pressure dependent mechanical stability, electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3 (BMN) perovskite have been investigated in the framework of the density functional theory. Geometry optimization shows that the BMN possesses more compressibility along c-axis. The dependency of the elastic constants, the aggregated elastic moduli (B, G) and the elastic anisotropy on pressure has also been studied. BMN shows brittle character at ambient pressure but it becomes ductile, and also stiffer and anisotropic nature due to external pressure. Electronic structure indicates the conversion of indirect to direct band gap with increasing pressure. Dominated ionic character of BMN is confirmed from the bond population analysis. By analyzing the optical spectra, a red shift at the band edge is observed in the visible range indicating the band gap tuning. It is seen that the static dielectric constant increases with pressure.

  7. Strong piezoelectric anisotropy d15/d33 in ⟨111⟩ textured Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Priya, Shashank

    2015-08-01

    The shear mode piezoelectric properties of Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) ceramic with 72% ⟨111⟩ texture were investigated. The piezoelectric anisotropic factor d15/d33 was as high as 8.5 in ⟨111⟩ textured ceramic as compared to 2.0 in random counterpart. The high d15/d33 indicates the "rotator" ferroelectric characteristics of PMN-PZT system and suggests that the large shear piezoelectric response contributes towards the high longitudinal piezoelectric response (d33) in non-polar direction (d33 = 1100 pC/N in ⟨001⟩ textured ceramic vs. d33 = 112 pC/N in ⟨111⟩ textured ceramic).

  8. Quantitative evaluation method for nonlinear characteristics of piezoelectric transducers under high stress with complex nonlinear elastic constant

    NASA Astrophysics Data System (ADS)

    Miyake, Susumu; Kasashima, Takashi; Yamazaki, Masato; Okimura, Yasuyuki; Nagata, Hajime; Hosaka, Hiroshi; Morita, Takeshi

    2018-07-01

    The high power properties of piezoelectric transducers were evaluated considering a complex nonlinear elastic constant. The piezoelectric LCR equivalent circuit with nonlinear circuit parameters was utilized to measure them. The deformed admittance curve of piezoelectric transducers was measured under a high stress and the complex nonlinear elastic constant was calculated by curve fitting. Transducers with various piezoelectric materials, Pb(Zr,Ti)O3, (K,Na)NbO3, and Ba(Zr,Ti)O3–(Ba,Ca)TiO3, were investigated by the proposed method. The measured complex nonlinear elastic constant strongly depends on the linear elastic and piezoelectric constants. This relationship indicates that piezoelectric high power properties can be controlled by modifying the linear elastic and piezoelectric constants.

  9. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  10. Sr- and Nb-co-doped Li7La3Zr2O12 solid electrolyte with Al2O3 addition towards high ionic conductivity

    NASA Astrophysics Data System (ADS)

    Lin, Changwei; Tang, Yu; Song, Jun; Han, Lei; Yu, Jingbo; Lu, Anxian

    2018-06-01

    In the present study, series of garnet-type Li6.75+ x La3- x Sr x Zr1.75Nb0.25O12 solid electrolytes [LLSZN with various Sr contents ( x = 0.05-0.25)] have been prepared via conventional solid-state method. The effects of Sr contents on their phase structure and ionic conductivity have been systematically investigated on the combined measurements of X-ray diffraction and scanning electron microscopy and alter current impedance spectroscopy. Our results reveal that a phase transition from tetragonal to cubic structure occurs when both Sr and Nb elements is introduced, and such a cubic structure can be stable over the whole Sr contents variation, which is suggested to provide a beneficial impact on the performance of LLSZN. Accordingly, both relative density and total ionic conductivity exhibit a favorable tendency of increasing first and then decreasing with increased Sr contents, wherein a peak value at 93.46% and 5.09 × 10-4 S cm-1, respectively, can be well achieved. Particularly, the maximum ionic conductivity is almost twice that of the compared sample (2.93 × 10-4 S cm-1), and possess the minimum activation energy 0.30 eV. Such a modification method, featured with higher efficiency and lower cost, is expected to be helpful for the development of solid electrolyte.

  11. Electrochemical study of pre- and post-transition corrosion of Zr alloys in PWR coolant

    NASA Astrophysics Data System (ADS)

    Macák, Jan; Novotný, Radek; Sajdl, Petr; Renčiuková, Veronika; Vrtílková, Věra

    Corrosion properties of Zr-Sn and Zr-Nb zirconium alloys were studied under simulated PWR conditions (or, more exactly, VVER conditions — boric acid, potassium hydroxide, lithium hydroxide) at temperatures up to 340°C and 15MPa using in-situ electrochemical impedance spectroscopy (EIS) and polarization measurements. EIS spectra were obtained in a wide range of frequencies (typically 100kHz — 100μHz). It enabled to gain information of both dielectric properties of oxide layers developing on the Zr-alloys surface and of the kinetics of the corrosion process and the associated charge and mass transfer phenomena. Experiments were run for more than 380 days; thus, the study of all the corrosion stages (pre-transition, transition, post-transition) was possible.

  12. Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Hui, Jin; Yong, Li; Mou-Sheng, Song; Lin, Chen; Xiao-Peng, Jia; Hong-An, Ma

    2016-07-01

    In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100-1200 °C. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).

  13. Significant increase of Curie temperature and large piezoelectric coefficient in Ba(Ti0.80Zr0.20)O3-0.5(Ba0.70Ca0.30)TiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Fu, Bi; Yang, Yaodong; Gao, Kun; Wang, Yaping

    2015-07-01

    Ba(Ti0.80Zr0.20)O3-0.5(Ba0.7Ca0.3)TiO3 (abbreviated as BTZ-0.5BCT) is a piezoelectric ceramic with a high piezoelectric coefficient d33 (˜620 pC N-1) and has been regarded as one of the most promising candidates to replace PZT-based materials (200-710 pC N-1). However, its Curie temperature TC is relatively low (93 °C) limiting its application. In this letter, we found a temperature dependent Raman spectrum in BTZ-0.5BCT nanofibers (NFs), demonstrating a diffused tetragonal-to-cubic phase transition at 300 °C. This means that the TC of the NFs is nearly 207 °C higher than that of the normal bulk material. The increased TC is considered to be associated with the size effect of BTZ-0.5BCT nanoceramic subunits and the nanoporous nature of the fiber, resulting in discontinuous physical properties. The variation of the ferro/piezoelectricity over the fiber surface is attributed to the polycrystalline structure. The d33 (173.32 pm V-1) is improved in terms of the decreased Q factor result in an increase in d33 of 236.54 pm V-1 after polarization. With a high TC and a very large d33, BTZ-0.5BCT NFs are capable of providing electromechanical behavior used in moderate temperatures.

  14. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smits, K., E-mail: smits@cfi.lu.lv; Sarakovskis, A.; Grigorjeva, L.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonalmore » or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.« less

  15. Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-07-01

    Multiple caloric effects have been investigated for Fe-doped bulk (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 (BCZTO-Fe) ferroelectric ceramic. Indirect predictions were made using Maxwell's relations in conjunction with data from experimental observations. It was revealed that bulk BCZTO-Fe has huge untapped potential for solid-state refrigeration. A peak electrocaloric effect of 0.45 K (347 K) was predicted for 0-3 kV.mm-1 electric field, significantly higher than other BCZTO based materials. A maximum elastocaloric cooling of 1.4 K (298 K) was achieved for applied stress of 0-200 MPa. Finally, an unforeseen component of electric field driven caloric effect has been reported as inverse piezocaloric effect, with a maximum temperature change of 0.28 K (298 K).

  16. Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zones

    NASA Astrophysics Data System (ADS)

    Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio

    2017-10-01

    We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the

  17. Dielectric and impedance studies of Ba0.50(Na0.25Bi0.25)(Fe0.25Nb0.25)Ti0.50O3 ceramic

    NASA Astrophysics Data System (ADS)

    Yadav, Anjana; Chandra, K. P.; Kulkarni, A. R.; Prasad, K.

    2018-05-01

    Lead-free perovskite Ba0.50(Na0.25Bi0.25)(Fe0.25Nb0.25)Ti0.50O3 was prepared using conventional ceramic technique at 1130°C/4h in air atmosphere and characterized by X-ray diffraction, scanning electron microscopy, dielectric and impedance studies. XRD analysis of the compound indicated the formation of a single-phase cubic structure. SEM study was carried out to study the quality and purity of the compound. Compound showed very high dielectric constant (33700). Impedance analysis indicated the negative temperature coefficient of resistance character of the compound. Ac conductivity data followed Jonscher's law and correlated barrier hopping successfully explained the charge carrier transport mechanism in the system.

  18. Nanostructured multielement (TiHfZrNbVTa)N coatings before and after implantation of N+ ions (1018 cm-2): Their structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bondar, O. V.; Borba, S. O.; Abadias, G.; Konarski, P.; Plotnikov, S. V.; Beresnev, V. M.; Kassenova, L. G.; Drodziel, P.

    2016-10-01

    Multielement high entropy alloy (HEA) nitride (TiHfZrNbVTa)N coatings were deposited by vacuum arc and their structural and mechanical stability after implantation of high doses of N+ ions, 1018 cm-2, were investigated. The crystal structure and phase composition were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy, while depth-resolved nanoindentation tests were used to determine the evolution of hardness and elastic modulus along the implantation depth. XRD patterns show that coatings exhibit a main phase with fcc structure, which preferred orientation varies from (1 1 1) to (2 0 0), depending on the deposition conditions. First-principles calculations reveal that the presence of Nb atoms could favor the formation of solid solution with fcc structure in multielement HEA nitride. TEM results showed that amorphous and nanostructured phases were formed in the implanted coating sub-surface layer (∼100 nm depth). Concentration of nitrogen reached 90 at% in the near-surface layer after implantation, and decreased at higher depth. Nanohardness of the as-deposited coatings varied from 27 to 38 GPa depending on the deposition conditions. Ion implantation led to a significant decrease of the nanohardness to 12 GPa in the implanted region, while it reaches 24 GPa at larger depths. However, the H/E ratio is ⩾0.1 in the sub-surface layer due to N+ implantation, which is expected to have beneficial effect on the wear properties.

  19. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    PubMed Central

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117

  20. High-field transport properties of a P-doped BaFe2As2 film on technical substrate

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-01

    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  1. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics.

    PubMed

    Sun, Zheng; Li, Lingxia; Yu, Shihui; Kang, Xinyu; Chen, Siliang

    2017-10-24

    Lead-free Ba 1-x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 (BSZT) ceramics were synthesized by a solid state reaction route. The microstructure, dielectric relaxor behavior and energy storage properties of BSZT ceramics were studied. The growth of grain size was suppressed with the increase of Sm addition and kept in the submicrometer scale. Successive substitution of Sm 3+ for Ba 2+ disrupted the long-range dipole and promoted the increase of polar nano-region (PNR) size, resulting in the enhanced degree of relaxor behavior. The increasing PNR size also lead to the slimmer hysteresis loops and improved the energy storage efficiency. Furthermore, high saturated polarization (P max ) and low remnant polarization (P r ) were obtained due to the formation of defect dipoles, which facilitated the switch of PNRs and contributed to the enhancement of energy storage density. The x = 0.003 sample was found to exhibit a higher energy storage density of 1.15 J cm -3 and an energy storage efficiency of 92%. The result revealed that the BSZT ceramics may be a good candidate for energy storage application.

  2. Improvement of the piezoelectric properties in (K,Na)NbO3-based lead-free piezoelectric ceramic with two-phase co-existing state

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-01

    Two phases of (K,Na)NbO3 (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-0.042K0.85Ti0.85Nb1.15O5-0.036BaZrO3-0.0016Co3O4- 0.0025Fe2O3-0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, kp = 0.56, has been observed at the composition x = 0.56.

  3. A brief review of Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 based lead-free piezoelectric ceramics: Past, present and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Sun, Huajun; Chen, Wen

    2018-03-01

    As one kind of most crucial and emerging lead-free piezoelectric systems, Ba(Ti0.8Zr0.2)O3-(Ba0.7Ca0.3)TiO3 (BCZT) based lead-free piezoceramics have attracted worldwide attention in recent years. Much progress has been made, however, a summary which covers both the recent progress and the remained problems is urgently needed to further push this field forward. In this review, a brief background of the development of BCZT based lead-free piezoceramics was illustrated firstly. Then, the internal mechanism for the high piezoelectric response would be elaborated. Current research status was discussed in detail in the third section. Various strategies including: (1) Using distinct synthesis routes, (2) adopting different sintering techniques, (3) doping with foreign ions and/or second components, (4) grain size control, were exploited to improve the comprehensive performance and in turn broaden their application areas. In this part, some recently representative works were touched in detail and several existing problems were pointed out. Last, some critical comments (some thoughts related to the potential and future development of BCZT system) were given based on the current research status and existing problems. All in all, this review is devoted to summarizing the milestones in the past, classifying selected recent works and analyzing the prospects of BCZT based ceramics. It can be expected that, this first review that concentrates on BCZT based ceramics obviously would provide useful guidance for the research community.

  4. Microstructure evolution and tensile properties of Zr-2.5wt%Nb pressure tubes processed from billets with different microstructures

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5wt%Nb pressure tubes. The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structure at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.

  5. Increased Mechanical Properties Through the Addition of Zr to GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Lerch, Bradley A.

    2011-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has shown exceptional mechanical properties above 932 F (773 K). However, its properties below 932 F (773 K) are inferior to precipitation strengthened alloys such as Cu-Cr, Cu-Zr and Cu-Cr-Zr when they are in the fully aged, hard-drawn condition. It has been noted that the addition of small amounts of Zr, typically 0.1 wt.% to 0.5 wt.%, can greatly enhance the mechanical properties of copper-based alloys. Limited testing was conducted upon GRCop-84 with an addition of 0.4 wt.% Zr to determine its tensile, creep and low cycle fatigue (LCF) properties. Very large increases in strength (up to 68%) and ductility (up to 123%) were observed at both room temperature and 932 F (773 K). Creep properties at 932 F (773 K) demonstrated more than an order of magnitude decrease in the creep rate relative to unmodified GRCop-84 with a corresponding order of magnitude increase in creep life. Limited LCF testing showed that the modified alloy had a comparable LCF life at room temperature, but it was capable of sustaining a much higher load. While more testing and composition optimization are required, the addition of Zr to GRCop-84 has shown clear benefits to mechanical properties.

  6. Ferroelectric and optical properties of `Ba-doped' new double perovskites

    NASA Astrophysics Data System (ADS)

    Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.

    2018-06-01

    Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.

  7. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  8. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    NASA Technical Reports Server (NTRS)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  9. Thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics in different oxygen-reduction conditions

    NASA Astrophysics Data System (ADS)

    Li, Yi; Liu, Jian; Wang, Chun-Lei; Su, Wen-Bin; Zhu, Yuan-Hu; Li, Ji-Chao; Mei, Liang-Mo

    2015-04-01

    The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high-temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be ˜0.19 at 1073 K in the heaviest oxygen reduced sample. Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 51202132 and 51002087).

  10. New Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 Quaternary Ceramics: Morphotropic Phase Boundary Design and Electrical Properties.

    PubMed

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Xu, Chao; Yang, Zhanlue; Yan, Qingfeng; Zhang, Yiling; Shrout, Thomas R

    2016-06-22

    Four series of Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbZrO3-PbTiO3 (PMN-PIN-PZ-PT) quaternary ceramics with compositions located at the morphotropic phase boundary (MPB) regions were prepared. The MPBs of the multicomponent system were predicted using a linear combination rule and experimentally confirmed by X-ray powder diffraction and electrical measurement. The positions of MPBs in multicomponent systems were found in linear correlation with the tolerance factor and ionic radii of non-PT end-members. The phase structure, piezoelectric coefficient, electromechanical coupling coefficient, unipolar strains, and dielectric properties of as-prepared ceramics were systematically investigated. The largest d33s were obtained at S36.8, L37.4, M39.6, and N35.8, with the corresponding values of 580, 450, 420, and 530 pC/N, respectively, while the largest kps were found at S34.8, L37.4, M39.6, and N35.8, with the respective values of 0.54, 0.50, 0.47, and 0.53. The largest unipolar strain Smax and high-field piezoelectric strain coefficients d33* were also observed around the respective MPB regions. The rhombohedral-to-tetragonal phase transition temperature Trt increased with increasing PIN and PZ contents. Of particular importance is that high Trt of 140-197 °C was achieved in the M series with PZ and PIN contents being around 0.208 and 0.158, which will broaden the temperature usage range.

  11. Preparation and Characteristics of Ultrasonic Transducers for High Temperature Using PbNb2O6

    NASA Astrophysics Data System (ADS)

    Soejima, Junichiro; Sato, Kokichi; Nagata, Kunihiro

    2000-05-01

    The substance PZT(Pb(Zr, Ti)O3) is chiefly used for piezoceramic transducers in many ultrasonic flow meters. It is difficult to use PZT transducers for flow meters for automobile exhaust gas at high temperatures over 350°C. Lead niobate (PbNb2O6) has a high Curie temperature of 540°C and a low mechanical quality factor, and is the most suitable as the sensor element in flow meters for automobile exhaust gas. However, it is difficult to fabricate dense PbNb2O6 ceramics that have good piezoelectric properties. In this study, ceramics with high density and a high piezoelectric effect were fabricated by adding various elements such as Mn and Ca to PbNb2O6 and by examining the sintering process. A Langevin transducer with a resonance frequency of 80 kHz was made for measuring automobile exhaust gas flow using PbNb2O6 ceramics.

  12. Observation of extreme ultraviolet transitions in highly charged Ba{sup 16+} to Ba{sup 23+} ions with electron beam ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S.; Shimizu, E.; Nakamura, N.

    2016-03-15

    We have investigated extreme ultraviolet emission from highly charged barium using a compact electron beam ion trap at the Tokyo EBIT laboratory. The spectra were recorded for several beam energies ranging from 440 to 740 eV, while keeping the electron beam current constant at 10 mA. Radiation from charge states Zr-like Ba{sup 16+} to As-like Ba{sup 23+} were recorded and identified by varying the electron beam energy across the ionization thresholds and comparing with calculated results. The calculations were performed with a detailed relativistic configuration interaction approach using the Flexible Atomic Code. Several new lines belonging to electric dipole transitions were observedmore » and identified.« less

  13. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wentao; Sun, Xuguang; Yuan, Bifei

    The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensiticmore » transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.« less

  15. High-field transport properties of a P-doped BaFe2As2 film on technical substrate.

    PubMed

    Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo

    2017-01-12

    High temperature (high-T c ) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-T c Nb 3 Sn due probably to cost and processing issues. The recent discovery of a second class of high-T c materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe 2 As 2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, H c2 , moderate H c2 anisotropy, and intermediate T c . Here we report on in-field transport properties of P-doped BaFe 2 As 2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport J c of 10 5  A/cm 2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field J c over MgB 2 and NbTi, and a comparable level to Nb 3 Sn above 20 T. By analysing the E - J curves for determining J c , a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.

  16. The Vitrification and Determination of the Crystallization Time Scales of a Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 Bulk Metallic Glass Forming Liquid

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Schroers, J.; Johnson, W. L.; Rathz, T. J.; Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Zr58.5Nb2.8Cul5.6Nil2.8All0.3 is the first bulk glass forming liquid that does not contain beryllium to be vitrified by purely radiative cooling in the containerless electrostatic levitation process. The measured critical cooling rate is 1.75 K/s. The sluggish crystallization kinetics enable the determination of the time-temperature-transformation (TTT) diagram between the liquidus and the glass transition temperatures. At the nose of the TTT diagram, the shortest time to reach crystallization in an isothermal experiment is 32 seconds. In contrast to other bulk metallic glasses the scatter in the crystallization onset times are small at both high and low temperatures.

  17. Synthesis of BaTiO3 and Ba(ZrxTi1-X)O3 by using the soft combustion method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Razak, Khairunisak Abdul

    2017-07-01

    In this work, barium titanate, BaTiO3 (BT) and Zr doped BT, BaZrxTi1-xO3 (BZT) with powders were successfully produced using the soft combustion method. Barium nitrate and titanium (IV) isopropoxide were used as the starting materials while zirconium (IV) oxynitrate hydrate as the doping precursors, and glycine as the combustion agent. The produced powders were pressed into 12 mm diameter pellets by using 150 MPa cold press. The effect of Zr dopant in BT was studied with molar ratio of x = 0.00, 0.03, 0.05, 0.08 and 0.10. The phase presence was identified using X-ray diffractometer. Morphology of powders and sintered pellets was observed using a scanning electron microscope. Density of the sintered pellets was measured by using Archimedes' principle, while dielectric properties were analysed by using an LCR meter. Pure perovskite BT and BZT structure were obtained after sintering at 1400 °C for 5 h. BZT with x = 0.03 has grain size of 3.9 µm and shows the highest dielectric constant of 525, compared to undoped BT that has the average grain size of 4.2 µm with dielectric constant 223. The results is in agreement with microstructure observation and density of the sample.

  18. Anode materials for lithium ion batteries

    DOEpatents

    Abouimrane, Ali; Amine, Khalil

    2017-04-11

    An electrochemical device includes a composite material of general Formula (1-x)J-(x)Q wherein: J is a metal carbon alloy of formula Sn.sub.zSi.sub.z'Met.sub.wMet'.sub.w'C.sub.t; Q is a metal oxide of formula A.sub..gamma.M.sub..alpha.M'.sub..alpha.'O.sub..beta.; and wherein: A is Li, Na, or K; M and M' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; Met and Met' are individually Ge, Mo, Al, Ga, As, Sb, Te, Ti, Ta, Zr, Ca, Mg, Sr, Ba, Li, Na, K, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Rt, Ru or Cd; 0

  19. Electrical and Optical Properties of Nanocrystalline A8ZnNb6O24 (A = Ba, Sr, Ca, Mg) Ceramics

    NASA Astrophysics Data System (ADS)

    John, Fergy; Thomas, Jijimon K.; Jacob, John; Solomon, Sam

    2017-08-01

    Nanoparticles of A8ZnNb6O24 (A = Ba, Sr, Ca, and Mg, abbreviated as BZN, SZN, CZN, and MZN) have been synthesized by an auto-igniting combustion technique and their structural and optical properties characterized. The phase purity, crystal structure, and particle size of the prepared nanopowders were examined by x-ray diffraction (XRD) analysis and transmission electron microscopy. The XRD results revealed that all the samples crystallized with hexagonal perovskite structure in space group P6 3 cm. The Fourier-transform infrared and Raman (FT-Raman) spectra of the samples were investigated in detail. The ultraviolet-visible (UV-Vis) absorption spectra of the samples were also recorded and their optical bandgap energy values calculated. The nanopowders synthesized by the combustion technique were sintered to 95% of theoretical density at temperature of 1250°C for 2 h. The surface morphology of the sintered pellets was studied by scanning electron microscopy. The photoluminescence spectra of the samples showed intense emission in the blue-green region. Complex impedance analysis was used to determine the grain and grain boundary effects on the dielectric behavior of the ceramics.

  20. Understanding the role of A-site and B-site cations on piezoelectric instability in lead--free (1-x) BaTiO3 -- xA(Cu1/3Nb2/3)O3 (A = Sr, Ca, Ba) solid solutions

    NASA Astrophysics Data System (ADS)

    Maurya, Deepam; Zhou, Yuan; Priya, Shashank

    2013-03-01

    This study provides fundamental understanding of the enhanced piezoelectric instability in lead-free piezoelectric (1-x) BaTiO3-xA(Cu1/3Nb2/3) O3(A: Sr, Ba and Ca and x = 0.0-0.03) solid solutions. These compositions were found to exhibit large longitudinal piezoelectric constant (d33) of ~330 pC/N and electromechanical planar coupling constant (kp) ~ 46% at room temperature. The X-ray diffraction coupled with atomic pair distribution functions (PDF)s indicated increase in local polarization. Raman scattering and electron paramagnetic resonance (EPR) analysis revealed that substitutions on A and B-site both substantially perturbed the local octahedral dynamics and resulted in localized nano polar regions with lower symmetry. The presence of nano domains and local structural distortions smears the Curie peak resulting in diffuse order-disorder type phase transitions. The effect of these distortions on the variations in physical property was modeled and analyzed within the context of nanodomains and phase transitions. *spriya@vt.edu The financial support from National Science Foundation and Office of Basic Energy Science, Department of Energy (Microscopy analysis) is gratefully acknowledged. The authors would also like to acknowledge the support from KIMS (new piezoelectric)

  1. Large structural modulations in the relaxor ferroelectric and intermediate state of strontium rich members (x>0.6) of the Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6} (sbn) solid solution series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graetsch, H.A., E-mail: heribert.graetsch@rub.de

    The amplitudes of the positional, occupational and adp modulations of sbn mixed crystals are strongly enhanced for high strontium contents. The increase of structural modulations is accompanied by reduced spontaneous electric polarization largely due to smaller off-center shifts of the niobium atoms. Beyond the room temperature ferroelectric – intermediate transition near x=0.77, anomal large U{sub 33} atomic displacement parameters of the niobium atoms indicate static disorder caused by loss of orientational coupling between residual shifts of Nb atoms in neighboring NbO{sub 6} octahedra. Change of satellite intensities show a reduction from two-dimensional to one-dimensional modulation which is not consistent withmore » tetragonal symmetry. The pseudo-tetragonally twinned crystal structure of sbn82 was refined in the orthorhombic super-space group A2mm(½0γ)000. The apparent tetragonal symmetry of the other investigated sbn samples also seems to be due to pseudo tetragonal twinning with equal twin volumes. The modulations mainly consist of cooperatively tilted NbO{sub 6} octahedra and wave-like ordered incomplete occupation of the largest cation sites (Me2a and b) by Ba{sup 2+} and Sr{sup 2+}. Furthermore, the atomic displacement parameters of the Me2 sites are strongly modulated. - Graphical abstract: Satellite reflections and modulation coefficients in the solid solution series Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6}. - Highlights: • The modulationed structures are refined for the whole composition range of sbn32–sbn82 in tetragonal and orthorhombic setting. • The amplitudes of positional, occupational and adp modulations increase strongly with the strontium content. • Evidence is presented that the sbn crystals are pseudo tetragonally twinned. • The ferroelectric–intermediate paraelectric transition is not accompanied by a change of symmetry. • Anomal adp of intermediate (non-ferroelectric) sbn82 indicate loss of coupling between off

  2. Davinciite, Na12K3Ca6Fe{3/2+}Zr3(Si26O73OH)Cl2, a New K,Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Rastsvetaeva, R. K.; Rozenberg, K. A.

    2013-12-01

    This paper presents a description of a new zirconosilicate of the eudialyte group, which was named davinciite in honor of Leonardo da Vinci (1452-1519), a famous Italian scientist, painter, sculptor and architect. The new mineral has been found in hyperagpaitic pegmatite at the Rasvumchorr Mountain, Khibiny Pluton, Kola Peninsula, as relict inclusions, up to 1-2 mm in size in a rastsvetaevite matrix. It is associated with nepheline, sodalite, potassium feldspar, delhayelite, aegirine, shcherbakovite, villiaumite, nitrite, nacaphite, rasvumite, and djerfisherite. Davinciite is dark lavender and transparent, with a vitreous luster and white streak. The new mineral is brittle, with conchoidal fracture; the Mohs' hardness is 5. No indications of cleavage or parting were observed. The measured density is 2.82(2) g/cm3 (volumetric method); the calculated density is 2.848 g/cm3. Davinciite is optically uniaxial, positive; ω = 1.603(2), ɛ = 1.605(2). It is nonpleochroic and nonfluorescent in UV light. The new mineral slowly breaks down and gelates in 50% HCl and HNO3. It is trigonal, space group R3m. The unit-cell dimensions are a = 14.2956(2), c = 30.0228(5) Å, V=5313.6(2) Å3. The strongest reflections in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are as follows: 2.981(100)(315), 2.860(96)(404), 4.309(66)(205), 3.207(63)(208), 6.415(54)(104), 3.162(43)(217). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 12.69 Na2O, 3.53 K2O, 11.02 CaO, 0.98 SrO, 0.15 BaO, 5.33 FeO, 0.37 MnO, 0.07 Al2O3, 51.20 SiO2, 0.39 TiO2, 11.33 ZrO2, 0.21HfO2, 0.09 Nb2O5, 1.89 Cl, 0.93H2O, -O = Cl2 0.43; total is 99.75. The empirical formula calculated on the basis of Si + Al + Zr + Hf + Ti + Nb = 29 ( Z = 3) is (Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02) Σ3(Si1.96Al0.04)Σ2[Si3O9]2 [Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2 · 0.48H2O. The simplified

  3. Spectroellipsometric studies of sol-gel derived Sr0.6Ba0.4Nb2O6 films

    NASA Astrophysics Data System (ADS)

    Ho, Melanie M. T.; Tang, T. B.; Mak, C. L.; Pang, G. K. H.; Chan, K. Y.; Wong, K. H.

    2006-10-01

    Sr0.6Ba0.4Nb2O6 (SBN) films have been fabricated on (001)Si substrates by a sol-gel technique. The annealing process was carried out in air at various temperatures ranging from 200to700°C. Studies using x-ray diffractometry, high resolution transmission electron microscopy, and scanning electron microscopy showed that polycrystalline films, with a grain size of about 100nm, were obtained only for annealing temperatures ⩾600°C. The optical properties of these sol-gel derived SBN films were studied by spectroscopic ellipsometry (SE). In the analysis of the measured SE spectra, a triple-layer Lorentz model has been developed and used to deduce the optical properties of the SBN films. Our systematic SE measurements revealed that the refractive indices of the SBN films increase with the annealing temperature. This increase is more pronounced at around the crystallization temperature, i.e., between 500 and 600°C. The extinction coefficients of the films also exhibit a similar trend, showing a zero value for amorphous films and larger values for films annealed at above 600°C. Our results demonstrate that while crystallization helps to raise the refractive index of the film due to film densification, it also promotes scattering by grain boundary, resulting in a larger extinction coefficient.

  4. The stability of thermodynamically metastable phases in a Zr-Sn-Nb-Mo alloy: Effects of alloying elements, morphology and applied stress/strain

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Daymond, Mark R.

    2017-09-01

    In this paper, a dual phase Zr-Sn-Nb-Mb alloy was studied with TEM after thermal treatment and high-temperature tensile deformation. Plate and pressure tube material, manufactured through different processing routes, were used in this study. The overall average concentrations of Mo and Nb in the β phase are higher in the pressure tube than in the plate. It was revealed that these concentrations have significant effects on the subsequent stability of the β and ω phases as well as on the precipitation behavior of the α phase from the β phase. That is, the higher the concentrations, the more stable the β and ω phases are, and hence there is a reduced tendency for precipitation of α phase. Aging treatments cause the transformation of athermal ω to isothermal ω, as expected. The most striking finding is the product of the decomposition of the isothermal ω particles during aging treatment is determined as not being α phase, even though the structure of it is, as-yet, not fully determined. The non-uniform morphology of the β grains in the plate material provides us a unique opportunity to investigate the effects of morphology on the aging response of the β phase. It was found that thin β filaments suppress the precipitation of isothermal ω particles but enhance the precipitation of α phase at α/β interfaces. The effect of the Burgers orientation relationship between α and β grains on the precipitation of the α phase at the α/β interface is discussed. Applied high-temperature stress/strain has been found to enhance the decomposition of isothermal ω phase but suppress α precipitation inside the β grains. The suppression of α precipitation by applied stress/strain is discussed in terms of the ω assisted α precipitation. Implications of these findings for the in-service application of the alloy are discussed.

  5. Magnetodielectric effect in (1 - x)(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3 - xCoFe2O4

    NASA Astrophysics Data System (ADS)

    Pan, Pengfei; Tao, Jin; Ma, Fusheng; Zhang, Ning

    2018-05-01

    Magnetodielectric (MD) materials have attracted considerable attention due to their intriguing physics and potential future applications. In this work, polycrystalline (1 - x)(Ba0.88Ca0.12)(Ti0.88Zr0.12)O3 - xCoFe2O4 (x = 0.10, 0.20, 0.30, 0.40) ceramic have been prepared via sol-gel method. The room temperature magnetic and ferroelectric behaviors of the synthesized composites were investigated. For the composite with x = 0.40, a MD ratio of 5.37% was achieved under a magnetic field of 1.5 T at f = 1 kHz. The measured "butterfly hysteresis" MD curves exhibit an obvious dielectric anomaly. Theoretical analysis suggests that the observed magnetodielectric effect is attributed to the magnetoresistance effect and magnetoelectric coupling.

  6. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  7. Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids

    NASA Astrophysics Data System (ADS)

    Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.

    2017-01-01

    We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.

  8. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO 4) 6 luminescence centers in potassium hafnium-zirconium phosphates K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3

    NASA Astrophysics Data System (ADS)

    Torardi, C. C.; Miao, C. R.; Li, J.

    2003-02-01

    Potassium hafnium-zirconium phosphates, K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ˜60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1- xZr x(PO 4) 2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission.

  9. High-throughput growth temperature optimization of ferroelectric SrxBa1-xNb2O6 epitaxial thin films using a temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ohkubo, I.; Christen, H. M.; Kalinin, Sergei V.; Jellison, G. E.; Rouleau, C. M.; Lowndes, D. H.

    2004-02-01

    We have developed a multisample film growth method on a temperature-gradient substrate holder to quickly optimize the film growth temperature in pulsed-laser deposition. A smooth temperature gradient is achieved, covering a range of temperatures from 200 to 830 °C. In a single growth run, the optimal growth temperature for SrxBa1-xNb2O6 thin films on MgO(001) substrates was determined to be 750 °C, based on results from ellipsometry and piezoresponse force microscopy. Variations in optical properties and ferroelectric domains structures were clearly observed as function of growth temperature, and these physical properties can be related to their different crystalline quality. Piezoresponse force microscopy indicated the formation of uniform ferroelectric film for deposition temperatures above 750 °C. At 660 °C, isolated micron-sized ferroelectric islands were observed, while samples deposited below 550 °C did not exhibit clear piezoelectric contrast.

  10. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 - x)Ba(Zr 0.2Ti 0.8)O 3-x(Ba 0.7Ca 0.3)TiO 3 using in situ high-energy X-ray diffraction during application of electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith

    The piezoelectric compositions (1 - x)Ba(Zr 0.2Ti 0.8)O 3–x(Ba 0.7Ca 0.3)TiO 3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributedmore » to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less

  11. Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode

    NASA Astrophysics Data System (ADS)

    Ding, Hanping; Xie, Yuanyuan; Xue, Xingjian

    2011-03-01

    BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) exhibits adequate protonic conductivity as well as sufficient chemical and thermal stability over a wide range of SOFC operating conditions, while layered perovskite PrBaCo2O5+δ (PBCO) has advanced electrochemical properties. This research fully takes advantage of these advanced properties and develops a novel protonic ceramic membrane fuel cell (PCMFC) of Ni-BZCYYb|BZCYYb|PBCO. The performance of the button cell was tested under intermediate-temperature range from 600 to 700 °C with humified H2 (∼3% H2O) as fuel and ambient air as oxidant. The results show that the open circuit potential of 0.983 V and the maximal power density of 490 mW cm-2 were achieved at 700 °C. By co-doping barium zirconate-cerate with Y and Yb, the conductivity of electrolyte was significantly improved. The polarization processes of the button cell were characterized using the complicated electrochemical impedance spectroscopy technique. The results indicate that the polarization resistances contributed from both charge migration processes and mass transfer processes increase with decreasing cell voltage loads. However the polarization resistance induced by mass transfer processes is negligible in the studied button cell.

  12. Development and fabrication of insulator seals for thermionic diodes

    NASA Technical Reports Server (NTRS)

    Poirier, V. L.

    1972-01-01

    Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.

  13. Diffuse Phase Transitions and Giant Electrostrictive Coefficients in Lead-Free Fe3+-Doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 Ferroelectric Ceramics.

    PubMed

    Jin, Li; Huo, Renjie; Guo, Runping; Li, Fei; Wang, Dawei; Tian, Ye; Hu, Qingyuan; Wei, Xiaoyong; He, Zhanbing; Yan, Yan; Liu, Gang

    2016-11-16

    The electrostrictive effect has some advantages over the piezoelectric effect, including temperature stability and hysteresis-free character. In the present work, we report the diffuse phase transitions and electrostrictive properties in lead-free Fe 3+ -doped 0.5Ba(Zr 0.2 Ti 0.8 )O 3 -0.5(Ba 0.7 Ca 0.3 )TiO 3 (BZT-0.5BCT) ferroelectric ceramics. The doping concentration was set from 0.25 to 2 mol %. It is found that by introducing Fe 3+ ion into BZT-0.5BCT, the temperature corresponding to permittivity maximum T m was shifted toward lower temperature monotonically by 37 °C per mol % Fe 3+ ion. Simultaneously, the phase transitions gradually changed from classical ferroelectric-to-paraelectric phase transitions into diffuse phase transitions with a weak relaxor characteristic. Purely electrostrictive responses with giant electrostrictive coefficient Q 33 between 0.04 and 0.05 m 4 /C 2 are observed from 25 to 100 °C for the compositions doped with 1-2 mol % Fe 3+ ion. The Q 33 of Fe 3+ -doped BZT-0.5BCT ceramics is almost twice the Q 33 of other ferroelectric ceramics. These observations suggest that the present system can be considered as a potential lead-free material for the applications in electrostrictive area and that BT-based ferroelectric ceramics would have giant electrostrictive coefficient over other ferroelectric systems.

  14. Influence of Europium Doping on Various Electrical Properties of Low-Temperature Sintered 0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuO- xEu Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Tian, Yongshang; Li, Shuiyun; Sun, Shulin; Gong, Yansheng; Li, Tiantian; Yu, Yongshang; Jing, Qiangshan

    2018-01-01

    0.5Ba0.90Ca0.10TiO3-0.5BaTi0.88Zr0.12O3-0.1%CuO- xEu (BCT-BZT-Cu- xEu; x = 0-0.90%) lead-free ceramics were sintered at 1220°C with as-synthesized nanoparticles by a modified Pechini method. The structural characteristics and electrical properties of the ceramics that were influenced by varying europium-doping were investigated. All the ceramics featured high densification (relative density: ˜ 96%). X-ray powder diffraction results indicated the samples possessed pure orthorhombic phase. The maximum relative permittivity ( ɛ r, 10869) was found at x around 0.30%. Europium ions could dope on different substitution sites in the ABO3 lattice, which evidently influenced electrical properties with various volumes of oxygen vacancy. Moreover, the formation mechanisms of oxygen vacancy and defect electron complexes were stated. The piezoelectric properties were impacted by defect electron complexes, internal stress, ionic electronegativity, etc. The optimal electrical properties, i.e., d 33 = 384 pC/N, Q m = 92, and k p = 0.36, were detected at x = 0.45%.

  15. Doping effect in layer structured SrBi2Nb2O9 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Nguyen, Carolyn; Cao, Guozhong

    2001-11-01

    This article reports a systematic study of doping effects on the crystal structure, microstructure, dielectric, and electrical properties of layer-structured strontium bismuth niobate, SrBi2Nb2O9 (SBN), ferroelectrics. Substitution in both the A site (Sr2+ by Ca2+ and Ba2+) and B site (Nb5+ by V5+) up to 30 at % were studied. It was found that crystal lattice constant, dielectric, and electrical properties of SBN ferroelectrics varied appreciably with the type and amount of dopants. The relationships among the ionic radii, structural constraint imposed by [Bi2O2]2+ interlayers, and properties were discussed.

  16. Large Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O₃ Ceramics Prepared via Citrate Route.

    PubMed

    Shi, Jing; Zhu, Rongfeng; Liu, Xing; Fang, Bijun; Yuan, Ningyi; Ding, Jianning; Luo, Haosu

    2017-09-18

    The 1 wt % Li-doped (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O₃ (BCZT-Li) ceramics prepared by the citrate method exhibit improved phase purity, densification and electrical properties, which provide prospective possibility to develop high-performance electrocaloric materials. The electrocaloric effect was evaluated by phenomenological method, and the BCZT-Li ceramics present large electrocaloric temperature change ∆ T , especially large electrocaloric responsibility ξ = ∆ T max /∆ E max , which can be comparable to the largest values reported in the lead-free piezoelectric ceramics. The excellent electrocaloric effect is considered as correlating with the coexistence of polymorphic ferroelectric phases, which are detected by the Raman spectroscopy. The large ξ value accompanied by decreased Curie temperature (around 73 °C) of the BCZT-Li ceramics prepared by the citrate method presents potential applications as the next-generation solid-state cooling devices.

  17. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in themore » sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.« less

  18. Microstructure evolution and tensile properties of Zr-2.5 wt.% Nb pressure tubes processed from billets with different microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Pressurized heavy water reactors (PHWR) use zirconium-base alloys for their low neutron-absorption cross section, good mechanical strength, low irradiation creep, and high corrosion resistance in reactor atmospheres. Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5 wt%Nb pressure tubes., The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structuremore » at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.« less

  19. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  20. Mechanism of rectification and two-type bipolar resistance switching behaviors of Pt /Pb(Zr0.52Ti0.48)O3 /Nb:SrTiO3

    NASA Astrophysics Data System (ADS)

    Liu, W. W.; Jia, C. H.; Zhang, Q.; Zhang, W. F.

    2015-12-01

    Epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) films have been grown on Nb:SrTiO3 (NSTO) (1 0 0) substrates. The films are a tetragonal perovskite phase with good density and homogeneity. Rectification behavior and two types of bipolar resistance switching (BRS) have been observed in the Pt/PZT/NSTO device. It exhibits rectification below 3 V. According to piezo force microscopy analysis, PZT film has a multidomain structure below 8 V and the device shows abnormal BRS between 3 V and 8 V. When the voltage increases above 8 V, the polarization of the PZT film tends to saturation and it becomes single domain and displays normal BRS behavior. In addition, the device demonstrates good retention and anti-fatigue properties. The transition from abnormal bipolar to normal bipolar behavior caused by ferroelectric polarization can broaden device applications and enable large flexibility in terms of memory architecture.

  1. Influence of thermomechanical processing on biomechanical compatibility and electrochemical behavior of new near beta alloy, Ti-20.6Nb-13.6Zr-0.5V

    PubMed Central

    Mohammed, Mohsin Talib; Khan, Zahid A; Manivasagam, Geetha; Siddiquee, Arshad N

    2015-01-01

    This paper presents the results for the effect of different methods of thermomechanical processing on the mechanical properties and electrochemical behavior of metastable β alloy Ti-20.6Nb-13.6Zr-0.5V (TNZV). The thermomechanical processing included hot working, solution heat treatments at different temperatures, and cooling rates in addition to aging. The thermomechanical processing conditions used in the study resulted in attainment of a wide range of microstructures with varying spatial distributions and morphologies of elongated/equiaxed α, β phases, or martensite, as a result of which several tensile properties were achieved. Aging treatment led to an increase in hardness, elastic modulus, and tensile strength and a decrease in ductility (elongation). Electrochemical tests indicated that the TNZV alloy undergoes spontaneous passivation due to spontaneous formation of an oxide film in the environment of the human body. Because the air-cooled samples possessed high hardness and also a fine grain size, they showed a lower corrosion rate than the samples treated under other conditions. PMID:26491324

  2. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kazunari; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2017-10-01

    In this study, the availability of Ni-Ba(Zr,Y)O3-δ (BZY) cermet for the anode of direct ammonia-fueled solid oxide fuel cells (SOFCs) is evaluated. In this device, the anodes need to be active for the catalytic ammonia decomposition as well as the electrochemical hydrogen oxidation. In the catalytic activity test, ammonia decomposes completely over Ni-BZY at ca. 600 °C, while higher temperature is required to accomplish the complete decomposition over the conventional SOFC anode of Ni-yttria-stabilized zirconia cermet. The high activity of Ni-BZY is attributed to the high basicity of BZY and the high resistance to hydrogen poisoning effect. The electrochemical property of Ni-BZY anode is also evaluated with the anode-supported cell of Ni-BZY|BZY|Pt at 600-700 °C with feeding ammonia or hydrogen as a fuel. Since the residence time of ammonia fuel in the thick Ni-BZY anode is long, the difference in the cell performance between two fuels is relatively small. Furthermore, it is proved that the steam concentration in the fuel strongly affects the cell performance. We find that this factor is important to satisfy the above mentioned requirements for the anode of direct ammonia-fueled SOFCs. Throughout this study, it is concluded that Ni-BZY cermet will be a promising anode.

  3. Large Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Prepared via Citrate Route

    PubMed Central

    Shi, Jing; Zhu, Rongfeng; Liu, Xing; Yuan, Ningyi; Ding, Jianning; Luo, Haosu

    2017-01-01

    The 1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-Li) ceramics prepared by the citrate method exhibit improved phase purity, densification and electrical properties, which provide prospective possibility to develop high-performance electrocaloric materials. The electrocaloric effect was evaluated by phenomenological method, and the BCZT-Li ceramics present large electrocaloric temperature change ∆T, especially large electrocaloric responsibility ξ = ∆Tmax/∆Emax, which can be comparable to the largest values reported in the lead-free piezoelectric ceramics. The excellent electrocaloric effect is considered as correlating with the coexistence of polymorphic ferroelectric phases, which are detected by the Raman spectroscopy. The large ξ value accompanied by decreased Curie temperature (around 73 °C) of the BCZT-Li ceramics prepared by the citrate method presents potential applications as the next-generation solid-state cooling devices. PMID:28927004

  4. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A.; Rödel, J.

    2017-12-01

    We present a critical review that encompasses the fundamentals and state-of-the-art knowledge of barium titanate-based piezoelectrics. First, the essential crystallography, thermodynamic relations, and concepts necessary to understand piezoelectricity and ferroelectricity in barium titanate are discussed. Strategies to optimize piezoelectric properties through microstructure control and chemical modification are also introduced. Thereafter, we systematically review the synthesis, microstructure, and phase diagrams of barium titanate-based piezoelectrics and provide a detailed compilation of their functional and mechanical properties. The most salient materials treated include the (Ba,Ca)(Zr,Ti)O3, (Ba,Ca)(Sn,Ti)O3, and (Ba,Ca)(Hf,Ti)O3 solid solution systems. The technological relevance of barium titanate-based piezoelectrics is also discussed and some potential market indicators are outlined. Finally, perspectives on productive lines of future research and promising areas for the applications of these materials are presented.

  5. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets

    NASA Astrophysics Data System (ADS)

    Rehman, Sajjad Ur; Ahmad, Zubair; Haq, A. ul; Akhtar, Saleem

    2017-11-01

    Alnico-8 permanent magnets were produced through casting and subsequent thermal treatment process. Magnetic alloy of nominal composition 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti were prepared by arc melting and casting technique. The Zr was added to 32.5 Fe-7.5 Al-1.0 Nb-35.0 Co-4.0 Cu-14.0 Ni-6.0 Ti alloy ranging from 0.3 to 0.9 wt%. The magnets were developed by employing two different heat treatment cycles known as conventional treatment and thermo-magnetic annealing treatment. The samples were characterized by X-ray diffraction method, Scanning electron microscope and magnetometer by plotting magnetic hysteresis demagnetization curves. The results indicate that magnetic properties are strongly depended upon alloy chemistry and process. The 0.6 wt% Zr added alloys yielded the best magnetic properties among the studied alloys. The magnetic properties obtained through conventional heat treatment are Hc = 1.35 kOe, Br = 5.2 kG and (BH)max = 2 MGOe. These magnetic properties were enhanced to Hc = 1.64 kOe, Br = 6.3 kG and (BH)max = 3.7 MGOe by thermo-magnetic annealing treatment.

  6. Strengthening mechanisms, creep, and fatigue processes in dispersion-hardened niobium alloy. Final scientific report, 1 Feb 89-31 Jan 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, A.K.; Gibeling, J.C.

    The creep and fatigue properties of pure Nb and Nb-l%Zr alloy were investigated. A model was developed based on the migration of subgrain boundary that can explain the anomalous primary creep transients found in Nb-l%Zr alloy, due to coarsening of subgrain structure. TEM investigations confirmed that such subgrain coarsening occurs during primary creep of Nb-l%Zr. Baseline low cycle fatigue studies of Nb and Nb-l%Zr were completed. Cyclic hardening is observed and there is a microplastic plateau in Nb. The Nb-1%Zr is stronger in cyclic deformation than Nb, with little influence of strain rate. The deformation in the alloy at bothmore » high and low strain rates is controlled by the interaction between gliding edge dislocation and solute atoms.« less

  7. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality.more » A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.« less

  8. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics.

    PubMed

    Akbas, Hatice Zehra; Aydin, Zeki; Yilmaz, Onur; Turgut, Selvin

    2017-01-01

    The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε ' , ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO 3 ceramics without carbonate impurities with a small dielectric loss. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Collinear and vector interaction of light waves in nonlinear optical crystals KTiOPO4("KTP"), Ba2NaNb5O15 ("banana")

    NASA Astrophysics Data System (ADS)

    Deinekina, N. A.; Korosteleva, I. A.; Kravchenko, O. V.; Faleev, D. S.

    2016-11-01

    Esents the research results of biaxial crystals with mm2 symmetry class. These crystals were used for determining regularities of nonlinear conversion of broadband optical emission on the basis of collinear and vector light waves interactions of different nature. The quantities of the basis nonlinear optical characteristics of "KTP" (KTiOPO4) and "banana" (Ba2NaNb5O15) crystals were calculated in case of synchronous conversion of broadband emission from the area of 0.8 - 2.8 micron to the visible spectrum of 0.4 - 0.7 micron. The nonlinear optical characteristics of "KTP" crystals are defined by their geometrical structure, the mode of interaction of light waves, and the infra-red spectrum width, that was experimentally confirmed on "KTP" crystal. The quality characteristics β were calculated for the "KTP" crystal. For "banana" crystal the angle of phase synchronism θc changes insignificantly when the observation plane is changed. It can be explained by the fact that the biaxiality of crystal is not strongly expressed, because of the basis refraction indices the conditions nz<=ny≈nx are performed.

  10. Crystallization of Sr0.5Ba0.5Nb2O6 Thin Films on LaNiO3 Electrodes by RF Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Jong, Chao-An; Gan, Jon-Yiew

    2000-02-01

    Strontium barium niobium (Sr0.5Ba0.5Nb2O6) (SBN) thin films are prepared on conductive-oxide LNO (LaNiO3) electrodes by the rf magnetron sputtering system. Instead of conventional furnace annealing, SBN thin films are crystallized by rapid thermal annealing (RTA) above 700°C for 5 min. The textured SBN films are crystallized with two orientations: one is the (001) or (310) direction, and the other is the (002) or (620) direction. Films compositions measured by the electron spectroscopy of chemical analysis (ESCA) quantitative analysis method show nearly the same stoichiometric ratio as the target. The depth profiles of SBN films and the target are examined by secondary ion mass spectrometer (SIMS). The concentrations of the films are quite uniform. After being heat treated at 800°C for 5 min by RTA, La and Ni diffuse into the SBN film. The diffusion coefficient of La in SBN films is also calculated.

  11. Relation of the external mechanical stress to the properties of piezoelectric materials for energy harvesting

    NASA Astrophysics Data System (ADS)

    Jeong, Soon-Jong; Kim, Min-Soo; Lee, Dae-Su; Song, Jae-Sung; Cho, Kyung-Ho

    2013-12-01

    We investigated the piezoelectric properties and the generation of voltage and power under the mechanical compressive loads for three types of piezoelectric ceramics 0.2Pb(Mg1/3Nb2/3)O3-0.8Pb(Zr0.475Ti0.525)O3 (soft-PZT), 0.1Pb(Mg1/3Sb2/3)O3- 0.9Pb(Zr0.475Ti0.525)O3 (hard-PZT) and [0.675Pb(Mg1/3Nb2/3)O3-0.35PbTiO3]+5 wt% BaTiO3 (textured-PMNT). The piezoelectric d 33 coefficients of all specimens increased with increasing compressive load. The generated voltage and power showed a linear relation and square relation to the applied stress, respectively. These results were larger than those calculated using the simple piezoelectric equation due to the non-linear characteristics of the ceramics, so they were evaluated with a simple model based on a non-linear relation.

  12. Giant permittivity and good thermal stability of LiCuNb3O9-Bi(Mg0.5Zr0.5)O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Chen, Xiuli; Li, Xiaoxia; Huang, Guisheng; Liu, Gaofeng; Yan, Xiao; Zhou, Huanfu

    (1‑x)LiCuNb3O9-xBi(Mg0.5Zr0.5)O3 ceramics ((1‑x)LCN-xBMZ) with 0≤x≤0.08 were synthesized by a solid-state reaction method. The phase structure of (1‑x)LCN-xBMZ ceramics was characterized by X-ray diffraction (XRD), which revealed that the ceramics were distorted cubic perovskite structures. Apparent giant permittivity of 1.98×104-1.05×105 at 100kHz over the measured temperature range (25∘C-250∘C) was observed in the sintered (1‑x)LCN-xBMZ (0≤x≤0.08) ceramics. Especially for the sample of x=0.04, the temperature stability of permittivity was markedly increased (Δɛ/ɛ100∘C≤±15%), and high relative permittivity (>8.3×104) were obtained over a wide temperature range from 100∘C to 250∘C at 100kHz, which indicates that this ceramic is a promising dielectric material for elevated temperature dielectrics. The giant dielectric property of (1‑x)LCN-xBMZ ceramics are profoundly concerned with the Maxwell-Wagner effect.

  13. The Effects of the Addition of Dy, Nb, and Ga on Microstructure and Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Permanent Magnetic Alloys.

    PubMed

    Ren, Kezhi; Tan, Xiaohua; Li, Heyun; Xu, Hui; Han, Ke

    2017-04-01

    We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

  14. Nb-Base FS-85 Alloy as a Candidate Structural Material for Space Reactor Applications: Effects of Thermal Aging

    NASA Astrophysics Data System (ADS)

    Leonard, Keith J.; Busby, Jeremy T.; Hoelzer, David T.; Zinkle, Steven J.

    2009-04-01

    The proposed uses of fission reactors for manned or deep space missions have typically relied on the potential use of refractory metal alloys as structural materials. Throughout the history of these programs, a leading candidate has been Nb-1Zr, due to its good fabrication and welding characteristics. However, the less-than-optimal creep resistance of this alloy has encouraged interest in the more complex FS-85 (Nb-28Ta-10W-1Zr) alloy. Despite this interest, only a relatively small database exists for the properties of FS-85. Database gaps include the potential microstructural instabilities that can lead to mechanical property degradation. In this work, changes in the microstructure and mechanical properties of FS-85 were investigated following 1100 hours of thermal aging at 1098, 1248, and 1398 K. The changes in electrical resistivity, hardness, and tensile properties between the as-annealed and aged materials are compared. Evaluation of the microstructural changes was performed through optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The development of intragranular and grain-boundary precipitation of Zr-rich compounds as a function of aging temperature was followed. Brittle tensile behavior was measured in the material aged at 1248 K, while ductile behavior occurred in samples aged above and below this temperature. The effect of temperature on the under- and overaging of the grain-boundary particles is believed to have contributed to the mechanical property behavior of the aged materials.

  15. Delta Niobium or Delta VICE?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.

    2006-12-01

    Delta Niobium or Delta VICE? Niobium is one of a few chemical elements that can be used to discriminate between melts derived from upwelling mantle, represented by MORBs and OIBs, and those derived from subduction and continental crust environments. The Nb/U ratio was introduced because these two elements appear to partition nearly identically in upwelling environments, but very differently (from one another) in subduction and continental environments (Hofmann et al., 1986). Fitton et al. (1997, 2003) have taken a radically different approach, using log(Nb/Y)-log(Zr/Y) correlations that appear to discriminate between MORB and OIB (or plume) environments. MORB correlations are parallel to, and at lower Nb/Y ratios than, Iceland basalt correlations. This is expressed by a discrimination parameter defined as Delta Nb = 1.74 + log(Nb/Y) - 1.92 log(Zr/Y). N-MORB have negative Delta-Nb values, whereas Iceland and other OIBs have positive values. Fitton et al. interpret this in terms of a niobium deficiency in MORB that is balanced by a Nb excess in OIBs. This interpretation conflicts with evidence based on Nb/U ratios (Hofmann et al., 1986), that MORB and OIB are parts of a common reservoir, which is different from, and complementary to, the continental crust. Both parts of this MORB-OIB reservoir are characterized by higher-than-primitive Nb/U and Nb/Th ratios, whereas continental crust has dramatically lower Nb/U and Nb/Th ratios. The use of VICE/MICE (very-incompatible- element to moderately-incompatible-element) ratios, such as Nb/Y, obscures this. The significance of the VICE/MICE plot becomes clear if one replaces Nb by other VICEs in the log(Nb/Y)-log(Zr/Y) plot. This shows that any of these VICEs yield similar topologies as Nb/Y. Thus for a given Zr/Y ratio, depleted MORB have consistently lower Ba/Y, Th/Y, and La/Y ratios than do Iceland basalts, even the most incompatible-element- depleted Iceland picrites. This is caused by a less extreme depletion of

  16. Investigation of ZrO x /ZrC-ZrN/Zr thin-film structural evolution and their degradation using X-ray diffraction and Raman spectrometry

    NASA Astrophysics Data System (ADS)

    Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.

    2016-11-01

    The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.

  17. Investigations on Sm- and Nb-SUBSTITUTED PZT Ceramics

    NASA Astrophysics Data System (ADS)

    Prakash, Chandra; Juneja, J. K.

    In the present paper, we report the effect of Samarium substitution and Niobium doping on the properties of a PZT(52:48). The properties studied are: structural, dielectric and ferroelectric. The samples with chemical formula Pb0.99Sm0.01Zr0.52Ti0.48O3 were prepared by solid-state dry ceramic method. Small amount (0.5 wt%) of Nb2O5 was also added. X-ray diffraction (XRD) analysis showed formation of a single phase with tetragonal structure. Dielectric properties were studied as a function of temperature and frequency. Transition temperature, Tc, was determined from dielectric constant versus temperature plot. The material shows well-defined ferroelectric (PE) hysteresis loop.

  18. National Hypersonic Science Center for Materials and Structures

    DTIC Science & Technology

    2014-08-31

    Hence, ( Zr , Nb )B2 showed improved oxidation resistance compared to pure ZrB2. 9.2 Effects of W Additives on Oxide Scale Thickness and the...TM Additives on Oxide Scale Growth on ZrB2 The oxidation behavior of ( Zr , Nb )B2 ceramics was studied to determine the effect of Nb on the thickness...and morphology of the oxide scales on ZrB2 [B6]. At 1500 °C, exposure to air resulted in the formation of a two-layer oxide scale structure on ( Zr , Nb

  19. Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 lead-free multiferroic structures

    NASA Astrophysics Data System (ADS)

    Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui

    2017-10-01

    We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.

  20. Mineralogical and geochemical characterization of weathering profiles developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon Shear Zone (CSZ), West Cameroon

    NASA Astrophysics Data System (ADS)

    Tematio, P.; Tchaptchet, W. T.; Nguetnkam, J. P.; Mbog, M. B.; Yongue Fouateu, R.

    2017-07-01

    The mineralogical and geochemical investigation of mylonitic weathering profiles in Fodjomekwet-Fotouni was done to better trace the occurrence of minerals and chemical elements in this area. Four representative soil profiles were identified in two geomorphological units (upland and lowland) differentiating three weathering products (organo-mineral, mineral and weathered materials). Weathering of these mylonites led to some minerals association such as vermiculite, kaolinite, goethite, smectite, halloysite, phlogopite and gibbsite. The minerals in a decreasing order of abundance are: quartz (24.2%-54.8%); kaolinite (8.4%-36.0%); phlogopite (5.5%-21.9%); goethite (7.8%-16.1%); vermiculite (6.7%-15.7%); smectite (10.2%-11.9%); gibbsite (9.0%-11.8%) and halloysite (5.6%-11.5%) respectively. Patterns of chemical elements allow highlighting three behaviors (enriched elements, depleted elements and elements with complex behavior), depending on the landscape position of the profiles. In the upland weathering products, K, Cr and REEs are enriched; Ca, Mg, Na, Mn, Rb, S and Sr are depleted while Si, Al, Fe, Ti, Ba, Co, Cu, Ga, Mo, Nb, Ni, Pb, Sc, V, Y, Zn and Zr portray a complex behavior. Contrarily, the lowland weathering profiles enriched elements are Fe, Ti, Co, Cr, Cu, V, Zr, Pr, Sm, Tb, Dy, Er and Yb; while depleted elements are Ca, Mg, K, Na, Mn, Ba, Ga, S, Sr, Y, Zn, La, Ce and Nd; and Si, Al, Mo, Nb, Ni, Pb, Rb, Sc evidenced complex behaviors. In all the studied weathering products, the REEs fractionation was also noticeable with a landscape-position dependency, showing light REEs (LREEs) enrichment in the upland areas and heavy REEs (HREEs) in lowland areas. SiO2, Al2O3 and Fe2O3 are positively correlated with most of the traces and REEs (Co, Cu, Nb, Ni, Mo, Pb, Sc, V, Zn, Zr, La, Ce, Sm, Tb, Dy, Er, Yb), pointing to the fact that they may be incorporated into newly formed clay minerals and oxides. Ba, Cr, Ga, Rb, S, Sr, Y, Pr and Nd behave like alkalis and

  1. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    NASA Astrophysics Data System (ADS)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  2. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    PubMed Central

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-01-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it. PMID:26887291

  3. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    NASA Astrophysics Data System (ADS)

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-02-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7-δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

  4. Synchrotron X-ray spectroscopic investigations of an Nb-bearing silicate melt in contact with an aqueous fluid

    NASA Astrophysics Data System (ADS)

    Mayanovic, R. A.; Anderson, A. J.; Bassett, W. A.; Chou, I.

    2006-05-01

    Understanding the structural properties of trace elements in hydrous silicate melts in contact with a hydrothermal fluid is fundamentally important for a better assessment of the role of such elements in silicate melts being subjected to hydrothermal processes. We describe the use of synchrotron x-ray microprobe techniques and the modified hydrothermal diamond-anvil cell for in-situ spectroscopic analysis of individual phases of a silicate-melt/fluid system. Synchrotron X-ray fluorescence (XRF) and Nb K-edge X-ray absorption fine structure (XAFS) measurements were made on sectors ID20 and ID13 at the Advanced Photon Source, at the Argonne National Laboratory, on a Nb-bearing granitic glass in H2O and separately in a 1 M Na2CO3 aqueous solution at temperatures ranging from 25 to 880 °C and at up to 700 MPa of pressure. Individual phases of the Nb-glass/fluid system (at low temperatures) or the hydrous-silicate-melt/fluid system (at elevated temperatures) were probed using an X-ray beam focused to a diameter of 5 μm at the location of the sample. XRF analysis shows that the Nb partitions selectively from the hydrous silicate melt into the aqueous fluid at high temperatures in the Nb-glass/Na2CO3/H2O system but not so in the Nb-glass/H2O system. Analysis of XAFS spectra measured from the hydrous silicate melt phase of the Nb-glass/H2O sample in the 450 to 700 °C range shows that the first shell contains six oxygen atoms at a distance of ~1.98 Å. Our results suggest that reorganization of the silicate structure surrounding Nb occurs in the melt when compared to that of the starting glass. The X-ray absorption near edge structure (XANES) spectra show a pre-edge peak feature located at ~18995 eV that exhibits sharpening and becomes more intensified in the 450 to 700 °C range. Fitting of the Nb K-edge XANES spectra measured from the melt is accomplished using FEFF8.28 and an atomic model NbSi4O6-4(Na, K). The model is based on the structure of fresnoite (Ba2TiSi2O8

  5. Generation of 24 T at 4.2 K using a layer-wound GdBCO insert coil with Nb3Sn and Nb-Ti external magnetic field coils

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Kiyoshi, T.; Otsuka, A.; Hamada, M.; Maeda, H.; Yanagisawa, Y.; Nakagome, H.; Suematsu, H.

    2012-02-01

    High-temperature superconducting (HTS) magnets are believed to be a practical option in the development of high field nuclear magnetic resonance (NMR) systems. The development of a 600 MHz NMR system that uses an HTS magnet and a probe with an HTS radio frequency coil is underway. The HTS NMR magnet is expected to reduce the volume occupied by the magnet and to encourage users to install higher field NMR systems. The tolerance to high tensile stress is expected for HTS conductors in order to reduce the magnet in volume. A layer-wound Gd-Ba-Cu-O (GdBCO) insert coil was fabricated in order to investigate its properties under a high electromagnetic force in a high magnetic field. The GdBCO insert coil was successfully operated at a current of up to 321 A and an electromagnetic force BJR of 408 MPa in an external magnetic field generated by Nb3Sn and Nb-Ti low-temperature superconducting coils. The GdBCO insert coil also managed to generate a magnetic field of 6.8 T at the center of the coil in an external magnetic field of 17.2 T. The superconducting magnet consisting of GdBCO, Nb3Sn and Nb-Ti coils successfully generated a magnetic field of 24.0 T at 4.2 K, which represents a new record for a superconducting magnet.

  6. Electrochemical Characterization of a Low Modulus Ti-35.5Nb-7.3Zr-5.7Ta Alloy in a Simulated Body Fluid Using Eis for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Bhola, R.; Bhola, S. M.; Mishra, B.; Ayers, R. A.; Olson, D. L.

    2011-06-01

    Electrochemical characterization of the low modulus Ti-35.5Nb-7.3Zr-5.7Ta beta alloy (TNZT) has been performed in phosphate buffer saline solution at 37 °C using the non destructive electrochemical impedance spectroscopy technique. Measurements were performed at various immersion intervals at the open circuit potential (OCP), which was also monitored with time. Results obtained for TNZT alloy have been compared with those for the commercially used Ti-6Al-4V mixed alloy (Ti64) and the commercially pure titanium (Ti2) alpha alloy. Potentiodynamic polarization was performed to supplement the data obtained from EIS analysis. The TNZT alloy exhibits a two time constant impedance response, whereas the Ti64 and Ti2 alloys display a one time constant behavior. Human fetal osteoblast cells show a better adhesion and a higher cell count for the TNZT alloy compared to the other two alloys. The present investigation is an effort to understand the correlation between the electrochemical, morphological and cellular characteristics of titanium alloys to qualify them for implant applications.

  7. Preconcentration of Zr, Hf, Nb, Ta and W in seawater using solid-phase extraction on TSK-8-hydroxyquinoline resin and determination by inductively coupled plasma-mass spectrometry.

    PubMed

    Firdaus, M Lutfi; Norisuye, Kazuhiro; Sato, Taishi; Urushihara, Shouhei; Nakagawa, Yusuke; Umetani, Shigeo; Sohrin, Yoshiki

    2007-02-05

    Here, we present the first simultaneous preconcentration and determination of ultratrace (pmol kg(-1) level) Zr, Hf, Nb, Ta and W in seawater, both in the form of dissolved and acid-dissolvable species. 8-Hydroxyquinoline (8HQ) bonded covalently to a vinyl polymer resin, TSK-8HQ, was used in a chelating adsorbent column to concentrate the metals. The greatest advantage of this resin is its endurance to 5M HF, since this is an effective eluent for all five metals. The analytes were successfully concentrated from 250 mL seawater with a 50-fold concentration factor through the column extraction and evaporation. The detection limit was 0.009-0.15 pmol kg(-1). The procedure blank determined using ultra pure water as a sample was 0.005-0.37 pmol kg(-1). The five metals were quantitatively recovered from seawater with good precision (2-4%). The effect of sample pH, sample flow rate, eluent composition and sample pretreatment were carefully studied. This method was applied to seawater.

  8. Investigation of (Ti-Zr-Hf-V-Nb)N Multicomponent Nanostructured Coatings before and after Thermal Annealing by Nuclear Physics Methods of Analysis

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Beresnev, V. M.; Bondar', A. V.; Kaverin, M. V.; Ponomarev, A. G.

    2013-10-01

    (Ti-Zr-Hf-V-Nb)N multicomponent nanostructured coatings with thickness of 1.0-1.4 μm synthesized by the method of cathode arc-vapor deposition at temperatures of 250-300°С are investigated by various mutually complementary methods of elemental structural analysis using slow positron beams (SPB), proton microbeam based particle-induced x-ray emission (μ-PIXE), energy-dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) analyses based on electron micro- and nanobeams, x-ray diffraction (XRD) method of phase structural analysis, and the "a-sin2φ" method of measuring a stressed-strained state (x-ray tensometry). The elemental composition, microstructure, residual stress in nanograins, profiles of defect and atom distributions with depth and over the coating surface in 3D-representation are studied for these coatings, and their phase composition, severely strained state, and composition of coatings before and after annealing at Tann = 600°С for annealing time τ = 30 min are investigated. It is demonstrated that the oxidation resistance of the examined coatings can be significantly increased by high-temperature annealing that leads to the formation of elastic severely strained compression state of the coating. Redistribution of elements and defects, their segregation near the interface boundaries and around grains and subgrains in the process of thermostimulated diffusion, and termination of spinodal segregation without considerable change of the average nanograin size are revealed.

  9. Effect of CaRuO3 interlayer on the dielectric properties of Ba(Zr ,Ti)O3 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tang, X. G.; Tian, H. Y.; Wang, J.; Wong, K. H.; Chan, H. L. W.

    2006-10-01

    Ba(Zr0.2Ti0.8)O3 (BZT) thin films on Pt(111)/Ti /SiO2/Si(100) substrates without and with CaRuO3 (CRO) buffer layer were fabricated at 650°C in situ by pulsed laser deposition. The BZT thin films showed a dense morphology, many clusters are found on the surface images of BZT/Pt films, which are composed by nanosized grains of 25-35nm; the average grain size of BZT/CRO films is about 80nm, which lager than that of BZT/Pt thin film. The dielectric constants and dissipation factors of BZT/Pt and BZT/CRO thin films were 392 and 0.019 and 479 and 0.021 at 1MHz, respectively. The dielectric constant of BZT/Pt and BZT/CRO thin films changes significantly with applied dc bias field and has high tunabilities and figures of merit of ˜70% and 37 and 75% and 36, respectively, under an applied field of 400kV /cm. The possible microstructural background responsible for the high dielectric constant and tunability was discussed.

  10. Submillimeter SIS Mixers Using High Current Density Nb/AIN/Nb Tunnel Junctions and NbTiN Films

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Miller, D.; Chen, J.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; Leduc, H.; Stern, J.

    1999-03-01

    We are currently exploring ways to improve the performance of SIS mixers above 700 GHz. One approach is to use NbTiN in place of Nb for all or some of the mixer circuitry. With its high gap frequency and low losses demonstrated up to 800 GHz, it should be possible to fabricate an all-NbTiN SIS mixer with near quantum-limited noise performance up to 1.2 THz. Using a quasioptical twin-slot two-junction mixer with NbTiN ground plane and wiring and hybrid Nb/A1N/NbTiN junctions, we measured an uncorrected receiver noise temperature of TRx ~ 500 K across 790-850 GHz at 4.2 K bath temperature. Our second approach is to reduce the RC product of the mixer by employing very high current density Nb/A1N/Nb junctions. By using these we will greatly relax the requirement on tuning circuits, which is where substantial losses occur in mixers operating above the Nb gap frequency. These junctions have resistance-area products of R_N*A ~ 5.6 Ohm um2, good subgap to normal resistance ratios, R_sg/R_N ~ 10, and good run-to-run reproducibility. From FTS measurements we infer that omega*R_N*C = 1 at 270 GHz in these junctions. This is a substantial improvement over that available using Nb/Al0x/Nb technology. The sensitivity of a receiver incorporating these high current density mixers is T_Rx = 110 K at 533 GHz using a design for lower J_c mixers, which is close to the best we have measured with lower J_c Nb/Al0x/Nb mixers.

  11. Investigation about relationships between the symmetries of ferroelectric crystal Ca0.28Ba0.72Nb2O6 and second-harmonic patterns

    NASA Astrophysics Data System (ADS)

    Xu, Tianxiang; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2015-08-01

    The broadband quasi-phase matching (QPM) process in a uniaxial ferroelectric crystal Ca0.28Ba0.72Nb2O6 (CBN-28) was demonstrated with the second-harmonic wavelength range from 450 nm to 650 nm, and the relationship between the symmetries of CBN-28 and the second-harmonic patterns was experimentally and theoretically investigated based on the random anti-parallel domains in the crystal and QPM conditions. The dependences of frequency-doubled patterns on the wavelength and anisotropy of the nonlinear crystal were also studied, and the frequency-doubled photons were found to be trapped on circles. By analyzing the light-matter interacting Hamiltonians, the trapping force for second-harmonic photons was found to be centripetal and tunable by the fundamental lasers, and the variation tendencies of the rotational velocity of second-harmonic generation photons could also be predicated. The results indicate that the CBN-28 ferroelectric crystal is a promising nonlinear optical material for the generation of broadband frequency-doubled waves, and the analysis on centripetal force based on the interaction Hamiltonians may provide a novel recognition for the investigation of QPM process to be further studied.

  12. Shock wave compression and self-generated electric field repolarization in ferroelectric ceramics Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3

    NASA Astrophysics Data System (ADS)

    Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun

    2012-03-01

    The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.

  13. Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: Refining the record of cooling and hydration in the Napier Complex, Antarctica

    NASA Astrophysics Data System (ADS)

    Mitchell, Ruairidh J.; Harley, Simon L.

    2017-02-01

    The relative validity and closure temperature of the Zr-in-rutile thermometer for recording UHT metamorphism are process dependent and hotly debated. We present an integrated petrological approach to Zr-in-rutile thermometry including phase equilibrium (pseudosection) modelling in complex chemical systems with updated mineral a-X models and systematic in-situ microanalysis of rutile. This study is centred on high-pressure rutile bearing UHT granulites from Mt. Charles, Napier Complex, Antarctica. P-T phase equilibrium modelling of two garnet bearing granulites (samples 49677, 49701) constrains an overall post-peak near isobaric cooling (IBC) evolution for the Napier Complex at Mt. Charles; from 14 kbar, 1100 °C with moderate decompression to 11 kbar, 800-900 °C. Local hydration on cooling over this temperature range is recorded in a kyanite bearing granulite (sample 49688) with an inferred injection of aqueous fluid equivalent to up to 9 mol% H2O from T-MH2O modelling. Further late stage cooling to < 740 °C is recorded by voluminous retrograde mica growth and partial preservation of a ky-pl-kfs-bt-liq bearing equilibrium assemblage. Overall, Zr-in-rutile temperatures at 11 kbar (Tomkins et al., 2007) are reset to between 606 °C and 780 °C across all samples, with flat core-rim Zr concentration profiles in all rutiles. However, zircon precipitates as inclusions, needle exsolutions, or rods along rutile grain boundaries are recrystallised from rutiles in qz/fsp domains. Reintegrating the Zr-in-rutile concentration 'lost' via the recrystallisation of these zircon precipitates (e.g. Pape et al., 2016) can recover maximum concentrations of up to 2.2 wt% and thus maximum peak temperatures of 1149 °C at 11 kbar. Rutile Nb-Ta signatures and rounded rutile grains without zircon precipitates in hydrated mica domains in sample 49688 provide evidence for fluid-mediated mobility of Zr and Nb during retrograde cooling in hydrated lithologies. Aqueous fluid supplemented

  14. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    DTIC Science & Technology

    2011-07-01

    comparisons for the combined influence of R, Fα and chemistry, the Cu- Zr , Zr - Cu, Ni- Zr , Zr -Ni, Cu-Hf, Hf-Cu, Zr -Be and Ni- Nb systems are considered. These... Zr and Cu-Hf have R ≈ 1.248 for ខ> structures; Ni- Nb represents ᝿> structures with R ≈ 1.116 and Zr -Be has a radius ratio near R* = 0.710 for a...similar fits, with regression coefficients from 0.66 to 0.93. The limited data for Cu- Hf, Hf-Cu and Ni- Nb fit within the scatter shown for the Cu- Zr

  15. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  16. Fabrication and Characterization of Novel Refractory Coatings Using Combinatorial Nanocalorimetry

    DTIC Science & Technology

    2015-07-21

    The report summarizes the results of solid-state reaction in Zr /B and Zr /B4C multilayers, oxidation of ZrB2, the effect of Nb and C doping on the...oxidation resistance of the coatings at temperatures below 1000 K, but the temperature-dependence of the diffusion rate constant suggests that Nb ...28 B4. Zr -B- Nb oxidation

  17. Enhanced magnetoelectric response in 2-2 bilayer 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3/NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Ade, Ramesh; Sambasiva, V.; Kolte, Jayant; Karthik, T.; Kulkarni, Ajit R.; Venkataramani, N.

    2018-03-01

    In this work, room temperature magnetoelectric (ME) properties of 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3 (PNNZT)/NiFe2O4 (NFO) 2-2 bilayer thin films grown on Pt/Ti/SiO2/Si substrate, using pulsed laser deposition technique, are reported. Structural studies confirm single phase PNNZT/NFO 2-2 bilayer structure formation. PNNZT/NFO 2-2 bilayer thin film shows a maximum ME voltage coefficient (α E ) of ~0.70 V cm-1. Oe-1 at a frequency of 1 kHz. The present study reveals that PNNZT/NFO bilayer thin film can be a potential candidate for technological applications.

  18. Martensitelike spontaneous relaxor-normal ferroelectric transformation in Pb(Zn1/3Nb2/3)O3-PbLa(ZrTi)O3 system

    NASA Astrophysics Data System (ADS)

    Deng, Guochu; Ding, Aili; Li, Guorong; Zheng, Xinsen; Cheng, Wenxiu; Qiu, Pingsun; Yin, Qingrui

    2005-11-01

    The spontaneous relaxor-normal ferroelectric transformation was found in the tetragonal composition of Pb(Zn1/3Nb2/3)O3-PbLa(ZrTi)O3 (0.3PZN-0.7PLZT) complex ABO3 system. The corresponding dielectric permittivities and losses of different compositions located near the morphotrophic phase boundary were analyzed. By reviewing all of the results about this type of transformation in previous references, the electric, compositional, structural, and thermodynamic characteristics of the spontaneous relaxor-normal transformation were proposed. Additionally, the adaptive phase model for martensite transformation proposed by Khachaturyan et al. [Phys. Rev. B 43, 10832 (1991)] was introduced into this ferroelectric transformation to explain the unique transformation pathway and associated features such as the tweedlike domain patterns and the dielectric dispersion under the critical transition temperature. Due to the critical compositions near the MPB, the ferroelectric materials just fulfill the condition, in which the adaptive phases can form in the transformation procedure. The formation of the adaptive phases, which are composed of stress-accommodating twinned domains, makes the system bypass the energy barrier encountered in conventional martensite transformations. The twinned adaptive phase corresponds to the tweedlike domain pattern under a transmission electronic microscope. At lower temperature, these precursor phases transform into the conventional ferroelectric state with macrodomains by the movement of domain walls, which causes a weak dispersion in dielectric permittivity.

  19. AC conduction of Ba1-xCaxTiO3 and BZT-BCTx

    NASA Astrophysics Data System (ADS)

    Khien, Nguyen Van; Huy, Than Trong; Hong, Le Van

    2018-03-01

    Ba1-xCaxTiO3 (BCTx), (x =0.0-0.3) and Ba0.8Zr0.2TiO3-Ba1-xCaxTiO3 (BZT-BCTx), (x=0.15-0.35) were fabricated by the solid state reaction method. Phase structure of the material samples was identified by X-ray diffraction. The impedance versus frequency in a range of 100 Hz to 2.5 MHz was measured for all the samples at room temperature. AC conductivity versus frequency of the BCTx and BZT-BCTx was evaluated and fitted by using the extended Universal Dielectric Response (UDR) equations. The fitting results were discussed in detail and shown that the localized reorientation polarization-based mechanism is most contributed in BCTx matrial samples. Basically both two the hopping polaron and polarization mechanisms play roles in BZT-BCTx material samples. In contrary the short-range polaron hopping is dominated in ac conductivity of BZT-BCTx material samples in low frequency range.

  20. Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics

    PubMed Central

    Chevalier, Sebastian; Juzon, Pitor; Przybylski, Kazimierz; Larpin, Jean-Pierre

    2009-01-01

    Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air. PMID:27877306

  1. High critical currents in heavily doped (Gd,Y)Ba 2Cu 3O x superconductor tapes

    DOE PAGES

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; ...

    2015-01-20

    REBa 2Cu 3O x superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J c) above 20 MA/cm 2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba 2Cu 3O x superconductor tapes,more » which is more than three times higher than the J c typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m 3 have also been attained at 20 K. A composition map of lift factor in J c (ratio of J c at 30 K, 3 T to the J c at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO 3 (BZO) nanocolumn defect density of nearly 7 × 10 11 cm –2 as well as 2–3nm sized particles rich in Cu and Zr have been found in the high J c films.« less

  2. Thermodynamics of superconducting Nb3Al, Nb3Ge, Nb3Sn, and V3Ga

    NASA Astrophysics Data System (ADS)

    Mitrović, B.; Schachinger, E.; Carbotte, J. P.

    1984-06-01

    We have calculated the superconducting thermodynamic properties for several high-transition-temperature A15 compounds: Nb-Al, Nb-Ge, Nb-Sn, and V-Ga. In our calculations we have used the tunneling electron-phonon-coupling spectra α2F for all four systems considered, and in the case of Nb-Al and Nb-Ge we have also used α2F=CG, where G is the measured generalized phonon density of states and C is a constant. We find that all Nb-based A15 compounds display similar thermodynamic properties, which do not depend explicitly on the band density of states: 2Δ0κBTc≅4.6, ΔCγTc≅2.5-2.6,-Tc[dHc(T)dT]TcHc(0)≅2.1, γ[TcHc(0)]2≅0.134, and positive D(t)'s with the maximum value around 0.02. For Nb3Sn we find good agreement between the calculated properties and the old specific-heat experimental results (γ≅52 mJ/mol K2). The same applies to V3Ga, where the theoretical results have been compared with the experiments of Junod et al. However, we do not find good agreement between calculated ΔCγTc, - Tc[dHc(T)dT]TcHc(0), γ[TcHc(0)]2, and experimental values for Nb3Al and Nb3Ge, presumably due to broadened transitions. It is argued that the tunneling experiments underestimate the value of the gap which should be associated with the inverted α2F.

  3. Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3-δ]x (x = 0, 0.1)

    NASA Astrophysics Data System (ADS)

    Hawley, Christopher; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew; Davies, Peter; Spanier, Jonathan

    The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3-δ]x (x=0, 0.1) is determined via complementary dielectric constant and Raman scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for -190°C < T < 600°C reveals six discernible zone-center optical phonon modes. They are assigned to structural and ferroelectric phases in the solid solution x = 0.1 and compared with those for end member x = 0 and with the results of temperature-dependent dielectric permittivity. Rigorous peak fitting analyses of spectra collected from the solid solution and end member indicate structural and ferroelectric phase transition temperatures that are quite close to those for the KNbO3 end member. Remarkably, despite the inclusion of 5 atomic Work supported by US ARO under W911NF-14-1-0500, NSF 1123696, and DoE BES under DE-FG02-07ER46431. Equipment acquisitions and computational support under DURIP and DoE NERSCC.

  4. Fluorite transition metal hydride induced destabilization of the MgH2 system in MgH2/TMH2 multilayers ( TM=Sc , Ti, V, Cr, Y, Zr, Nb, La, Hf)

    NASA Astrophysics Data System (ADS)

    Tao, S. X.; Notten, P. H. L.; van Santen, R. A.; Jansen, A. P. J.

    2010-09-01

    The structural changes in MgH2 induced by contact with fluorite transition metal hydrides ( TMH2 , TM=Sc , Ti, V, Cr, Y, Zr, Nb, La, Hf) have been studied using density-functional theory calculations. Models of MgH2(rutile)/TiH2(fluorite) and MgH2(fluorite)/TiH2(fluorite) multilayers with different Mg:TM ratios have been designed. With a fixed thickness of the TMH2 layer, structure transformation of MgH2 from rutile to fluorite occurs with a decrease in thickness of the MgH2 layer. The hydrogen desorption energy from the fluorite MgH2 layer in the multilayers is significantly lower than that of the bulk rutile MgH2 . The structural deformation of the MgH2 layer due to the strain induced by TMH2 is found to be responsible for the destabilization of the Mg-H bond: the more structural deformation, the more destabilization of the Mg-H. Our results provide an important insight for the development of new hydrogen-storage materials with desirable thermodynamic properties.

  5. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  6. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  7. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  8. Materials by Design - Computational Alloy Design for Corrosion

    DTIC Science & Technology

    2011-02-01

    Es = + 0.33 eV Cs Rb K · ~·Ba Sr ::~ \\ H ~ YCd ./ G B FS A~ Zn " Be• ’f_ Ni?.Au SeA. ’\\ . At-v Rh Ru • Zr Ja Mo Tc _,. • • • pt • lr Nb w...Windows Air Conditioning Autoflight Electrical Power Navigation Engine Exhaust Stabilizer Doors Fuel system Nacelles/Pylons Power Plant Equip...p. 14 ASETSDefense 2011: Sustainable Surface Engineering for Aerospace and Defense Workshop Quantum Mechanics Insights into SCC resistance 3.5 -E 0

  9. Absolute and relative nonlinear optical coefficients of KDP, KD(asterisk)P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation

    NASA Technical Reports Server (NTRS)

    Eckardt, Robert C.; Byer, Robert L.; Masuda, Hisashi; Fan, Yuan Xuan

    1990-01-01

    Both absolute and relative nonlinear optical coefficients of six nonlinear materials measured by second-harmonic generation are discussed. A single-mode, injection-seeded, Q-switched Nd:YAG laser with spatially filtered output was used to generate the 1.064-micron fundamental radiation. The following results were obtained: d36(KDP) = 0.38 pm/V, d36(KD/asterisk/P) = 0.37 pm/V, (parallel)d22(BaB2O4)(parallel) = 2.2 pm/V, d31(LiIO3) = -4.1 pm/V, d31(5 percentMgO:MgO LiNbO3) = -4.7 pm/V, and d(eff)(KTP) = 3.2 pm/V. The accuracy of these measurements is estimated to be better than 10 percent.

  10. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  11. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    PubMed

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  12. High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Yamamoto, Yukinori [Oak Ridge, TN; Liu, Chain-tsuan [Oak Ridge, TN

    2010-07-13

    An austenitic stainless steel HTUPS alloy includes, in weight percent: 15 to 30 Ni; 10 to 15 Cr; 2 to 5 Al; 0.6 to 5 total of at least one of Nb and Ta; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1 W; up to 0.5 Cu; up to 4 Mn; up to 1 Si; 0.05 to 0.15 C; up to 0.15 B; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni wherein said alloy forms an external continuous scale comprising alumina, nanometer scale sized particles distributed throughout the microstructure, said particles comprising at least one composition selected from the group consisting of NbC and TaC, and a stable essentially single phase fcc austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-free and essentially BCC-phase-free.

  13. Diffuse phase ferroelectric vs. Polomska transition in (1-x) BiFeO3-(x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) solid solutions

    NASA Astrophysics Data System (ADS)

    Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.

    2015-01-01

    Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.

  14. Interfacial charge-mediated non-volatile magnetoelectric coupling in Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 multiferroic heterostructures

    DOE PAGES

    Zhou, Ziyao; Howe, Brandon M.; Liu, Ming; ...

    2015-01-13

    The central challenge in realizing non-volatile, E-field manipulation of magnetism lies in finding an energy efficient means to switch between the distinct magnetic states in a stable and reversible manner. In this work, we demonstrate using electrical polarization-induced charge screening to change the ground state of magnetic ordering in order to non-volatilely tune magnetic properties in ultra-thin Co 0.3Fe 0.7/Ba 0.6Sr 0.4TiO 3/Nb:SrTiO 3 (001) multiferroic heterostructures. A robust, voltage-induced, non-volatile manipulation of out-of-plane magnetic anisotropy up to 40 Oe is demonstrated and confirmed by ferromagnetic resonance measurements. This discovery provides a framework for realizing charge-sensitive order parameter tuning inmore » ultra-thin multiferroic heterostructures, demonstrating great potential for delivering compact, lightweight, reconfigurable, and energy-efficient electronic devices.« less

  15. Post-irradiation examinations of a Zr2.5Nb pressure tube of the Karachi nuclear power plant (KANUPP)

    NASA Astrophysics Data System (ADS)

    Zaheer, Mohammed Sajjad; Akhtar, Javed Iqbal; Ahmad, Ejaz; Saleem, Muhammad; Hussain, Syed Mukarrum; Qureshi, Masroor Ahmad; Khan, Azmatullah; Ali, Rafaqat; Zafarullah, Muhammad

    1996-09-01

    The results of post-irradiation examinations of a pressure tube of fuel channel No. G-12 of KANUPP have been described. A detailed study was made in Canada by AECL. A parallel investigation on its seven rings of about 50 mm length each was also carried out at PINSTECH. Visual inspection showed normal oxidation effects. Gamma spectrometry showed the presence of 95Zr and 95Nb. Microstructural study revealed the characteristic alpha plus a transformed beta phase structure.

  16. Domain wall motion and electromechanical strain in lead-free piezoelectrics: Insight from the model system (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} using in situ high-energy X-ray diffraction during application of electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutuncu, Goknur; Li, Binzhi; Bowman, Keith

    The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90°more » domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less

  17. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.

    2017-10-01

    Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the

  18. Manipulation of polar order in the "empty" tetragonal tungsten bronzes: Ba4-xSrxDy0.67□1.33Nb10O30, x = 0, 0.25, 0.5, 1, 2, 3

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan; Morrison, Finlay D.

    2016-08-01

    A series of "empty" tetragonal tungsten bronze (TTB) ferroelectrics, Ba4-xSrxDy0.67□1.33Nb10O30 (x = 0, 0.25, 0.5, 1, 2, 3; □ = vacancy), is reported. With increasing x the unit cell contracts in both the ab plane and c-axis; x ≤ 1 compounds are normal ferroelectrics (FE) with decreasing TC as x increases, while x ≥ 2 are relaxor ferroelectrics (RFE) with associated frequency dependent permittivity peaks and with similar Tm and Tf (Vogel-Fulcher freezing temperatures) values. This observation is rationalised by differing cation occupancies: for x ≤ 1, Sr2+ principally occupies the A2-site (co-occupied by Ba2+ with the A1-site occupied by Dy3+ and vacancies); for x ≥ 2 significant Sr A1-site occupation leads to the observed RFE characteristics. This FE to RFE crossover is consistent with a previously proposed TTB crystal chemical framework where both a decrease in average A-site size and concurrent increase in A1-site tolerance factor (tA1) favour destabilization of long range polar order and relaxor behaviour. The effect of increasing tA1 as a result of Sr occupancy at the A1 site is dominant in the compounds reported here.

  19. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.

    PubMed

    Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang

    2014-02-12

    High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.

  20. Structural studies of zirconium doped Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} lead free ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sarita, E-mail: sss.sharmasarita@gmail.com; Ram, Mast; Thakur, Shilpa

    2016-05-06

    Ba{sub 0.7}Sr{sub 0.3}(Zr{sub x}Ti{sub 1-x})O{sub 3}(BSZT, x=0,0.05,0.10,0.15,0.20) thin films were prepared by using sol gel method. Structural and microstructural properties were studied by using XRD, Raman Spectroscopy and atomic force microscopy (AFM) respectively. XRD and Raman Spectroscopy show the presence of tetragonal phase in multilayer BSZT thin film. The experimental results demonstrate that structural and microstructural properties of BSZT thin film were significantly dependent on variation of Zr content.

  1. Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Singh, Pooja; Rout, P. K.; Singh, Manju; Rakshit, R. K.; Dogra, Anjana

    2015-09-01

    We have investigated the effect of ferroelectric barium titanate (BaTiO3) film thickness on the charge transport mechanism in pulsed laser deposited epitaxial metal-ferroelectric semiconductor junctions. The current (I)-voltage (V) measurements across the junctions comprising of 20-500 nm thick BaTiO3 and conducting bottom electrode (Nb: SrTiO3 substrate or La2/3Ca1/3MnO3 buffer layer) demonstrate the space charge limited conduction. Further analysis indicates a reduction in the ratio of free to trapped carriers with increasing thickness in spite of decreasing trap density. Such behaviour arises the deepening of the shallow trap levels (<0.65 eV) below conduction band with increasing thickness. Moreover, the observed hysteresis in I-V curves implies a bipolar resistive switching behaviour, which can be explained in terms of charge trapping and de-trapping process.

  2. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Lang, Lili; Hua, Ting; Zhang, Caixia; Li, Hui

    2018-03-01

    The geochemical characteristics of aeolian and surface materials in potential source areas of dust are frequently employed in environmental reconstructions as proxies of past climate and as source tracers of aeolian sediments deposited in downwind areas. However, variations in the geochemical characteristics of these aeolian deposits that result from near-surface winds are currently poorly understood. In this study, we collected surface samples from the Ala Shan Plateau (a major potential dust source area in Central Asia) to determine the influence of aeolian processes on the geochemical characteristics of aeolian transported materials. Correlation analyses show that compared with surface materials, the elements in transported materials (e.g., Cu, As, Pb, Mn, Zn, Al, Ca, Fe, Ga, K, Mg, P, Rb, Co, Cr, Na, Nb, Si, and Zr) were subjected to significant sorting by aeolian processes, and the sorting also varied among different particle size fractions and elements. Variations in wind velocity were significantly correlated with the contents of Cr, Ga, Sr, Ca, Y, Nd, Zr, Nb, Ba, and Al, and with the Zr/Al, Zr/Rb, K/Ca, Sr/Ca, Rb/Sr, and Ca/Al ratios. Given the great variation in the geochemical characteristics of materials transported under different aeolian processes relative to those of the source materials, these results indicate that considerable uncertainty may be introduced to analyses by using surface materials to trace the potential source areas of aeolian deposits that accumulate in downwind areas.

  3. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr 2 In 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calta, Nicholas P.; Han, Fei; Kanatzidis, Mercouri G.

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr 2In 9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe 2Al 9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) angstrom and c = 4.2696(4) A. BaIr 2In 9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-likemore » mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW 2O 8 and ScF 3.« less

  4. Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.

    PubMed

    Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G

    2015-09-08

    This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.

  5. Membranes for separation of carbon dioxide

    DOEpatents

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  6. Efficient ultraviolet photorefraction in LiNbO3

    NASA Astrophysics Data System (ADS)

    Jungen, R.; Angelow, G.; Laeri, F.; Grabmaier, C.

    1992-07-01

    A nominally undoped LiNbO3 crystal with a slightly broadened absorption edge is used to study beam coupling effects in the UV at 351 nm. At this wavelength the crystal exhibits a diffusion-dominated charge transport mechanism, which allows steady state beam amplification of up to 700 times, comparable to BaTiO3 in the visible. The used crystal material was characterized by an absorption coefficient α=2.68 cm-1 at 351 nm and a maximal gain coefficient Г=13.94 cm-1. This high gain value in the UV can be attributed to a hole diffusion-dominated charge transport mechanism together with a low bulk photovoltaic effect. We measured photovoltaic fields of the order of 550 V/cm.

  7. Dielectric relaxation and electrical conductivity in Bi 5NbO 10 oxygen ion conductors prepared by a modified sol-gel process

    NASA Astrophysics Data System (ADS)

    Hou, Jungang; Vaish, Rahul; Qu, Yuanfang; Krsmanovic, Dalibor; Varma, K. B. R.; Kumar, R. V.

    Crystalline Bi 5NbO 10 nanoparticles have been achieved through a modified sol-gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi 5NbO 10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5-60 nm Bi 5NbO 10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi 5NbO 10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200-350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi 5NbO 10 solid solutions at 700 °C is 2.86 Ω -1 m -1 which is in same order of magnitude for Y 2O 3-stabilized ZrO 2 ceramics at same temperature. These results suggest that Bi 5NbO 10 is a promising material for an oxygen ion conductor.

  8. Ferroelectric and dielectric properties of BaTi0.9Zr0.1O3 doped with Li0.5Fe2.5O4 ceramics

    NASA Astrophysics Data System (ADS)

    Gajula, Ganapathi Rao; Buddiga, Lakshmi Rekha; Chidambara Kumar, K. N.; Ch, Arun Kumar; Samatha, K.; Kokkiragadda, Sreeramachandra Murthy; Dasari, Madhava Prasad

    2018-06-01

    We have prepared a composite BaTi0.9Zr0.1O3 (BTZr) doped with Li0.5Fe2.5O4 (LF) having chemical formulae (1- x) BTZr + (x) LF (x=0, 0.05, 0.1 and 0.15) conventional solid state reaction technique. We have sintered the grown composites at 1150 °C for 3 h. We have characterized the grown composites using XRD, FESEM, P-E loop tracer and LCR meter. The XRD measurements reveal the tetragonal nature of the composites. The morphological studies reveal that the composite exhibits dense microstructure with small pores. The P-E loops confirm that the composites exhibit remnant polarization and the coercive field increases with increasing concentration of Lithium Ferrite (LF). We have studied dielectric property of the composites by varying the temperature of the sample from 30 °C to 500 °C at 1 kHz, 10 kHz and also by varying the frequency from 1 Hz to 10 MHz at 30 °C. The dielectric property of BTZr has increased after doping LF in BTZr which reveals the enhancement of electrical properties of the grown composite.

  9. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

    PubMed

    Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M

    2008-07-01

    Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.

  10. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    NASA Astrophysics Data System (ADS)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for <00l> oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  11. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

    NASA Astrophysics Data System (ADS)

    Gang, Florian; Kauffmann, Alexander; Heilmaier, Martin

    2018-03-01

    In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [ e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

  12. Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Sanzen, Yukimasa; Kamida, Masaki; Watanabe, Yukinobu; Itoh, Masatoshi

    2017-09-01

    We have proposed a new method of producing medical radioisotope 92Y as a candidate of alternatives of 111In bioscan prior to 90Y ibritumomab tiuxetan treatment. The 92Y isotope is produced via the 92Zr (n,p) reaction using accelerator neutrons generated by the interaction of deuteron beams with carbon. A feasibility experiment was performed at Cyclotron and Radioisotope Center, Tohoku University. A carbon thick target was irradiated by 20-MeV deuterons to produce accelerator neutrons. The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The production amount of 92Y and induced impurities were estimated by simulation with the measured TTNY and the JENDL-4.0 nuclear data.

  13. Evolution of interphase and intergranular strain in zirconium-niobium alloys during deformation at room temperature

    NASA Astrophysics Data System (ADS)

    Cai, Song

    Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for

  14. Multifunctional Beta Ti Alloy with Improved Specific Strength

    NASA Astrophysics Data System (ADS)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  15. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  16. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt

    NASA Astrophysics Data System (ADS)

    Brenan, J. M.; Shaw, H. F.; Ryerson, F. J.; Phinney, D. L.

    1995-10-01

    In order to more fully establish a basis for quantifying the role of amphibole in trace-element fractionation processes, we have measured pargasite/silicate melt partitioning of a variety of trace elements (Rb, Ba, Nb, Ta, Hf, Zr, Ce, Nd, Sm, Yb), including the first published values for U, Th and Pb. Experiments conducted at 1000°C and 1.5 GPa yielded large crystals free of compositional zoning. Partition coefficients were found to be constant at total concentrations ranging from ˜ 1 to > 100 ppm, indicating Henry's Law is oparative over this interval. Comparison of partition coefficients measured in this study with previous determinations yields good agreement for similar compositions at comparable pressure and temperature. The compatibility of U, Th and Pb in amphibole decreases in the order Pb > Th > U. Partial melting or fractional crystallization of amphibole-bearing assemblages will therefore result in the generation of excesses in 238U activity relative to 230Th, similar in magnitude to that produced by clinopyroxene. The compatibility of Pb in amphibole relative to U or Th indicates that melt generation in the presence of residual amphibole will result in the long-term enrichment in Pb relative to U or Th in the residue. This process is therefore incapable of producing the depletion in Pb relative to U or Th inferred from the Pb isotopic composition of MORB and OIB. Comparison of partition coefficients measured in this study with previous values for clinopyroxene allows some distinction to be made between expected trace-element fractionations produced during dry (cpx present) and wet (cpx + amphibole present) melting. Rb, Ba, Nb and Ta are dramatically less compatible in clinopyroxene than in amphibole, whereas Th, U, Hf and Zr have similar compatibilities in both phases. Interelement fractionations, such as DNb/DBa are also different for clinopyroxene and amphibole. Changes in certain ratios, such as Ba/Nb, Ba/Th, and Nb/Th within comagmatic suites may

  17. Structural and ferroelectric phase evolution in [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x (x =0 ,0.1 )

    NASA Astrophysics Data System (ADS)

    Hawley, Christopher J.; Wu, Liyan; Xiao, Geoffrey; Grinberg, Ilya; Rappe, Andrew M.; Davies, Peter K.; Spanier, Jonathan E.

    2017-08-01

    The phase transition evolution for [KNbO3]1-x[BaNi1/2Nb1/2O3 -δ] x(x =0 ,0.1 ) is determined via complementary dielectric permittivity and Raman-scattering measurements. Raman scattering by optical phonons over the range of 100-1000 cm-1 for 83 K

  18. Structure and dielectric properties of (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics

    NASA Astrophysics Data System (ADS)

    Ghoudi, Hanen; Chkoundali, Souad; Aydi, Abdelhedi; Khirouni, Kamel

    2017-11-01

    (Ba0.7Sr0.3)1- x Na x (Ti0.9Sn0.1)1- x Nb x O3 ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T C (the Curie temperature) or T m (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time.

  19. White HDPE bottles as source of serious contamination of water samples with Ba and Zn.

    PubMed

    Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik

    2007-03-15

    During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.

  20. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Density, dc electrical resistivity, thermal conductivity, and linear thermal expansion are measured for arc-melted rod-shaped samples of binary eutectics of Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W selected as very-low-pressure braze fillers for thermionic converters. The first two properties are measured at 296 K for Zr-21.7 at% Ru, Zr-13 wt% W, Zr-19 wt% W, Zr-22.3 at% Nb, Nb-66.9 at% Ru, Hf-25.3 wt% Re, Zr-25.7 at% Ta, Hf-22.5 at% W, and Nb-35 wt% Mo. The last property is measured from 293 K to 2/3 melting point for specified alloys of different compositions. Resistivities of 0.000055 to 0.000181 ohm-cm are observed with the alloys having resistivities about ten times that of the less resistive constituent metal and about three times that of the more resistive constituent metal, except for Zr-19 wt% W and Nb-35 wt% Mo (greater resistivities). Thermal expansion coefficients vary from 0.000006 to 0.0000105/K. All brazes exhibit linear thermal expansion near that of their constituent metals.