Sample records for zr-lined zircaloy-2 cladding

  1. Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes

    NASA Astrophysics Data System (ADS)

    Hwa Lee, Chang; Lee, Yoo Lee; Jeon, Min Ku; Choi, Yong Taek; Kang, Kweon Ho; Park, Geun Il

    2014-06-01

    The effect of pretreatment processes for the Zr electrorefining of oxidized Zircaloy-4 cladding tubes is examined in LiCl-KCl-ZrCl4 molten salts at 500 °C. The cyclic voltammetries reveal that the Zr dissolution kinetics is highly dependent on the thickness of a Zr oxide layer formed at 500 °C under air atmosphere. For the Zircaloy-4 tube covered with a 1 μm thick oxide layer, the Zr dissolution process is initiated from a non-stoichiometric Zr oxide surface through salt treatment at an open circuit potential in the molten salt electrolyte. The Zr dissolution of the samples in the middle range of oxide layer thickness appears to be more effectively derived by the salt treatment coupled with an anodic potential application at an oxidation potential of Zr. A modification of the process scheme offers an applicability of Zr electrorefining for the treatment of oxidized cladding hull wastes.

  2. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Performance evaluation and post-irradiation examination of a novel LWR fuel composed of U0.17ZrH1.6 fuel pellets bonded to Zircaloy-2 cladding by lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Balooch, Mehdi; Olander, Donald R.; Terrani, Kurt A.; Hosemann, Peter; Casella, Andrew M.; Senor, David J.; Buck, Edgar C.

    2017-04-01

    A novel light water reactor fuel has been designed and fabricated at the University of California, Berkeley; irradiated at the Massachusetts Institute of Technology Reactor; and examined within the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. This fuel consists of U0.17ZrH1.6 fuel pellets core-drilled from TRIGA reactor fuel elements that are clad in Zircaloy-2 and bonded with lead-bismuth eutectic. The performance evaluation and post irradiation examination of this fuel are presented here.

  4. Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuser, Brent; Stubbins, James; Kozlowski, Tomasz

    The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys.more » The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and

  5. Cladding of Mg alloy with Zr based BMG Alloy

    NASA Astrophysics Data System (ADS)

    Prasada Rao, A. K.; Oh, Y. S.; Faisal, M. K.; Kim, N. J.

    2016-02-01

    In the present work, an attempt has been made to clad AZ31 magnesium alloy with Zr-based bulk metallic glassy alloy (Vit-1), by casting method. The interface studies conducted using SEM-EDS line scan indicate that a good bond is formed at the clad interface of Zr and Mg. And the mechanism involved is discussed herein.

  6. Standard-less analysis of Zircaloy clad samples by an instrumental neutron activation method

    NASA Astrophysics Data System (ADS)

    Acharya, R.; Nair, A. G. C.; Reddy, A. V. R.; Goswami, A.

    2004-03-01

    A non-destructive method for analysis of irregular shape and size samples of Zircaloy has been developed using the recently standardized k0-based internal mono standard instrumental neutron activation analysis (INAA). The samples of Zircaloy-2 and -4 tubes, used as fuel cladding in Indian boiling water reactors (BWR) and pressurized heavy water reactors (PHWR), respectively, have been analyzed. Samples weighing in the range of a few tens of grams were irradiated in the thermal column of Apsara reactor to minimize neutron flux perturbations and high radiation dose. The method utilizes in situ relative detection efficiency using the γ-rays of selected activation products in the sample for overcoming γ-ray self-attenuation. Since the major and minor constituents (Zr, Sn, Fe, Cr and/or Ni) in these samples were amenable to NAA, the absolute concentrations of all the elements were determined using mass balance instead of using the concentration of the internal mono standard. Concentrations were also determined in a smaller size Zircaloy-4 sample by irradiating in the core position of the reactor to validate the present methodology. The results were compared with literature specifications and were found to be satisfactory. Values of sensitivities and detection limits have been evaluated for the elements analyzed.

  7. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less

  8. Accident-tolerant oxide fuel and cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, Robert D.

    Systems and methods for accident tolerant oxide fuel. One or more disks can be placed between fuel pellets comprising UO.sub.2, wherein such disks possess a higher thermal conductivity material than that of the UO.sub.2 to provide enhanced heat rejection thereof. Additionally, a cladding coating comprising zircaloy coated with a material that provides stability and high melting capability can be provided. The pellets can be configured as annular pellets having an annulus filled with the higher thermal conductivity material. The material coating the zircaloy can be, for example, Zr.sub.5Si.sub.4 or another silicide such as, for example, a Zr-Silicide that limits corrosion.more » The aforementioned higher thermal conductivity material can be, for example, Si, Zr.sub.xSi.sub.y, Zr, or Al.sub.2O.sub.3.« less

  9. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; WR Lloyd; TL Trowbridge

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designsmore » being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between

  10. Hydride reorientation and its impact on ambient temperature mechanical properties of high burn-up irradiated and unirradiated recrystallized Zircaloy-2 nuclear fuel cladding with an inner liner

    NASA Astrophysics Data System (ADS)

    Auzoux, Q.; Bouffioux, P.; Machiels, A.; Yagnik, S.; Bourdiliau, B.; Mallet, C.; Mozzani, N.; Colas, K.

    2017-10-01

    Precipitation of radial hydrides in zirconium-based alloy cladding concomitant with the cooling of spent nuclear fuel during dry storage can potentially compromise cladding integrity during its subsequent handling and transportation. This paper investigates hydride reorientation and its impact on ductility in unirradiated and irradiated recrystallized Zircaloy-2 cladding with an inner liner (cladding for boiling water reactors) subjected to hydride reorientation treatments. Cooling from 400 °C, hydride reorientation occurs in recrystallized Zircaloy-2 with liner at a lower effective stress in irradiated samples (below 40 MPa) than in unirradiated specimens (between 40 and 80 MPa). Despite significant hydride reorientation, unirradiated recrystallized Zircaloy-2 with liner cladding containing ∼200 wppm hydrogen shows a high diametral strain at fracture (>15%) during burst tests at ambient temperature. This ductile behavior is due to (1) the lower yield stress of the recrystallized cladding materials in comparison to hydride fracture strength (corrected by the compression stress arising from the precipitation) and (2) the hydride or hydrogen-depleted zone as a result of segregation of hydrogen into the liner layer. In irradiated Zircaloy-2 with liner cladding containing ∼340 wppm hydrogen, the conservation of some ductility during ring tensile tests at ambient temperature after reorientation treatment at 400 °C with cooling rates of ∼60 °C/h is also attributed to the existence of a hydride-depleted zone. Treatments at lower cooling rates (∼6 °C/h and 0.6 °C/h) promote greater levels of hydrogen segregation into the liner and allow for increased irradiation defect annealing, both of which result in a significant increase in ductility. Based on this investigation, given the very low cooling rates typical of dry storage systems, it can be concluded that the thermal transients associated with dry storage should not degrade, and more likely should actually

  11. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCImore » far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2.« less

  12. Brazing characteristics of a Zr-Ti-Cu-Fe eutectic alloy filler metal for Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Lee, Jung G.; Lim, C. H.; Kim, K. H.; Park, S. S.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    A Zr-Ti-Cu-Fe quaternary eutectic alloy was employed as a new Be-free brazing filler metal for Zircaloy-4 to supersede physically vapor-deposited Be coatings used conventionally with several disadvantages. The quaternary eutectic composition of Zr58Ti16Cu10Fe16 (at.%) showing a low melting temperature range from 832 °C to 853 °C was designed by a partial substitution of Zr with Ti based on a Zr-Cu-Fe ternary eutectic system. By applying an alloy ribbon with the determined composition, a highly reliable joint was obtained with a homogeneous formation of predominantly grown α-Zr phases owing to a complete isothermal solidification, exhibiting strength higher than that of Zircaloy-4. The homogenization of the joint was rate-controlled by the diffusion of the filler elements (Ti, Cu, and Fe) into the Zircaloy-4 base metal, and the detrimental segregation of the Zr2Fe phase in the central zone was completely eliminated by an isothermal holding at a brazing temperature of 920 °C for 10 min.

  13. Chemical and microstructural characterization of a 9 cycle Zircaloy-2 cladding using EPMA and FIB tomography

    NASA Astrophysics Data System (ADS)

    Baris, A.; Restani, R.; Grabherr, R.; Chiu, Y.-L.; Evans, H. E.; Ammon, K.; Limbäck, M.; Abolhassani, S.

    2018-06-01

    A high burn-up Zircaloy-2 cladding is characterised in order to correlate its microstructure and composition to the change of oxidation and hydrogen uptake behaviour during long term service in the reactor. After 9 cycle of service, the chemical analysis of the cladding segment shows that most secondary phase particles (SPPs) have dissolved into the matrix. Fe and Ni are distributed homogenously in the metal matrix. Cr-containing clusters, remnants of the original Zr(Fe, Cr)2 type precipitates, are still present. Hydrides are observed abundantly in the metal side close to the metal-oxide interface. These hydrides have lower Fe and Ni concentration than that in the metal matrix. The three-dimensional (3D) reconstruction of the oxide and the metal-oxide interface obtained by Focused Ion Beam (FIB) tomography shows how the oxide microstructure has evolved with the number of cycles. The composition and microstructural changes in the oxide and the metal can be correlated to the oxidation kinetics and the H-uptake. It is observed that there is an increase in the oxidation kinetics and in the H-uptake between the third and the fifth cycles, as well as during the last two cycles. At the same time the volume fraction of cracks in the oxide significantly increased. Many fine cracks and pores exist in the oxide formed in the last cycle. Furthermore, the EPMA results confirm that this oxide formed at the last cycle reflects the composition of the metal at the metal-oxide interface after the long residence time in the reactor.

  14. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, T.M.; Motta, A.T.; Koss, D.A.

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} tomore » 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.« less

  15. Mechanical and thermal properties of bulk ZrB2

    NASA Astrophysics Data System (ADS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-12-01

    ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.

  16. The Influence of the In-Situ Clad Staining on the Corrosion of Zircaloy in PWR Water Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammenzind, B.F., Eklund, K.L. and Bajaj, R.

    Zircaloy cladding tubes strain in-situ during service life in the corrosive environment of a Pressurized Water Reactor for a variety of reasons. First, the tube undergoes stress free growth due to the preferential alignment of irradiation induced vacancy loops on basal planes. Positive strains develop in the textured tubes along prism orientations while negative strains develop along basal orientations (Reference (a)). Second, early in life, free standing tubes will often shrink by creep in the diametrical direction under the external pressure of the water environment, but potentially grow later in life in the diametrical direction once the expanding fuel pelletmore » contacts the cladding inner wall (Reference (b)). Finally, the Zircaloy cladding absorbs hydrogen as a by product of the corrosion reaction (Reference (c)). Once above the solubility limit in Zircaloy, the hydride precipitates as zirconium hydride (References (c) through (j)). Both hydrogen in solid solution and precipitated as Zirconium hydride cause a volume expansion of the Zircaloy metal (Reference (k)). Few studies are reported on that have investigated the influence that in-situ clad straining has on corrosion of Zircaloy. If Zircaloy corrosion rates are governed by diffusion of anions through a thin passivating boundary layer at the oxide-to-metal interface (References (l) through (n)), in-situ straining of the cladding could accelerate the corrosion process by prematurely breaking that passivating oxide boundary layer. References (o) through (q) investigated the influence that an applied tensile stress has on the corrosion resistance of Zircaloy. Knights and Perkins, Reference (o), reported that the applied tensile stress increased corrosion rates above a critical stress level in 400 C and 475 C steam, but not at lower temperatures nor in dry oxygen environments. This latter observation suggested that hydrogen either in the oxide or at the oxide-to-metal interface is involved in the observed

  17. Synchrotron X-ray diffraction investigations on strains in the oxide layer of an irradiated Zircaloy fuel cladding

    NASA Astrophysics Data System (ADS)

    Chollet, Mélanie; Valance, Stéphane; Abolhassani, Sousan; Stein, Gene; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2017-05-01

    For the first time the microstructure of the oxide layer of a Zircaloy-2 cladding after 9 cycles of irradiation in a boiling water reactor has been analyzed with synchrotron micro-X-ray diffraction. Crystallographic strains of the monoclinic and to some extent of the tetragonal ZrO2 are depicted through the thick oxide layer. Thin layers of sub-oxide at the oxide-metal interface as found for autoclave-tested samples and described in the literature, have not been observed in this material maybe resulting from irradiation damage. Shifts of selected diffraction peaks of the monoclinic oxide show that the uniform strain produced during oxidation is orientated in the lattice and displays variations along the oxide layer. Diffraction peaks and their shifts from families of diffracting planes could be translated into a virtual tensor. This virtual tensor exhibits changes through the oxide layer passing by tensile or compressive components.

  18. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H. M.

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less

  19. Oxide particle size distribution from shearing irradiated and unirradiated LWR fuels in Zircaloy and stainless steel cladding: significance for risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W. Jr.; West, G.A.; Stacy, R.G.

    1979-03-22

    Sieve fractionation was performed with oxide particles dislodged during shearing of unirradiated or irradiated fuel bundles or single rods of UO/sub 2/ or 96 to 97% ThO/sub 2/--3 to 4% UO/sub 2/. Analyses of these data by nonlinear least-squares techniques demonstrated that the particle size distribution is lognormal. Variables involved in the numerical analyses include lognormal median size, lognormal standard deviation, and shear cut length. Sieve-fractionation data are presented for unirradiated bundles of stainless-steel-clad or Zircaloy-2-clad UO/sub 2/ or ThO/sub 2/--UO/sub 2/ sheared into lengths from 0.5 to 2.0 in. Data are also presented for irradiated single rods (sheared intomore » lengths of 0.25 to 2.0 in.) of Zircaloy-2-clad UO/sub 2/ from BWRs and of Zircaloy-4-clad UO/sub 2/ from PWRs. Median particle sizes of UO/sub 2/ from shearing irradiated stainless-steel-clad fuel ranged from 103 to 182 ..mu..m; particle sizes of ThO/sub 2/--UO/sub 2/, under these same conditions, ranged from 137 to 202 ..mu..m. Similarly, median particle sizes of UO/sub 2/ from shearing unirradiated Zircaloy-2-clad fuel ranged from 230 to 957 ..mu..m. Irradiation levels of fuels from reactors ranged from 9,000 to 28,000 MWd/MTU. In general, particle sizes from shearing these irradiated fuels are larger than those from the unirradiated fuels; however, unirradiated fuel from vendors was not available for performing comparative shearing experiments. In addition, variations in particle size parameters pertaining to samples of a single vendor varied as much as those between different vendors. The fraction of fuel dislodged from the cladding is nearly proportional to the reciprocal of the shear cut length, until the cut length attains some minimum value below which all fuel is dislodged. Particles of fuel are generally elongated with a long-to-short axis ratio usually less than 3. Using parameters of the lognormal distribution estimates can be made of fractions of dislodged fuel

  20. Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Tokiwai, Moriyasu; Horie, Masaaki; Kako, Kenji; Fujiwara, Masayuki

    1993-09-01

    The excellent thermal, chemical and neutronic properties of metallic fuel (U-Pu-Zr alloy) will lead to drastic improvements in fast reactor safety and the related fuel cycle economy. Some new high molybdenum 12Cr ferritic stainless steel candidate cladding alloys have been designed to achieve the mechanical properties required for high performance metallic fuel elements. These candidate claddings were irradiated by ion bombardment and tested to determine their strength and creep rupture properties. A 12Cr-8Mo and a 12Cr-8Mo-0.1Y 2O 3 steel were fabricated into cladding via a powder metallurgy process and by a mechanical alloying process, respectively. These claddings had two and three times the creep rupture strength (pressurized at 650°C for 10000 h) of a conventional 12Cr ferritic steel (HT-9). These two steels also showed no void formation up to 350 dpa by Ni 3+ irradiation. A zircaloy-2 lined steel cladding tube has also been fabricated for the purpose of reducing fuel-cladding interdiffusion and chemical interaction.

  1. Cladding burst behavior of Fe-based alloys under LOCA

    DOE PAGES

    Terrani, Kurt A.; Dryepondt, Sebastien N.; Pint, Bruce A.; ...

    2015-12-17

    Burst behavior of austenitic and ferritic Fe-based alloy tubes has been examined under a simulated large break loss of coolant accident. Specifically, type 304 stainless steel (304SS) and oxidation resistant FeCrAl tubes were studied alongside Zircaloy-2 and Zircaloy-4 that are considered reference fuel cladding materials. Following the burst test, characterization of the cladding materials was carried out to gain insights regarding the integral burst behavior. Given the widespread availability of a comprehensive set of thermo-mechanical data at elevated temperatures for 304SS, a modeling framework was implemented to simulate the various processes that affect burst behavior in this Fe-based alloy. Themore » most important conclusion is that cladding ballooning due to creep is negligible for Fe-based alloys. Thus, unlike Zr-based alloys, cladding cross-sectional area remains largely unchanged up to the point of burst. Furthermore, for a given rod internal pressure, the temperature onset of burst in Fe-based alloys appears to be simply a function of the alloy's ultimate tensile strength, particularly at high rod internal pressures.« less

  2. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings

    NASA Astrophysics Data System (ADS)

    Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar

    2018-02-01

    This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.

  3. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    NASA Astrophysics Data System (ADS)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  4. Waterside corrosion of Zircaloy-clad fuel rods in a PWR environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    A data base of Zircaloy corrosion behavior under PWR operating conditions has been established from previously published reports as well as from new Kraftwerk Union (KWU) fuel examinations. The data show that the reactor environment increases the corrosion. ZrO/sub 2/ film thermal conductivity is another major factor that influences corrosion behavior. It was inferred from KWU film thickness data that the oxide film thermal conductivity may decrease once circumferential cracks develop in the layer. 57 refs.

  5. Ceramic Coatings for Clad (The C 3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickafus, Kurt E.; Wirth, Brian; Miller, Larry

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as

  6. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE PAGES

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; ...

    2016-07-15

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  7. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.

    The Materials Management and Minimization program is developing fuel designs to replace highly enriched fuel with fuels of low enrichment. In the most challenging cases, U–(7–10wt%)Mo monolithic plate fuel are proposed. The chosen design includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction in service. We investigated zircaloy cladding, specifically Zry–4as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo havemore » similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly between roll passes. Our final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction, either from fabrication or in-reactor testing, and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.54E+21« less

  8. Multispectral pyrometry for surface temperature measurement of oxidized Zircaloy claddings

    NASA Astrophysics Data System (ADS)

    Bouvry, B.; Cheymol, G.; Ramiandrisoa, L.; Javaudin, B.; Gallou, C.; Maskrot, H.; Horny, N.; Duvaut, T.; Destouches, C.; Ferry, L.; Gonnier, C.

    2017-06-01

    Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700-850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1-1.3 μm and 1.45-1.6 μm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.

  9. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    NASA Astrophysics Data System (ADS)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  10. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2 composite coating

    NASA Astrophysics Data System (ADS)

    Obadele, Babatunde Abiodun; Andrews, Anthony; Mathew, Mathew T.; Olubambi, Peter Apata; Pityana, Sisa

    2015-08-01

    Ti6Al4V alloy was laser cladded with titanium, nickel and zirconia powders in different ratio using a 2 kW CW ytterbium laser system (YLS). The microstructures of the cladded layers were examined using field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD). Corrosion and tribocorrosion tests were performed on the cladded surface in 1 M H2SO4 solution. The microstructure revealed the transformation from a dense dendritic structure in TiNi coating to a flower-like structure observed in TiNiZrO2 cladded layers. There was a significant increase in surface microindentation hardness values of the cladded layers due to the present of hard phase ZrO2 particles. The results obtained show that addition of ZrO2 improves the corrosion resistance property of TiNi coating but decrease the tribocorrosion resistance property. The surface hardening effect induced by ZrO2 addition, combination of high hardness of Ti2Ni phase could be responsible for the mechanical degradation and chemical wear under sliding conditions.

  11. HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 interface

    NASA Astrophysics Data System (ADS)

    Wu, A.; Ribis, J.; Brachet, J.-C.; Clouet, E.; Leprêtre, F.; Bordas, E.; Arnal, B.

    2018-06-01

    Chromium-coated zirconium alloys are being studied as Enhanced Accident Tolerant Fuel Cladding for Light Water Reactors (LWRs). Those materials are especially studied to improve the oxidation resistance of LWRs current fuel claddings in nominal and at High Temperature (HT) for hypothetical accidental conditions such as LOss of Coolant Accident. Beyond their HT behavior, it is essential to assess the materials behavior under irradiation. A first generation chromium/Zircaloy-4 interface was thus irradiated with 20 MeV Kr8+ ions at 400 °C up to 10 dpa. High-Resolution Transmission Electron Microscopy and chemical analysis (EDS) were conducted at the Cr/Zr interface. The atomic structure of the interface reveals the presence of Zr(Fe, Cr)2 Laves phase, displaying both C14 and C15 structure. After irradiation, only the C14 structure was observed and atomic row matching was preserved across the different interfaces, thus ensuring a good adhesion of the coating after irradiation.

  12. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  13. High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B

    2015-01-01

    Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performedmore » on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.« less

  14. Hydrogen motion in Zircaloy-4 cladding during a LOCA transient

    NASA Astrophysics Data System (ADS)

    Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.

    2016-04-01

    Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.

  15. Development of Cu Clad Cu-Zr Based Metallic Glass and Its Solderability

    NASA Astrophysics Data System (ADS)

    Terajima, Takeshi; Kimura, Hisamichi; Inoue, Akihisa

    Soldering is a candidate technique for joining metallic glasses. It can be processed far below the crystallization temperatures of the various metallic glasses so that there is no possibility of crystallization. However, wettability of Cu-Zr based metallic glass by Pb free solder is poor because a strong surface oxide film interferes direct contact between them. To overcome the problem, Cu thin film clad metallic glass was developed. It was preliminary produced by casting a melt of Cu36Zr48Al8Ag8 pre-alloy into Cu mold cavity, inside which Cu thin film with 2 mm in thickness was set on the wall. Cu36Zr48Al8Ag8 metallic glass, whose surface Cu thin film was welded to, was successfully produced. From the microstructure analyses, it was found that reaction layer was formed at the interface between Cu and Cu36Zr48Al8Ag8 metallic glass, however, there was no oxide in the Cu clad layer. Solderability to the metallic glass was drastically increased. The Cu clad layer played an important role to prevent the formation of surface oxide film and consequently improved the solderability.

  16. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the

  17. Effect of He implantation on the microstructure of zircaloy-4 studied using in situ TEM

    NASA Astrophysics Data System (ADS)

    Tunes, M. A.; Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-09-01

    Zirconium alloys are of great importance to the nuclear industry as they have been widely used as cladding materials in light-water reactors since the 1960s. This work examines the behaviour of these alloys under He ion implantation for the purposes of developing understanding of the fundamental processes behind their response to irradiation. Characterization of zircaloy-4 samples using TEM with in situ 6 keV He irradiation up to a fluence of 2.7 ×1017ions ·cm-2 in the temperature range of 298 to 1148 K has been performed. Ordered arrays of He bubbles were observed at 473 and 1148 K at a fluence of 1.7 ×1017ions ·cm-2 in αZr, the hexagonal compact (HCP) and in βZr, the body centred cubic (BCC) phases, respectively. In addition, the dissolution behaviour of cubic Zr hydrides under He irradiation has been investigated.

  18. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  19. High Temperature Corrosion and Heat Transfer Studies of Zirconium-Silicide Coatings for Light Water Reactor Cladding Applications

    NASA Astrophysics Data System (ADS)

    Yeom, Hwasung

    Experimental results investigating the feasibility of zirconium-silicide coating for accident tolerance of LWR fuel cladding coating was presented. The oxidation resistance of ZrSi2 appeared to be superior to bare Zircaloy-4 in high temperature air. It was shown that micro- and nanostructures consisting of alternating SiO2 and ZrO2 evolved during transient oxidation of ZrSi2, which was explained by spinodal phase decomposition of Zr-Si-O oxide. Coating optimization regarding oxidation resistance was performed mainly using magnetron sputter deposition method. ZrSi 2 coatings ( 3.9 microm) showed improvement of almost two orders of magnitude when compared to bare Zircaloy-4 after air-oxidation at 700 °C for 20-hours. Pre-oxidation of ZrSi2 coating at 700 °C for 5 h significantly mitigated oxygen diffusion in air-oxidation tests at 1000 °C for 1-hour and 1200 °C for 10-minutes. The ZrSi2 coating with the pre-oxidation was found to be the best condition to prevent oxide formation in Zircaloy-4 substrate in the steam condition even if the top surface of the coating was degraded by formation of zirconium-rich oxide layer. Only the ZrSiO4 phase, formed by exposing the ZrSi2 coating at 1400 °C in air, allowed for immobilization of silicon species in the oxide scale in the aqueous environments. A quench test facility was designed and built to study transient boiling heat transfer of modified Zircaloy-4 surfaces (e.g., roughened surfaces, oxidized surfaces, ZrSi2 coated surfaces) at various system conditions (e.g., elevated pressures and water subcooling). The minimum film boiling temperature increased with increasing system pressure and water subcooling, consistent with past literature. Quenching behavior was affected by the types of surface modification regardless of the environmental conditions. Quenching heat transfer was improved by the ZrSi 2 coating, a degree of surface oxidation (deltaox = 3 to 50 microm), and surface roughening (Ra 20 microm). A plausible

  20. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-01

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.

  1. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    PubMed Central

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-01

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins. PMID:28106154

  2. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    DOE PAGES

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-20

    Here, this report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy ismore » dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along < c > is found to be slightly higher than that along < a >, with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.« less

  3. Severe accident modeling of a PWR core with different cladding materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S. C.; Henry, R. E.; Paik, C. Y.

    2012-07-01

    The MAAP v.4 software has been used to model two severe accident scenarios in nuclear power reactors with three different materials as fuel cladding. The TMI-2 severe accident was modeled with Zircaloy-2 and SiC as clad material and a SBO accident in a Zion-like, 4-loop, Westinghouse PWR was modeled with Zircaloy-2, SiC, and 304 stainless steel as clad material. TMI-2 modeling results indicate that lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would result if SiC was substituted for Zircaloy-2 as cladding. SBO modeling results indicate that the calculated time to RCSmore » rupture would increase by approximately 20 minutes if SiC was substituted for Zircaloy-2. Additionally, when an extended SBO accident (RCS creep rupture failure disabled) was modeled, significantly lower peak core temperatures, less H 2 (g) produced, and a smaller mass of molten material would be generated by substituting SiC for Zircaloy-2 or stainless steel cladding. Because the rate of SiC oxidation reaction with elevated temperature H{sub 2}O (g) was set to 0 for this work, these results should be considered preliminary. However, the benefits of SiC as a more accident tolerant clad material have been shown and additional investigation of SiC as an LWR core material are warranted, specifically investigations of the oxidation kinetics of SiC in H{sub 2}O (g) over the range of temperatures and pressures relevant to severe accidents in LWR 's. (authors)« less

  4. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wang, Jy-An John

    2016-10-01

    Behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending was studied. Tests were performed under load or moment control at 5 Hz. The surrogate rods fractured under moment amplitudes greater than 10.16 Nm with fatigue lives between 2.4 × 103 and 2.2 × 106 cycles. Fatigue response of Zry-4 cladding was characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition affect surrogate rod failure. Both debonding of PPI/PCI and pellet fracturing contribute to surrogate rod bending fatigue. The effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective gauge length is effective in sensor spacing correction. The database developed and the understanding gained in this study can serve as input to analysis of SNF (spent nuclear fuel) vibration integrity.

  5. Experimental and statistical study on fracture boundary of non-irradiated Zircaloy-4 cladding tube under LOCA conditions

    NASA Astrophysics Data System (ADS)

    Narukawa, Takafumi; Yamaguchi, Akira; Jang, Sunghyon; Amaya, Masaki

    2018-02-01

    For estimating fracture probability of fuel cladding tube under loss-of-coolant accident conditions of light-water-reactors, laboratory-scale integral thermal shock tests were conducted on non-irradiated Zircaloy-4 cladding tube specimens. Then, the obtained binary data with respect to fracture or non-fracture of the cladding tube specimen were analyzed statistically. A method to obtain the fracture probability curve as a function of equivalent cladding reacted (ECR) was proposed using Bayesian inference for generalized linear models: probit, logit, and log-probit models. Then, model selection was performed in terms of physical characteristics and information criteria, a widely applicable information criterion and a widely applicable Bayesian information criterion. As a result, it was clarified that the log-probit model was the best among the three models to estimate the fracture probability in terms of the degree of prediction accuracy for both next data to be obtained and the true model. Using the log-probit model, it was shown that 20% ECR corresponded to a 5% probability level with a 95% confidence of fracture of the cladding tube specimens.

  6. Investigation of Zircaloy-2 oxidation model for SFP accident analysis

    NASA Astrophysics Data System (ADS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu; Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki

    2017-05-01

    The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study.

  7. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: Nuclear fuel durability enhancement.

    PubMed

    Škarohlíd, Jan; Ashcheulov, Petr; Škoda, Radek; Taylor, Andrew; Čtvrtlík, Radim; Tomáštík, Jan; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, Petr; Macák, Jan; Xu, Peng; Partezana, Jonna M; Lorinčík, Jan; Prehradná, Jana; Steinbrück, Martin; Kratochvílová, Irena

    2017-07-25

    In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100-170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020.

  8. Estimation of ring tensile properties of steam oxidized Zircaloy-4 fuel cladding under simulated LOCA condition

    NASA Astrophysics Data System (ADS)

    Shriwastaw, R. S.; Sawarn, Tapan K.; Banerjee, Suparna; Rath, B. N.; Dubey, J. S.; Kumar, Sunil; Singh, J. L.; Bhasin, Vivek

    2017-09-01

    The present study involves the estimation of ring tensile properties of Indian Pressurised Heavy Water Reactor (IPHWR) fuel cladding made of Zircaloy-4, subjected to experiments under a simulated loss-of-coolant-accident (LOCA) condition. Isothermal steam oxidation experiments were conducted on clad tube specimens at temperatures ranging from 900 to 1200 °C at an interval of 50 °C for different soaking periods with subsequent quenching in water at ambient temperature. The specimens, which survived quenching, were then subjected to ambient temperature ring tension test (RTT). The microstructure was correlated with the mechanical properties. The yield strength (YS) and ultimate tensile strength (UTS) increased initially with rise in oxidation temperature and time duration but then decreased with further increase in oxidation. Ductility is adversely affected with rising oxidation temperature and longer holding time. A higher fraction of load bearing phase and lower oxygen content in it ensures higher residual ductility. Cladding shows almost zero ductility behavior in RIT when load bearing phase fraction is less than 0.72 and its average oxygen concentration is greater than 0.58 wt%.

  9. An elasto-plastic fracture mechanics based model for assessment of hydride embrittlement in zircaloy cladding tubes

    NASA Astrophysics Data System (ADS)

    Nilsson, Karl-Fredrik; Jakšić, Nikola; Vokál, Vratko

    2010-01-01

    This paper describes a finite element based fracture mechanics model to assess how hydrides affect the integrity of zircaloy cladding tubes. The hydrides are assumed to fracture at a low load whereas the propagation of the fractured hydrides in the matrix material and failure of the tube is controlled by non-linear fracture mechanics and plastic collapse of the ligaments between the hydrides. The paper quantifies the relative importance of hydride geometrical parameters such as size, orientation and location of individual hydrides and interaction between adjacent hydrides. The paper also presents analyses for some different and representative multi-hydride configurations. The model is adaptable to general and complex crack configurations and can therefore be used to assess realistic hydride configurations. The mechanism of cladding failure is by plastic collapse of ligaments between interacting fractured hydrides. The results show that the integrity can be drastically reduced when several radial hydrides form continuous patterns.

  10. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  11. Texture control of zircaloy tubing during tube reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, N.; Kakuma, T.; Fujita, K.

    1982-01-01

    Seven batches of Zircaloy-2 nuclear fuel cladding tubes with different textures were processed from tube shells of the same size, by different reduction routes, using pilger and 3-roll mills. Based on the texture data of these tubes, the texture control of Zircaloy tubing, the texture gradient across the wall, and the texture change during annealing were studied. The deformation texture of Zicaloy-2 tubing was dependent on the tool's curvature and was independent of the dimensions of the mother tubes. The different slopes of texture gradients were observed between the tubing of higher strain ration and that of lower strain ratio.

  12. Bending testing and characterization of surrogate nuclear fuel rods made of Zircaloy-4 cladding and aluminum oxide pellets

    DOE PAGES

    Wang, Hong; Wang, Jy-An John

    2016-07-20

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  13. Surface treatment to form a dispersed Y2O3 layer on Zircaloy-4 tubes

    NASA Astrophysics Data System (ADS)

    Jung, Yang-Il; Kim, Hyun-Gil; Guim, Hwan-Uk; Lim, Yoon-Soo; Park, Jung-Hwan; Park, Dong-Jun; Yang, Jae-Ho

    2018-01-01

    Zircaloy-4 is a traditional zirconium-based alloy developed for application in nuclear fuel cladding tubes. The surfaces of Zircaloy-4 tubes were treated using a laser beam to increase their mechanical strength. Laser beam scanning of a tube coated with yttrium oxide (Y2O3) resulted in the formation of a dispersed oxide layer in the tube's surface region. Y2O3 particles penetrated the Zircaloy-4 during the laser treatment and were distributed uniformly in the surface region. The thickness of the dispersed oxide layer varied from 50 to 140 μm depending on the laser beam trajectory. The laser treatment also modified the texture of the tube. The preferred basal orientation along the normal to the tube surface disappeared, and a random structure appeared after laser processing. The most obvious result was an increase in the mechanical strength. The tensile strength of Zircaloy-4 increased by 10-20% with the formation of the dispersed oxide layer. The compressive yield stress also increased, by more than 15%. Brittle fracture was observed in the surface-treated samples during tensile and compressive deformation at room temperature; however, the fracture behavior was changed in ductile at elevated temperatures.

  14. Microstructure studies of interdiffusion behavior of U 3Si 2/Zircaloy-4 at 800 and 1000 °C

    DOE PAGES

    He, Lingfeng; Harp, Jason M.; Hoggan, Rita E.; ...

    2017-01-22

    Fuel swelling during normal reactor operations could lead to unfavorable chemical interactions when in contact with its cladding. As new fuel types are developed, it is crucial to understand the interaction behavior between fuel and its cladding. Diffusion experiments between U 3Si 2 and Zricaloy-4 (Zry-4) were conducted at 800 and 1000°C up to 100 hours. The microstructure of pristine U 3Si 2 and U 3Si 2/Zry-4 interdiffusion products were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive X-ray spectroscopy (EDS) system. The primary interdiffusion product observed at 800°C is ZrSi 2,more » with secondary phases of U-Zr in the Zry-4, and Fe-Cr-W-Zr-Si phases at Zry-4/ZrSi 2 interface and Fe-Cr-U-Si phases at ZrSi 2/U-Si interface. As a result, the primary interdiffusion products at 1000°C were Zr 2Si, U-Zr-Fe-Ni, U, U-Zr, and a low melting point phase U 6Fe.« less

  15. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  16. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOEpatents

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  17. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    NASA Astrophysics Data System (ADS)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  18. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    DOE PAGES

    Yan, Y.; Qian, S.; Littrell, K.; ...

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  19. 78 FR 40200 - Duke Energy Carolinas, LLC, Oconee Nuclear Station Units 1, 2, and 3; Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... breaches.'' Zircaloy is a type of zirconium alloy which includes both Zircaloy-2 and Zircaloy-4 cladding, but does not include M5 cladding. The M5 is a different type of zirconium alloy, which does not... ``zirconium alloy'' clad spent fuel assemblies in the 24PHB DSC, which would include both the ``zircaloy clad...

  20. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  1. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    DOE PAGES

    Yan, Yong; Qian, Shuo; Garrison, Ben; ...

    2018-04-15

    In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less

  2. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yong; Qian, Shuo; Garrison, Ben

    In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less

  3. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-03-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.

  4. Compatibility studies on Mo-coating systems for nuclear fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian

    2017-12-01

    To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.

  5. On the corrosion behavior of zircaloy-4 in spent fuel pools under accidental conditions

    NASA Astrophysics Data System (ADS)

    Lavigne, O.; Shoji, T.; Sakaguchi, K.

    2012-07-01

    After zircaloy cladding tubes have been subjected to irradiation in the reactor core, they are stored temporarily in spent fuel pools. In case of an accident, the integrity of the pool may be affected and the composition of the coolant may change drastically. This was the case in Fukushima Daiichi in March 2011. Successive incidents have led to an increase in the pH of the coolant and to chloride contamination. Moreover, water radiolysis may occur owing to the remnant radioactivity of the spent fuel. In this study, we propose to evaluate the corrosion behavior of oxidized Zr-4 (in autoclave at 288 °C for 32 days) in function of the pH and the presence of chloride and radical forms. The generation of radicals is achieved by the sonolysis of the solution. It appears that the increase in pH and the presence of radicals lead to an increase in current densities. However, the current densities remain quite low (depending on the conditions, between 1 and 10 μA cm-2). The critical parameter is the presence of chloride ions. The chloride ions widely decrease the passive range of the oxidized samples (the pitting potential is measured around +0.6 V (vs. SCE)). Moreover, if the oxide layer is scratched or damaged (which is likely under accidental conditions), the pitting potential of the oxidized sample reaches the pitting potential of the non-oxidized sample (around +0.16 V (vs. SCE)), leaving a shorter stable passive range for the Zr-4 cladding tubes.

  6. Fuel cladding behavior under rapid loading conditions

    NASA Astrophysics Data System (ADS)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  7. Corrosion behavior and oxide properties of Zr 1.1 wt%Nb 0.05 wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Choi, Byung-Kwon; Yoo, Seung Jo; Jeong, Yong Hwan

    2006-12-01

    The corrosion behavior and oxide properties of Zr-1.1 wt%Nb-0.05 wt%Cu (ZrNbCu) and Zircaloy-4 have been investigated. The corrosion rate of the ZrNbCu alloy was much lower than that of the Zirclaoy-4 in the 360 °C water and 360 °C PWR-simulating loop condition without a neutron flux and it was increased with an increase of the final annealing temperature from 470 °C to 570 °C. TEM observations revealed that the precipitates in the ZrNbCu were β-Nb and ZrNbFe-precipitate with β-Nb being more frequently observed and that the precipitates were more finely distributed in the ZrNbCu alloy. It was also observed that the oxides of the ZrNbCu and Zircaloy-4 consisted of two and seven layers, respectively, after 1000 days in the PWR-simulating loop condition and that the thickness of a fully-developed layer was higher in the ZrNbCu than in the Zircaloy-4. It was also found that the β-Nb in ZrNbCu was oxidized more slowly when compared to the Zr(Fe, Cr) 2 in Zirclaoy-4 when the precipitates in the oxide were observed by TEM. Cracks were observed in the vicinity of the oxidized Zr(Fe, Cr) 2, while no cracks were formed near β-Nb which had retained a metallic state. From the results obtained, it is suggested that the oxide formed on the ZrNbCu has a more protective nature against a corrosion when compared to that of the Zircaloy-4.

  8. EPRI-NASA Cooperative Project on Stress Corrosion Cracking of Zircaloys. [nuclear fuel failures

    NASA Technical Reports Server (NTRS)

    Cubicciotti, D.; Jones, R. L.

    1978-01-01

    Examinations of the inside surface of irradiated fuel cladding from two reactors show the Zircaloy cladding is exposed to a number of aggressive substances, among them iodine, cadmium, and iron-contaminated cesium. Iodine-induced stress corrosion cracking (SCC) of well characterized samples of Zircaloy sheet and tubing was studied. Results indicate that a threshold stress must be exceeded for iodine SCC to occur. The existence of a threshold stress indicates that crack formation probably is the key step in iodine SCC. Investigation of the crack formation process showed that the cracks responsible for SCC failure nucleated at locations in the metal surface that contained higher than average concentrations of alloying elements and impurities. A four-stage model of iodine SCC is proposed based on the experimental results and the relevance of the observations to pellet cladding interaction failures is discussed.

  9. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    DOE PAGES

    Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.

    2017-05-10

    A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less

  10. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.

    A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less

  11. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Nathan; Sweet, Ryan; Maldonado, G. Ivan

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behaviormore » of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.« less

  12. Study on the hydrogenation of Zircaloy-4

    NASA Astrophysics Data System (ADS)

    da Silva Dupim, Ivaldete; Moreira, João M. L.; Silva, Selma Luiza; Silva, Cecilia Chaves Guedes e.; Nunes, Oswaldo; Gomide, Ricardo Gonçalves

    2012-08-01

    In this article we investigate producing Zirconium powder from discarded Zircaloy-4 material through the hydride-dehydride method. We restrict our study to the first part of the method, namely the hydrogenation process. Differential thermal analyses of the hydrogenation process of the Zircaloy-4 show that no hydrogen absorption occurs at temperatures below 573 K and hydrogen gas pressure of 25 kPa. When the system temperature is raised to around 770 K, with the same gas pressure, the protecting oxide layer of the specimens can be overcome and they are quickly hydrogenated. The bulk of the reaction occurs in about 5 min with the precipitation of Zirconium hydrides in the Zr-δ and Zr-ɛ phases. Once the temperature passes 573 K, the incubation time to initiate the reaction is short (about 5 min). Tests in a tube furnace system with larger samples, hydrogen pressure varying from 30 to 180 kPa, and temperature from 700 to 833.15 K, show that the specimens are fully hydrogenated and can be easily pulverized. The results indicate that the hydrogenation of the Zircaloy-4 chips can be successfully undertaken at temperatures around 770 K and hydrogen gas pressure as low as 30 kPa.

  13. (Project 13-5292) Correlating thermal and mechanical coupling based multiphysics behavior of nuclear materials through in-situ measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    Irradiations and post characterization experiments were performed first on Zr samples. This step will help understand the effect of the 2.5% alloying elements on the behavior of Zircaloy-4 (PWR cladding material) when compared to pure Zr. Irradiation flux measurements and sample temperature calibrations were performed at different energies prior to the irradiation experiments. Irradiations were performed with two different energy regimes1: non-displacment energies and displacement energies. Time was also dedicated to optimize transmission electron microscopy (TEM) sample preparation conditions via electropolishing technique. This step is crucial to prepare TEM samples for the in-situ TEM/irradiation experiments (Year 2). In addition, Zircaloy-4more » samples are being prepared for irradiation, and a setup is built by one of our collaborators (Dr. Mert Efe) to prepare ultrafine (UF) and nanocrystalline (NC) Zircaloy-4 samples for comparison with the commercial Zircaloy-4 samples.« less

  14. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  15. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors

    DOE PAGES

    George, Nathan Michael; Terrani, Kurt A.; Powers, Jeffrey J.; ...

    2014-09-29

    A study analyzed the neutronics of alternate cladding materials in a pressurized water reactor (PWR) environment. Austenitic type 310 (310SS) and 304 stainless steels, ferritic Fe-20Cr-5Al (FeCrAl) and APMT™ alloys, and silicon carbide (SiC)-based materials were considered and compared with Zircaloy-4. SCALE 6.1 was used to analyze the associated neutronics penalty/advantage, changes in reactivity coefficients, and spectral variations once a transition in the cladding was made. In the cases examined, materials containing higher absorbing isotopes invoked a reduction in reactivity due to an increase in neutron absorption in the cladding. Higher absorbing materials produced a harder neutron spectrum in themore » fuel pellet, leading to a slight increase in plutonium production. A parametric study determined the geometric conditions required to match cycle length requirements for each alternate cladding material in a PWR. A method for estimating the end of cycle reactivity was implemented to compare each model to that of standard Zircaloy-4 cladding. By using a thinner cladding of 350 μm and keeping a constant outer diameter, austenitic stainless steels require an increase of no more than 0.5 wt% enriched 235U to match fuel cycle requirements, while the required increase for FeCrAl was about 0.1%. When modeling SiC (with slightly lower thermal absorption properties than that of Zircaloy), a standard cladding thickness could be implemented with marginally less enriched uranium (~0.1%). Moderator temperature and void coefficients were calculated throughout the depletion cycle. Nearly identical reactivity responses were found when coolant temperature and void properties were perturbed for each cladding material. By splitting the pellet into 10 equal areal sections, relative fission power as a function of radius was found to be similar for each cladding material. FeCrAl and 310SS cladding have a slightly higher fission power near the pellet’s periphery due to the

  16. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less

  17. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sharon M.; Chattin, Marc Rhea; Giaquinto, Joseph

    2015-09-01

    It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T 2O. In a standard processing flowsheet, tritium management would bemore » accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy® cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy® clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 0–96%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding will

  18. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  19. Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Wanjara, P.; Naik, B. S.; Yang, Q.; Cao, X.; Gholipour, J.; Chen, D. L.

    2018-02-01

    In the nuclear industry, there are a number of applications where the transition of stainless steel to Zircaloy is of technological importance. However, due to the differences in their properties there are considerable challenges associated with developing a joining process that will sufficiently limit the heat input and welding time—so as to minimize the extent of interaction at the joint interface and the resulting formation of intermetallic compounds—but still render a functional metallurgical bond between these two alloys. As such, linear friction welding, a solid-state joining technology, was selected in the present study to assess the feasibility of welding 316L stainless steel to Zircaloy-4. The dissimilar alloy welds were examined to evaluate their microstructural characteristics, microhardness evolution across the joint interface, static tensile properties, and fatigue behavior. Microstructural observations revealed a central intermixed region and, on the Zircaloy-4 side, dynamically recrystallized and thermomechanically affected zones were present. By contrast, deformation on the 316L stainless steel side was limited. In the intermixed region a drastic change in the composition was observed along with a local increase in hardness, which was attributed to the presence of intermetallic compounds, such as FeZr3 and Cr2Zr. The average yield (316 MPa) and ultimate tensile (421 MPa) strengths met the minimum strength properties of Zircaloy-4, but the elongation was relatively low ( 2 pct). The tensile and fatigue fracture of the welds always occurred at the interface in the mode of partial cohesive failure.

  20. Characterisation of metallic glass incorporated Zircaloy-2 weldments

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Savalia, R. T.; Bhanumurthy, K.; Dey, G. K.; Banerjee, S.

    1995-12-01

    In this study the effect of incorporation of Zr based Fe and Ni bearing metallic glass in spot welds in Zircaloy components has been examined. A comparison of strength and microstructure of the welded joint with and without glass has been carried out. The welded joint with metallic glass has been found to be stronger than the one without metallic glass. The microstructure of the welded region with metallic glass has been found to comprise a large region having martensite. This large martensitic region has also been found to have considerable amount of excess solute (Fe, Ni). The higher strength of the weld with metallic glass seems to originate due to solid solution strengthening, small grain size and the presence of martensitic structure over a large region.

  1. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Cetin; Galloway, Jack D.

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermalmore » swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.« less

  2. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure

    NASA Astrophysics Data System (ADS)

    Park, Donghee; Mouche, Peter A.; Zhong, Weicheng; Mandapaka, Kiran K.; Was, Gary S.; Heuser, Brent J.

    2018-04-01

    FeAl(Cr) thin-film depositions on Zircaloy-2 were studied using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) with respect to oxidation behavior under simulated boiling water reactor (BWR) conditions and high-temperature steam. Columnar grains of FeAl with Cr in solid solution were formed on Zircaloy-2 coupons using magnetron sputtering. NiFe2O4 precipitates on the surface of the FeAl(Cr) coatings were observed after the sample was exposed to the simulated BWR environment. High-temperature steam exposure resulted in grain growth and consumption of the FeAl(Cr) layer, but no delamination at the interface. Outward Al diffusion from the FeAl(Cr) layer occurred during high-temperature steam exposure (700 °C for 3.6 h) to form a 100-nm-thick alumina oxide layer, which was effective in mitigating oxidation of the Zircaloy-2 coupons. Zr intermetallic precipitates formed near the FeAl(Cr) layer due to the inward diffusion of Fe and Al. The counterflow of vacancies in response to the Al and Fe diffusion led to porosity within the FeAl(Cr) layer.

  3. Understanding thermally activated plastic deformation behavior of Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Alomari, A.; Murty, K. L.

    2018-06-01

    Understanding micromechanics of plastic deformation of existing materials is essential for improving their properties further and/or developing advanced materials for much more severe load bearing applications. The objective of the present work was to understand micromechanics of plastic deformation of Zircaloy-4, a zirconium-based alloy used as fuel cladding and channel (in BWRs) material in nuclear reactors. The Zircaloy-4 in recrystallized (at 973 K for 4 h) condition was subjected to uniaxial tensile testing at a constant cross-head velocity at temperatures in the range 293 K-1073 K and repeated stress relaxation tests at 293 K, 573 K, and 773 K. The minimum in the total elongation was indicative of dynamic strain aging phenomenon in this alloy in the intermediate temperature regime. The yield stress of the alloy was separated into effective and athermal components and the transition from thermally activated dislocation glide to athermal regime took place at around 673 K with the athermal stress estimated to be 115 MPa. The activation volume was found to be in the range of 40 b3 to 160 b3. The activation volume values and the data analyses using the solid-solution models in literature indicated dislocation-solute interaction to be a potential deformation mechanism in thermally activated regime. The activation energy calculated at 573 K was very close to that found for diffusivity of oxygen in α-Zr that was suggestive of dislocations-oxygen interaction during plastic deformation. This type of information may be helpful in alloy design in selecting different elements to control the deformation behavior of the material and impart desired mechanical properties in those materials for specific applications.

  4. Stress corrosion cracking of Zircaloys in unirradiated and irradiated CsI

    NASA Astrophysics Data System (ADS)

    Cox, B.; Surette, B. A.; Wood, J. C.

    1986-03-01

    Unirradiated split-ring specimens of Zircaloy fuel cladding, coated with CsI, cracked when stressed at elevated temperatures. The specimens have been reexamined fractographically and metallographically in order to confirm that the cause of cracking was stress corrosion (SCC) and not delayed hydride cracking (DHC). Further specimens have been cracked at 350°C by a solution of CsI in a fused mixture of nitrates of rubidium, cesium, strontium and barium, by a similar mechanism. CsI dissolved in a fused molybdate melt was not stable at 400°C, and rapidly evolved iodine, leaving a melt that was incapable of causing SCC. Irradiation of stressed split-ring specimens of Zircaloy fuel cladding in a γ-irradiator of 10 6 R/h and in the U-5 loop in the NRU reactor at an estimated 10 9 R/h caused SCC when the specimens were packed in dry CsI powder. Care had to be taken to dry the CsI, otherwise cracking occurred by a DHC mechanism from hydrogen absorbed from residual moisture in the CsI. Fractography showed that the crack surfaces obtained with dry CsI were typical of iodine-induced SCC rather than cesium-induced metal vapour embrittlement. Thus, if a transport process is provided for the iodide to obtain access to the zirconium surface, CsI is capable of causing SCC of Zircaloy. This transport process might be ionic diffusion in a fission product oxide melt in the fuel-clad gap, however, radiolysis of CsI to form a volatile iodine species in a radiation field is the more probable explanation of PCI failures.

  5. Assessment of solid/liquid equilibria in the (U, Zr)O2+y system

    NASA Astrophysics Data System (ADS)

    Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; Ernstberger, M.; Bottomley, D.; Manara, D.

    2017-10-01

    Solid/liquid equilibria in the system UO2sbnd ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the only study available in the literature on the whole pseudo-binary system. In addition, a minimum melting point is identified here for compositions near (U0.6Zr0.4)O2+y, around 2800 K. The solidus line is rather flat on a broad range of compositions around the minimum. It increases for compositions closer to the pure end members, up to the melting point of pure UO2 (3130 K) on one side and pure ZrO2 (2970 K) on the other. Solid state phase transitions (cubic-tetragonal-monoclinic) have also been observed in the ZrO2-rich compositions X-ray diffraction. Investigations under 0.3 MPa air (0.063 MPa O2) revealed a significant decrease in the melting points down to 2500 K-2600 K for increasing uranium content (x(UO2)> 0.2). This was found to be related to further oxidation of uranium dioxide, confirmed by X-ray absorption spectroscopy. For example, a typical oxidised corium composition U0.6Zr0.4O2.13 was observed to solidify at a temperature as low as 2493 K. The current results are important for assessing the thermal stability of the system fuel - cladding in an oxide based nuclear reactor, and for simulating the system behaviour during a hypothetical severe accident.

  6. Crystal plasticity modeling of irradiation growth in Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.

    2017-08-01

    A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.

  7. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    DOE PAGES

    Yan, Yong; Garrison, Benton E.; Howell, Mike; ...

    2017-11-03

    Two-sided oxidation experiments were recently conducted at 900°C–1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. Atmore » or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100–150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.« less

  8. Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Tae; Lee, Tae Hyuk; Jo, Nam Chan; Nersisyan, Hayk H.; Chun, Byong Sun; Lee, Hyuk Hee; Lee, Jong Hyeon

    2013-05-01

    Zirconium (Zr) has commonly been used as a cladding material of nuclear fuel. Moreover, it is regarded as the only material that can be used for nuclear fuel cladding because it has the lowest neutron capture cross section of any metal element and because it has high corrosion resistance and size stability. In this study, Hf-free Zr tubes (Zr-1Nb-1Sn-0.1Fe) were used as anode materials and electrorefining was performed in a LiF-KF eutectic 6 wt.% ZrF4 molten fluoride salt system. As a result of electrolysis, Zr scrap metal was recycled into pure Zr with low levels of impurities, and the size and density of the Zr deposit was controlled using applied current density.

  9. High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Kevin M; Garnier, John E; Sergey Rashkeev

    2013-01-01

    Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC weremore » tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.« less

  10. Pellet cladding mechanical interactions of ceramic claddings fuels under light water reactor conditions

    NASA Astrophysics Data System (ADS)

    Li, Bo-Shiuan

    Ceramic materials such as silicon carbide (SiC) are promising candidate materials for nuclear fuel cladding and are of interest as part of a potential accident tolerant fuel design due to its high temperature strength, dimensional stability under irradiation, corrosion resistance, and lower neutron absorption cross-section. It also offers drastically lower hydrogen generation in loss of coolant accidents such as that experienced at Fukushima. With the implementation of SiC material properties to the fuel performance code, FRAPCON, performances of the SiC-clad fuel are compared with the conventional Zircaloy-clad fuel. Due to negligible creep and high stiffness, SiC-clad fuel allows gap closure at higher burnup and insignificant cladding dimensional change. However, severe degradation of SiC thermal conductivity with neutron irradiation will lead to higher fuel temperature with larger fission gas release. High stiffness of SiC has a drawback of accumulating large interfacial pressure upon pellet-cladding mechanical interactions (PCMI). This large stress will eventually reach the flexural strength of SiC, causing failure of SiC cladding instantly in a brittle manner instead of the graceful failure of ductile metallic cladding. The large interfacial pressure causes phenomena that were previously of only marginal significance and thus ignored (such as creep of the fuel) to now have an important role in PCMI. Consideration of the fuel pellet creep and elastic deformation in PCMI models in FRAPCON provide for an improved understanding of the magnitude of accumulated interfacial pressure. Outward swelling of the pellet is retarded by the inward irradiation-induced creep, which then reduces the rate of interfacial pressure buildup. Effect of PCMI can also be reduced and by increasing gap width and cladding thickness. However, increasing gap width and cladding thickness also increases the overall thermal resistance which leads to higher fuel temperature and larger fission

  11. Equations of state for crystalline zirconium iodide: The role of dispersion

    NASA Astrophysics Data System (ADS)

    Rossi, Matthew L.; Taylor, Christopher D.

    2013-02-01

    We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  12. Structure and mechanical properties of coatings fabricated by nonvacuum electron beam cladding of Ti-Ta-Zr powder mixtures

    NASA Astrophysics Data System (ADS)

    Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.

    2015-10-01

    In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.

  13. Scanning Tunneling Microscopy Study on Dirac Nodal-line Semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Su, Chih-Chuan; Guan, Syu-You; Wang, Tzu-Cheng; Sankar, Raman; Guo, Guang-Yu; Chou, Fangcheng; Chang, Chia-Seng; Chuang, Tien-Ming

    The discovery of 3D Dirac nodal-line protected by non-symmophic symmetry in ZrSiS family has been reported by angle resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. ZrSiS also exhibits a butterfly shaped titanic angular magnetoresistance and strong Zeeman splitting in quantum oscillation. These observations with its layered crystal structure make the ZrSiS family an interesting candidate to understand the novel properties of the nodal-line semimetals. Here, we study the electronic structures of the single crystal ZrSiS by using spectroscopic-imaging scanning tunneling microscope at T= 4.2K. Our quasiparticle scattering interference imaging reveals the characteristic wave vectors with linear dispersion from Dirac line nodes in the bulk and its surface states. Our results are in excellent agreement with the first principle calculation, and also in consistent with ARPES and quantum oscillation measurements.

  14. Synthesis and Characterization of Zr-BASED Amorphous and Crystalline Composite Coating on Ti Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Tang, D. M.; Zhang, D. C.; Peng, W.; Luo, Z. C.; Wu, X. Q.; Wang, Y. M.; Lin, J. G.

    2014-02-01

    A thin strip of a Zr-based alloy with a composition of Zr60Cu25Fe5Al10 (in atom percent) was used as a raw material, and the composite coatings containing Zr-based amorphous phase and crystallites on Ti substrate were fabricated by a one-step laser cladding method without protection. The microstructure, phase constitution, microhardness and wear properties of the coatings were investigated. The results indicate that the microstructure of the coatings is strongly dependent on the laser scanning speed under the conditions of the laser power of 1300 W and laser beam diameter of 6 mm, and the composite coating mainly containing amorphous phase with a small amount of the crystallites can be obtained at the laser scanning speed of 10 mm/s. The composite coating exhibits much higher microhardness than the pure Ti substrate, and thus it behaves superior wear resistance in comparison with the substrate.

  15. Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding

    NASA Astrophysics Data System (ADS)

    Suman, Siddharth; Khan, Mohd Kaleem; Pathak, Manabendra; Singh, R. N.

    2018-01-01

    Zirconium alloys are extensively used for nuclear fuel cladding. Creep is one of the most likely degradation mechanisms for fuel cladding during reactor operating and repository conditions. Fuel cladding tubes undergo waterside corrosion during service and hydrogen is produced as a result of it-a fraction of which is picked up by cladding. Hydrogen remains in solid solution up to terminal solid solubility and it precipitates as brittle hydride phase in the zirconium metal matrix beyond this limiting concentration. Hydrogen, either in solid solution or as precipitated hydride, alters the creep behaviour of zirconium alloys. The present article critically reviews the influence of hydrogen on thermal creep behaviour of zirconium alloys, develops the systematic understanding of this multifaceted phenomenon, and delineates the thrust areas which require further investigations.

  16. Microstructural characterization of annealed U-12Zr-4Pd and U-12Zr-4Pd-5Ln: Investigating Pd as a metallic fuel additive

    NASA Astrophysics Data System (ADS)

    Benson, Michael T.; He, Lingfeng; King, James A.; Mariani, Robert D.

    2018-04-01

    Palladium is being investigated as a potential additive to metallic fuel to control fuel-cladding chemical interaction (FCCI). A primary cause of FCCI is the lanthanide fission products moving to the fuel periphery and interacting with the cladding. This interaction will lead to wastage of the cladding and, given enough time or burn-up, eventually to a cladding breach. The current study is a scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of annealed U-12Zr-4Pd and U-12Zr-4Pd-5Ln, where Ln = 53Nd-25Ce-16Pr-6La. The present study shows that Pd preferentially binds the lanthanides over other fuel constituents, which may prevent lanthanide migration and interaction with the cladding during irradiation. The SEM analysis indicates the 1:1 Pd-Ln compound is being formed, while the TEM analysis, due to higher resolution, found the 1:1 compound, as well as Pd-rich compounds Pd2Ln and Pd3Ln2.

  17. Study of a ;hot; particle with a matrix of U-bearing metallic Zr: Clue to supercriticality during the Chernobyl nuclear accident

    NASA Astrophysics Data System (ADS)

    Pöml, P.; Burakov, B.

    2017-05-01

    This paper is dedicated to the 30th anniversary of the severe nuclear accident that occurred at the Chernobyl NPP on 26 April 1986. A detailed study on a Chernobyl "hot" particle collected from contaminated soil was performed. Optical and electron microscopy, as well as quantitative x-ray microbeam analysis methods were used to determine the properties of the sample. The results show that the particle (≈ 240 x 165 μm) consists of a metallic Zr matrix containing 2-3 wt. % U and bearing veins of an U,Nb admixture. The metallic Zr matrix contains two phases with different amounts of O with the atomic proportions (U,Zr,Nb)0.73O0.27 and (U,Zr,Nb)0.61O0.39. The results confirm the interaction between UO2 fuel and zircaloy cladding in the reactor core. To explain the process of formation of the particle, its properties are compared to laboratory experiments. Because of the metallic nature of the particle it is concluded that it must have formed during a very high temperature (> 2400∘C) process that lasted for only a very short time (few microseconds or less); otherwise the particle should have been oxidised. Such a rapid very high temperature process indicates that at least part of the reactor core could have been supercritical prior to an explosion as it was previously suggested in the literature.

  18. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2017-12-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  19. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    NASA Astrophysics Data System (ADS)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  20. Post Quench Ductility Evaluation of Zircaloy-4 and Select Iron Alloys under Design Basis and Extended LOCA Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yong; Keiser, James R; Terrani, Kurt A

    2014-01-01

    Oxidation experiments were conducted at 1200 C in flowing steam with tubing specimens of Zircaloy-4, 317, 347 stainless steels, and the commercial FeCrAl alloy APMT. The purpose was to determine the oxidation behavior and post quench ductility of these alloys under postulated loss-of-coolant accident conditions. The parabolic rate constant for Zircaloy-4 tubing samples at 1200 were determined to be k = 2.173 107 g2/cm4/s C, in excellent agreement with the Cathcart-Pawel correlation. The APMT alloy experienced the slowest oxidation rate among all materials examined in this work. The ductility of post quenched samples was evaluated by ring compression tests atmore » 135 C. For Zircaloy-4, the ductile to brittle transition occurs at an equivalent cladding reacted (ECR) of 19.3%. SS-347 was still ductile after being oxidized for 2400 s (CP-ECR 50%), but the maximum load was reduced significantly owing to the metal layer thickness reduction. No ductility decrease was observed for the post-quenched APMT samples oxidized up to four hours.« less

  1. Post-quench ductility evaluation of Zircaloy-4 and select iron alloys under design basis and extended LOCA conditions

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Keiser, J. R.; Terrani, K. A.; Bell, G. L.; Snead, L. L.

    2014-05-01

    Oxidation experiments were conducted at 1200 °C in flowing steam with tubing specimens of Zircaloy-4, 317, 347 stainless steels, and the commercial FeCrAl alloy APMT. The purpose was to determine the oxidation behavior and post-quench ductility under postulated and extended LOCA conditions. The parabolic rate constant for Zircaloy-4 tubing samples at 1200 °C was determined to be k = 2.173 × 107 g2/cm4/s, in excellent agreement with the Cathcart-Pawel correlation. The APMT alloy experienced the slowest oxidation rate among all materials examined in this work. The ductility of post-quenched samples was evaluated by ring compression tests at 135 °C. For Zircaloy-4, the ductile to brittle transition occurs at an equivalent cladding reacted (ECR) of 19.3%. SS-347 was still ductile after being oxidized for 2400 s (CP-ECR ≈ 50%), but the maximum load was reduced significantly owing to the metal layer thickness reduction. No ductility decrease was observed for the post-quenched APMT samples oxidized up to 4 h.

  2. The Preparation and Microstructure of Nanocrystal 3C-SiC/ZrO2 Bilayer Films

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Qu, Yazhou; Yan, Xin; Cheng, Qijin; Li, Ning

    2017-01-01

    The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of nanocrystal films was analyzed by grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The 3C-SiC film with less than 30 nm crystal size was synthesized by Plasma Enhanced Chemical Vapor Deposition (PECVD) and annealing. The corresponding formation mechanism of some impurities in SiC film was analyzed and discussed. An amorphous Zr layer about 600 nm in width was first deposited by magnetron sputtering and then oxidized to form a nanocrystal ZrO2 layer during the annealing process. The interface characteristics of 3C-SiC/ZrO2 bilayer films prepared by two different processes were obviously different. SiZr and SiO2 compounds were formed at the interface of 3C-SiC/ZrO2 bilayer films. A corrosion test of 3C-SiC/ZrO2 bilayer films was conducted to qualitatively analyze the surface corrosion resistance and the binding force of the interface. PMID:29168782

  3. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    NASA Astrophysics Data System (ADS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  4. The study of the modes of Ta-Zr powder mixture non-vacuum electron-beam cladding on the surface of the cp-titanium plates

    NASA Astrophysics Data System (ADS)

    Samoylenko, V. V.; Lozhkina, E. A.; Polyakov, I. A.; Lenivtseva, O. G.; Ivanchik, I. S.; Matts, O. E.

    2016-11-01

    The effect of the modes of non-vacuum electron-beam cladding of Ta-Zr powder mixtures on the structure and properties of the layers formed on the surface of cp-titanium were studied. The mode of the electron-beam alloying of titanium with zirconium and tantalum, which ensured the formation of a defect-free layer with a high content of alloying elements was selected. Metallographic examination indicated the presence of a dendritic- and plate-type structure of cladded layers. The microhardness of the layers, formed at the optimum mode, was not changed in the cross section and was equal to 450 HV.

  5. Development and Validation of Accident Models for FeCrAl Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean

    2016-08-01

    The purpose of this milestone report is to present the work completed in regards to material model development for FeCrAl cladding and highlight the results of applying these models to Loss of Coolant Accidents (LOCA) and Station Blackouts (SBO). With the limited experimental data available (essentially only the data used to create the models) true validation is not possible. In the absence of another alternative, qualitative comparisons during postulated accident scenarios between FeCrAl and Zircaloy-4 cladded rods have been completed demonstrating the superior performance of FeCrAl.

  6. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Emmanuel; Keiser, Jr., Dennis D.; Forsmann, Bryan

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or betweenmore » the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.« less

  7. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Massey, Caleb P.; Edmondson, Philip D.

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y 2O 3 (+ ZrO 2 or TiO 2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ballmore » milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less

  8. Physical and Mechanical Metallurgy of Zirconium Alloys for Nuclear Applications: A Multi-Scale Computational Study

    NASA Astrophysics Data System (ADS)

    Glazoff, Michael Vasily

    In the post-Fukushima world, thermal and structural stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry will continue using zirconium (Zr) cladding for the foreseeable future, it becomes critical to gain a fundamental understanding of several interconnected problems. First, what are the thermodynamic and kinetic factors affecting oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings could be used in order to gain valuable time at off-normal conditions (temperature exceeds ~1200°C (2200°F)? Thirdly, the kinetics of the coating's oxidation must be understood. Lastly, one needs automated inspection algorithms allowing identifying cladding's defects. This work attempts to explore the problem from a computational perspective, utilizing first principles atomistic simulations, computational thermodynamics, plasticity theory, and morphological algorithms of image processing for defect identification. It consists of the four parts dealing with these four problem areas preceded by the introduction. In the 1st part, computational thermodynamics and ab initio calculations were used to shed light upon the different stages of zircaloy oxidation and hydrogen pickup, and microstructure optimization to increase thermal stability. The 2 nd part describes the kinetic theory of oxidation of the several materials considered to be perspective coatings for Zr alloys: SiC and ZrSiO4. The 3rd part deals with understanding the respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T's). For that goal, an advanced plasticity model was proposed. In the 4th part projectional algorithms for defect identification in zircaloy coatings are described. Conclusions and recommendations are presented in the 5th part. This integrative approach's value

  9. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Mariani, Robert; Bai, Xianming

    Zirconium-alloy fuel claddings have been used successfully in Light Water Reactors (LWR) for over four decades. However, under high temperature accident conditions, zirconium-alloys fuel claddings exhibit profuse exothermic oxidation accompanied by release of hydrogen gas due to the reaction with water/steam. Additionally, the ZrO 2 layer can undergo monoclinic to tetragonal to cubic phase transformations at high temperatures which can induce stresses and cracking. These events were unfortunately borne out in the Fukushima-Daiichi accident in in Japan in 2011. In reaction to such accident, protective oxidation-resistant coatings for zirconium-alloy fuel claddings has been extensively investigated to enhance safety margins inmore » accidents as well as fuel performance under normal operation conditions. Such surface modification could also beneficially affect fuel rod heat transfer characteristics. Zirconium-silicide, a candidate coating material, is particularly attractive because zirconium-silicide coating is expected to bond strongly to zirconium-alloy substrate. Intermetallic compound phases of zirconium-silicide have high melting points and oxidation of zirconium silicide produces highly corrosion resistant glassy zircon (ZrSiO 4) and silica (SiO 2) which possessing self-healing qualities. Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi 2 coating) during clad quenching experiments is discussed in detail.« less

  10. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  11. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield.more » This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.« less

  12. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs

  13. Influence of adding strong-carbide-formation elements multiply on particle-reinforced Fe-matrix composite layer produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Ma, Mingxing; Liu, Wenjin; Zhong, Minlin; Zhang, Hongjun; Zhang, Weiming

    2005-01-01

    In the research hotspot of particle reinforced metal-matrix composite layer produced by laser cladding, in-situ reinforced particles obtained by adding strong-carbide-formation elements into cladding power have been attracting more attention for their unique advantage. The research has demonstrated that when adding strong-carbide-formation elements-Ti into the cladding powder of the Fe-C-Si-B separately, by optimizing the composition, better cladding coating with the characters of better strength and toughness, higher wear resistance and free of cracks. When the microstructure of cladding coating is hypoeutectic microstructure, its comprehensive performance is best. The research discovered that, compositely adding the strong-carbide-formation elements like Ti+V, Ti+Zr or V+Zr into the cladding coating is able to improve its comprehensive capability. All the cladding coatings obtained are hypoeutectic microstructure. The cladding coatings have a great deal of particulates, and its average microhardness reaches HV0.2700-1400. The research also discovered that the cladding coating obtained is of less cracking after adding the Ti+Zr.

  14. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in

  15. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  16. Characterization of deformation mechanisms in zirconium alloys: effect of temperature and irradiation

    NASA Astrophysics Data System (ADS)

    Long, Fei

    Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion

  17. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    PubMed

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  18. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  19. Modified ring stretch tensile testing of Zr-1Nb cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.B.; Majumdar, S.; Ruther, W.E.

    1998-03-01

    In a round robin effort between the US Nuclear Regulatory Commission, Institut de Protection et de Surete Nucleaire in France, and the Russian Research Centre-Kurchatov Institute, Argonne National Laboratory conducted 16 modified ring stretch tensile tests on unirradiated samples of zr-1Nb cladding, which is used in Russian VVER reactors. Test were conducted at two temperatures (25 and 400 C) and two strain rates (0.001 and 1 s{sup {minus}1}). At 25 C and 0.001 s{sup {minus}1}, the yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), and total elongation (TE) were 201 MPa, 331 MPa, 18.2%, and 57.6%, respectively. Atmore » 400 C and 0.001 s{sup {minus}1}, the YS, UTS, UE, and TE were 109 MPa, 185 MPa, 15.4%, and 67.7%, respectively. Finally, at 400 C and 1 s{sup {minus}1}, the YS, UTS, UE, and TE were 134 MPa, 189 MPa, 18.9%, and 53.4%, respectively. The high strain rate tests at room temperature were not successful. Test results proved to be very sensitive to the amount of lubrication used on the inserts; because of the large contact area between the inserts and specimen, too little lubrication leads to significantly higher strengths and lower elongations being reported. It is also important to note that only 70 to 80% of the elongation takes place in the gauge section, depending on specimen geometry. The appropriate percentage can be estimated from a simple model or can be calculated from finite-element analysis.« less

  20. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions

    NASA Astrophysics Data System (ADS)

    Ott, L. J.; Robb, K. R.; Wang, D.

    2014-05-01

    Following the severe accidents at the Japanese Fukushima Daiichi Nuclear Power Station in 2011, the US Department of Energy initiated research and development on the enhancement of the accident tolerance of light water reactors by the development of fuels/cladding that, in comparison with the standard UO2/Zircaloy (Zr) system, can tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operations. Analyses are presented that illustrate the impact of these new candidate fuel/cladding materials on the fuel performance at normal operating conditions and on the reactor system under DB and BDB accident conditions.

  1. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Walker, T. B.; Bruffey, Stephanie H.

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-basedmore » cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less

  2. Extremely large magnetoresistance and high-density Dirac-like fermions in ZrB2

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Guo, Peng-Jie; Sun, Shanshan; Li, Chenghe; Liu, Kai; Lu, Zhong-Yi; Lei, Hechang

    2018-05-01

    We report the detailed study on transport properties of ZrB2 single crystal, a predicted topological nodal-line semimetal. ZrB2 exhibits extremely large magnetoresistance as well as field-induced resistivity upturn and plateau. These behaviors can be well understood by the two-band model with the perfect electron-hole compensation and high carrier mobilities. More importantly, the electrons with small effective masses and nontrivial Berry phase have significantly high density when compared to those in known topological semimetals. It strongly suggests that ZrB2 hosts Dirac-like nodal-line fermions.

  3. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  4. Magnetic Compton scattering study of Laves phase ZrFe2 and Sc doped ZrFe2: Experiment and Green function based relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bhatt, Samir; Mund, H. S.; Kumar, Kishor; Bapna, Komal; Dashora, Alpa; Itou, M.; Sakurai, Y.; Ahuja, B. L.

    2018-05-01

    Spin momentum densities of ferromagnetic ZrFe2 and Zr0.8Sc0.2Fe2 have been measured using magnetic Compton scattering with 182.65 keV circularly polarized synchrotron radiations. Site specific spin moments, which are responsible for the formation of total spin moment, have been deduced from Compton line shapes. At room temperature, the computed spin moment of ZrFe2 is found to be slightly higher than that of Sc doped ZrFe2 which is in consensus with the magnetization data. To compare the experimental data, we have also computed magnetic Compton profiles (MCPs), total and partial spin projected density of states (DOS) and the site specific spin moments using spin-polarized relativistic Korringa-Kohn-Rostoker method. It is observed that the spin moment at Fe site is aligned antiparallel to that of Zr site in both ZrFe2 and Zr0.8Sc0.2Fe2. The MCP results when compared with vibrating sample magnetometer based magnetization data, show a very small contribution of orbital moment in the formation of total magnetic moments in both the compounds. The DOS of ferromagnetic ground state of ZrFe2 and Zr0.8Sc0.2Fe2 are interpreted on the basis of a covalent magnetic model beyond the Stoner rigid band model. It appears that on alloying between a magnetic and a non-magnetic partner (with low valence), a polarization develops on the non-magnetic atom which is anti-parallel to that of the magnetic atom.

  5. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE PAGES

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David; ...

    2017-04-30

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  6. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, Kyle A.; Barani, Tommaso; Pizzocri, David

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterionmore » is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Here, further experiments are required to confirm these observations.« less

  7. Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding

    NASA Astrophysics Data System (ADS)

    Soleimanipour, Zohre; Baghshahi, Saeid; Shoja-razavi, Reza

    2017-04-01

    In the present study, laser cladding of alumina on the top surface of YSZ thermal barrier coatings (TBC) was conducted via Nd:YAG pulsed laser. The thermal shock behavior of the TBC before and after laser cladding was modified by heating at 1000 °C for 15 min and quenching in cold water. Phase analysis, microstructural evaluation and elemental analysis were performed using x-ray diffractometry, scanning electron microscopy (SEM), and energy-dispersive spectroscopy. The results of thermal shock tests indicated that the failure in the conventional YSZ (not laser clad) and the laser clad coatings happened after 200 and 270 cycles, respectively. The SEM images of the samples showed that delamination and spallation occurred in both coatings as the main mechanism of failure. Formation of TGO was also observed in the fractured cross section of the samples, which is also a main reason for degradation. Thermal shock resistance in the laser clad coatings improved about 35% after cladding. The improvement is due to the presence of continuous network cracks perpendicular to the surface in the clad layer and also the thermal stability and high melting point of alumina in Al2O3/ZrO2 composite.

  8. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed.

  9. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world’s highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form during fabrication and are enhanced during irradiation between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding. One aspect of fuel development and qualification is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding andmore » Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 oC). The mechanisms responsible for fission gas release events are discussed.« less

  10. Examination of UC-ZrC after long term irradiation at thermionic temperature

    NASA Technical Reports Server (NTRS)

    Yang, L.; Johnson, H. O.

    1972-01-01

    Two fluoride tungsten clad UC-ZrC fueled capsules, designated as V-2C and V-2D, were examined a hot cell after irradiation in NASA Plum Brook Reactor at a maximum cladding temperature of 1930 K for 11,089 and 12,031 hours to burnups of 3.0 x 10 to the 20th power and 2.1 x 10 to the 20th power fission/c.c. respectively. Percentage of fission gas release from the fuel material was measured by radiochemical means. Cladding deformation, fuel-cladding interaction and microstructures of fuel, cladding, and fuel-cladding interface were studied metallographically. Compositions of dispersions in fuel, fuel matrix and fuel-cladding interaction layer were analyzed by electron microprobe techniques. Axial and radial distributions of burnup were determined by gamma-scan, autoradiography and isotopic burnup analysis. The results are presented and discussed in conjunction with the requirements of thermionic fuel elements for space power application.

  11. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Perez, E.; Yao, B.; Keiser, D. D., Jr.; Sohn, Y. H.

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr 2, γ-UZr, Zr solid-solution and Mo 2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si) 2Zr, (Al, Si)Zr 3 (Al, Si) 3Zr, and AlSi 4Zr 5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  12. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE PAGES

    Carmack, W. Jon; Chichester, Heather M.; Porter, Douglas L.; ...

    2016-02-27

    The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This then places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. After comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  13. Metallography and fuel cladding chemical interaction in fast flux test facility irradiated metallic U-10Zr MFF-3 and MFF-5 fuel pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Chichester, H. M.; Porter, D. L.

    2016-05-01

    Abstract The Mechanistic Fuel Failure (MFF) series of metal fuel irradiations conducted in the Fast Flux Test Facility (FFTF) provides an important potential comparison between data generated in the Experimental Breeder Reactor (EBR-II) and that expected in a larger-scale fast reactor. The irradiations were the beginning tests to qualify U-10wt%Zr as a driver fuel for FFTF. The FFTF core, with a 91.4 cm tall fuel column and a chopped cosine neutron flux profile, operated with a peak cladding temperature at the top of the fuel column, but developed peak burnup at the centerline of the core. This places the peakmore » fuel temperature midway between the core center and the top of fuel, lower in the fuel column than in previous EBR-II experiments that had a 32-cm height core. The MFF-3 and MFF-5 qualification assemblies operated in FFTF to >10 at% burnup, and performed very well with no cladding breaches. The MFF-3 assembly operated to 13.8 at% burnup with a peak inner cladding temperature of 643°C, and the MFF-5 assembly operated to 10.1 at% burnup with a peak inner cladding temperature of 651°C. Because of the very high operating temperatures for both the fuel and the cladding, data from the MFF assemblies are most comparable to the data obtained from the EBR-II X447 experiment, which experienced two pin breaches. The X447 breaches were strongly influenced by a large amount of fuel/cladding chemical interaction (FCCI). The MFF pins benefitted from different axial locations of high burnup and peak cladding temperature, which helped to reduce interdiffusion between rare earth fission products and stainless steel cladding. Post-irradiation examination evidence illustrates this advantage. Comparing other performance data of the long MFF pins to prior EBR-II test data, the MFF fuel inside the cladding grew less axially, and the gas release data did not reveal a definitive difference.« less

  14. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  15. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE PAGES

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...

    2017-11-04

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  16. Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Heuser, Brent J.

    2018-01-01

    The oxidation behavior of chromium (Cr) and chromium-aluminum (CrAl) coatings with various compositions deposited on Zircaloy-2 to 700 °C high-temperature steam (HTS) exposure has been investigated. CrAl coatings with higher Al compositions demonstrate lower oxidation weight gain. A layer of γ-alumina developed on the CrAl coatings with Al composition over 43 at%, while Al2O3 and Cr2O3 developed on CrAl coatings with Al composition below 33 at%. Oxidation of Zircaloy-2 substrate was inhibited by the 1um coatings to 20 h HTS exposure. Coating constituent elements diffused into the substrate and formed intermetallic phases with the Zircaloy substrate. Thicker layers of intermetallic phases developed on the coatings with higher Al composition. The intermetallic phases included Fe and Ni, indicating the dissolution of second phase particles (SPPs) during HTS exposure.

  17. Synthesis, characterization, and photocatalytic application of Pd/ZrO2 and Pt/ZrO2

    NASA Astrophysics Data System (ADS)

    Saeed, Khalid; Sadiq, Mohammad; Khan, Idrees; Ullah, Saleem; Ali, Nauman; Khan, Adnan

    2018-05-01

    Zirconia-supported palladium (Pd/ZrO2) and Zirconia-supported platinum (Pt/ZrO2) nanoparticles (NPs) are synthesized from their precursors via impregnation technique. The Pd/ZrO2 and Pt/ZrO2 NPs were analyzed via SEM and EDX, while the study of indigo disulfonate dye degradation was carried out by UV/VIS spectrophotometer. The SEM micrographs illustrated that the Pd and Pt NPs were well placed on ZrO2 surface. The Pd/ZrO2 and Pt/ZrO2 NPs were also employed as photocatalysts for the photodegradation of indigo disulfonate in an aqueous medium under UV-light irradiation. The photodegradation study presented that Pd/ZrO2 and Pt/ZrO2 NPs degraded 96 and 94% of indigo disulfonate in 14 h, respectively. The effect of pH of medium and catalyst dosage and efficiency of recovered Pd/ZrO2 and Pt/ZrO2 NPs on the photocatalytic degradation were also studied. It was also found that the maximum degradation of dye was found at pH 10 (95-97%) and at 0.02 g weight (40.28%).

  18. An analytical model to predict and minimize the residual stress of laser cladding process

    NASA Astrophysics Data System (ADS)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  19. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  20. Implications of Zircaloy creep and growth to light water reactor performance

    NASA Astrophysics Data System (ADS)

    Franklin, David G.; Adamson, Ronald B.

    1988-10-01

    Deformation of zirconium alloy components in nuclear reactors has been a concern since the decision of Admiral Rickover to use them in the US Navy submarine reactors. With the exception of the first few light water reactors (LWRs) most of the core structural materials have been fabricated from either Zircaloy-2 or Zircaloy-4. Performance of these alloys has been extremely good, even though the effects of irradiation on deformation magnitudes and mechanisms were not fully appreciated until extensive service and in-reactor tests were accomplished. Since the reactor components are designed to operate at stress levels well below yield for normal conditions, the only significant deformation is time dependent. Although creep was anticipated, the enhancement by neutron irradiation and the stress-free, nearly constant-volume shape change known as irradiation growth were not known prior to materials testing in reactors under controlled conditions. Both of these phenomena have significant impact on performance and must be accounted for properly in design. Although irradiation creep and growth have resulted in only one significant performance problem (creep collapse of fuel cladding, which has been eliminated), deformation magnitudes and, particularly, differentials in strain magnitudes, are a continuing source of interest. Factors that affect dimensional stability due to both creep and growth include temperature, fluence, residual stress, texture, and microstructure. The first two are reactor variables and the others are related to component fabrication history. This paper includes a review of the applications of Zircaloy creep and growth to LWR fuel designs, a review of the impact of in-reactor creep and growth on fuel rod and fuel assembly performance, and comments on potential improvements. Since the reactor design, fuel design and the core environment in BWRs and PWRs are quite different, appropriate separation of the application of effects are made; of course, the basic

  1. 75 FR 80546 - Virginia Electric and Power Company; Surry Power Station Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... used to predict the rates of energy release, hydrogen concentration, and cladding oxidation from the... associated hydrogen pickup) for Optimized ZIRLO TM at any given burnup would be less than both zircaloy-4 and... between cladding hydrogen content (due to in-service corrosion) and post-quench ductility. \\2\\ ADAMS...

  2. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James

    2017-01-20

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Almore » cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.« less

  3. Exotic Phenomena in Quantum limit in nodal-line semimetal ZrSiS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; Liu, Jinyu; Mao, Zhiqiang

    2017-03-01

    In quantum limit, all carriers condense to the lowest Landau level, leading to possible exotic quantum phenomena such as Lifshitz transition and density waves. Usually, quantum limit is not easily achieved due to relatively large Fermi surface in metals. Fortunately, the nodal-line semimetal ZrSiS possesses a very small Fermi pocket with a characteristic quantum oscillation frequency of 8.4T, which represents the 2D Dirac states protected by non-symmorphic symmetry. The quantum limit of such Dirac bands can be reached in moderate magnetic field ~25T, indicating that ZrSiS could be a nice platform to explore the novel quantum phenomena of Dirac fermionsmore » in quantum limit.« less

  4. Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation

    NASA Astrophysics Data System (ADS)

    Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.

    2017-11-01

    Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.

  5. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    NASA Astrophysics Data System (ADS)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  6. Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.

    In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less

  7. Surface protection of light metals by one-step laser cladding with oxide ceramics

    NASA Astrophysics Data System (ADS)

    Nowotny, S.; Richter, A.; Tangermann, K.

    1999-06-01

    Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.

  8. Mass transport and crystal growth of the mixed ZrS2-ZrSe2 system

    NASA Technical Reports Server (NTRS)

    Wiedemeier, Heribert; Goldman, Howard

    1986-01-01

    The solid solubility of the ZrS2-ZrSe2 system was reinvestigated by annealing techniques to establish the relationship between composition and lattice parameters. Mixed crystals of ZrS(2x)Se2(1-x) for selected compositions of the source material were grown by chemical vapor transport and characterized by X-ray diffraction and microscopic methods. The mass transport rates and crystal growth of ZrSSe were investigated and compared with those of other compositions. The mass fluxes of the mixed system showed an increase with increasing selenium content. The transport products were richer in ZrSe2 than the residual source materials when the ZrSe2 content of the starting materials was greater than 50 mol.-pct. The mass transport rates revealed an increasing mass flux with pressure.

  9. a Study on the Fretting Fatigue Life of Zircaloy Alloys

    NASA Astrophysics Data System (ADS)

    Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck

    Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.

  10. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    NASA Astrophysics Data System (ADS)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun; Heuser, Brent J.; Mandapaka, Kiran K.; Was, Gary S.

    2016-03-01

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  11. Application of thin layer activation technique for surface wear studies in Zr based materials using charged particle induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Chowdhury, D. P.; Pal, Sujit; Parthasarathy, R.; Mathur, P. K.; Kohli, A. K.; Limaye, P. K.

    1998-09-01

    Thin layer activation (TLA) technique has been developed in Zr based alloy materials, e.g., zircaloy II, using 40 MeV α-particles from Variable Energy Cyclotron Centre at Calcutta. A brief description of the methodology of TLA technique is presented to determine the surface wear. The sensitivity of the measurement of surface wear in zircaloy material is found to be 0.22±0.05 μm. The surface wear is determined by TLA technique in zircaloy material which is used in pressurised heavy water reactor and the values have been compared with that obtained by conventional technique for the analytical validation of the TLA technique.

  12. Irradiation effects on thermal properties of LWR hydride fuel

    NASA Astrophysics Data System (ADS)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  13. (Zr,Ti)O2 interface structure in ZrO2-TiO2 nanolaminates with ultrathin periodicity

    NASA Astrophysics Data System (ADS)

    Aita, C. R.; DeLoach, J. D.; Yakovlev, V. V.

    2002-07-01

    A mixed cation interfacial structure in ZrO2-TiO2 nanolaminate films with ultrathin bilayer periodicity grown by sputter deposition at 297 K was identified by x-ray diffraction and nonresonant Raman spectroscopy. This structure consists of an amorphous phase at a ZrO2-on-TiO2 bilayer interface, followed by an extensive crystalline monoclinic (Zr,Ti)O2 solid solution predicted by Vegard's law. Monoclinic (Zr,Ti)O2 has previously been reported only once, in bulk powder of a single composition (ZrTiO4) at high pressure. Its stabilization in the nanolaminates is explained by the Gibbs-Thomson effect. This complex interfacial structure is shown to be a means of accommodating chemical mixing in the absence of a driving force for heteroepitaxy.

  14. Mechanistic Considerations Used in the Development of the PROFIT PCI Failure Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankaskie, P. J.

    A fuel Pellet-Zircaloy Cladding (thermo-mechanical-chemical) Interactions (PC!) failure model for estimating the probability of failure in !ransient increases in power (PROFIT) was developed. PROFIT is based on 1) standard statistical methods applied to available PC! fuel failure data and 2) a mechanistic analysis of the environmental and strain-rate-dependent stress versus strain characteristics of Zircaloy cladding. The statistical analysis of fuel failures attributable to PCI suggested that parameters in addition to power, transient increase in power, and burnup are needed to define PCI fuel failures in terms of probability estimates with known confidence limits. The PROFIT model, therefore, introduces an environmentalmore » and strain-rate dependent strain energy absorption to failure (SEAF) concept to account for the stress versus strain anomalies attributable to interstitial-disloction interaction effects in the Zircaloy cladding. Assuming that the power ramping rate is the operating corollary of strain-rate in the Zircaloy cladding, then the variables of first order importance in the PCI fuel failure phenomenon are postulated to be: 1. pre-transient fuel rod power, P{sub I}, 2. transient increase in fuel rod power, {Delta}P, 3. fuel burnup, Bu, and 4. the constitutive material property of the Zircaloy cladding, SEAF.« less

  15. Characterization of Hydrogen Embrittled Zircaloy-4 by Using a Van de Graaff Particle Accelerator

    NASA Astrophysics Data System (ADS)

    Budd, John

    2013-04-01

    On-site, dry cask storage was originally by the intended to be a short-term solution for holding spent nuclear fuel. Due to the lack of a permanent storage facility, the nuclear power industry seeks to assess the effective lifetime of the casks. One issue which could compromise cask integrity is Hydrogen embrittlement. This phenomenon occurs in the Zircaloy-4 fuel-rod cladding and is caused by the formation of Zirconium hydrides. Over time, thermal stresses caused by the heat from reactions of the stored nuclear fuel could result in significant breaches of the cladding. Our group at Texas A&M University- Kingsville is conducting experiments to aid in determining when such breaches will occur. We will irradiate samples of the alloy with protons of energies up to 400 keV using a Van de Graaff particle accelerator. Once irradiated, their properties will be characterized using scanning electron microscopy and Vickers hardness tests.

  16. Hydride Microstructure at the Metal-Oxide Interface of Zircaloy-4 from H.B. Robinson Nuclear Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut N; Edmondson, Philip D; Terrani, Kurt A

    2017-01-01

    This study investigates the hydride rim microstructure at the metal-oxide interface of Zircaloy-4 cladding segment removed from H.B. Robinson Nuclear Reactor by utilizing high resolution electron microscopy techniques with energy dispersive x-ray spectroscopy at Oak Ridge National Laboratory under the NSUF Rapid Turnout Experiment program. A complex stacking and orientation of hydride platelets has been observed below the sub-oxide layer. Furthermore, radial hydride platelets have been observed. EDS signals of both Fe and Cr has been reduced within hydrides whereas EDS signal of Sn is unaffected.

  17. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    NASA Astrophysics Data System (ADS)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  18. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Min; Mok, Yong-Kyoon; Sohn, Dong-Seong

    2017-12-01

    In this study, high-temperature steam oxidation experiments were performed at 1012-1207 °C on Zr-1Nb-1Sn-0.1Fe fuel cladding tubes to study their weight gains and microstructural characteristics. Many specimens were tested at each test temperature, and the results were reproducible and reliable. It is often debated whether the Zr-1Nb-1Sn-0.1Fe alloy follows the weight gain correlation developed by Cathcart and Pawel (C-P correlation) at around 1000 °C. According to our results, the C-P correlation overpredicts the weight gain at around 1000 °C, and this observation agrees well with the data reported by Westinghouse. In addition, the microstructures of the specimens were analyzed using scanning electron microscopy, and it was found that circumferential cracks are formed at the oxide-metal interface only at around 1000 °C. In previous studies, it has been postulated that cracks in the oxide promote the oxidation process, but it appears that the circumferential cracks at the oxide-metal interface decrease the oxidation rate before the breakaway oxidation occurs by disturbing the diffusion of oxygen. The oxidation rate reduction due to the circumferential cracks appears to be the reason for the overprediction of the C-P correlation at around 1000 °C.

  19. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  20. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE PAGES

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-08-26

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  1. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO 2 or ZrO 2. Themore » new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.« less

  2. Stellar laboratories . VIII. New Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths and the Al, Zr, and Xe abundances in the hot white dwarfs G191-B2B and RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Gamrath, S.; Quinet, P.; Löbling, L.; Hoyer, D.; Werner, K.; Kruk, J. W.; Demleitner, M.

    2017-03-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To search for zirconium and xenon lines in the ultraviolet (UV) spectra of G191-B2B and RE 0503-289, new Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths were calculated. This allows, for the first time, determination of the Zr abundance in white dwarf (WD) stars and improvement of the Xe abundance determinations. Methods: We calculated Zr iv-vii, Xe iv-v, and Xe vii oscillator strengths to consider radiative and collisional bound-bound transitions of Zr and Xe in our NLTE stellar-atmosphere models for the analysis of their lines exhibited in UV observations of the hot WDs G191-B2B and RE 0503-289. Results: We identified one new Zr iv, 14 new Zr v, and ten new Zr vi lines in the spectrum of RE 0503-289. Zr was detected for the first time in a WD. We measured a Zr abundance of -3.5 ± 0.2 (logarithmic mass fraction, approx. 11 500 times solar). We identified five new Xe vi lines and determined a Xe abundance of -3.9 ± 0.2 (approx. 7500 times solar). We determined a preliminary photospheric Al abundance of -4.3 ± 0.2 (solar) in RE 0503-289. In the spectra of G191-B2B, no Zr line was identified. The strongest Zr iv line (1598.948 Å) in our model gave an upper limit of -5.6 ± 0.3 (approx. 100 times solar). No Xe line was identified in the UV spectrum of G191-B2B and we confirmed the previously determined upper limit of -6.8 ± 0.3 (ten times solar). Conclusions: Precise measurements and calculations of atomic data are a prerequisite for advanced NLTE stellar-atmosphere modeling. Observed Zr iv-vi and Xe vi-vii line profiles in the UV spectrum of RE 0503-289 were simultaneously well reproduced with our newly calculated oscillator strengths. Based on observations

  3. Spectroscopic imaging scanning tunneling microscopy of a Dirac line node material ZrSiS

    NASA Astrophysics Data System (ADS)

    Zhou, Lihui; He, Qingyu; Queiroz, Raquel; Grüneis, Andreas; Schnyder, Andreas; Ast, Christian; Schoop, Leslie; Takagi, Hide; Rost, Andreas

    3D Dirac materials are an intensive area of current condensed matter research. The related Dirac line node materials have come into focus due to many shared properties such as unconventional magneto-transport and the potential to host topologically nontrivial phases. ZrSiS is one of the first discovered materials of this new family, hosting a nodal line and an unconventional surface state. Spectroscopic imaging scanning tunneling microscopy (SI-STM) detects quasiparticle interference and has been extensively used to study the scattering mechanism and the band structures of exotic materials with high energy resolution at the atomic scale. Here in this presentation, we report the investigation of ZrSiS by SI-STM at the atomic scale, in combination with DFT calculations. We succeeded in visualizing the Dirac nodal line both in real and momentum space, adding key pieces of evidences confirming the existence of a nodal line in this material and highlighting its exceptional properties. The breaking of a non-symmorphic symmetry at the surface induces an unusual surface state whose dispersion was mapped. In particular, we observed spectroscopic signatures of a type-II Dirac fermion hosted by the surface state. Our data as seen by SI-STM has impact beyond ZrSiS providing crucial insights into the properties of Dirac line node materials in particular and non-symmorphic crystals in general.

  4. Novel ZrO2 based ceramics stabilized by Fe2O3, SiO2 and Y2O3

    NASA Astrophysics Data System (ADS)

    Rada, S.; Culea, E.; Rada, M.

    2018-03-01

    Samples in the 5Fe2O3·10SiO2·xY2O3·(85-x)ZrO2 composition where x = 5, 10 and 15 mol% Y2O3 were synthesized and investigated by XRD, SEM, density measurements, FTIR, UV-Vis, EPR and PL spectroscopies. X-ray diffraction patterns confirm the presence of the tetragonal and cubic ZrO2 crystalline phases in all samples. The IR data show the overlaps of absorption bands assigned to Zrsbnd Osbnd Zr and Sisbnd Osbnd linkages in samples. UV-Vis and PL data indicate higher concentrations of intrinsic defects by doping with Y2O3 concentrations. The EPR spectra are characterized by two resonance lines situated at about g ∼ 4.3 and g ∼ 2 for lower Y2O3 contents.

  5. Crack growth through the thickness of thin-sheet Hydrided Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Raynaud, Patrick A. C.

    In recent years, the limits on fuel burnup have been increased to allow an increase in the amount of energy produced by a nuclear fuel assembly thus reducing waste volume and allowing greater capacity factors. As a result, it is paramount to ensure safety after longer reactor exposure times in the case of design-basis accidents, such as reactivity-initiated accidents (RIA). Previously proposed failure criteria do not directly address the particular cladding failure mechanism during a RIA, in which crack initiation in brittle outer-layers is immediately followed by crack growth through the thickness of the thin-wall tubing. In such a case, the fracture toughness of hydrided thin-wall cladding material must be known for the conditions of through-thickness crack growth in order to predict the failure of high-burnup cladding. The fracture toughness of hydrided Zircaloy-4 in the form of thin-sheet has been examined for the condition of through-thickness crack growth as a function of hydride content and distribution at 25°C, 300°C, and 375°C. To achieve this goal, an experimental procedure was developed in which a linear hydride blister formed across the width of a four-point bend specimen was used to inject a sharp crack that was subsequently extended by fatigue pre-cracking. The electrical potential drop method was used to monitor the crack length during fracture toughness testing, thus allowing for correlation of the load-displacement record with the crack length. Elastic-plastic fracture mechanics were used to interpret the experimental test results in terms of fracture toughness, and J-R crack growth resistance curves were generated. Finite element modeling was performed to adapt the classic theories of fracture mechanics applicable to thick-plate specimens to the case of through-thickness crack growth in thin-sheet materials, and to account for non-uniform crack fronts. Finally, the hydride microstructure was characterized in the vicinity of the crack tip by

  6. Development of data base with mechanical properties of un- and pre-irradiated VVER cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmolov, V.; Yegorova, L.; Kaplar, E.

    1998-03-01

    Analysis of recent RIA test with PWR and VVER high burnup fuel, performed at CABRI, NSRR, IGR reactors has shown that the data base with mechanical properties of the preirradiated cladding is necessary to interpret the obtained results. During 1997 the corresponding cycle of investigations for VVER clad material was performed by specialists of NSI RRC KI and RIAR in cooperation with NRC (USA), IPSN (France) in two directions: measurements of mechanical properties of Zr-1%Nb preirradiated cladding versus temperature and strain rate; measurements of failure parameters for gas pressurized cladding tubes. Preliminary results of these investigations are presented in thismore » paper.« less

  7. Safety margins in zircaloy oxidation and embrittlement criteria for emergency core cooling system acceptance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williford, R.E.

    1986-09-01

    Current emergency core cooling system acceptance criteria for light water reactors specify that, under loss-of-coolant accident (LOCA) conditions, the Baker-Just (BJ) correlation must be used to calculate Zircaloy-steam oxidation, calculated peak cladding temperatures (PCT) must not exceed 1204/sup 0/C, and calculated oxidation must not exceed 17% equivalent cladding reacted (ECR). An appropriately defined minimum margin of safety was estimated for each of these criteria. The currently required BJ oxidation correlation provides margins only over the 1100 to 1500/sup 0/C temperature range at the 95% confidence level. The PCT margins for thermal shock and handling failures are adequate at oxidation temperaturesmore » above 1204/sup 0/C for up to 210 and 160 s, respectively, at the 95% confidence level. The ECR thermal shock and handling margins at the 50 and 95% confidence levels, respectively, range between 2 and 7% ECR for the BJ correlation, but vanish at temperatures above 1100 to 1160/sup 0/C for the best-estimate Cathcart-Pawel correlation. However, use of the Cathcart Pawel correlation for ''design basis'' LOCA calculations can be justified at the 85 to 88% confidence level if cooling rate effects can be neglected.« less

  8. Characterization of hot-pressed short ZrO{sub 2} fiber toughened ZrB{sub 2}-based ultra-high temperature ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jia, E-mail: 2013113205@xmut.edu.cn; Huang, Yu; Zhang, Houan

    2014-09-15

    Two different ZrB{sub 2}-based ultra-high temperature ceramics were produced by hot pressing: ZrB{sub 2} + 20 vol.% SiC particle + 15 vol.% ZrO{sub 2} fiber and ZrB{sub 2} + 20 vol.% SiC whisker + 15 vol.% ZrO{sub 2} fiber. The microstructures were analyzed by using transmission electron microscopy and high-resolution transmission electron microscopy. It was shown that a clean interface without any impurities was identified in ZrB{sub 2}-based hybrid ceramics with SiC whiskers and ZrO{sub 2} fibers, which would significantly improve the toughening mechanism. The results of high-resolution transmission electron microscopy showed that stacking faults in SiC whiskers resulted frommore » an insertion of a (111) layer, which would be one of the main reasons for material anisotropy. However, the interface between the SiC particle and ZrO{sub 2} fiber was found to be ambiguous in ZrB{sub 2}-based hybrid ceramics with SiC particles and ZrO{sub 2} fibers due to the slight reaction. The orientation relationship between t-ZrO{sub 2} and m-ZrO{sub 2} phases obeyed the classical correspondence: (100){sub m}//(100){sub t} and [001]{sub m}//〈001〉{sub t}, which further verified the feasibility of phase transformation toughening mechanism. - Highlights: • ZrB{sub 2}-based ceramics toughened by short ZrO{sub 2} fiber are characterized by TEM and HRTEM. • The orientation relationship of t- and m-ZrO{sub 2} are (100){sub m}//(100){sub t}, [001]{sub m}//〈001〉{sub t} • The clean interface without any impurities leads to improve the toughening mechanism.« less

  9. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates

    PubMed Central

    Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan

    2016-01-01

    Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO2, 3Y-TZP). The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO4)2O (TTCP), CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2), together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase. PMID:28773503

  10. Hydrodeoxygenation of p -Cresol over Pt/Al 2 O 3 Catalyst Promoted by ZrO 2 , CeO 2 , and CeO 2ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiyan; Wu, Kui; Liu, Pengli

    2016-07-20

    ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less

  11. Derivative effect of laser cladding on interface stability of YSZ@Ni coating on GH4169 alloy: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Li, Bingtian; Tan, Yong; Li, Guifa; Shu, Xiaoyong; Peng, Ping

    2018-01-01

    Yttria-stabilized zirconia YSZ@Ni core-shell nanoparticles were used to prepare a thermal barrier coating (TBC) on a GH4169 alloy by laser cladding. Microstructural analysis showed that the TBC was composed of two parts: a ceramic and a bonding layer. In places where the ZrO2/Al2O3 eutectic structure was present in the ceramic layer, the Ni atoms diffused into the bonding layer, as confirmed by energy-dispersive X-ray spectroscopy (EDS). The derivative effect of laser cladding results in the original YSZ@Ni core-shell nanoparticles being translated into the Al2O3 crystal, activating the YSZ. The mechanism of ceramic/metal interface cohesion was studied in depth via first-principles and molecular dynamics simulation. The results show that the trend in the diffusion coefficients of Ni, Fe, Al, and Ti is DNi > DFe > DTi > DAl in the melting or solidification process of the material. The enthalpy of formation for Al2O3 is less than that of TiO2, resulting in a thermally grown oxide (TGO) Al2O3 phase transformation. With regard to the electronic structure, the trend in Mulliken population is QO-Ni > QZr-O > QO-Al. Although the bonding is slightly weakened between ZrO2/Al2O3 (QZr-O = 0.158 < QO-Ni = 0.220) compared to that in ZrO2/Ni, TGO Al2O3 can improve the oxidation resistance of the metal matrix. Thus, by comparing the connective and diffusive processes, our findings lay the groundwork for detailed and comprehensive studies of the laser cladding process for the production of composite materials.

  12. Effect of Isothermal Hold on the Microstructural Evolution of the Stainless Steel 304L/Zircaloy-4 Interface

    NASA Astrophysics Data System (ADS)

    Lebaili, A.; Taouinet, M.; Nibou, D.; Lebaili, S.; Hodaj, F.

    2017-07-01

    The transition from solid-state bonding of the stainless steel 304L/Zircaloy-4 diffusion couple to a partial liquid-phase bonding is important for the bonding process at temperatures ranging from 950 to 1050 °C. In this study, the temperature at which a melting process occurs at the interface after 45 min of isothermal holdings is determined experimentally. This melting process leads to a drastic change in the thickness of the reaction products zone (RPZ) as well as on its microstructure. Diffusion couples were characterized by SEM-EDS, and quantitative chemical analyses of different phases are performed by EPMA. The RPZ consists of three layers: the (α-Fe-Cr) phase layer and two layers consisting of Zr(Fe,Cr)2 (ɛ), Zr2(Fe,Ni) and (α-Zr) phases. The thickness of these layers strongly depends on the holding temperature. The analysis allowed the description of the physicochemical phenomena occurring during isothermal holding as well as during cooling. The solidification paths are determined at 1000, 1020 and 1050 °C. Hardness tests are performed on the bonded samples in order to qualify the mechanical properties of different phases of the RPZ. This study leads to a better understanding of the complex phenomena intervening in the joining process which is very useful for applications in industrial scale.

  13. Material selection for accident tolerant fuel cladding

    DOE PAGES

    Pint, B. A.; Terrani, K. A.; Yamamoto, Y.; ...

    2015-09-14

    Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ≥1200°C for short (≤4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2AlC form a protective alumina scale in steam. Therefore, commercial Ti 2AlC that is not single phase, formed a much thicker oxide at 1200°Cmore » in steam and significant TiO 2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich α’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated.« less

  14. Microstructures and properties of ceramic particle-reinforced metal matrix composite layers produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmao; He, Jingjiang; Liu, Wenjin; Zhong, Minlin

    2005-01-01

    Different weight ratio of titanium, zirconium, WC and Fe-based alloy powders were mixed, and cladded onto a medium carbon steel substrate using a 3kW continuous wave CO2 laser, aiming at producing Ceramic particles- reinforced metal matrix composites (MMCs) layers. The microstructures of the layers are typical hypoeutectic, and the major phases are Ni3Si2, TiSi2, Fe3C, FeNi, MC, Fe7Mo3, Fe3B, γ(residual austenite) and M(martensite). The microstructure morphologies of MMCs layers are dendrites/cells. The MC-type reinforcements are in situ synthesis Carbides which main compositions consist of transition elements Zr, Ti, W. The MC-type particles distributed within dendrite and interdendritic regions with different volume fractions for single and overlapping clad layers. The MMCs layers are dense and free of cracks with a good metallurgical bonding between the layer and substrate. The addition ratio of WC in the mixtures has the remarkable effect on the microhardness of clad layers.

  15. Evaluation of refractory-metal-clad uranium nitride and uranium dioxide fuel pins after irradiation for times up to 10 450 hours at 990 C

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.; Gluyas, R. E.

    1975-01-01

    The effects of some materials variables on the irradiation performance of fuel pins for a lithium-cooled space power reactor design concept were examined. The variables studied were UN fuel density, fuel composition, and cladding alloy. All pins were irradiated at about 990 C in a thermal neutron environment to the design fuel burnup. An 85-percent dense UN fuel gave the best overall results in meeting the operational goals. The T-111 cladding on all specimens was embrittled, possibly by hydrogen in the case of the UN fuel and by uranium and oxygen in the case of the UO2 fuel. Tests with Cb-1Zr cladding indicate potential use of this cladding material. The UO2 fueled specimens met the operational goals of less than 1 percent cladding strain, but other factors make UO2 less attractive than low-density UN for the contemplated space power reactor use.

  16. Zr-ZrO2 cermet solar coatings designed by modelling calculations and deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Chu; Hadavi, M. S.; Lee, K.-D.; Shen, Y. G.

    2003-03-01

    High solar performance Zr-ZrO2 cermet solar coatings were designed using a numerical computer model and deposited experimentally. The layer thickness and Zr metal volume fraction for the Zr-ZrO2 cermet solar selective coatings on a Zr or Al reflector with a surface ZrO2 or Al2O3 anti-reflection layer were optimized to achieve maximum photo-thermal conversion efficiency at 80°C under concentration factors of 1-20 using the downhill simplex method in multi-dimensions in the numerical calculation. The dielectric function and the complex refractive index of Zr-ZrO2 cermet materials were calculated using Sheng's approximation. Optimization calculations show that Al2O3/Zr-ZrO2/Al solar coatings with two cermet layers and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimized Al2O3/Zr-ZrO2/Al solar coating film with two cermet layers has a high solar absorptance value of 0.97 and low hemispherical emittance value of 0.05 at 80°C for a concentration factor of 2. The Al2O3/Zr-ZrO2/Al solar selective coatings with two cermet layers were deposited using dc magnetron sputtering technology. During the deposition of Zr-ZrO2 cermet layer, a Zr metallic target was run in a gas mixture of argon and oxygen. By control of oxygen flow rate the different metal volume fractions in the cermet layers were achieved using dc reactive sputtering. A solar absorptance of 0.96 and normal emittance of 0.05 at 80°C were achieved.

  17. Research on self-propagating high temperature synthesis prepared ZrC-ZrB2 composite ceramic

    NASA Astrophysics Data System (ADS)

    Yong, Cheng; Xunjia, Su; Genliang, Hou; YaKun, Xing

    2013-03-01

    ZrC-ZrB2 composite ceramic material is prepared by self-propagating high temperature synthesis, using Zr powders, CrO2 powders and Al powders as raw materials. Samples are studied by XRD and SEM, the results show that: ZrC-ZrB2 composite ceramic is attained after self-propagating high-temperature reaction, with Zr+ B4C as the main reactive system, and which is added respectively different content (CrO3 + Al) system. The study finds that the ceramic composite products are mainly composed of ZrC and ZrB2 phase, and other subphase. Compared to the main reactive system composite ceramic, composite ceramic grains grow up obviously, after introduction of the highly exothermic system (CrO3 + Al) in the main reactive system, and with the gradual increase of the content (CrO3 + Al).

  18. Aqueous Isolation of 17-Nuclear Zr-/Hf- Oxide Clusters during the Hydrothermal Synthesis of ZrO2/HfO2.

    PubMed

    Sung, Qing; Liu, Caiyun; Zhang, Guanyun; Zhang, Jian; Tung, Chen-Ho; Wang, Yifeng

    2018-06-21

    Novel 17-nuclear Zr-/Hf- oxide clusters ({Zr17} and {Hf17}) are isolated from aqueous systems. In the clusters, Zr/Hf ions are connected via μ3-O, μ3-OH and μ2-OH linkages into a pinwheel core which is wrapped with SO42-, HCOO- and aqua ligands. Octahedral hexanuclear Zr-/Hf- oxide clusters ({Zr6}oct and {Hf6}oct) are also isolated from the same hydrothermal system by decreasing the synthesis temperature. Structural analysis, synthetic conditions, vibrational spectra and ionic conductivity of the clusters are studied. Structural studies and synthesis inspection suggest that formation of {Zr6}oct and {Zr17} involves assembly of the same transferable building blocks, but the condensation degree and thermodynamic stability of the products increase with hydrothermal temperature. The role of {Zr6}oct and {Zr17} in the formation of ZrO2 nanocrystals are then discussed in the scenario of nonclassical nucleation theory. Besides, the Zr-oxide clusters exhibit ionic conductivity due to the mobility of protons. This study not only adds new members to the Zr-/Hf- oxide cluster family, but also establishes a connection from Zr4+ ions to ZrO2 in the hydrothermal preparation of zirconium oxide nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  20. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.

    PubMed

    Jiang, M; Zheng, J W; Xiao, H Y; Liu, Z J; Zu, X T

    2017-08-24

    ZrC and TiC have been proposed to be alternatives to SiC as fuel-cladding and structural materials in nuclear reactors due to their strong radiation tolerance and high thermal conductivity at high temperatures. To unravel how the presence of defects affects the thermo-physical properties under irradiation, first-principles calculations based on density function theory were carried out to investigate the mechanical and thermal properties of defective ZrC, TiC and SiC. As compared with the defective SiC, the ZrC and TiC always exhibit larger bulk modulus, smaller changes in the Young's and shear moduli, as well as better ductility. The total thermal conductivity of ZrC and TiC are much larger than that of SiC, implying that under radiation environment the ZrC and TiC will exhibit superior heat conduction ability than the SiC. One disadvantage for ZrC and TiC is that their Debye temperatures are generally lower than that of SiC. These results suggest that further improving the Debye temperature of ZrC and TiC will be more beneficial for their applications as fuel-cladding and structural materials in nuclear reactors.

  1. Effect of the ZrCl4 concentration in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt and the electrolysis current density on the quantitative composition of UO2-ZrO2 cathode deposits. Calculation and experiment

    NASA Astrophysics Data System (ADS)

    Krotov, V. E.; Filatov, E. C.

    2014-08-01

    A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.

  2. Probing lattice dynamics and electron-phonon coupling in the topological nodal-line semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Samanta, Sudeshna; Chatterjee, Swastika; Pariari, Arnab; Majumdar, Dipanwita; Satpati, Biswarup; Wang, Lin; Singha, Achintya; Mandal, Prabhat

    2018-03-01

    Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semimetal and has drawn enormous interests. In this paper, we have investigated the lattice dynamics and electron-phonon interaction in single-crystalline ZrSiS using Raman spectroscopy. Polarization and angle-resolved Raman data have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength- and temperature-dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scattering through interband transition. Our high-pressure Raman studies reveal vibrational anomalies, which are the signature of structural phase transitions. Further investigations through high-pressure synchrotron x-ray diffraction clearly show pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. This study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other isostructural systems.

  3. Air Plasma-Sprayed La2Zr2O7-SrZrO3 Composite Thermal Barrier Coating Subjected to CaO-MgO-Al2O3-SiO2 (CMAS)

    NASA Astrophysics Data System (ADS)

    Cai, Lili; Ma, Wen; Ma, Bole; Guo, Feng; Chen, Weidong; Dong, Hongying; Shuang, Yingchai

    2017-08-01

    La2Zr2O7-SrZrO3 composite thermal barrier coatings (TBCs) were prepared by air plasma spray (APS). The La2Zr2O7-SrZrO3 composite TBCs covered with calcium-magnesium-aluminum-silicate (CMAS) powder, as well as the powder mixture of CMAS and spray-dried La2Zr2O7-SrZrO3 composite powder, were heat-treated at 1250 °C in air for 1, 4, 8, and 12 h. The phase constituents and microstructures of the reaction products were characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Experimental results showed that the La2Zr2O7-SrZrO3 composite TBCs had higher CMAS resistance than 8YSZ coating. A dense new layer developed between CMAS and La2Zr2O7-SrZrO3 composite TBCs during interaction, and this new layer consisted mostly of apatite (Ca2La8(SiO4)6O2) and c-ZrO2. The newly developed layer effectively protected the La2Zr2O7-SrZrO3 composite TBCs from further CMAS attack.

  4. Tunability of the topological nodal-line semimetal phase in ZrSi X -type materials ( X = S ,   Se ,   Te )

    DOE PAGES

    Hosen, M. Mofazzel; Dimitri, Klauss; Belopolski, Ilya; ...

    2017-04-03

    The discovery of a topological nodal-line (TNL) semimetal phase in ZrSiS has invigorated the study of other members of this family. In this paper, we present a comparative electronic structure study ofmore » $$\\mathrm{ZrSi}X$$ (where $$X=\\text{S}$$, Se, Te) using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Our ARPES studies show that the overall electronic structure of $$\\mathrm{ZrSi}X$$ materials comprises the diamond-shaped Fermi pocket, the nearly elliptical-shaped Fermi pocket, and a small electron pocket encircling the zone center ($$\\mathrm{{\\Gamma}}$$) point, the $M$ point, and the $X$ point of the Brillouin zone, respectively. We also observe a small Fermi surface pocket along the $$M{-}\\mathrm{{\\Gamma}}{-}M$$ direction in ZrSiTe, which is absent in both ZrSiS and ZrSiSe. Furthermore, our theoretical studies show a transition from nodal-line to nodeless gapped phase by tuning the chalcogenide from S to Te in these material systems. Finally, our findings provide direct evidence for the tunability of the TNL phase in $$\\mathrm{ZrSi}X$$ material systems by adjusting the spin-orbit coupling strength via the $X$ anion.« less

  5. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    NASA Astrophysics Data System (ADS)

    Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.

    2014-10-01

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  6. Assessment of safety margins in zircaloy oxidation and embrittlement criteria for ECCS acceptance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williford, R.E.

    1986-04-01

    Current Emergency Core Cooling System (ECCS) Acceptance Criteria for light-water reactors include certain requirements pertaining to calculations of core performance during a Loss of Coolant Accident (LOCA). The Baker-Just correlation must be used to calculate Zircaloy-steam oxidation, calculated peak cladding temperatures (PCT) must not exceed 1204/sup 0/C, and calculated oxidation must not exceed 17% equivalent cladding reacted (17% ECR). The minimum margin of safety was estimated for each of these criteria, based on research performed in the last decade. Margins were defined as the amounts of conservatism over and above the expected extreme values computed from the data base atmore » specified confidence levels. The currently required Baker-Just oxidation correlation provides margins only over the 1100/sup 0/C to 1500/sup 0/C temperature range at the 95% confidence level. The PCT margins for thermal shock and handling failures are adequate at oxidation temperatures above 1204/sup 0/C for 210 and 160 seconds, respectively, at the 95% confidence level. ECR thermal shock and handling margins at the 50% and 95% confidence levels, respectively, range between 2% and 7% ECR for the Baker-Just correlation, but vanish at temperatures between 1100/sup 0/C and 1160/sup 0/C for the best-estimate Cathcart-Pawel correlation. Use of the Cathcart-Pawel correlation for LOCA calculations can be justified at the 85% to 88% confidence level if cooling rate effects can be neglected. 75 refs., 21 figs.« less

  7. Selection by current compliance of negative and positive bipolar resistive switching behaviour in ZrO2-x /ZrO2 bilayer memory

    NASA Astrophysics Data System (ADS)

    Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.

    2017-05-01

    We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.

  8. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  9. A DFT+U study of Pu immobilization in Gd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhao, F. A.; Xiao, H. Y.; Jiang, M.; Liu, Z. J.; Zu, X. T.

    2015-12-01

    The solubility of Pu in Gd2Zr2O7 has been investigated by the density functional theory plus Hubbard U correction. It is found that the formation of PuGdZr2O7, Gd2PuZrO7 and Gd2Pu1.5Zr0.5O7 are exothermic, whereas Pu0.5Gd1.5Zr2O7, Pu1.5Gd0.5Zr2O7 and Gd2Pu0.5Zr1.5O7 are energetically less stable than their respective separated states. The calculations show that both the Gd and Zr lattice sites can be substituted by the Pu, which is consistent with the immobilization behavior of uranium in Gd2Zr2O7 observed experimentally. The site preference of Pu in Gd2Zr2O7 is found to be dependent on the chemical environment, i.e., Pu prefers to substitute for Gd-site under Gd-rich and O2-rich conditions and for Zr-site under Zr-rich and O2-rich conditions.

  10. Preparation of Zr(Mo,W)2O8 with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)2(OH,Cl)22H2O.

    PubMed

    Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I

    2018-03-28

    Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 22H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8  → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8  → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8  → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6  - -4.5∙10 -6  K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6  K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 22H 2 O within 500-800 K.

  11. Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles.

    PubMed

    Pan, Yonghe; Gao, Yan; Kong, Dandan; Wang, Guodong; Hou, Jianbo; Hu, Shanwei; Pan, Haibin; Zhu, Junfa

    2012-04-10

    The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures. © 2012 American Chemical Society

  12. Analysis of pellet cladding interaction and creep of U 3SIi2 fuel for use in light water reactors

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    Following the accident at the Fukushima plant, enhancing the accident tolerance of the light water reactor (LWR) fleet became a topic of serious discussion. Under the direction of congress, the DOE office of Nuclear Energy added accident tolerant fuel development as a primary component to the existing Advanced Fuels Program. The DOE defines accident tolerant fuels as fuels that "in comparison with the standard UO2- Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events." To be economically viable, proposed accident tolerant fuels and claddings should be backward compatible with LWR designs, provide significant operating cost improvements such as power uprates, increased fuel burnup, or increased cycle length. In terms of safety, an alternative fuel pellet must have resistance to water corrosion comparable to UO2, thermal conductivity equal to or larger than that of UO2, and a melting temperature that allows the material to remain solid under power reactor conditions. Among the candidates, U3Si2 has a number of advantageous thermophysical properties, including; high density, high thermal conductivity at room temperature, and a high melting temperature. These properties support its use as an accident tolerant fuel while its high uranium density is capable of supporting uprates to the LWR fleet. This research characterizes U3Si2 pellets and analyzes U3Si2 under light water reactor conditions using the fuel performance code BISON. While some thermophysical properties for U3Si2 have been found in the literature, the irradiation behavior is sparse and limited to experience with dispersion fuels. Accordingly, the creep behavior for U3Si2 has been unknown, making it

  13. High pressure phase transitions and compressibilities of Er2Zr2O7 and Ho2Zr2O7

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Lang, M.; Becker, U.; Ewing, R. C.; Lian, J.

    2008-01-01

    Phase stability and compressibility of rare earth zirconates with the defect-fluorite structure were investigated by in situ synchrotron x-ray diffraction. A sluggish defect-fluorite to a cotunnitelike phase transformation occurred at pressures of ˜22 and ˜30GPa for Er2Zr2O7 and Ho2Zr2O7, respectively. Enhanced compressibility was found for the high pressure phase as a result of increasing cation coordination number and cation-anion bond length.

  14. Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding

    NASA Astrophysics Data System (ADS)

    Dryepondt, Sebastien; Unocic, Kinga A.; Hoelzer, David T.; Massey, Caleb P.; Pint, Bruce A.

    2018-04-01

    Low-Cr oxide dispersion strengthened (ODS) FeCrAl alloys were developed as accident tolerant fuel cladding because of their excellent oxidation resistance at very high temperature, high strength and improved radiation tolerance. Fe-12Cr-5Al wt.% gas atomized powder was ball milled with Y2O3+FeO, Y2O3+ZrO2 or Y2O3+TiO2, and the resulting powders were extruded at 950 °C. The resulting fine grain structure, particularly for the Ti and Zr containing alloys, led to very high strength but limited ductility. Comparison with variants of commercial PM2000 (Fe-20Cr-5Al) highlighted the significant impact of the powder consolidation step on the alloy grain size and, therefore, on the alloy mechanical properties at T < 500 °C. These low-Cr compositions exhibited good oxidation resistance at 1400 °C in air and steam for 4 h but could not form a protective alumina scale at 1450 °C, similar to observations for fine grained PM2000 alloys. The effect of alloy grain size, Zr and Ti additions, and impurities on the alloy mechanical and oxidation behaviors are discussed.

  15. Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces.

    PubMed

    Zhang, Hai-Hui; Xie, Yao-Ping; Yao, Mei-Yi; Xu, Jing-Xiang; Zhang, Jin-Long; Hu, Li-Juan

    2018-05-30

    The anisotropy of metal oxidation is a fundamental issue, and the oxidation of Zr surfaces also attracts much attention due to the application of Zr alloys as cladding materials for nuclear fuels in nuclear power plants. In this study, we systematically investigate the diagram of O adsorption on low Miller index Zr surfaces by using first-principles calculations based on density functional theory calculations. We find that O adsorption on the basal surface, Zr(0001), is more favourable than that on the prism surfaces, Zr(112[combining macron]0) and Zr(101[combining macron]0), under strong O-reducing conditions, while O adsorption on the prism surface is more favourable than that of the basal surface under weak O-reducing conditions and the O-rich conditions. Our findings reveal that the anisotropy of adsorption properties of O on the Zr surfaces is dependent on the O chemical potential in the environment. Furthermore, the ability of the prism for O adsorption is stronger than that of the basal surface under the O-rich condition, which is consistent with the experimental observation that the oxidation of the prism Zr surface is easier than that of the basal surface. Systematic surveys show the adsorption ability of the surface under strong O-reducing conditions is determined by the low coordination numbers of surface atoms and surface geometrical structures, while the adsorption ability of the surface under weak O-reducing conditions and O-rich conditions is only determined by the low coordination number of surface atoms. These results can provide an atomic scale understanding of the initial oxidation of Zr surfaces, which inevitably affects the growth of protective passivation layers that play critical roles in the corrosion resistance of Zr cladding materials.

  16. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R 0.33Zr2(PO4)3 ( R = Nd, Eu, Er) and Er0.33(1- x) Zr0.25 x Zr2(PO4)3

    NASA Astrophysics Data System (ADS)

    Volgutov, V. Yu.; Orlova, A. I.

    2015-09-01

    Phosphates R 0.33Zr2(PO4)3 ( R = Nd, Eu, or Er) and Er0.33(1- х)Zr0.25Zr2(PO4)3 ( х = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr2(PO4)3 family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd0.33Zr2(PO4)3 with α a =-2.21 × 10-6 °С-1, α c = 0.81 × 10-6 °С-1, and Δα = 3.02 × 10-6 °С-1 and Er0.08Zr0.19Zr2(PO4)3 with α a =-1.86 × 10-6 °С-1, α c = 1.73 × 10-6 °С-1, and Δα = 3.58 × 10-6 °С-1.

  17. Explosion Clad for Upstream Oil and Gas Equipment

    NASA Astrophysics Data System (ADS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  18. TEM study on the initial oxidation of Zircaloy-4 thin foil specimens heated in a low vacuum air condition at 280-300 °C

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhou, Bang-xin; Zhu, Wei; Wen, Bang; Yao, Mei-yi; Li, Qiang; Wu, Lu; Zhang, Jin-long; Fang, Zhong-qiang

    2017-04-01

    As one of the important structural materials in nuclear industry, the corrosion resistance of zirconium alloy limits their in-pile application. Therefore, it is necessary to investigate the corrosion mechanism of zirconium alloys. The zirconium-oxygen reaction at the O/M interface is one of the factors that affect the oxidation process. There are few reports in this regard. Ideally, the reaction process at the O/M interface has certain relevance with the initiation oxidation of zirconium, which provided a new way to investigate the reaction process by observing the initiation oxidation behaviours. To investigate the oxidation behaviours of zirconium alloy at the initial stage, in this paper, zircaloy-4 TEM thin foil specimens in 3 mm diameter were studied by TEM observation after heating in air condition with a vacuum of 3 Pa at 280 °C, 290 °C and 300 °C for 30 min exposures. The results show that, ZrO2 begin to nucleate at a size of 3-5 nm at a high Zr/O ratio of 10.4 and oxide layer formed while Zr/O was 4.6. As a result of stress caused by the P.B ratio of Zr, slip bands formed and a bcc structure sub-oxide b-ZrOx (a = 0.51 nm) grew up along with the slip bands was observed. At both sides of b-ZrOx, two hcp structure sub-oxides having the same a-axis lattice parameter and different c-axis lattice parameter were detected.

  19. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  20. Mechanical behavior of aluminum-bearing ferritic alloys for accident-tolerant fuel cladding applications

    NASA Astrophysics Data System (ADS)

    Guria, Ankan

    Nuclear power currently provides about 13% of electrical power worldwide. Nuclear reactors generating this power traditionally use Zirconium (Zr) based alloys as the fuel cladding material. Exothermic reaction of Zr with steam under accident conditions may lead to production of hydrogen with the possibility of catastrophic consequences. Following the Fukushima-Daiichi incident, the exploration of accident-tolerant fuel cladding materials accelerated. Aluminum-rich (around 5 wt. %) ferritic steels such as Fecralloy, APMT(TM) and APM(TM) are considered as potential materials for accident-tolerant fuel cladding applications. These materials create an aluminum-based oxide scale protecting the alloy at elevated temperatures. Tensile deformation behavior of the above alloys was studied at different temperatures (25-500 °C) at a strain rate of 10-3 s-1 and correlated with microstructural characteristics. Higher strength and decent ductility of APMT(TM) led to further investigation of the alloy at various combination of strain rates and temperatures followed by fractography and detailed microscopic analyses. Serrations appeared in the stress-strain curves of APMT(TM) and Fecralloy steel tested in a limited temperature range (250-400 °C). The appearance of serrations is explained on the basis of dynamic strain aging (DSA) effect due to solute-dislocation interactions. The research in this study is being performed using the funds received from the US DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP).

  1. In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2

    PubMed Central

    2013-01-01

    In situ FT-IR spectroscopy was exploited to study the adsorption of CO2 and CO on commercially available yttria-stabilized ZrO2 (8 mol % Y, YSZ-8), Y2O3, and ZrO2. All three oxides were pretreated at high temperatures (1173 K) in air, which leads to effective dehydroxylation of pure ZrO2. Both Y2O3 and YSZ-8 show a much higher reactivity toward CO and CO2 adsorption than ZrO2 because of more facile rehydroxylation of Y-containing phases. Several different carbonate species have been observed following CO2 adsorption on Y2O3 and YSZ-8, which are much more strongly bound on the former, due to formation of higher-coordinated polydentate carbonate species upon annealing. As the crucial factor governing the formation of carbonates, the presence of reactive (basic) surface hydroxyl groups on Y-centers was identified. Therefore, chemisorption of CO2 most likely includes insertion of the CO2 molecule into a reactive surface hydroxyl group and the subsequent formation of a bicarbonate species. Formate formation following CO adsorption has been observed on all three oxides but is less pronounced on ZrO2 due to effective dehydroxylation of the surface during high-temperature treatment. The latter generally causes suppression of the surface reactivity of ZrO2 samples regarding reactions involving CO or CO2 as reaction intermediates. PMID:24009780

  2. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  3. Intrinsic Properties and Structure of AB2 Laves Phase ZrW2

    NASA Astrophysics Data System (ADS)

    Wu, Junyan; Zhang, Bo; Zhan, Yongzhong

    2017-06-01

    Using the first-principle calculations along with the quasi-harmonic Debye model, we explore the structural, thermodynamic, mechanical, and electronic properties of ZrW2 intermetallic considering temperature or pressure effect. The computed equilibrium lattice parameter here is highly consistent with previous available results. The obtained formation enthalpy reveals that the ZrW2 is structurally stable in the pressure range of 0 to 100 GPa. The pressure and temperature dependences of V/ V 0 ratio, constant volume specific heat capacity, thermal expansion coefficient, and Debye temperature of ZrW2 have been obtained. The calculated minimum thermal conductivity k min of ZrW2 is fairly small and shows anisotropy, which implies that ZrW2 has promising thermal-insulating application in engineering and may be competent for the thermal barrier materials. Moreover, from the results of elastic properties, we found the ZrW2 is mechanically stable and exhibits elastic anisotropy and the extent of elastic anisotropy increases with pressure. Additionally, ZrW2 shows ductile nature and its mechanical moduli all enhance as pressure increases, which is further confirmed by the findings from the electronic properties.

  4. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  5. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  6. Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces [Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces: Implications for catalysis and energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Juan, Pierre -Alexandre; Dingreville, Remi

    The structures and properties of Ce 1–xZr xO 2 (x = 0–1) solid solutions, selected Ce 1–xZr xO 2 surfaces, and Ce 1–xZr xO 2/CeO 2 interfaces were computed within the framework of density functional theory corrected for strong electron correlation (DFT+ U). The calculated Debye temperature increases steadily with Zr content in (Ce, Zr)O 2 phases, indicating a significant rise in microhardness from CeO 2 to ZrO 2, without appreciable loss in ductility as the interfacial stoichiometry changes. Surface energy calculations for the low-index CeO 2(111) and (110) surfaces show limited sensitivity to strong 4f-electron correlation. The fracture energymore » of Ce 1–xZr xO 2(111)/CeO 2(111) increases markedly with Zr content, with a significant decrease in energy for thicker Ce 1–xZr xO 2 films. These findings suggest the crucial role of Zr acting as a binder at the Ce 1–xZr xO 2/CeO 2 interfaces, due to the more covalent character of Zr–O bonds compared to Ce–O. Finally, the impact of surface relaxation upon interface cracking was assessed and found to reach a maximum for Ce 0.25Zr 0.75O 2/CeO 2 interfaces.« less

  7. Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces [Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces: Implications for catalysis and energy applications

    DOE PAGES

    Weck, Philippe F.; Juan, Pierre -Alexandre; Dingreville, Remi; ...

    2017-06-21

    The structures and properties of Ce 1–xZr xO 2 (x = 0–1) solid solutions, selected Ce 1–xZr xO 2 surfaces, and Ce 1–xZr xO 2/CeO 2 interfaces were computed within the framework of density functional theory corrected for strong electron correlation (DFT+ U). The calculated Debye temperature increases steadily with Zr content in (Ce, Zr)O 2 phases, indicating a significant rise in microhardness from CeO 2 to ZrO 2, without appreciable loss in ductility as the interfacial stoichiometry changes. Surface energy calculations for the low-index CeO 2(111) and (110) surfaces show limited sensitivity to strong 4f-electron correlation. The fracture energymore » of Ce 1–xZr xO 2(111)/CeO 2(111) increases markedly with Zr content, with a significant decrease in energy for thicker Ce 1–xZr xO 2 films. These findings suggest the crucial role of Zr acting as a binder at the Ce 1–xZr xO 2/CeO 2 interfaces, due to the more covalent character of Zr–O bonds compared to Ce–O. Finally, the impact of surface relaxation upon interface cracking was assessed and found to reach a maximum for Ce 0.25Zr 0.75O 2/CeO 2 interfaces.« less

  8. Calculation and synthesis of ZrC by CVD from ZrCl4-C3H6-H2-Ar system with high H2 percentage

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Cheng, Laifei; Ma, Baisheng; Gao, Shuang; Feng, Wei; Liu, Yongsheng; Zhang, Litong

    2015-03-01

    A thermodynamic calculation about the synthesis of ZrC from the ZrCl4-C3H6-H2-Ar system with high percentage of H2 was performed using the FactSage thermochemical software. According to the calculation, ZrC coating was synthesized on graphite substrates and carbon fibers by a low pressure chemical vapor deposition (LPCVD) process, and growth rate of the ZrC coating as a function of temperature was investigated. The surface diagrams of condensed-phases in this system were expressed as the functions of the deposition temperature, total pressure and reactant ratios of ZrCl4/(ZrCl4 + C3H6), H2/(ZrCl4 + C3H6), and the yield of the products was determined by the diagrams. A smooth and dense ZrC coating could be synthesized under the instruction of the calculated parameters. The morphologies of the ZrC coatings were significantly affected by temperature and gases flux. The deposition temperature is much lower than that from the ZrCl4-CH4-H2-Ar system.

  9. The effect of lanthanum on the fabrication of ZrB{sub 2}-ZrC composites by spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyoung Hun; Shim, Kwang Bo

    2003-01-15

    The effect of the addition of the rare earth element, lanthanum, on the sintering characteristics of ZrB{sub 2}-ZrC composites has been analyzed during a spark plasma sintering (SPS) process. Microscopic observation confirmed that lanthanum accelerated mass transport by the formation of the liquid phase between the particles induced by the spark plasma in the initial stage of the SPS process, and then these were recrystallized to form a lanthanum-containing secondary phase at the grain boundaries and at the grain boundary triple junctions. In spite of the strong covalent bonding characteristics of the ZrB{sub 2}-ZrC composite there are many well-developed dislocationmore » structures observed. The fracture toughness of the lanthanum-containing ZrB{sub 2}-ZrC is about 2.56 MPa m{sup 1/2}, which is comparable to that of the pure composite. Therefore, it is concluded that lanthanum is very effective as a sintering aid for the ZrB{sub 2}-ZrC composite without any degradation of the mechanical properties.« less

  10. Effects of interfacial layer on characteristics of TiN/ZrO2 structures.

    PubMed

    Kim, Younsoo; Kang, Sang Yeol; Choi, Jae Hyoung; Lim, Jae Soon; Park, Min Young; Chung, Suk-Jin; Chung, Jaegwan; Lee, Hyung Ik; Kim, Ki Hong; Kyoung, Yong Koo; Heo, Sung; Yoo, Cha Young; Kang, Ho-Kyu

    2011-09-01

    To minimize the formation of unwanted interfacial layers, thin interfacial layer (ZrCN layer) was deposited between TiN bottom electrode and ZrO2 dielectric in TiN/ZrO2/TiN capacitor. Carbon and nitrogen were also involved in the layer because ZrCN layer was thermally deposited using TEMAZ without any reactant. Electrical characteristics of TiN/ZrO2/TiN capacitor were improved by insertion of ZrCN layer. The oxidation of TiN bottom electrode was largely inhibited at TiN/ZrCN/ZrO2 structure compared to TiN/ZrO2 structure. While the sheet resistance of TiN/ZrCN/ZrO2 structure was constantly sustained with increasing ZrO2 thickness, the large increase of sheet resistance was observed in TiN/ZrO2 structure after 6 nm ZrO2 deposition. When ZrO2 films were deposited on ZrCN layer, the deposition rate of ZrO2 also increased. It is believed that ZrCN layer acted both as a protection layer of TiN oxidation and a seed layer of ZrO2 growth.

  11. High thermal stability of La 2O 3 and CeO 2-stabilized tetragonal ZrO 2

    DOE PAGES

    Wang, Shichao; Xie, Hong; Lin, Yuyuan; ...

    2016-02-15

    Catalyst support materials of tetragonal ZrO 2, stabilized by either La 2O 3 (La 2O 3-ZrO 2) or CeO 2 (CeO 2-ZrO 2), were synthesized under hydrothermal conditions at 200 °C with NH 4OH or tetramethylammonium hydroxide as the mineralizer. From In Situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La 2O 3-ZrO 2 and CeO 2-ZrO 2 supports were nonporous nanocrystallites that exhibited rectangular shapes with thermal stability up to 1000 °C in air. These supports had an average size of ~10 nm and a surface area of 59-97 m 2/g. The catalysts Pt/La 2Omore » 3-ZrO 2 and Pt/CeO 2-ZrO 2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3-12.4 wt %. Mono-dispersed Pt nanoparticles of ~3 nm were obtained for these catalysts. As a result, the incorporation of La 2O 3 and CeO 2 into the t-ZrO 2 structure did not affect the nature of the active sites for the Pt/ZrO 2 catalysts for the water-gas-shift (WGS) reaction.« less

  12. Orthorhombic Zr2Co11 phase revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. -Z.; Zhang, W. Y.; Sellmyer, D. J.

    2014-10-01

    The structure of the orthorhombic Zr2Co11 phase was revisited in the present work. Selected-area electron diffraction (SAED) and high-resolution electron microscopy (HREM) techniques were used to investigate the structure. They show the orthorhombic Zr2Co11 phase has a 1-D incommensurate modulated structure. The structure can be approximately described as a B-centered orthorhombic lattice. The lattice parameters of the orthorhombic Zr2Co11 phase have been determined by a tilt series of SAED patterns. A hexagonal network with a modulation wave has been observed in the HREM image and the hexagonal motif is considered as the basic structural unit.

  13. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  14. Nuclear-powered pacemaker fuel cladding study. [Difficulty of dissolving cladding and /sup 238/PuO/sub 2/ for obtaining materials for acts of terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a /sup 238/PuO/sub 2/-powered pacemaker could be transformed into a terrorism weapon.

  15. Interdiffusion and reactions between U-Mo and Zr at 650 °C as a function of time

    NASA Astrophysics Data System (ADS)

    Park, Y.; Keiser, D. D.; Sohn, Y. H.

    2015-01-01

    Development of monolithic U-Mo alloy fuel (typically U-10 wt.%Mo) for the Reduced Enrichment for Research and Test Reactors (RERTR) program entails a use of Zr diffusion barrier to eliminate the interdiffusion-reactions between the fuel alloy and Al-alloy cladding. The application of Zr barrier to the U-Mo fuel system requires a co-rolling process that utilizes a soaking temperature of 650 °C, which represents the highest temperature the fuel system is exposed to during both fuel manufacturing and reactor application. Therefore, in this study, development of phase constituents, microstructure and diffusion kinetics of U-10 wt.%Mo and Zr was examined using solid-to-solid diffusion couples annealed at 650 °C for 240, 480 and 720 h. Phase constituents and microstructural development were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Concentration profiles were mapped as diffusion paths on the isothermal ternary phase diagram. Within the diffusion zone, single-phase layers of β-Zr and β-U were observed along with a discontinuous layer of Mo2Zr between the β-Zr and β-U layers. In the vicinity of Mo2Zr phase, islands of α-Zr phases were also found. In addition, acicular α-Zr and U6Zr3Mo phases were observed within the γ-U(Mo) terminal alloy. Growth rate of the interdiffusion-reaction zone was determined to be 7.75 (± 5.84) × 10-16 m2/s at 650 °C, however with an assumption of a certain incubation period.

  16. Transition joints between Zircaloy-2 and stainless steel by diffusion bonding

    NASA Astrophysics Data System (ADS)

    Bhanumurthy, K.; Krishnan, J.; Kale, G. B.; Banerjee, S.

    1994-11-01

    The diffusion bonding between Zircaloy-2 and stainless steel (AISI 304L) using niobium, nickel and copper as intermediate layers has been investigated in the temperature range of 750 to 900°C. Bonding was carried out in a vacuum hot press, under compressive loading. Electron probe microanalysis and metallographic analysis showed a good metallurgical compatibility and also indicated the absence of discontunities, micropores and intermetallic compounds at various interfaces. The bond strength of the diffusion bonded assembly was found to be about 400 MPa for the couples bonded at 870°C for 2 h. The dimple structure on the fractured surface is indicative of the ductile mode of failure of the bonded assembly.

  17. Characterization of ZrO2 and (ZrO2)x(Al2O3)1-X thin films on Si substrates: effect of the Al2O3 component

    NASA Astrophysics Data System (ADS)

    Vitanov, P.; Harizanova, A.; Ivanova, T.

    2014-05-01

    ZrO2 and (ZrO2)x(Al2O3)1-x films were deposited by the sol-gel technique on Si substrates. The effect of the Al2O3 additive on the film surface morphology was studied by atomic force microscopy (AFM). The mixed oxide films showed a smoother morphology and lower values of the root-mean-square (RMS) roughness compared to ZrO2. Further, FTIR spectra indicated that ZrO2 underwent crystallization. The electrical measurements of the MIS structure revealed that the presence of Al2O3 and the amorphization affects its dielectric properties. The MIS structure with (ZrO2)x(Al2O3)1-x showed a lower fixed charge (~ 6×1010 cm-2) and an interface state density in the middle of the band gap of 6×1011 eV-1 cm-2). The dielectric constant measured was 22, with the leakage current density decreasing to 2×10-8 A cm-2 at 1×106 V cm-1.

  18. Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Dejang, N.; Limpichaipanit, A.; Watcharapasorn, A.; Wirojanupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S.

    2011-12-01

    Al2O3 /xZrO2 (where x = 0, 3, 13, and 20 wt.%) composite coatings were deposited onto mild steel substrates by atmospheric plasma spraying of mixed α-Al2O3 and nano-sized monoclinic-ZrO2 powders. Microstructural investigation showed that the coatings comprised well-separated Al2O3 and ZrO2 lamellae, pores, and partially molten particles. The coating comprised mainly of metastable γ-Al2O3 and tetragonal-ZrO2 with trace of original α-Al2O3 and monoclinic-ZrO2 phases. The effect of ZrO2 addition on the properties of coatings were investigated in terms of microhardness, fracture toughness, and wear behavior. It was found that ZrO2 improved the fracture toughness, reduced friction coefficient, and wear rate of the coatings.

  19. Effect of laser power on clad metal in laser-TIG combined metal cladding

    NASA Astrophysics Data System (ADS)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  20. Critical cladding radius for hybrid cladding modes

    NASA Astrophysics Data System (ADS)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  1. ZrB2-CNTs Nanocomposites Fabricated by Spark Plasma Sintering

    PubMed Central

    Jin, Hua; Meng, Songhe; Xie, Weihua; Xu, Chenghai; Niu, Jiahong

    2016-01-01

    ZrB2-based nanocomposites with and without carbon nanotubes (CNTs) as reinforcement were prepared at 1600 °C by spark plasma sintering. The effects of CNTs on the microstructure and mechanical properties of nano-ZrB2 matrix composites were studied. The results indicated that adding CNTs can inhibit the abnormal grain growth of ZrB2 grains and improve the fracture toughness of the composites. The toughness mechanisms were crack deflection, crack bridging, debonding, and pull-out of CNTs. The experimental results of the nanograined ZrB2-CNTs composites were compared with those of the micro-grained ZrB2-CNTs composites. Due to the small size and surface effects, the nanograined ZrB2-CNTs composites exhibited stronger mechanical properties: the hardness, flexural strength and fracture toughness were 18.7 ± 0.2 GPa, 1016 ± 75 MPa, and 8.5 ± 0.4 MPa·m1/2, respectively. PMID:28774087

  2. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  3. Electronic structure of ZrX2 (X = Se, Te)

    NASA Astrophysics Data System (ADS)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  4. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  5. Irradiation induced structural change in Mo 2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; ...

    2016-05-14

    The Mo 2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm 2 was carried out to investigate the radiation stability of the Mo 2Zr. The Mo 2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm 2. Furthermore, the transformed Mo 2Zr phase demonstrates exceptional radiation tolerance withmore » the development of dislocations without bubble formation.« less

  6. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    NASA Astrophysics Data System (ADS)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardo, N.J.; Marseille, T.J.; White, M.D.

    TRUMP-BD (Boil Down) is an extension of the TRUMP (Edwards 1972) computer program for the analysis of nuclear fuel assemblies under severe accident conditions. This extension allows prediction of the heat transfer rates, metal-water oxidation rates, fission product release rates, steam generation and consumption rates, and temperature distributions for nuclear fuel assemblies under core uncovery conditions. The heat transfer processes include conduction in solid structures, convection across fluid-solid boundaries, and radiation between interacting surfaces. Metal-water reaction kinetics are modeled with empirical relationships to predict the oxidation rates of steam-exposed Zircaloy and uranium metal. The metal-water oxidation models are parabolic inmore » form with an Arrhenius temperature dependence. Uranium oxidation begins when fuel cladding failure occurs; Zircaloy oxidation occurs continuously at temperatures above 13000{degree}F when metal and steam are available. From the metal-water reactions, the hydrogen generation rate, total hydrogen release, and temporal and spatial distribution of oxide formations are computed. Consumption of steam from the oxidation reactions and the effect of hydrogen on the coolant properties is modeled for independent coolant flow channels. Fission product release from exposed uranium metal Zircaloy-clad fuel is modeled using empirical time and temperature relationships that consider the release to be subject to oxidation and volitization/diffusion ( bake-out'') release mechanisms. Release of the volatile species of iodine (I), tellurium (Te), cesium (Ce), ruthenium (Ru), strontium (Sr), zirconium (Zr), cerium (Cr), and barium (Ba) from uranium metal fuel may be modeled.« less

  8. AN ATTEMPT TO LOCATE INTERMETALLIC PARTICLES IN ZIRCONIUM ALLOYS USING A BITTER FIGURE TECHNIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, B.; Harder, B.R.

    1961-10-01

    The compound ZrFe/sub 2/ is known to be ferromagnetic, and an attempt to locate particles of magnetic material in zircaloy-2 and dilute Zr- Fe alloys by a Bitter figure technlque is described. An Fe/sub 3/O/sub 4/ sol in water-soluble plastic was used to prepare Bitter figures of the alloy surfaces in the form of replicas, which were then examined in an electron microscope. No magnetic particles were located in either zircaloy-2 or a Zr-O.3% Fe alloy. Subsequent work on specimens of ZrFe/sub 2/ showed that the failure to detect it in the dilute alloys arose because the size of themore » intermetallic particles in the latter was smaller than the size of the magnetic domains. (auth)« less

  9. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    NASA Astrophysics Data System (ADS)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  10. Sliding wear and friction behaviour of zircaloy-4 in water

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Limaye, P. K.; Jadhav, D. T.

    2009-11-01

    In water cooled nuclear reactors, the sliding of fuel bundles in fuel channel handling system can lead to severe wear and it is an important topic to study. In the present study, sliding wear behaviour of zircaloy-4 was investigated in water (pH ˜ 10.5) using ball-on-plate sliding wear tester. Sliding wear resistance zircaloy-4 against SS 316 was examined at room temperature. Sliding wear tests were carried out at different load and sliding frequencies. The coefficient of friction of zircaloy-4 was also measured during each tests and it was found to decrease slightly with the increase in applied load. The micro-mechanisms responsible for wear in zircaloy-4 were identified to be microcutting, micropitting and microcracking of deformed subsurface zones in water.

  11. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    NASA Astrophysics Data System (ADS)

    Soo Kim, Yeon; Wang, Wei-E.; Olander, D. R.; Yagnik, S. K.

    1997-07-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400°C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2/H 2O above which massive hydriding occurs at 400°C is ˜ 200. The critical H 2/H 20 ratio is shifted to ˜2.5 × 103 at 350°C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ˜5 h at a hydriding rate of ˜10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale.

  12. ZrO2 film interfaces with Si and SiO2

    NASA Astrophysics Data System (ADS)

    Lopez, C. M.; Suvorova, N. A.; Irene, E. A.; Suvorova, A. A.; Saunders, M.

    2005-08-01

    The interface formed by the thermal oxidation of sputter-deposited Zr metal onto Si(100)- and SiO2-coated Si(100) wafers was studied in situ and in real time using spectroscopic ellipsometry (SE) in the 1.5-4.5 photon energy range and mass spectrometry of recoiled ions (MSRI). SE yielded optical properties for the film and interface and MSRI yielded film and interface composition. An optical model was developed and verified using transmission electron microscopy. Interfacial reaction of the ZrO2 was observed for both substrates, with more interaction for Si substrates. Equivalent oxide thicknesses and interface trap levels were determined on capacitors with lower trap levels found on samples with a thicker SiO2 underlayer. In addition to the optical properties for the intermixed interface layer, the optical properties for Zr metal and unreacted ZrO2 are also reported.

  13. Synthesis of ultrafine ZrB2 powders by sol-gel process

    NASA Astrophysics Data System (ADS)

    Yang, Li-Juan; Zhu, Shi-Zhen; Xu, Qiang; Yan, Zhen-Yu; Liu, Ling

    2010-09-01

    Ultrafine zirconium diboride (ZrB2) powders have been synthesized by sol-gel process using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3) and phenolic resin as sources of zirconia, boron oxide and carbon, respectively. The effects of the reaction temperature, B/Zr ratio, holding time, and EtOH/H2O ratio on properties of the synthesized ZrB2 powders were investigated. It was revealed that ultrafine (average crystallite size between 100 and 400 nm) ZrB2 powders can be synthesized with the optimum processing parameters as follows: (i) the ratio of B/Zr is 4; (ii) the solvent is pure ethanol; (iii) the condition of carbothermal reduction heat treatment is at 1550°C for 20 min.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Timothy D; Hollenbach, Daniel F; Shedlock, Daniel

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surfacemore » of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.« less

  15. Hydrogen absorption of Pd/ZrO2 composites prepared from Zr65Pd35 and Zr60Pd35Pt5 amorphous alloys

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Katsuragawa, Naoya; Hattori, Masatomo; Yogo, Toshinobu; Yamamura, Shin-ichi

    2018-01-01

    Metal-dispersed composites were derived from amorphous Zr65Pd35 and Zr65Pd30Pt5 alloys and their hydrogen absorption behavior was studied. X-ray diffractograms and scanning electron micrographs indicated that mixtures containing ZrO2, the metallic phase of Pd, and PdO were formed for both amorphous alloys heat-treated in air. In the composites, micron-sized Pd-based metal precipitates were embedded in a ZrO2 matrix after heat treatment at 800 °C in air. The hydrogen temperature-programmed reduction was applied to study the reactivity of hydrogen gas with the oxidized Zr65Pd35 and Zr65Pd30Pt5 materials. Rapid hydrogen absorption and release were observed on the composite derived from the amorphous alloy below 100 °C. The hydrogen pressure-concentration isotherm showed that the absorbed amount of hydrogen in materials depended on the formation of the Pd or Pt-doped Pd phase and its large interface area to the matrix in the nanocomposites. The results indicate the importance of the composite structure for the fabrication of a new type of hydrogen storage material prepared from amorphous alloys.

  16. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  17. High-yield sol-gel synthesis of well-dispersed, colorless ZrO(2) nanocrystals.

    PubMed

    Mizuno, Mikihisa; Sasaki, Yuichi; Lee, Sungkil; Katakura, Hitoshi

    2006-08-15

    A 93% high-yield synthesis of well-dispersed, colorless zirconium dioxide (ZrO(2)) nanocrystals is reported. In this synthesis, hydrolysis and condensation reactions of zirconium(IV) tert-butoxide in the presence of oleic acid (100 degrees C) formed ZrO(2) precursors. The ZrO(2) precursors were made of -Zr-O-Zr- networks surrounded by oleic acid molecules. Annealing (280 degrees C) the precursors dispersed in dioctyl ether caused crystallization of the -Zr-O-Zr- networks, thereby generating 4 nm ZrO(2) nanocrystals stabilized with oleic acid. The particles were highly crystalline and tetragonal phase. A dense ZrO(2) nanocrystal dispersion in toluene (280 mg/mL) showed a transmittance of about 90% (3 mm optical path length) in the whole visible region.

  18. A new approach to preparing Bi2Zr2O7 photocatalysts for dye degradation

    NASA Astrophysics Data System (ADS)

    Luo, Yijia; Cao, Liyun; Huang, Jianfeng; Feng, Liangliang; Yao, Chunyan

    2018-01-01

    A new synthetic route is presented to prepared pure Bi2Zr2O7 material, in which a NaNO3/KNO3 molten salt is used to obtain the resulting Bi2Zr2O7 at a relatively low temperature of 400 °C under atmospheric pressure. Powder x-ray diffraction confirmed the structure type and purity of the as-prepared sample, and further revealed that a single-source Bi(OH)3 · Zr(OH)4 · nH2O complex precursor plays a crucial role to synthesize Bi2Zr2O7 nanocrystals. Scanning electron microscope and transmission electron microscope show the morphologies and sizes of Bi2Zr2O7 crystal in detail, and UV-vis diffuse reflectance measurements evidenced the wide light absorption range. Furthermore, the as-synthesized Bi2Zr2O7 with smaller particle size and larger specific surface area exhibit superior photocatalytic activities compared with the sample obtained without adding molten salts.

  19. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  20. Suppression of dilution in Ni-Cr-Si-B alloy cladding layer by controlling diode laser beam profile

    NASA Astrophysics Data System (ADS)

    Tanigawa, Daichi; Funada, Yoshinori; Abe, Nobuyuki; Tsukamoto, Masahiro; Hayashi, Yoshihiko; Yamazaki, Hiroyuki; Tatsumi, Yoshihiro; Yoneyama, Mikio

    2018-02-01

    A Ni-Cr-Si-B alloy layer was produced on a type 304 stainless steel plate by laser cladding. In order to produce cladding layer with smooth surface and low dilution, influence of laser beam profile on cladding layer was investigated. A laser beam with a constant spatial intensity at the focus spot was used to suppress droplet formation during the cladding layer formation. This line spot, formed with a focussing unit designed by our group, suppressed droplet generation. The layer formed using this line spot with a constant spatial intensity had a much smoother surface compared to a layer formed using a line spot with a Gaussian-like beam. In addition, the dilution of the former layer was much smaller. These results indicated that a line spot with a constant spatial intensity was more effective in producing a cladding layer with smooth surface and low dilution because it suppressed droplet generation.

  1. Doped ZrO2 for future lead free piezoelectric devices

    NASA Astrophysics Data System (ADS)

    Starschich, S.; Böttger, U.

    2018-01-01

    The ferroelectric and piezoelectric properties of doped ZrO2 prepared by chemical solution deposition (CSD) are investigated. Doping with different elements such as Mg, In, La, and Y leads to a stabilization of the constricted hysteresis. As shown in a previous work, for the constricted hysteresis of ZrO2, the piezoelectric response is significantly larger compared to ZrO2 with a normal hysteresis. The Mg doped ZrO2 shows a strong temperature and cycle stability. For the piezoelectric properties, a magnesium concentration of 7% shows the largest piezoelectric response with a piezoelectric coefficient of >10 pm/V, as well as the best cycle stability. Due to thicker films, which can be realized by the CSD technique, the shown doped ZrO2 films are a promising candidate for energy related applications such as piezoelectric energy harvesting as well as for microelectromechanical systems.

  2. Substitutional Cd and Cd-Oxygen Vacancy Complexes in ZrO2 and Ce-doped ZrO_2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Karapetrova, E.; Platzer, R.; Gardner, J. A.; Evenson, W. E.; Sommers, J. A.

    1996-03-01

    We are using Perturbed Angular Correlation Spectroscopy (PAC) to study oxygen vacancy (V_O) dynamics in tetragonal ZrO2 and Ce-doped ZrO_2. PAC requires a radioactive probe atom, Cd in this study, which sits substitutionally for a Zr ion. Cd is doubly-negatively charged relative to the lattice and attracts doubly-positively charged V_Os. Pure tetragonal zirconia exists only above 950 ^circC and in this temperature range, the V_Os are very mobile. Above 950 ^circC we observe V_Os rapidly hopping about the Cd allowing us to determine the VO concentration and the trapping energy. We have been Ce-doping to stabilize the tetragonal phase to lower temperature to determine the electric field gradient the Cd experiences due to a stationary V_O. As a consequence of the Ce-doping, we observe a local lattice distortion about the Cd which increases with Ce-doping.

  3. Cyclic softening in annealed Zircaloy-2: Role of edge dislocation dipoles and vacancies

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Singh, S. R.; Krsjak, Vladimir; Singh, Vakil

    2018-04-01

    The mechanism of cyclic softening in annealed Zircaloy-2 at low strain amplitudes under strain controlled fatigue at room temperature is rationalized. The unusual softening due to continuous decrease in the phenomenological friction stress is found to be associated with decrease in the resistance against movement of dislocations because of the formation and easy glide of pure edge dislocation dipoles and consequent decrease in friction stress from reduction in the shear modulus. Positron annihilation spectroscopy data strongly support the increase in edge dislocation density containing jogs, from increased positron trapping and increase in annihilation lifetime.

  4. Effects of Laser Power Level on Microstructural Properties and Phase Composition of Laser-Clad Fluorapatite/Zirconia Composite Coatings on Ti6Al4V Substrates.

    PubMed

    Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan

    2016-05-17

    Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO₂, 3Y-TZP). The FA/ZrO₂ coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO₂ is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca₄(PO₄)₂O (TTCP), CaF₂, CaZrO₃, CaTiO₃ and monoclinic phase ZrO₂ (m-ZrO₂), together with a small amount of θ-Al₂O₃. As the laser power is increased, CaO, CaCO₃ and trace amounts of tetragonal phase ZrO₂ (t-ZrO₂) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO₃ phase.

  5. An infrared band system of the ZrCl molecule

    NASA Astrophysics Data System (ADS)

    Phillips, J. G.; Davis, S. P.; Galehouse, D. C.

    1980-07-01

    A series of infrared bands in the 0.97-1.15 micron region which is attributed to ZrCl is analyzed in light of the possibility that the bands may be observable in stellar spectra. Spectra of ZrO and ZrCl were produced by microwave discharge through a mixture of He, O and ZrCl4 and observed by Fourier transform spectrometer, resulting in the observation of 10 bands of the ZrCl system. Rotational quantum number assignments to the lines of the P and R branches observed are obtained and used to derive effective rotational constants for each substate, as well as zero-rotation origins of each subband. Shifts in wave numbers of rotational lines of the isotopes (Zr-92)(Cl-35)(Zr-94)(Cl-35) and (Zr-90)(Cl-37) relative to the more abundant (Zr-90)(Cl-35) are also observed. The observed molecular constants are shown to be in good agreement with those calculated in previous theoretical estimates.

  6. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  7. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G.

    2016-09-01

    The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids andmore » FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less

  8. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yoo, J.; Huang, K.; Keiser, D. D.; Jue, J. F.; Rabin, B.; Moore, G.; Sohn, Y. H.

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45-345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface between the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the α-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the α-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the α-U, Mo2Zr, and UZr2 phases.

  9. Microstructural Characteristics of HIP-bonded Monolithic Nuclear Fuels with a Diffusion Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan-Fong Jue; Dennis D. Keiser, Jr.; Cynthia R. Breckenridge

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative (GTRI) is developing an advanced monolithic fuel to convert US high performance research reactors to low-enriched uranium. Hot-isostatic-press bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U–Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between fuel meat, cladding, and diffusion barrier, as well as U–10Momore » fuel meat and Al–6061 cladding were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are • A typical Zr diffusion barrier of thickness 25 µm • Transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 µm • Chemical banding, in some areas more than 100 µm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7–13 wt% • Decomposed areas containing plate-shaped low-Mo phase • A typical Zr/cladding interaction layer of thickness 1-2 µm • A visible UZr2 bearing layer of thickness 1-2 µm • Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U–Mo matrix • No excessive interaction between cladding and the uncoated fuel edge • Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. • Some of these attributes might be critical to

  10. Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier

    NASA Astrophysics Data System (ADS)

    Jue, Jan-Fong; Keiser, Dennis D.; Breckenridge, Cynthia R.; Moore, Glenn A.; Meyer, Mitchell K.

    2014-05-01

    Due to the limitation of maximum uranium load achievable by dispersion fuel type, the Global Threat Reduction Initiative is developing an advanced monolithic fuel to convert US high-performance research reactors to low-enriched uranium. Hot-isostatic-press (HIP) bonding was the single process down-selected to bond monolithic U-Mo fuel meat to aluminum alloy cladding. A diffusion barrier was applied to the U-Mo fuel meat by roll-bonding process to prevent extensive interaction between fuel meat and aluminum-alloy cladding. Microstructural characterization was performed on fresh fuel plates fabricated at Idaho National Laboratory. Interfaces between the fuel meat, the cladding, and the diffusion barrier, as well as between the U-10Mo fuel meat and the Al-6061 cladding, were characterized by scanning electron microscopy. Preliminary results indicate that the interfaces contain many different phases while decomposition, second phases, and chemical banding were also observed in the fuel meat. The important attributes of the HIP-bonded monolithic fuel are: Zr diffusion barrier with a thickness of 25 μm. A transverse cross section that exhibits relatively equiaxed grains with an average grain diameter of 10 μm. Chemical banding, in some areas more than 100 μm in length, that is very pronounced in longitudinal (i.e., rolling) direction with Mo concentration varying from 7-13 wt.%. Decomposed areas containing plate-shaped low-Mo phase. A typical Zr/cladding interaction layer with a thickness of 1-2 μm. A visible UZr2 bearing layer with a thickness of 1-2 μm. Mo-rich precipitates (mainly Mo2Zr, forming a layer in some areas) followed by a Mo-depleted sub-layer between the visible UZr2-bearing layer and the U-Mo matrix. No excessive interaction between cladding and the uncoated fuel edge. Cladding-to-cladding bonding that exhibits no cracks or porosity with second phases high in Mg, Si, and O decorating the bond line. Some of these attributes might be

  11. Fabrication of versatile cladding light strippers and fiber end-caps with CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Theeg, T.; Wysmolek, M.; Ottenhues, C.; Pulzer, T.; Neumann, J.; Kracht, D.

    2018-02-01

    We report on novel fabrication schemes of versatile cladding light strippers and end-caps via CO2 laser radiation. We integrated cladding light strippers in SMA-like connectors for reliable and stable fiber-coupling of high-power laser diodes. Moreover, the application of cladding light strippers in typical fiber geometries for high-power fiber lasers was evaluated. In addition, we also developed processes to fuse end-caps to fiber end faces via CO2 laser radiation and inscribe the fibers with cladding light strippers near the end-cap. Corresponding results indicate the great potential of such devices as a monolithic and low-cost alternative to SMA connectors.

  12. Electronic structure in 1T-ZrS2 monolayer by strain

    NASA Astrophysics Data System (ADS)

    Xin, Qianqian; Zhao, Xu; Ma, Xu; Wu, Ninghua; Liu, Xiaomeng; Wei, Shuyi

    2017-09-01

    We report electronic structure of 1T-ZrS2 monolayer with biaxial strain from -10% to 15%, basing the first principles calculations. Our calculation results indicate that the band structure of ZrS2 monolayer was changed clearly. The location of conduction band minimum (CBM) and valence band maximum (VBM) changed with the variation of isotropic strain. At compressive strain, the location of CBM and VBM retains at M and Γ point, respectively. The band gap of ZrS2 monolayer decreases from 1.111 eV to 0 eV when compressive strain increases from 0% to -8%, which means that the ZrS2 monolayer turns to metal at -8% compressive strain. Under the tensile strain, the ZrS2 monolayer also retains be an indirect band gap semiconductor. The location of CBM moves from M to Γ point and the location of VBM moves along Γ-A-K-Γ direction. The band gap of ZrS2 monolayer firstly increases and then decreases and the biggest band gap is 1.577 eV at tensile strain 6%. We can see the compression strain is more effective than tensile strain in modulating band gap of 1T-ZrS2 monolayer.

  13. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Khor, K A

    2005-03-01

    Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO(2))-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO(2) powders were heat treated at 700 degrees Celsius and 800 degrees Celsius for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO(2)-GICs. The effects of different volume percentages of HA/ZrO(2) powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO(2)-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO(2) particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO(2) improved the mechanical properties of the HA/ZrO(2)-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO(2)-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO(2)-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO(2)-GICs were found to be much better than those of HA-GICs because ZrO(2) has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO(2) does not dissolve with increasing soaking time.

  14. Oxidation of ZrB2 SiC TaSi2 Materials at Ultra High Temperatures

    NASA Technical Reports Server (NTRS)

    Opila, E.; Smith, J.; Levine, S.; Lorincz, J.; Reigel, M.

    2008-01-01

    ZrB2 - 20v% SiC - 20v% TaSi2 was oxidized in stagnant air for ten minute cycles for times up to 100 minutes at 1627 C and 1927 C. The sample oxidized at 1627 C showed oxidation resistance better than that of the standard ZrB2 - 20v% SiC. The sample oxidized at 1927 C, however, showed evidence of liquid phase formation and complex oxidation products. The sample exposed at 1927 C was analyzed in detail by scanning electron microprobe and wavelength dispersive spectroscopy to understand the complex oxidation and melting reactions occurring during exposure. The as hot-pressed material shows the formation of a Zr(Ta)B2 phase in addition to the three phases in the nominal composition already noted. After oxidation, the TaSi2 in the matrix was completely reacted to form Ta(Zr)C. The layered oxidation products included SiO2, ZrO2, Ta2O5, and a complex oxide containing both Zr and Ta. Likely reactions are proposed based on thermodynamic phase stability and phase morphology.

  15. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2.

    PubMed

    Foraita, Sebastian; Fulton, John L; Chase, Zizwe A; Vjunov, Aleksei; Xu, Pinghong; Baráth, Eszter; Camaioni, Donald M; Zhao, Chen; Lercher, Johannes A

    2015-02-02

    The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m-ZrO2 is 1.3 times more active than on t-ZrO2 , whereas Ni/m-ZrO2 is three times more active than Ni/t-ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the α-hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1-octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1-octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m-ZrO2 compared to t-ZrO2 causes the higher activity of Ni/m-ZrO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optical and structural characterization of Ge clusters embedded in ZrO2

    NASA Astrophysics Data System (ADS)

    Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.

    2017-11-01

    The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.

  17. Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt.% Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Park; J. Yoo; K. Huang

    2014-04-01

    Phase constituents and microstructure changes in RERTR fuel plate assemblies as functions of temperature and duration of hot-isostatic pressing (HIP) during fabrication were examined. The HIP process was carried out as functions of temperature (520, 540, 560 and 580 °C for 90 min) and time (45–345 min at 560 °C) to bond 6061 Al-alloy to the Zr diffusion barrier that had been co-rolled with U-10 wt.% Mo (U10Mo) fuel monolith prior to the HIP process. Scanning and transmission electron microscopies were employed to examine the phase constituents, microstructure and layer thickness of interaction products from interdiffusion. At the interface betweenmore » the U10Mo and Zr, following the co-rolling, the UZr2 phase was observed to develop adjacent to Zr, and the a-U phase was found between the UZr2 and U10Mo, while the Mo2Zr was found as precipitates mostly within the a-U phase. The phase constituents and thickness of the interaction layer at the U10Mo-Zr interface remained unchanged regardless of HIP processing variation. Observable growth due to HIP was only observed for the (Al,Si)3Zr phase found at the Zr/AA6061 interface, however, with a large activation energy of 457 ± 28 kJ/mole. Thus, HIP can be carried to improve the adhesion quality of fuel plate without concern for the excessive growth of the interaction layer, particularly at the U10Mo-Zr interface with the a-U, Mo2Zr, and UZr2 phases.« less

  18. The CVD ZrB2 as a selective solar absorber

    NASA Astrophysics Data System (ADS)

    Randich, E.; Allred, D. D.

    Coatings of ZrB2 and TiB2 for photothermal solar absorber applications were prepared using chemical vapor deposition (CVD) techniques. Oxidation tests suggest a maximum temperature limit for air exposure of 600 K for TiB2 and 800 K for Z4B2. Both materials exhibit innate spectral selectivity with emittance at 375 K ranging from 0.06 to 0.09 and solar absorptance for ZrB2 ranging from 0.67 to 0.77 and solar absorptance for TiB2 ranging from 0.46 to 0.58. ZrB2 has better solar selectivity and more desirable oxidation behavior than TiB2. A 0.071 micrometer antireflection coating of Si3N4 deposited on the ZrB2 coating leads to an increase in absorptance from 0.77 to 0.93, while the emittance remains unchanged.

  19. Ion-enhanced chemical etching of ZrO2 in a chlorine discharge

    NASA Astrophysics Data System (ADS)

    Sha, Lin; Cho, Byeong-Ok; Chang, Jane P.

    2002-09-01

    Chlorine plasma is found to chemically etch ZrO2 thin films in an electron cyclotron resonance reactor, and the etch rate scaled linearly with the square root of ion energy at high ion energies with a threshold energy between 12-20 eV. The etching rate decreased monotonically with increasing chamber pressures, which corresponds to reduced electron temperatures. Optical emission spectroscopy and quadrupole mass spectrometry were used to identify the reaction etching products. No Zr, O, or ZrCl were detected as etching products, but highly chlorinated zirconium compounds (ZrCl2, ZrCl3, and ZrCl4) and ClO were found to be the dominant etching products. ZrCl3 was the dominant etching products at low ion energies, while ZrCl4 became dominant at higher ion energies. This is consistent with greater momentum transfer and enhanced surface chlorination, as determined by x-ray photoelectron spectroscopy, at increased ion energies. Several ion-enhanced chemical reactions are proposed to contribute to the ZrO2 etching. copyright 2002 American Vacuum Society.

  20. Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Wei; Capolungo, Laurent; Tome, Carlos N.

    In this paper, a crystallographic thermal creep model is proposed for Zr alloys that accounts for the hardening contribution of solutes via their time-dependent pinning effect on dislocations. The core-diffusion model proposed by Soare and Curtin (2008a) is coupled with a recently proposed constitutive modeling framework (Wang et al., 2017, 2016) accounting for the heterogeneous distribution of internal stresses within grains. The Coble creep mechanism is also included. This model is, in turn, embedded in the effective medium crystallographic VPSC framework and used to predict creep strain evolution of polycrystals under different temperature and stress conditions. The simulation results reproducemore » the experimental creep data for Zircaloy-4 and the transition between the low (n~1), intermediate (n~4) and high (n~9) power law creep regimes. This is achieved through the dependence on local aging time of the solute-dislocation binding energy. The anomalies in strain rate sensitivity (SRS) are discussed in terms of core-diffusion effects on dislocation junction strength. The mechanism-based model captures the primary and secondary creep regimes results reported by Kombaiah and Murty (2015a, 2015b) for a comprehensive set of testing conditions covering the 500–600 °C interval, stresses spanning 14–156 MPa, and steady state creep rates varying between 1.5·10 -9s -1 to 2·10 -3s -1. There are two major advantages to this model with respect to more empirical ones used as constitutive laws for describing thermal creep of cladding: 1) specific dependences on the nature of solutes and their concentrations are explicitly accounted for; 2) accident conditions in reactors, such as RIA and LOCA, usually take place in short times, and deformation takes place in the primary, not the steady-state creep stage. Finally, as a consequence, a model that accounts for the evolution with time of microstructure is more reliable for this kind of simulation.« less

  1. Mechanism-based modeling of solute strengthening: Application to thermal creep in Zr alloy

    DOE PAGES

    Wen, Wei; Capolungo, Laurent; Tome, Carlos N.

    2018-03-11

    In this paper, a crystallographic thermal creep model is proposed for Zr alloys that accounts for the hardening contribution of solutes via their time-dependent pinning effect on dislocations. The core-diffusion model proposed by Soare and Curtin (2008a) is coupled with a recently proposed constitutive modeling framework (Wang et al., 2017, 2016) accounting for the heterogeneous distribution of internal stresses within grains. The Coble creep mechanism is also included. This model is, in turn, embedded in the effective medium crystallographic VPSC framework and used to predict creep strain evolution of polycrystals under different temperature and stress conditions. The simulation results reproducemore » the experimental creep data for Zircaloy-4 and the transition between the low (n~1), intermediate (n~4) and high (n~9) power law creep regimes. This is achieved through the dependence on local aging time of the solute-dislocation binding energy. The anomalies in strain rate sensitivity (SRS) are discussed in terms of core-diffusion effects on dislocation junction strength. The mechanism-based model captures the primary and secondary creep regimes results reported by Kombaiah and Murty (2015a, 2015b) for a comprehensive set of testing conditions covering the 500–600 °C interval, stresses spanning 14–156 MPa, and steady state creep rates varying between 1.5·10 -9s -1 to 2·10 -3s -1. There are two major advantages to this model with respect to more empirical ones used as constitutive laws for describing thermal creep of cladding: 1) specific dependences on the nature of solutes and their concentrations are explicitly accounted for; 2) accident conditions in reactors, such as RIA and LOCA, usually take place in short times, and deformation takes place in the primary, not the steady-state creep stage. Finally, as a consequence, a model that accounts for the evolution with time of microstructure is more reliable for this kind of simulation.« less

  2. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders

    NASA Astrophysics Data System (ADS)

    Diao, Yunhua; Zhang, Kemin

    2015-10-01

    In the present work, a TiC/TiB2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens' corrosion property is clearly becoming better than that of the substrate.

  3. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foraita, Sebastian D.; Fulton, John L.; Chase, Zizwe A.

    2015-02-02

    The effect of the physicochemical properties of ZrO2 phases on the activity of Ni/ZrO2 catalysts for hydrodeoxygenation of stearic acid are described. A synergistic interaction between Ni and ZrO2 support was found. The effect is greatest for the monoclinic phase of ZrO2.

  4. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.

    PubMed

    Zhou, Haipeng; Shen, Yi; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2016-06-22

    To improve the electrochemical performance of graphite felt (GF) electrodes in vanadium flow batteries (VFBs), we synthesize a series of ZrO2-modified GF (ZrO2/GF) electrodes with varying ZrO2 contents via a facile immersion-precipitation approach. It is found that the uniform immobilization of ZrO2 nanoparticles on the GF not only significantly promotes the accessibility of vanadium electrolyte, but also provides more active sites for the redox reactions, thereby resulting in better electrochemical activity and reversibility toward the VO(2+)/VO2(+) and V(2+)/V(3+) redox reactions as compared with those of GF. In particular, The ZrO2/GF composite with 0.3 wt % ZrO2 displays the best electrochemical performance with voltage and energy efficiencies of 71.9% and 67.4%, respectively, which are much higher than those of 57.3% and 53.8% as obtained from the GF electrode at 200 mA cm(-2). The cycle life tests demonstrate that the ZrO2/GF electrodes exhibit outstanding stability. The ZrO2/GF-based VFB battery shows negligible activity decay after 200 cycles.

  5. MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, G.; Novascone, S. R.; Williamson, R. L.

    2015-09-01

    This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less

  6. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, Surya Veerendra; Byon, Chan; Reddy, Chandragiri Venkata

    2016-10-01

    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

  7. Structure and properties of ZrB2, ZrSiB and ZrAlSiB cathode materials and coatings obtained by their magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Iatsyuk, I. V.; Lemesheva, M. V.; Kiryukhantsev-Korneev, Ph V.; Levashov, E. A.

    2018-04-01

    The ceramic ZrB2, ZrSiB, and ZrAlSiB cathodes were manufactured by means of self-propagating high-temperature synthesis (SHS). The parameters of SHS process including dependence of the combustion temperature and rate on the initial temperature of the reaction mixtures, as well as values of effective activation energy were estimated. Cathodes were subjected to the magnetron sputtering in the argon atmosphere. The structure and properties of cathodes and coatings were studied by means of X-ray diffraction, scanning electron microscopy, energy-dispersive and glow discharge optical emission spectroscopy. Bulk ceramic samples and coatings were characterised in terms of their hardness, elastic modulus, elastic recovery, density, and residual porosity. Results obtained shows that cathodes posses homogeneous structure with low porosity level in range 2-6% and hardness between 10 and 17 GPa. Coatings demonstrate dense defect-free structure and contain nanocrystallites of h-ZrB2 phase. The grain size and hardness decrease from 8 down to 2 nm and from 37 down to 16 GPa with the addition of the silicon and aluminum dopes.

  8. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO 4) 6 luminescence centers in potassium hafnium-zirconium phosphates K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3

    NASA Astrophysics Data System (ADS)

    Torardi, C. C.; Miao, C. R.; Li, J.

    2003-02-01

    Potassium hafnium-zirconium phosphates, K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ˜60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1- xZr x(PO 4) 2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission.

  9. Characterisation of high temperature refractory ceramics for nuclear applications

    NASA Astrophysics Data System (ADS)

    Bottomley, P. D. W.; Wiss, Th; Janssen, A.; Cremer, B.; Thiele, H.; Manara, D.; Scheindlin, M.; Murray-Farthing, M.; Lajarge, P.; Menna, M.; Bouexière, D.; Rondinella, V. V.

    2012-03-01

    The ternary oxide ceramic system UO2-ZrO2-FeO is a refractory system that is of great relevance to the nuclear industry as it represents one of the main systems resulting from the interaction of the Zircaloy cladding, the UO2 fuel and the structural elements of a nuclear reactor. It is particularly the high temperature properties that require investigation; that is, when substantial overheating of the nuclear core occurs and interactions can lead to its degradation, melting and result in a severe nuclear accident. There has been much work on the UO2-ZrO2 system and also on the ternary system with FeO but there is still a need to examine 2 further aspects; firstly the effect of sub-oxidized systems, the UO2-Zr and FeO-Zr systems, and secondly the effect of Fe/Zr or Fe/U ratios on the melting point of the U-Zr-Fe oxide system. Samples of UO2-Zr and UO2-ZrO2-FeO were fabricated at ITU and then characterized by optical microscopy (OM) and X-ray diffraction to determine the ceramic's structure and verify the composition. Thereafter the samples are to be melted by laser flash heating and their liquidus and solidus temperatures determined by pyrometry. This programme is currently ongoing. The frozen samples, after testing, were then sectioned, polished and the molten zone micro-analytically examined by OM & SEM-EDS in order to determine its structure and composition and to compare with the existing phase diagrams. Examples of results from these systems will be given. Finally, a reacted Zr-FeO thermite mixture was examined, which had been used to generate high temperatures during tests of reactor melt-concrete interactions. The aim was to assess the reaction and estimate the heat generation from this novel technique. These results allow verification or improvement of the phase diagram and are of primary importance as input to models used to predict materials interactions in a severe nuclear accident.

  10. Photoluminescence and cathodoluminescence of Tb-doped Al 2O 3-ZrO 2 nanostructures obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zawadzki, M.; Hreniak, D.; Wrzyszcz, J.; Miśta, W.; Grabowska, H.; Malta, O. L.; Stręk, W.

    2003-07-01

    Terbium-doped Al 2O 3-ZrO 2 mixed oxides of 10 wt% zirconia content were prepared by the alkoxide sol-gel method. The obtained samples were characterized by XRD, SEM, thermal analysis, textural and TPR studies. The effect of thermal treatment of Tb-doped Al 2O 3-ZrO 2 samples on photo- and cathodoluminescence spectra was investigated. It was found that the photoluminescence spectrum induced by UV excitation was characterized by a green luminescence pattern arising from the 5D 4 → 7F J ( J=6-0) transitions of the Tb 3+ ion. This photoluminescence became almost completely damped for the samples sintered at 1200 °C. However, these samples have demonstrated an intense cathodoluminescence under high electron accelerating potential (60 kV). Moreover, it was observed that apart of the green luminescence, the blue emission lines arising from 5D 3 → 7F J transitions of Tb 3+ were observed. The nature of such behavior is discussed.

  11. Selenidation of epitaxial silicene on ZrB2

    NASA Astrophysics Data System (ADS)

    Wiggers, F. B.; Yamada-Takamura, Y.; Kovalgin, A. Y.; de Jong, M. P.

    2018-01-01

    The deposition of elemental Se on epitaxial silicene on ZrB2 thin films was investigated with synchrotron-based core-level photoelectron spectroscopy and low-energy electron diffraction. The deposition of Se at room temperature caused the appearance of Si 2p peaks with chemical shifts of n × 0.51 ± 0.04 eV (n = 1-4), suggesting the formation of SiSe2. This shows that capping the silicene monolayer, without affecting its structural and electronic properties, is not possible with Se. The annealing treatments that followed caused the desorption of Se and Si, resulting in the etching of the Si atoms formerly part of the silicene layer, and the formation of bare ZrB2(0001) surface area. In addition, a ZrB2(0001)-(√7 × 3)R40.9° surface reconstruction was observed, attributed to a Se-termination of the surface of the transition metal diboride thin film.

  12. A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Min; Kook, Dong-Hak; Cho, Il-Je; Kim, Yong-Soo

    2017-08-01

    In order to fundamentally understand the secondary hydriding mechanism of zirconium alloy cladding, the reaction of commercial Zircaloy-4 tubes with hydrogen and steam mixture was studied using a thermo-gravimetric analyser with two variables, H2/H2O ratio and temperature. Phenomenological analysis revealed that in the steam starvation condition, i.e., when the H2/H2O ratio is greater than 104, hydriding is the dominant reaction and the weight gain increases linearly after a short incubation time. On the other hand, when the gas ratio is 5 × 102 or 103, both hydriding and oxidation reactions take place simultaneously, leading to three distinct regimes: primary hydriding, enhanced oxidation, and massive hydriding. Microstructural changes of oxide demonstrate that when the weight gain exceeds a certain critical value, massive hydriding takes place due to the significant localized crack development within the oxide, which possibly simulates the secondary hydriding failure in a defective fuel operation. This study reveals that the steam starvation condition above the critical H2/H2O ratio is only a necessary condition for the secondary hydriding failure and, as a sufficient condition, oxide needs to grow sufficiently to reach the critical thickness that produces substantial crack development. In other words, in a real defective fuel operation incident, the secondary failure is initiated only when both steam starvation and oxide degradation conditions are simultaneously met. Therefore, it is concluded that the indispensable time for the critical oxide growth primarily determines the triggering time of massive hydriding failure.

  13. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  14. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  15. Influence of ZrO2 addition on the microstructure and discharge properties of Mg-Zr-O protective layers in alternating current plasma display panels

    NASA Astrophysics Data System (ADS)

    Guo, Bingang; Liu, Chunliang; Song, Zhongxiao; Liu, Liu; Fan, Yufeng; Xia, Xing; Fan, Duowang

    2005-08-01

    Mg-Zr-O protective layers for alternating current plasma display panels were deposited by e-beam evaporation. The effect of the ZrO2 addition on both the discharge properties [firing voltage Vf, minimum sustaining voltage Vs, and memory coefficient (MC)] and the microstructure of deposited Mg-Zr-O films were investigated. The results show that the film microstructure changes and the electron emission enhancement due to the ZrO2 addition are the main reasons for the improvements of the discharge properties of Mg-Zr-O films. A small amount of Zr solution in MgO under its solid solubility can effectively increase the outer-shell valence electron emission yield so as to decrease Vf and Vs compared with using a pure MgO protective layer. The ZrO2/(MgO +ZrO2) ratio has a great effect on the film surface conditions. Proper surface morphologies make a good contribution to obtain large MC in accordance with lower firing voltage.

  16. Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

    PubMed Central

    Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor

    2018-01-01

    Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257

  17. Fabrication of low thermal expansion SiC/ZrW2O8 porous ceramics

    NASA Astrophysics Data System (ADS)

    Poowancum, A.; Matsumaru, K.; Juárez-Ramírez, I.; Torres-Martínez, L. M.; Fu, Z. Y.; Lee, S. W.; Ishizaki, K.

    2011-03-01

    Low or zero thermal expansion porous ceramics are required for several applications. In this work near zero thermal expansion porous ceramics were fabricated by using SiC and ZrW2O8 as positive and negative thermal expansion materials, respectively, bonded by soda lime glass. The mixture of SiC, ZrW2O8 and soda lime glass was sintered by Pulsed Electric Current Sintering (PECS, or sometimes called Spark Plasma Sintering, SPS) at 700 °C. Sintered samples with ZrW2O8 particle size smaller than 25 μm have high thermal expansion coefficient, because ZrW2O8 has the reaction with soda lime glass to form Na2ZrW3O12 during sintering process. The reaction between soda lime glass and ZrW2O8 is reduced by increasing particle size of ZrW2O8. Sintered sample with ZrW2O8 particle size 45-90 μm shows near zero thermal expansion.

  18. X ray photoelectron spectroscopy (XPS) analysis of Photosensitive ZrO2 array

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, G.; Zhu, R.; Kou, Z.

    2018-03-01

    Based on organic zirconium source as the starting material, by adding chemical modifiers which are made up with photosensitive ZrO2 sol. A uniformed ZrO2 array dot was fabricated with a mean diameter of around 800 nm. By using UV-vis spectra and X-ray photoelectron spectroscopy analysis method, studies the photosensitive ZrO2 gel film of photochemical reaction process and the photosensitive mechanism, to determine the zirconium atom centered chelate structure, reaction formed by metal chelate Zr atom for the center, and to establish the molecular model of the chelate. And studied the ultraviolet light in the process of the variation of the XPS spectra, Zr3d5/2 to 184.9 eV corresponding to the binding energy of the as the combination of state peak gradually reduce; By combining with the status of Zr-O peak gradually increase; The strength of the peak is gradually decline. This suggests that in the process of ultraviolet light photo chemical reaction happened. This study is of great significance to the micro fabrication of ZrO2 array not only to the memory devices but also to the optical devices.

  19. Uranium dioxide fuel cladding strain investigation with the use of CYGRO-2 computer program

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1973-01-01

    Previously irradiated UO2 thermionic fuel pins in which gross fuel-cladding strain occurred were modeled with the use of a computer program to define controlling parameters which may contribute to cladding strain. The computed strain was compared with measured strain, and the computer input data were studied in an attempt to get agreement with measured strain. Because of the limitations of the program and uncertainties in input data, good agreement with measured cladding strain was not attained. A discussion of these limitations is presented.

  20. Study the structural and optical behaviour of polyaniline/ZrO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Sidhu, Gaganpreet Kaur; Kumar, Naresh; Kumar, Rajesh

    2018-05-01

    In nanoscience, hybrid material based on polymer and nanoparticles are of great interest because of much improved properties of components. Polymers are of enormous interest because of their various properties like flexibility, low weight and easy processing. Here, we studied the influence of ZrO2 nanoparticles on the structural and optical properties of Polyaniline (PANI). ZrO2 mixed with PANI, improve its structural and optical properties. XRD studies reveal that ZrO2 nanoparticles exist in the tetragonal phase in ZrO2/PANI nanocomposites. UV-Vis spectroscopic studies have been carried out to understand the presence of various energy levels and their involvement in absorbance of light. In PANI nanocomposites, aniline monomer attach with ZrO2 nanoparticles through p-p stacking interaction, Vander waal force and hydrogen bonding interaction.

  1. Phenol-photodegradation on ZrO2. Enhancement by semiconductors.

    PubMed

    Karunakaran, C; Dhanalakshmi, R; Gomathisankar, P

    2012-06-15

    On illumination with light of wavelength 365 nm phenol undergoes degradation on the surface of ZrO(2). The rate of degradation enhances linearly with the concentration of phenol and also the light intensity but decreases with increase of pH. The photonic efficiency of degradation is higher with illumination at 254 nm than with 365 nm. The diffuse reflectance spectral study suggests phenol-sensitized activation of ZrO(2) with 365 nm light. TiO(2), Fe(2)O(3), CuO, ZnO, ZnS, Nb(2)O(5) and CdO particles enhance the photodegradation on ZrO(2), indicating inter-particle charge-transfer. Determination of size of the particles under suspension, by light scattering technique, shows agglomeration of particles supporting the proposition of charge-transfer between particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    PubMed Central

    Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio

    2017-01-01

    Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO2) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications. PMID:29039803

  3. Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Junhui; Yu, Niannian; Wang, Jiafu; Xue, Kan-Hao; Miao, Xiangshui

    2018-04-01

    The successful fabrication of two-dimensional lateral heterostructures (LHS's) has opened up unprecedented opportunities in material science and device physics. It is therefore highly desirable to search for more suitable materials to create such heterostructures for next-generation devices. Here, we investigate a novel lateral heterostructure composed of monolayer ZrS2 and HfS2 based on density functional theory. The phonon dispersion and ab initio molecular dynamics analysis indicate its good kinetic and thermodynamic stability. Remarkably, we find that these lateral heterostructures exhibit an indirect to direct bandgap transition, in contrast to the intrinsic indirect bandgap nature of ZrS2 and HfS2. The type-II alignment and chemical bonding across the interline have also been revealed. The tensile strain is proved to be an efficient way to modulate the band structure. Finally, we further discuss other three stable lateral heterostructures: (ZrSe2)2(HfSe2)2 LHS, (ZrS2)2(ZrSe2)2 LHS and (HfS2)2(HfSe2)2 LHS. Generally, the lateral heterostructures of monolayer ZrS2 and HfS2 are of excellent electrical properties, and may find potential applications for future electronic devices.

  4. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets.

    PubMed

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-03-10

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co-28Cr-9W-1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable.

  5. Laser Cladding of Ultra-Thin Nickel-Based Superalloy Sheets

    PubMed Central

    Gabriel, Tobias; Rommel, Daniel; Scherm, Florian; Gorywoda, Marek; Glatzel, Uwe

    2017-01-01

    Laser cladding is a well-established process to apply coatings on metals. However, on substrates considerably thinner than 1 mm it is only rarely described in the literature. In this work 200 µm thin sheets of nickel-based superalloy 718 are coated with a powder of a cobalt-based alloy, Co–28Cr–9W–1.5Si, by laser cladding. The process window is very narrow, therefore, a precisely controlled Yb fiber laser was used. To minimize the input of energy into the substrate, lines were deposited by setting single overlapping points. In a design of experiments (DoE) study, the process parameters of laser power, laser spot area, step size, exposure time, and solidification time were varied and optimized by examining the clad width, weld penetration, and alloying depth. The microstructure of the samples was investigated by optical microscope (OM) and scanning electron microscopy (SEM), combined with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX). Similarly to laser cladding of thicker substrates, the laser power shows the highest influence on the resulting clad. With a higher laser power, the clad width and alloying depth increase, and with a larger laser spot area the weld penetration decreases. If the process parameters are controlled precisely, laser cladding of such thin sheets is manageable. PMID:28772639

  6. Zr-Containing 4,4'-ODA/PMDA Polyimide Composites. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Illingsworth, M. L.; Betancourt, J. A.; Chen, Y.; Terschak, J. A.; Banks, B. A.; Rutledge, S. K.; Cales, M.; He, L.

    2001-01-01

    The objective of this research is to improve the atomic oxygen resistance of Kapton(TM), a polyimide (PI) made from pyromellitic acid dianhydride (PMDA) and 4,4'-oxydianiline (ODA), while retaining or enhancing the desirable properties of the pure polymer. Toward this end, zirconium-containing complexes and polymers were used to make composites and blends. Tetra(acetylacetonato)zirconium(IV), Zr(acac)4, which is commercially available, was identified as the best zirconium-containing complex for enhancing the atomic oxygen resistance of polyimide composites of the 10 complexes screened. Films prepared from the commercially available polyamic acid (PAA) of PMDA-ODA (DuPont) have good uniformity, flexibility, and tensile strength. A 24-layer 10% (mol) Zr(acac)4/PI composite film showed significant improvement (ca. 20 fold) of atomic oxygen resistance over the pure polyimide. However, 10% (mol) Zr(acac)4 represents an upper concentration limit, above which films undergo cracking upon thermal imidization. In order to increase the Zr complex concentration in PMDA-ODA PI films, while retaining good film properties, [Zr(adsp)2-PMDA]n coordination polymer [bis(4-amino-N,N'-disalicylidene- 1,2-phenylenediamino)zirconium(IV)-pyromellitic dianhydride] and [Zr(adsp)2-PMDA-ODA-PMDA]n terpolymer were synthesized and blended with commercial PAA, respectively. Several techniques were used to characterize the films made from the polymer containing Zr(acac)4. Plasma studies of films having 2% (mol) incremental concentrations of Zr in the Kapton up to 10% (mol) show that the overall rate of erosion is reduced about 75 percent.

  7. Microstructural Improvement of Hydroxyapatite-ZrO2 Composite Ceramics via Thermal Precipitation Techniques.

    NASA Astrophysics Data System (ADS)

    Sangmala, A.; Limsuwan, P.; Kaewwiset, W.; Naemchanthara, K.

    2017-09-01

    Hydroxyapatite-ZrO2 composite ceramic were synthesized using a thermal precipitation techniques. The chemical precursors were prepared from di-ammonium hydrogen orthophosphate, calcium oxide (CaO) derived from chicken eggshell, zirconium dioxide (ZrO2) and distilled water. The mixture were heated at the various temperatures from 100 to 700 °C in the furnace with an incremental temperature of 100 °C. The ZrO2 contents in the composite ceramic were varied from 0 to 15 percent weight of CaO. The prepared composites were then annealed at 300, 600 and 700 °C for 4 h in air. The crystal structure, function group and morphology of all samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and universal testing machine (UTM), respectively. The results indicated that the undoped-ZrO2 samples hydroxyapatite phase with a hexagonal structure. However, the hydroxyapatite was transformed to the tri-calcium phosphate after thermal treatment at 700 °C. For the doped-ZrO2 samples, the hydroxyapatite and ZrO2 phases were found. Moreover, the result showed that the compressive strength of hydroxyapatite-ZrO2 composite ceramic increased with increasing the ZrO2 content.

  8. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn2 and ZrV2

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Chun; Jansen, H. J. F.; Freeman, A. J.

    1988-03-01

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn2 and ZrV2 have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to a much higher value of the density of states at EF in ZnZr2. The most important difference between the materials ZrZn2 and ZrV2 is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter μsp. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr2.

  9. Surface Characterization of ZrO2/Zr Coating on Ti6Al4V and IN VITRO Evaluation of Corrosion Behavior and Biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Ruoyun; Sun, Yonghua; He, Xiaojing; Gao, Yuee; Yao, Xiaohong

    Biocompatibility is crucial for implants. In recent years, numerous researches were conducted aiming to modify titanium alloys, which are the most extensively used materials in orthopedic fields. The application of zirconia in the biomedical field has recently been explored. In this study, the biological ZrO2 coating was synthesized on titaniumalloy (Ti6Al4V) substrates by a duplex-treatment technique combining magnetron sputtering with micro-arc oxidation (MAO) in order to further improve the corrosion resistance and biocompatibility of Ti6Al4V alloys. The microstructures and phase constituents of the coatings were characterized by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the surface wettability was evaluated by contact angle measurements. The results show that ZrO2 coatings are porous with pore sizes less than 2μm and consist predominantly of the tetragonal ZrO2 (t-ZrO2) and cubic ZrO2(c-ZrO2) phase. Electrochemical tests indicate that the corrosion rate of Ti6Al4V substrates is appreciably reduced after surface treatment in the phosphate buffer saline (PBS). In addition, significantly improved cell adhesion and growth were observed from the ZrO2/Zr surface. Therefore, the hybrid approach of magnetron sputtering and MAO provides a surface modification for Ti6Al4V to achieve acceptable corrosion resistance and biocompatibility.

  10. Microstructure and properties of Fe-based composite coating by laser cladding Fe-Ti-V-Cr-C-CeO2 powder

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    In situ TiC-VC reinforced Fe-based cladding layer was obtained on low carbon steel surface by laser cladding with Fe-Ti-V-Cr-C-CeO2 alloy powder. The microstructure, phases and properties of the cladding layer were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), potentio-dynamic polarization and electro-chemical impedance spectroscopy (EIS). Results showed Fe-Ti-V-Cr-C-CeO2 alloy powder formed a good cladding layer without defects such as cracks and pores. The phases of the cladding layer were α-Fe, γ-Fe, TiC, VC and TiVC2. The microstructures of the cladding layer matrix were lath martensite and retained austenite. The carbides were polygonal blocks with a size of 0.5-2 μm and distributed uniformly in the cladding layer. High resolution transmission electron microscopy showed the carbide was a complex matter composed of nano TiC, VC and TiVC2. The cladding layer with a hardness of 1030 HV0.2 possessed good wear and corrosion resistance, which was about 16.85 and 9.06 times than that of the substrate respectively.

  11. Mucolytic Agents Can Enhance HER2 Receptor Accessibility for [(89)Zr]Trastuzumab, Improving HER2 Imaging in a Mucin-Overexpressing Breast Cancer Xenograft Mouse Model.

    PubMed

    Wimana, Zéna; Gebhart, G; Guiot, T; Vanderlinden, B; Morandini, R; Doumont, G; Sherer, F; Van Simaeys, G; Goldman, S; Ghanem, G; Flamen, P

    2015-10-01

    Binding of trastuzumab to HER2 receptors can be impaired by steric hindrance caused by mucin MUC4. As mucolytic drugs can breakdown disulfide bonds of mucoproteins, we checked if this approach could positively affect zirconium-89-labeled trastuzumab ([(89)Zr]T) binding/uptake. The effect of N-acetylcysteine (NAC) and MUC4 knockdown/stimulation on [(89)Zr]T binding/uptake were evaluated in MCF7(HER2-), BT474 and SKBr3(HER2+/MUC4-), and JIMT1(HER2+/MUC4+) cell lines. The results were then validated in SKBR3 and JIMT1 tumor-bearing nude mice with a microPET-CT and ex vivo analysis. Significant increases in [(89)Zr]T binding/uptake were observed in JIMT1 cells following MUC4 knockdown (62.4 ± 6.5%) and exposure to NAC (62.8 ± 19.4%). Compared to controls, mice treated with NAC showed a significant increase in [(89)Zr]T uptake in MUC4 tumors on microPET-CT (SUVmean (18.3 ± 4.7%), SUVmax (41.7 ± 8.4%)) and individual organ counting (37.3 ± 18.3%). In contrast, no significant differences were observed in SKBr3. NAC can enhance [(89)Zr]T accumulation and improve the HER2 imaging of MUC4-overexpressing tumors. The potential positive impact on trastuzumab-based treatment deserves further investigation.

  12. Investigation of ZrO x /ZrC-ZrN/Zr thin-film structural evolution and their degradation using X-ray diffraction and Raman spectrometry

    NASA Astrophysics Data System (ADS)

    Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.

    2016-11-01

    The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.

  13. Fabrication of dense and porous Li2ZrO3 nanofibers with electrospinning method

    NASA Astrophysics Data System (ADS)

    Yuan, Kangkang; Jin, Xiaotong; Xu, Chonghe; Wang, Xinqiang; Zhang, Guanghui; Zhu, Luyi; Xu, Dong

    2018-06-01

    Lithium zirconate (Li2ZrO3) has been extensively studied as CO2 capture material, electrolyte material and coating material. Most of the previous studies were focused on the powder structure, while seldom taking a consideration of fiber structure. In the present work, dense and porous Li2ZrO3 nanofibers with surface area of 16 m2 g-1 were prepared by electrospinning method. IR spectral results showed that lithium carbonate was the intermediate for the formation of Li2ZrO3. The phase transformation of Li2ZrO3 underwent the pathway of amorphous precursor fibers, tetragonal zirconia and Li2CO3, tetragonal Li2ZrO3, and monoclinic Li2ZrO3. XRD and XPS results further suggested that Li2O diffusion from the fiber body to surface occurred for Li2ZrO3 nanofibers when heat-treated above 900 °C, and the tetragonal Li2ZrO3 with high surface area could be obtained at 800 °C. Bamboo structure appeared both for the dense and porous nanofibers heat-treated at 1000 °C. The high surface area and high thermal stability of tetragonal phase of Li2ZrO3 make it a promising candidate in CO2 absorption, electrolyte and coating material.

  14. A Theoretical Model for Predicting Fracture Strength and Critical Flaw Size of the ZrB2-ZrC Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Xiaobo; Wang, Jing; Jia, Bi; Li, Weiguo

    2018-06-01

    This work shows a new rational theoretical model for quantitatively predicting fracture strength and critical flaw size of the ZrB2-ZrC composites at different temperatures, which is based on a new proposed temperature dependent fracture surface energy model and the Griffith criterion. The fracture model takes into account the combined effects of temperature and damage terms (surface flaws and internal flaws) with no any fitting parameters. The predictions of fracture strength and critical flaw size of the ZrB2-ZrC composites at high temperatures agree well with experimental data. Then using the theoretical method, the improvement and design of materials are proposed. The proposed model can be used to predict the fracture strength, find the critical flaw and study the effects of microstructures on the fracture mechanism of the ZrB2-ZrC composites at high temperatures, which thus could become a potential convenient, practical and economical technical means for predicting fracture properties and material design.

  15. 75 FR 76051 - Northern States Power Company-Minnesota, Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ..., 2010 (Agencywide Documents Access and Management System Accession Nos. ML093280883 and ML101480083... systems for light-water nuclear power reactors,'' and appendix K to 10 CFR part 50, ``ECCS Evaluation... core cooling system (ECCS) for reactors fueled with zircaloy or ZIRLO\\TM\\ cladding. In addition...

  16. Microstructure and mechanical properties of rapidly solidified B2-type Zr–Co alloys containing a second phase of Zr2Co

    NASA Astrophysics Data System (ADS)

    Li, Peiyou

    2018-04-01

    Microstructure and mechanical properties of B2-type Zr–Co alloys containing a second phase (Zr2Co) were investigated. Results show that the as-cast Zr52Co48, Zr54Co46, and Zr56Co44 alloys are composed of a eutectic structure of B2 and Zr2Co phases. Relative amounts of Zr2Co phases increase with an increase in Zr content. Zr54Co46 exhibits high yield strength, high Vickers hardness, good ductility, and high toughness values, and thus, Zr54Co46 can be considered to be a novel engineering material. The increase in strength and decrease in plastic strain of the alloys are mainly attributed to the increase in high strength of the brittle Zr2Co phase and to grain refining of the B2 matrix phase.

  17. Excitonic Instability and Pseudogap Formation in Nodal Line Semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Rudenko, A. N.; Stepanov, E. A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2018-05-01

    Electron correlation effects are studied in ZrSiS using a combination of first-principles and model approaches. We show that basic electronic properties of ZrSiS can be described within a two-dimensional lattice model of two nested square lattices. A high degree of electron-hole symmetry characteristic for ZrSiS is one of the key features of this model. Having determined model parameters from first-principles calculations, we then explicitly take electron-electron interactions into account and show that, at moderately low temperatures, ZrSiS exhibits excitonic instability, leading to the formation of a pseudogap in the electronic spectrum. The results can be understood in terms of Coulomb-interaction-assisted pairing of electrons and holes reminiscent of that of an excitonic insulator. Our finding allows us to provide a physical interpretation of the unusual mass enhancement of charge carriers in ZrSiS recently observed experimentally.

  18. Effect of UV lamp irradiation during oxidation of Zr/Pt/Si structure on electrical properties of Pt/ZrO 2/Pt/Si structure

    NASA Astrophysics Data System (ADS)

    Bae, Joon Woo; Lim, Jae-Won; Mimura, Kouji; Uchikoshi, Masahito; Miyazaki, Takamichi; Isshiki, Minoru

    2010-03-01

    Metal-insulator-metal (MIM) capacitors were fabricated using ZrO 2 films and the effects of structural and native defects of the ZrO 2 films on the electrical and dielectric properties were investigated. For preparing ZrO 2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O 2 atmosphere with/without UV light irradiation ( λ = 193 nm, Deep UV lamp). The ZrO 2(˜12 nm) films on Pt(˜100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage ( C- V) and current-voltage ( I- V) measurements were carried out on MIM structures. ZrO 2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.

  19. Thermoluminescence (TL) of europium-doped ZrO2 obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Furetta, C.; Azorín, J.; Barrera, M.; Soto, A. M.

    This article reports the preparation and characterization of europium-doped zirconium oxide (ZrO2:Eu3+) formed by homogeneous precipitation from propoxyde of zirconium [Zr(OC3H7)4]. The alkoxide sol gel process is an efficient method to prepare the zirconium oxide matrix by the hydrolysis of alkoxide precursors followed by condensation to yield a polymeric oxo-bridged ZrO2 network. All compounds were characterized by thermal analysis and the X-ray diffractometry method. The thermoluminescence (TL) emission properties of ZrO2:Eu3+ under beta radiation effects are studied. The europium-doped sintered zirconia powder presents a TL glow curve with two peaks (Tmax) centered at around 204 and around 292 °C, respectively. TL response of ZrO2:Eu3+ as a function of beta-absorbed dose was linear from 2 Gy up to 90 Gy. The europium ion (Eu3+)-doped ZrO2 was found to be more sensitive to beta radiation than undoped ZrO2 obtained by the same method and presented a little fading of the TL signal compared with undoped zirconium oxide.

  20. Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives

    NASA Astrophysics Data System (ADS)

    Espina Casado, Jorge; Fernández González, Alfonso; José del Reguero Huerga, Ángel; Rodríguez-Solla, Humberto; Díaz-García, Marta Elena; Badía-Laíño, Rosana

    2017-12-01

    One of the main drawbacks in the application of metal-oxide nanoparticles as lubricant additives is their poor stability in organic media, despite the good anti-wear, friction-reducing and high-load capacity properties described for these materials. In this work, we present a novel procedure to chemically cap the surface of ZrO2 nanoparticles (ZrO2NPs) with long hydrocarbon chains in order to obtain stable dispersions of ZrO2NPs in non-aqueous media without disrupting their attributes as lubricant additives. C-8, C-10 and C-16 saturated flexible chains were attached to the ZrO2NP surface and their physical and chemical characterization was performed by transmission electron microscopy, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance. The dispersion stability of the modified ZrO2NPs in non-aqueous media was studied using static multiple light scattering. Tribological tests demonstrated that dispersions of the long-chain capped ZrO2NPs in base lubricating oils exhibited low friction coefficients and improved the anti-wear properties of the base oil when compared with the raw lubricating oil.

  1. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    NASA Astrophysics Data System (ADS)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  2. Ferroelectricity emerging in strained (111)-textured ZrO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Zhen, E-mail: a0082709@u.nus.edu, E-mail: msecj@nus.edu.sg; Deng, Jinyu; Liu, Ziyan

    2016-01-04

    (Anti-)ferroelectricity in complementary metal-oxide-semiconductor (CMOS)-compatible binary oxides have attracted considerable research interest recently. Here, we show that by using substrate-induced strain, the orthorhombic phase and the desired ferroelectricity could be achieved in ZrO{sub 2} thin films. Our theoretical analyses suggest that the strain imposed on the ZrO{sub 2} (111) film by the TiN/MgO (001) substrate would energetically favor the tetragonal (t) and orthorhombic (o) phases over the monoclinic (m) phase of ZrO{sub 2}, and the compressive strain along certain 〈11-2〉 directions may further stabilize the o-phase. Experimentally ZrO{sub 2} thin films are sputtered onto the MgO (001) substrates buffered bymore » epitaxial TiN layers. ZrO{sub 2} thin films exhibit t- and o-phases, which are highly (111)-textured and strained, as evidenced by X-ray diffraction and transmission electron microscopy. Both polarization-electric field (P-E) loops and corresponding current responses to voltage stimulations measured with appropriate applied fields reveal the ferroelectric sub-loop behavior of the ZrO{sub 2} films at certain thicknesses, confirming that the ferroelectric o-phase has been developed in the strained (111)-textured ZrO{sub 2} films. However, further increasing the applied field leads to the disappearance of ferroelectric hysteresis, the possible reasons of which are discussed.« less

  3. Microstructure and Mechanical Properties of W-ZrC Composites Synthesized by Reactive Melt Infiltration of Zr2Cu into Porous Preforms from Partially Carburized W Powders

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Yu-Jin; Huo, Si-Jia; Zhao, Yan-Wei; Ouyang, Jia-Hu; Song, Gui-Ming; Zhou, Yu

    2018-03-01

    W-ZrC composites with different W contents from 48 to 73 vol.% have been synthesized by reactive melt infiltration of Zr2Cu melt into porous preforms from partially carburized W powders at 1300 °C for 1 h in vacuum. The influences of carbon content and porosity in the preforms on microstructure and mechanical properties of W-ZrC composites are investigated. Cold isostatic pressing followed by pre-sintering process is used to produce porous preforms with suitable porosities of 53.6-47% under a pressure of 100 MPa to allow sufficient penetration of Zr2Cu melt into the preforms. Small amounts of Cu-rich phases form in the synthesized W-ZrC composites after a complete reaction of y/2xZr2Cu(l) + WC y (s) = y/xZrC x (s) + W(s) + y/2xCu(l). These Cu-rich phases are distributed not only at the phase boundaries of W matrix and ZrC grains, but also in the interior of ZrC x grains. With decreasing W content from 73 to 48 vol.% in the W-ZrC composites, the flexural strength and fracture toughness increase from 519 to 657 MPa and from 9.1 to 10.6 MPa m1/2, respectively.

  4. Influence of in situ and ex situ ZrO2 addition on the properties of MgB2

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Vickers, M. E.; Majoros, M.

    2004-02-01

    The effect of ZrO2 addition on the properties of MgB2 has been studied using in situ and ex situ processes. The in situ process was performed by introducing ZrO2 from the milling tools into MgB2 throughout the planetary ball milling, whereas the ex situ process was accomplished by mixing ZrO2 from the milling tools with MgB2 by hand grinding in a mortar. A detectable amount of ZrO2 was present in MgB2 after 4 h of milling during the in situ process and its content increased with milling time as expected. The 400 h milled powder was partially amorphized and showed the formation of a minority ZrB2 phase. For milling up to 100 h, diamagnetism of MgB2 was significantly reduced while Tc remained unchanged. Superconductivity was totally destroyed after 148 h of milling. The loss of superconductivity is attributed to the effect of disordering induced by mechanical milling. As a result of in situ ZrO2 addition, the initial Tc and crystal structure of MgB2 could not be restored upon annealing. With increasing milling time, the expansion of lattice parameters in both the a-axis and c-axis may be due to possible substitution of Mg or B by Zr. The result from the magnetic measurement shows that Jc of MgB2 is deteriorated by in situ ZrO2 addition. On the other hand, ex situ ZrO2 addition with annealing did not degrade the Tc of MgB2.

  5. Oxidation of TaSi2-Containing ZrB2-SiC Ultra-High Temperature Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Smith, Jim; Levine, Stanley R.; Lorincz, Jonathan; Reigel, Marissa

    2010-01-01

    Hot pressed coupons of composition ZrB2-20 v% SiC-5 v% TaSi2 and ZrB2-20 v% SiC-20 v% TaSi2 were oxidized in stagnant air at temperatures of 1627 and 1927C for one, five and ten 10-minute cycles. The oxidation reactions were characterized by weight change kinetics, x-ray diffraction, and SEM/EDS. Detailed WDS/microprobe quantitative analyses of the oxidation products were conducted for the ZrB2-20 v% SiC-20 v% TaSi2 sample oxidized for five 10-minute cycles at 1927C. Oxidation kinetics and product formation were compared to ZrB2-20 v% SiC with no TaSi2 additions. It was found that the 20 v% TaSi2 composition exhibited improved oxidation resistance relative to the material with no TaSi2 additions at 1627C. However, for exposures at 1927C less oxidation resistance and extensive liquid phase formation were observed compared to the material with no TaSi2 additions. Attempts to limit the liquid phase formation by reducing the TaSi2 content to 5 v% were unsuccessful. In addition, the enhanced oxidation resistance at 1627C due to 20 v% TaSi2 additions was not achieved at the 5 v% addition level. The observed oxidation product evolution is discussed in terms of thermodynamics and phase equilibria for the TaSi2-containing ZrB2-SiC material system. TaSi2-additions to ZrB2-SiC at any level are not recommended for ultra-high temperature (>1900C) applications due to excessive liquid phase formation.

  6. On the combustion mechanisms of ZrH2 in double-base propellant.

    PubMed

    Yang, Yanjing; Zhao, Fengqi; Yuan, Zhifeng; Wang, Ying; An, Ting; Chen, Xueli; Xuan, Chunlei; Zhang, Jiankan

    2017-12-13

    Metal hydrides are regarded as a series of promising hydrogen-supplying fuel for solid rocket propellants. Their effects on the energetic and combustion performances of propellants are closely related to their reaction mechanisms. Here we report a first attempt to determine the reaction mechanism of ZrH 2 , a high-density metal hydride, in the combustion of a double-base propellant to evaluate its potential as a fuel. ZrH 2 is determined to possess good resistance to oxidation by nitrocellulose and nitroglycerine. Thus its combustion starts with dehydrogenation to generate H 2 and metallic Zr. Subsequently, the newly formed Zr and H 2 participate in the combustion and, especially, Zr melts and then combusts on the burning surface which favors the heat feedback to the propellant. This phenomenon is completely different from the combustion behavior of the traditional fuel Al, where the Al particles are ejected off the burning surface of the propellant to get into the luminous flame zone to burn. The findings in this work validate the potential of ZrH 2 as a hydrogen-supplying fuel for double-base propellants.

  7. Thermal expansion of phosphates with the NaZr{sub 2}(PO{sub 4}){sub 3} structure containing lanthanides and zirconium: R{sub 0.33}Zr{sub 2}(PO{sub 4}){sub 3} (R = Nd, Eu, Er) and Er{sub 0.33(1–x)} Zr{sub 0.25x}Zr{sub 2}(PO{sub 4}){sup 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volgutov, V. Yu., E-mail: Valeriy.Volgutov@inbox.ru; Orlova, A. I.

    Phosphates R{sub 0.33}Zr{sub 2}(PO{sub 4}){sub 3} (R = Nd, Eu, or Er) and Er{sub 0.33(1–x)}Zr{sub 0.25}Zr{sub 2}(PO{sub 4}){sub 3} (x = 0, 0.25, 0.5, 0.75, 1.0) of the NaZr{sub 2}(PO{sub 4}){sub 3} family have been synthesized and investigated by high-temperature X-ray diffraction. The crystallochemical approach is used to obtain compounds with expected small and controllable thermal-expansion parameters. Phosphates with close-to-zero thermal-expansion parameters, including those with low thermal-expansion anisotropy, have been obtained: Nd{sub 0.33}Zr{sub 2}(PO{sub 4}){sub 3} with α{sub a} =–2.21 × 10{sup −6} °C{sup −1}, α{sub c} = 0.81 × 10{sup −6} °C{sup −1}, and Δα = 3.02 × 10{supmore » −6} °C{sup –1} and Er{sub 0.08}Zr{sub 0.19}Zr{sub 2}(PO{sub 4}){sub 3} with α{sub a} =–1.86 × 10{sup −6} °C{sup −1}, α{sub c} = 1.73 × 10{sup −6} °C{sup −1}, and Δα = 3.58 × 10{sup −6} °C{sup −1}.« less

  8. Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-02-01

    Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.

  9. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.

    PubMed

    Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso

    2005-09-01

    Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.

  10. CaO-MgO-Al 2O 3-SiO 2 (CMAS) corrosion of Gd 2Zr 2O 7 and Sm 2Zr 2O 7

    DOE PAGES

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; ...

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al 2O 3-SiO 2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd 2Zr 2O 7 and Sm 2Zr 2O 7more » in CMAS is studied. Here, the results show that the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  11. Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effects of Ta Additions

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Levine, Stanley; Lorinez, Jonathan

    2003-01-01

    Several compositions of ZrB2- and HfB2-based Ultra-High Temperature Ceramics (UHTC) were oxidized in stagnant air at 1627 C in ten minute cycles for times up to 100 minutes. These compositions include: ZrB2 - 20v% SiC, HfB2 - 20v% SiC, ZrB2 - 20v% SiC - 20v% TaSi2, ZrB2 - 33v% SiC, HfB2 - 20v% SiC - 20v% TaSi2, and ZrB2 - 20v% SiC - 20v% TaC. The weight change due to oxidation was recorded. The ZrB2 - 20v% SiC - 20v% TaSi2 composition was also oxidized in stagnant air at 1927 C and in an arc jet atmosphere. Samples were analyzed after oxidation by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy to determine the reaction products and to observe the microstructure. The ZrB2 - 20v% SiC - 20v% TaSi2 showed the lowest oxidation rate at 1627 C, but performed poorly under the more extreme tests due to liquid phase formation. Effects of Ta-additions on the oxidation of the diboride-based UHTC are discussed.

  12. Thermodynamic Modeling of the YO(l.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2003-01-01

    The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.

  13. Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr

    2015-10-15

    The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia atmore » high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.« less

  14. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin

    2018-05-01

    Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.

  15. Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Tsai, Hanchung

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could

  16. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    PubMed

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of <0.008±0.006  dB/cm. Finally we demonstrate the successful cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  17. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.

    PubMed

    Subramanian, Arunprabaharan; Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Ryu, Jungho; Park, Jung Hee; Jang, Jum Suk

    2016-08-03

    Herein we report the influence of a ZrO2 underlayer on the PEC (photoelectrochemical) behavior of hematite nanorod photoanodes for efficient solar water splitting. Particular attention was given to the cathodic shift in onset potential and photocurrent enhancement. Akaganite (β-FeOOH) nanorods were grown on ZrO2-coated FTO (fluorine-doped tin oxide) substrates. Sintering at 800 °C transformed akaganite to the hematite (α-Fe2O3) phase and induced Sn diffusion into the crystal structure of hematite nanorods from the FTO substrates and surface migration, shallow doping of Zr atoms from the ZrO2 underlayer. The ZrO2 underlayer-treated photoanode showed better water oxidation performance compared to the pristine (α-Fe2O3) photoanode. A cathodic shift in the onset potential and photocurrent enhancement was achieved by surface passivation and shallow doping of Zr from the ZrO2 underlayer, along with Sn doping from the FTO substrate to the crystal lattice of hematite nanorods. The Zr based hematite nanorod photoanode achieved 1 mA/cm(2) at 1.23 VRHE with a low turn-on voltage of 0.80 VRHE. Sn doping and Zr passivation, as well as shallow doping, were confirmed by XPS, Iph, and M-S plot analyses. Electrochemical impedance spectroscopy revealed that the presence of a ZrO2 underlayer decreased the deformation of FTO substrate, improved electron transfer at the hematite/FTO interface and increased charge-transfer resistance at the electrolyte/hematite interface. This is the first systematic investigation of the effects of Zr passivation, shallow doping, and Sn doping on hematite nanorod photoanodes through application of a ZrO2 underlayer on the FTO substrate.

  18. Microstructural and mechanical properties of Al2O3/ZrO2 nanomultilayer thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il

    2018-02-01

    Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.

  19. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  20. Luminescence properties of long-lasting phosphor SrMg2(PO4)2:Eu2+, Ho3+, Zr4+

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Wang, Mingwen; Lin, Wei; Ye, Yaping; Wu, Xue

    2016-12-01

    Novel long lasting phosphors SrMg2(PO4)2:Eu2+, SrMg2(PO4)2:Eu2+, Zr4+, SrMg2(PO4)2:Eu2+, Ho3+ and SrMg2(PO4)2:Eu2+, Ho3+, Zr4+ were synthesized by conventional solid-state reaction method. The luminescent properties were systematically characterized by X-ray diffraction, photoluminescent excitation and emission spectra, as well as thermoluminescence spectrum and decay curves. The XRD patterns indicated that the samples belonged to monoclinic phase and co-doping Eu2+, Ho3+ and Zr4+ ions had no effect on the basic crystal structure. These phosphors emitting purplish blue light is related to the characteristic emission of Eu2+. The afterglow time of Eu2+ activated SrMg2(PO4)2 can be greatly enhanced by the co-doping of Ho3+, Zr4+. After the 365 nm UV light excitation source switching off, the Sr0.92Mg1.95(PO4)2:Eu2+0.01, Zr4+0.05, Ho3+0.07 phosphorescence can be observed for more than 1013 s in the limit of light perception of dark-adapted human eyes (0.32 mcd/m2). Different kinds of TL peaks at 423, 448 and 473 K have appeared, and traps densities have increased compared with the Eu2+ single doped SrMg2(PO4)2 phosphor. By analyzing the TL curve the depths of traps were calculated to be 0.846, 0.896 and 0.946 eV, respectively, which suggested that the co-doping of Ho3+, Zr4+ improved the electron storage ability of material. Besides, the mechanism was discussed in this report.

  1. Improved Tribological Performance of Amorphous Carbon (a-C) Coating by ZrO2 Nanoparticles

    PubMed Central

    Tang, Jinzhu; Ding, Qi; Zhang, Songwei; Wu, Guizhi; Hu, Litian

    2016-01-01

    Nanomaterials, such as Graphene, h-BN nanoparticles and MoS2 nanotubes, have shown their ability in improving the tribological performance of amorphous carbon (a-C) coatings. In the current study, the effectiveness of ZrO2 nanoparticles (ZrO2-NPs) in lubricating the self-mated nonhydrogenated a-C contacts was investigated in boundary lubrication regime. The results showed that 13% less friction and 50% less wear compared to the base oil were achieved by employing ZrO2-NPs in the base oil in self-mated a-C contacts. Via analyzing the ZrO2-NPs and the worn a-C surface after tests, it was found that the improved lubrication by ZrO2-NPs was based on “polishing effects”, which is a new phenomenon observed between a-C and nanoparticles. Under the “polishing effect”, micro-plateaus with extremely smooth surface and uniform height were produced on the analyzed a-C surface. The resulting topography of the a-C coating is suitable for ZrO2-NPs to act as nano-bearings between rubbing surfaces. Especially, the ZrO2-NPs exhibited excellent mechanical and chemical stability, even under the severe service condition, suggesting that the combination of nonhydrogenated a-C coating with ZrO2-NPs is an effective, long lasting and environment-friendly lubrication solution. PMID:28773916

  2. Preparation, chromatographic evaluation and application of adenosine 5'-monophosphate modified ZrO2/SiO2 stationary phase in hydrophilic interaction chromatography.

    PubMed

    Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2015-02-27

    The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of structural defects on electronic and magnetic properties of ZrS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Haiyang; Zhao, Xu; Gao, Yonghui; Wang, Tianxing; Wei, Shuyi

    2018-04-01

    We aimed at ten configurations of vacancy defects and used the first-principles methods based on density functional theory to research electronic and magnetic properties of ZrS2 monolayer. Results show that the system of two-zirconium vacancy (V2zr) and one Zr atom + one S atom vacancy (V1Zr+1S) can induce to total spin magnetic moment of 0.245μB and 0.196μB, respectively. In addition, three and six S atoms vacancy can induce corresponding system to manifest spin magnetic moment of 0.728μB and 3.311μB, respectively. In S atom vacancy defects, vacancy defects can transform the system from semiconductor to metal, several of the Zr atoms and adjacent S atoms display antiferromagnetism coupling in three apart S atom vacancy defects. Vacancy defects can make the intrisic monolayer ZrS2 transform semiconductor into metal. These results are important for the achievement of spin devices based on ZrS2 semiconductor.

  4. Fabrication and magnetic properties of Fe and Co co-doped ZrO2

    NASA Astrophysics Data System (ADS)

    Okabayashi, J.; Kono, S.; Yamada, Y.; Nomura, K.

    2011-12-01

    We investigate the effects of Fe and Co co-doping on the magnetic and electronic properties of ZrO2 ceramics prepared by a sol-gel method, and study their dependence on the annealing temperature. Dilute Fe and Co co-doping into ZrO2 exhibits ferromagnetic behavior at room temperature for annealing temperatures above 900 °C, accompanying the phase transition from tetragonal to monoclinic structure in ZrO2. The electronic structures are studied by x-ray absorption spectroscopy and Mössbauer spectroscopy, which suggest that the Fe3+ and Co2+/Co3+ mixing states are dominant in Fe and Co co-doped ZrO2.

  5. Electrical characteristics of SiO2/ZrO2 hybrid tunnel barrier for charge trap flash memory

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho; Bae, Juhyun; Ahn, Jaeyoung; Hwang, Kihyun; Chung, Ilsub

    2017-08-01

    In this paper, we investigate the electrical characteristics of SiO2/ZrO2 hybrid tunnel oxide in metal-Al2O3-SiO2-Si3N4-SiO2-silicon (MAONOS) structure in an effort to improve program and erase speed as well as retention characteristics. Inserting ZrO2 into the conventional MAONOS structure increased the programmed V th variation to 6.8 V, and increased the erased V th variation to -3.7 V at 17 MV/cm. The results can be understood in terms of reducing the Fowler-Nordheim (F/N) tunneling barrier due to high-k ZrO2 in the tunneling oxide. In addition, Zr diffusion in SiO2 caused the formation of Zr x Si1- x O2 at the interface region, which reduced the energy band gap of SiO2. The retention property of the hybrid tunnel oxide varied depending on the thickness of SiO2. For thin SiO2 less than 30 Å, the retention properties of the tunneling oxides were poor compared with those of the SiO2 only tunneling oxides. However, the hybrid tunneling oxides with SiO2 thickness thicker than 40 Å yielded improved retention behavior compared with those of the SiO2-only tunneling oxides. The detailed analysis in charge density of ZrO2 was carried out by ISPP test. The obtained charge density was quite small compared to that of the total charge density, which indicates that the inserted ZrO2 layer serves as a tunneling material rather than charge storage dielectric.

  6. Isotopic composition of a sample enriched in 93Zr

    DOE PAGES

    Fujii, Toshiyuki; Hori, Jun-ichi; Du, Miting; ...

    2015-10-22

    A project to determine the neutron-capture cross section of long lived fission products and minor actinides has been started by using a beam-line at Japan Proton Accelerator Research Complex (J-PARC). We prepared one of the target nuclides is Zr-93, which in Oak Ridge National Laboratory. Qualitative and quantitative analyses on the sample were performed at Kyoto University. The isotopic composition of (m) Zr (m 90, 91, 92, 93, 94, and 96) was precisely determined by multi-collector thermal ionization mass spectrometry with < 0.1 % of 2 sigma uncertainty. We determined that the atomic abundance of Zr-93 in the sample tomore » be 18.86 ± A 0.05 %.« less

  7. Oxidation/reduction studies on Zr yU 1-yO 2+x and delineation of a new orthorhombic phase in U-Zr-O system

    NASA Astrophysics Data System (ADS)

    Sali, S. K.; Kulkarni, N. K.; Krishnan, K.; Achary, S. N.; Tyagi, A. K.

    2008-08-01

    In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO 2 in UO 2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr 0.33U 0.67O 2.33 (ZrU 2O 7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å 3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U 4+ and U 6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU 2O 7 are also studied using thermogravimetry.

  8. Effects of CO2 adsorption on proton migration on a hydrated ZrO2 surface: an ab initio molecular dynamics study.

    PubMed

    Sato, Ryuhei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2017-08-02

    Hydration reactions on a carbonate-terminated cubic ZrO 2 (110) surface were analyzed using ab initio molecular dynamics (AIMD) simulations. After hydration reactions, carbonates were still present on the surface at 500 K. However, these carbonates are very weak conjugate bases and only act as steric hindrance in proton hopping processes between acidic chemisorbed H 2 O molecules (Zr-OH 2 ) and monodentate hydroxyl groups (Zr-OH - ). Similar to a carbonate-free hydrated surface, Zr-OH 2 , Zr-OH - , and polydentate hydroxyl groups ([double bond splayed left]OH + ) were observed, while the ratio of acidic Zr-OH 2 was significantly larger than that on the carbonate-free hydrated surface. A thermodynamic discussion and bond property analysis reveal that CO 2 adsorption significantly decreases the basicity of surface oxide ions ([double bond splayed left]O), whereas the acidity of Zr-OH 2 is not affected. As a result, protons released from [double bond splayed left]OH + react with Zr-OH - to form Zr-OH 2 , leading to a deficiency of proton acceptor sites, which decreases the proton conductivity by the hopping mechanism.

  9. Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    NASA Technical Reports Server (NTRS)

    Baron, N.; Fink, C. L.; Christensen, P. R.; Nickels, J.; Torsteinsen, T.

    1972-01-01

    The structures of Zr-93 and Zr-91 were studied by the stripping reaction Zr-92(d,p)Zr-93 and the pick-up reaction Zr-92(d,t)Zr-91 using 13 MeV incident deuterons. The reaction product particles were detected by counter telescope. Typical spectra from the reactions were analyzed by a nonlinear least squares peak fitting program which included a background search. Spin and parity assignments to observed excited levels were made by comparing experimental angular distributions with distorted wave Born approximation calculations.

  10. The Composition of Intermediate Products of the Thermal Decomposition of (NH4)2ZrF6 to ZrO2 from Vibrational-Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Voit, E. I.; Didenko, N. A.; Gaivoronskaya, K. A.

    2018-03-01

    Thermal decomposition of (NH4)2ZrF6 resulting in ZrO2 formation within the temperature range of 20°-750°C has been investigated by means of thermal and X-ray diffraction analysis and IR and Raman spectroscopy. It has been established that thermolysis proceeds in six stages. The vibrational-spectroscopy data for the intermediate products of thermal decomposition have been obtained, systematized, and summarized.

  11. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  12. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  13. The affects of doping Eu 3+ on structures and morphology of ZrO 2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Lixin; Liu, Hai; Nogami, Masayuki

    2010-07-01

    The ZrO 2 and ZrO 2:Eu 3+ nanocrystals (NCs) were prepared by a hydrothermal method. The samples were sintered at different temperatures (500, 800 and 1100 °C). The results indicate that the Eu 3+ ions affect not only the structures of hosts (ZrO 2), but also the morphology of hosts. The shape of ZrO 2:Eu 3+ NCs heated at 1100 °C is the one-dimensional nanorod, while is the zero-dimensional nanoparticle for pure ZrO 2 samples sintered at the same temperature. The excitation and emission spectra of ZrO 2:Eu 3+ NCs were studied. In excitation spectra, the charge transfer band of Eu 3+ in ZrO 2 NCs heated at 1100 °C evidently blue-shifts in comparison with the NCs calcined at 500 and 800 °C. The relative intensity of 5D-7F transitions of Eu 3+ ions and color chromaticity for nanorods are increased in comparison with the nanoparticles.

  14. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn/sub 2/ and ZrV/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, M.; Jansen, H.J.F.; Freeman, A.J.

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn/sub 2/ and ZrV/sub 2/ have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to amore » much higher value of the density of states at E/sub F/ in ZnZr/sub 2/. The most important difference between the materials ZrZn/sub 2/ and ZrV/sub 2/ is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter ..mu../sub sp/. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr/sub 2/.« less

  15. Structure of zirconium-93 and zirconium-91 as shown by the reactions Zr-92(d,p)Zr-93 and Zr-92(d,t)Zr-91

    NASA Technical Reports Server (NTRS)

    Baron, N.; Leonard, R. F.; Stewart, W. M.; Fink, C. L.; Christensen, P. R.; Nickles, J.; Thorsteinsen, T. F.

    1972-01-01

    Deuterons of 13-MeV incident energy were scattered from Zr-92(d,p)Zr-93. The Zr-92(d,p)Zr-93 data analysis resulted in the location of 47 levels up to an excitation energy of 4.84 MeV, and the spins of 43 of these levels were identified. Essentially all the strength of the 2d5/2, 3s1/2, 2d3/2, and 1g7/2 shells was observed; and the excitation energy of their centroids was computed to be 0.00, 1.21, 2.23, and 2.37 MeV, respectively. Also, 43 percent of the 1h11/2 strength, 21 percent of the 2f7/2 strength, and 3 percent of the 3p3/2 strength were observed. In addition, the Zr-92(d,t)Zr-91 data analysis resulted in the location of 26 levels up to an excitation energy of 4.01 MeV, and the spins of 21 of these levels were identified. Most of the expected strength of the 2d5/2 and 1g9/2 shells was obtained, and the excitation energy of their centroids was computed to be 0.31 and 3.19 MeV, respectively. In addition, six l=1 states are populated belonging to either the 2p1/2 or 2p3/2 shells.

  16. Creep Resistance of ZrO2 Ceramic Improved by the Addition of a Small Amount of Er2O3

    NASA Technical Reports Server (NTRS)

    Martinez-Fernandez, Julian; Sayir, Ali; Farmer, Serene C.

    2003-01-01

    Zirconia (ZrO2) has great technological importance in structural, electrical, and chemical applications. It is the crucial component for state-of-the art thermal barrier coatings and an enabling component as a solid electrolyte for solid-oxide fuel cell systems. Pure ZrO2 is of limited use for industrial applications because of the phase transformations that occur. Upon the addition of stabilizers, cubic (c-ZrO2) and tetragonal (t-ZrO2) forms can be preserved. It is the stabilized and partially stabilized forms of zirconia that function as thermal barrier coatings, solid electrolytes, and oxygen sensors and that have numerous applications in the electrochemical industry. The cubic form of ZrO2 is typically stabilized through Y2O3 additions. However, Y2O3-stabilized zirconia is susceptible to deformation at high temperatures (greater than 900 C) because of the large number of slip systems and the high oxygen diffusion rates, which result in high creep rates at high temperatures. Successful use of ZrO2 at high temperatures requires that new dopant additives be found that will retain or enhance the desirable properties of cubic ZrO2 and yet produce a material with lower creep rates. At the NASA Glenn Research Center, erbium oxide (Er2O3) was identified as a promising dopant for improving the creep resistance of. ZrO2. The selection of Er2O3 was based on the strong interactions of point defects and dislocations. Single crystals of 5 mol% Er2O3- doped ZrO2 rods (4 mm in diameter) and monofilaments (200 to 300 mm in diameter and 30 cm long) were grown using the laser-heated float zone technique, and their creep behavior was measured as a function of temperature. The addition of 5 mol% Er2O3 to single-crystal ZrO2 improved its creep resistance at high temperatures by 2 to 3 orders of magnitude over state-of-the-art Y2O3-doped crystals. Detailed microstructural characterization of ZrO2-Er2O3 single crystals has identified new mechanisms for improving the creep resistance

  17. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  18. Defect-related electroluminescence from metal-oxide-semiconductor devices with ZrO2 films on silicon

    NASA Astrophysics Data System (ADS)

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2016-11-01

    Defect-related electroluminescence (EL) from ZrO2 films annealed under different atmosphere has been realized by means of electrical pumping scheme of metal-oxide-semiconductor (MOS) devices. At the same injection current, the acquired EL from the MOS device with the vacuum-annealed ZrO2 film is much stronger than that from the counterpart with the oxygen-annealed ZrO2 film. This is because the vacuum-annealed ZrO2 film contains more oxygen vacancies and Zr3+ ions. Analysis on the current-voltage characteristic of the ZrO2-based MOS devices indicates the P-F conduction mechanism dominates the electron transportation at the EL-enabling voltages under forward bias. It is tentatively proposed that the recombination of the electrons trapped in multiple oxygen-vacancy-related states with the holes in the defect level pertaining to Zr3+ ions brings about the EL emissions.

  19. Intense visible light emission from stress-activated ZrO2:Ti

    NASA Astrophysics Data System (ADS)

    Akiyama, Morito; Xu, Chao-Nan; Nonaka, Kazuhiro

    2002-07-01

    We have investigated the luminescence phenomena from stress-activated ZrO2:Ti. The luminescence is clearly visible to the naked eye in the atmosphere. The luminescence center has been identified as the Ti4+ ion from spectra of the mechanoluminescence and also from photoluminescence studies of ZrO2:Ti. The mechanoluminescence intensity decreases on repetitive application of stress but recovers completely on irradiation with ultraviolet light. ZrO2 is an n-type semiconductor and has electron traps. It is suggested that the mechanoluminescence mechanism arises from the movement of dislocations and recombination between electrons and holes released from these traps which are associated with the Ti4+ centers.

  20. Physical properties of ZrC/Al2O3 imbedded heat storage woven fabrics

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Song, M. K.; Seo, K. O.; Kim, H. A.

    2017-10-01

    This study investigated different physical properties of ZrC/Al2O3 imbedded heat storage woven fabrics. ZrC and Al2O3 imbedded heat storage PET filaments were spun on the pilot spinning equipment, respectively. Various physical properties of ceramic imbedded fabrics made of ZrC and Al2O3 imbedded filaments were measured and compared with those of the regular PET woven fabric. The surface temperatures of the ZrC and Al2O3 imbedded fabrics were higher than that of the regular fabric. Water absorption rate of ceramic imbedded fabrics was better than that of the regular fabric and drying property was inferior to that of regular fabric. Breathability by water vapour resistance(Ref) of ZrC imbedded fabric was superior to that of regular fabric. Heat keepability rates of the ceramic imbedded fabrics were higher than that of the regular fabrics, which revealed a good heat storage property of the ZrC/Al2O3 imbedded fabrics.

  1. EXAMINATION OF Zr AND Ti RECOMBINER LOOP SPECIMENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittenhouse, P.L.

    1958-12-19

    Cold-worked specimens of iodide zirconium, Zircaloy-2, iodide titanium, and A-55 titanium were tested in a high-pressure recombiner loop in an attempt to duplicate anomalous results obtained in a prior recombiner loop. Hydrogen analyses and metallographic examinations were made on all specimens. The titanium materials and Zircaloy-2 picked up major amounts of hydrogen in the cell section. None of the materials tested showed appreciable hydrogen absorption in the recombiner section. Complete recrystallization occurred in all cell specimens while only Zircaloy-2, of the recombiner specimens, showed any degree of recrystallization. No explanation for this behavior can be given. A survnnary of themore » data obtained in previous recombiner loops is compared with the results of this loop. Conclusions were based on the results of three recombiner loops. Primarlly because of the hydrogen absorption data obtained in all three recombiner loops it is recommended that the zirconium and titunium materials tested not be used in environments similar to those encountered in high pressure recombiner loops. (auth)« less

  2. Oxidation of ZrB2-SiC

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Halbig, Michael C.

    2001-01-01

    In this paper the oxidation behavior of ZrB2-20 vol% SiC is examined. Samples were exposed in stagnant air in a zirconia furnace (Deltech, Inc.) at temperatures of 1327, 1627, and 1927 C for ten ten-minute cycles. Samples were removed from the furnace after one, five, and ten cycles. Oxidized material was characterized by mass change when possible, x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Oxidation kinetics, oxide scale development, and matrix recession were monitored as a function of time and temperature. Oxidation and recession rates of ZrB2 - 20 vol% SiC were adequately modeled by parabolic kinetics. Oxidation rates of this material are rapid, allowing only very short-term application in air or other high oxygen partial pressure environments.

  3. Chlorine mobility during annealing in N2 in ZrO2 and HfO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Scarel, G.; Wiemer, C.; Fanciulli, M.

    2002-12-01

    Atomic layer deposition (ALD) growth of high-κ dielectric films (ZrO2 and HfO2) was performed using ZrCl4, HfCl4, and H2O as precursors. In this work, we use time of flight secondary ion mass spectrometry to investigate the chlorine distribution in ALD grown ZrO2 and HfO2 films, and its evolution during rapid thermal processes in nitrogen atmosphere. Chlorine outdiffusion is found to depend strongly upon annealing temperature and weakly upon the annealing time. While in ZrO2 chlorine concentration is significantly decreased already at 900 °C, in HfO2 it is extremely stable, even at temperatures as high as 1050 °C.

  4. A combined experimental and theoretical study on ethanol conversion to propylene over Y/ZrO2 catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao

    2018-05-01

    ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.

  5. Calculation of Phase Equilibria in the Y2O3-Yb2O3-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2001-01-01

    Rare earth oxide stabilized zirconias find a wide range of applications. An understanding of phase equilibria is essential to all applications. In this study, the available phase boundary data and thermodynamic data is collected and assessed. Calphad-type databases are developed to completely describe the Y2O3-ZrO2, Yb2O3-ZrO2, and Y2O3-Yb2O3 systems. The oxide units are treated as components and regular and subregular solution models are used. The resultant calculated phase diagrams show good agreement with the experimental data. Then the binaries are combined to form the database for the Y2O3-Yb2O3-ZrO2 psuedo-ternary.

  6. Method and etchant to join ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan

    1999-01-01

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.

  7. Method and etchant to join Ag-clad BSSCO superconducting tape

    DOEpatents

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  8. Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented β-Y2Si2O7 Layer and Epitaxial ZrO2

    PubMed Central

    Wisniewski, Wolfgang; Seidel, Sabrina; Patzig, Christian; Rüssel, Christian

    2017-01-01

    The crystallization behavior of a glass with the composition 54.7 SiO2·10.9 Al2O3·15.0 MgO·3.4 ZrO2·16.0 Y2O3 is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallization of four different yttrium silicates of the composition Y2Si2O7 (YS). The almost simultaneous but independent nucleation of α-, β-, δ-, and ε-YS at the surface is followed by growth into the bulk, where ε-YS quickly dominates a first crystallized layer. An accumulation of Mg at the growth front probably triggers a secondary nucleation of β-YS, which forms a thin compact layer before fragmenting into a highly oriented layer of fine grained crystals occupying the remaining bulk. The residual glass between the YS growth structures allows the crystallization of indialite, yttrium stabilized ZrO2 (Y-ZrO2) and very probably μ-cordierite during cooling. Hence, this glass basically shows the inverted order of crystallization observed in other magnesium yttrium alumosilicate glasses containing less Y2O3. An epitaxial relationship between Y-ZrO2 and ε-YS is proven and multiple twinning relationships occur in the YS phases. PMID:28281661

  9. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code thatmore » is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  10. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Hales; Various

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale codemore » that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  11. Photocatalytic activity of nanostructured ZnO-ZrO2 binary oxide using fluorometric method

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. M.

    2015-06-01

    Evaluation of the photocatalytic activity of ZnO-ZrO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, ZnO-ZrO2 mixed oxides coupled with various ZnO dosages (0, 10, 30, 50, 70 wt%) were prepared by impregnation method. These nanomaterials were characterized by studying their structural, surface and optical properties. The photocatalytic activity in term of quantitative determination of the active oxidative species (radOH) produced on the surface of binary oxide was evaluated using fluorescent probe method. The interaction between ZnO and ZrO2 was affected on the photocatalytic efficiency of mixture. The results show that, the addition of ZnO to ZrO2 decreased the electron-hole recombination and increased the rate of radOH radicals formation. 50 wt% ZnO-ZrO2 photocatalyst exhibited much higher photocatalytic activity. The profound effect of binary oxide catalyst was generally considered due to the high surface area, small particle size, high monoclinic phase of ZrO2 content, low band gap and the presence of surface OH groups.

  12. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin

    2017-05-01

    Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 filmmore » amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less

  13. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    DOE PAGES

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; ...

    2017-05-01

    Pyrochlore-structure oxides, A 2B 2O 7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. In this paper, the mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La 2Zr 2O 7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr + at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopymore » (STEM). At lower doses, the surface of the La 2Zr 2O 7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La 2Zr 2O 7, the bandgap of a thick La 2Zr 2O 7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less

  14. Ultrasound-assisted sol-gel synthesis of ZrO2.

    PubMed

    Guel, Marlene Lariza Andrade; Jiménez, Lourdes Díaz; Hernández, Dora Alicia Cortés

    2017-03-01

    Synthesis of tetragonal ZrO 2 by both conventional sol-gel and ultrasound-assisted sol-gel methods and using a non-ionic surfactant Tween-20, was performed. A porous microstructure composed of nanometric particles was observed. Tetragonal ZrO 2 was obtained using a low heat treatment temperature of powders, 500°C by both methods. A higher crystallinity and a shorter reaction time were observed when ultrasound was used in the sol-gel method due to the cavitation phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Structure of the intermediate Zr/sub 2/Br/sub 2/H by neutron diffraction and its structural and bonding relationships to other phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijeyesekera, S.D.; Corbett, J.D.

    1986-12-17

    The structures of the isomorphous Zr/sub 2/Br/sub 2/D and Zr/sub 2/Br/sub 2/H have been solved and refined by using Rietveld techniques on pulsed neutron diffraction data obtained from the powdered samples at 14 K (C2/m, a = 19.437 (3) A, b = 3.5253 (4) A, c = 5.9036 (6) A, ..beta.. = 100.98 (1)/sup 0/, R(profile)/R(expected) = 2.44 for the deuteride). The structure consists of layers sequenced Br-Zr-H-H-Zr-Br and arranged such that hydride lies in zigzag chains of distorted metal tetrahedra (or butterflies) (d(Zr-D) = 2.03-2.20 A; d(D-D) = 2.93 A). The structure is intermediate between ZrBr (ccp) and ZrBrHmore » (hcp heavy atoms, double H in trigonal-antiprismatic interstices) and can be generated by concerted intraslab slippage from either. The hemihydride effectively retains most of the strong Zr-Zr bonding of the ZrBr parent while tetrahedral bonding of hydrogen to metal is gained that is absent in ZrBrH. The energetics associated with the contrasting structures of YClH/sub x/ (ZrBr type) and ZrBrH are considered in terms of the results of extended-Hueckel band calculations. 25 references, 7 figures, 3 tables.« less

  16. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  17. Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.

    PubMed

    Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin

    2011-08-01

    ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.

  18. Capture of Hydrogen Using ZrNi

    NASA Technical Reports Server (NTRS)

    Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde

    2005-01-01

    Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.

  19. Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Hori, Carla E.; Noronha, Fabio B.

    Hydrogenation of phenol in aqueous phase was studied over a series of ZrO2-supported Pd catalysts in order to explore the effects of particle size and of Ag addition on the activity of Pd. Kinetic assessments were performed in a batch reactor, on monometallic Pd/ZrO2 samples with different Pd loadings (0.5%, 1% and 2%), as well as on a 1% PdAg/ZrO2 sample. The turnover frequency (TOF) increases with the Pd particle size. The reaction orders in phenol and H2 indicate that the surface coverages by phenol, H2 and their derived intermediates are higher on 0.5% Pd/ZrO2 than on other samples. Themore » activation energy was the lowest on the least active sample (0.5% Pd/ZrO2), while being identical on 1% and 2% Pd/ZrO2 catalysts. Thus, the significantly lower activity of the small Pd particles (1-2 nm on average) in 0.5%Pd/ZrO2 is explained by the unfavorable activation entropies for the strongly bound species. The presence of Ag increases considerably the TOF of the reaction by decreasing the Ea and increasing the coverages of phenol and H2.« less

  20. Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer

    PubMed Central

    2013-01-01

    To improve the operation current lowing of the Zr:SiO2 RRAM devices, a space electric field concentrated effect established by the porous SiO2 buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO2 and bilayer Zr:SiO2/porous SiO2 thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO2/porous SiO2 thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO2/porous SiO2 RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model. PMID:24330524

  1. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO2 composite by pulsed current activated sintering

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Su; Ko, In-Yong; Yoon, Jin-Kook; Doh, Jung-Mann; Hong, Kyung-Tae; Shon, In-Jin

    2011-02-01

    Nanopowders of Fe and ZrO2 were synthesized from Fe2O3 and Zr by high-energy ball milling. The powder sizes of Fe and ZrO2 were 70 nm and 12 nm, respectively. Highly dense nanostructured 4/3Fe-ZrO2 composite was consolidated by a pulsed current activated sintering method within 1 minute from the mechanically synthesized powders (Fe-ZrO2) and horizontal milled Fe2O3+Zr powders under the 1 GPa pressure. The grain sizes of Fe and ZrO2 in the composite were calculated. The average hardness and fracture toughness values of nanostuctured 4/3Fe-ZrO2 composite were investigated.

  2. Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Liu, Yutang; Xia, Xinnian; Wang, Longlu

    2017-06-01

    In this paper, novel popcorn balls-like ZnFe2O4-ZrO2 composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe2O4-ZrO2 photocatalyst (mass ratio of ZnFe2O4/ZrO2 = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe2O4 and ZrO2. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  3. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  4. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  5. Thermochemical Compatibility and Oxidation Resistance of Advanced LWR Fuel Cladding

    DOE PAGES

    Besmann, T. M.; Yamamoto, Y.; Unocic, K. A.

    2016-06-21

    We assessed the thermochemical compatibility of potential replacement cladding materials for zirconium alloys in light water reactors. Considered were FeCrAl steel (similar to Kanthal APMT), Nb-1%Zr (similar to PWC-11), and a hybrid SiC-composite with a metallic barrier layer. The niobium alloy was also seen as requiring an oxidation protective layer, and a diffusion silicide was investigated. Metallic barrier layers for the SiC-composite reviewed included a FeCrAl alloy, Nb-1%Zr, and chromium. Thermochemical calculations were performed to determine oxidation behavior of the materials in steam, and for hybrid SiC-composites possible interactions between the metallic layer and SiC. Additionally, experimental exposures of SiC-alloymore » reaction couples at 673K, 1073K, and 1273K for 168 h in an inert atmosphere were made and microanalysis performed. Whereas all materials were determined to oxidize under higher oxygen partial pressures in the steam environment, these varied by material with expected protective oxides forming. Finally, the computed and experimental results indicate the formation of liquid phase eutectic in the FeCrAl-SiC system at the higher temperatures.« less

  6. Preparation of graphene-ZrO2 nanocomposites by heat treatment and photocatalytic degradation of organic dyes.

    PubMed

    Cho, Bum Hwi; Ko, Weon Bae

    2013-11-01

    ZrO2 nanoparticles were synthesized by combining a solution containing zinconyl chloride in distilled water with a NH4OH solution under microwave irradiation. Graphene and ZrO2 nanocomposites were synthesized in an electric furnace at 700 degrees C for 2 hours. The heated graphene-ZrO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. In addition, UV-vis spectrophotometry was used to evaluate the heated graphene-ZrO2 nanocomposites as a catalyst in the photocatalytic degradation of organic dyes. The photocatalytic effect of the heated graphene-ZrO2 nanocomposites was compared with that of unheated graphene nanoparticles, heated graphene nanoparticles, and unheated graphene-ZrO2 nanocomposites in organic dyes (methylene blue, methyl orange, and rhodamine B) under ultraviolet light at 254 nm.

  7. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  8. Effect of different Zr contents on properties and microstructure of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Jinshui, Chen; Bin, Yang; Junfeng, Wang; Xiangpeng, Xiao; Huiming, Chen; Hang, Wang

    2018-02-01

    The crystallography and morphology of precipitate particles of Cu-Cr-Zr alloys with varying Zr contents were studied by transmission electron microscopy (TEM) after solution treatments at 950 °C for 1 h and aging treatments at 500 °C for different times ranged from 0.5 h to 24 h. The microhardness and electrical conductivity of Cu-Cr-Zr alloys after various aging process were tested. The results show that the microhardness and electrical conductivity rapidly increased at first, then the microhardness decreased slowly after reaching the peak, while the conductivity continues to increase. Nano-scaled precipitates exhibit two kinds of morphology (coffee bean and ellipse shaped). With increasing Zr content, the Zr-containing precipitation sequence of Cu-Cr-Zr alloys at peak-ageing is Heusler CrCu2Zr → Cu5Zr → Cu4Zr. The Heusler CrCu2Zr phase decomposed into fine and homogeneous Cr and Cu4Zr, resulting in improved alloy properties.

  9. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    NASA Astrophysics Data System (ADS)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  10. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  11. Recovery and recrystalization kinetics of cold-worked Zircaloy-4 plate and tubing (LWBR Development Program)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, O.M.

    1968-02-01

    Empirical kinetic equations were derived to describe the recovery region between 550 and 1020/sup 0/F for times to 4000 hours for 15 to 78% cold-worked Zircaloy-4 plate and tubing. The properties studied were electrical resistivity and X-ray line sharpening. Recrystallization kinetics were described with sigmoidal curves derived from X-ray intensity and microhardness data. Light, replica, and transmission electron microscopy and selected-area electron diffraction were used to postulate recovery and recrystallization mechanisms. From a structural aspect, the annealing process in cold-worked Zircaloy-4 is visualized as a dislocation climb and annihilation process to the limit allowed by the size of the deformationmore » subcells, a reorientation of the subgrain material into a recrystallization texture, a growth of reoriented cells located in the most highly worked bands, and a consumption of less favorably strained and/or oriented cells by the high-angle boundaries of the reoriented cells. Comparison of 15 and 73% cold-worked tubing showed the activation energy to be less (21 versus 60 kcal/mol) and the subcell size greater (8000A versus 1000A) for the 15% cold-worked material. (NSA 22: 21698)« less

  12. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  13. Surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Feng, Zhong-Ying; Zhang, Jian-Min

    2018-05-01

    The spin-polarized first-principles are used to study the surface thermodynamic stability, electronic and magnetic properties in various (001) surfaces of Zr2CoSn Heusler alloy, and the bulk Zr2CoSn Heusler alloy are also discussed to make comparison. The conduction band minimum (CBM) of half-metallic (HM) bulk Zr2CoSn alloy is contributed by ZrA, ZrB and Co atoms, while the valence band maximum (VBM) is contributed by ZrB and Co atoms. The SnSn termination is the most stable surface with the highest spin polarizations P = 77.1% among the CoCo, ZrCo, ZrZr, ZrSn and SnSn terminations of the Zr2CoSn (001) surface. In the SnSn termination of the Zr2CoSn (001) surface, the atomic partial density of states (APDOS) of atoms in the surface, subsurface and third layers are much influenced by the surface effect and the total magnetic moment (TMM) is mainly contributed by the atomic magnetic moments of atoms in fourth to ninth layers.

  14. Zirconocene-iridium hydrido complexes: arene carbon-hydrogen bond activation and formation of a planar square Zr2Ir2 complex.

    PubMed

    Oishi, Masataka; Suzuki, Hiroharu

    2009-03-16

    New early-late heterobimetallic hydrides (L(2)ZrCl)(Cp*Ir)(mu-H)(3) (1; L = Cp derivative, Cp* = eta(5)-C(5)Me(5)) were synthesized from zirconocene derivatives (L(2)ZrCl(2)) and LiCp*IrH(3) via a salt elimination reaction and structurally characterized by NMR and X-ray analyses. Upon treatment of 1 with an alkyllithium reagent, hydride abstraction complex 4 underwent thermolytic ligand elimination at the Zr-Ir system to yield a novel planar square complex (L(2)Zr)(2)(Cp*Ir)(2)(mu(3)-H)(4) (2). When a labeling study of the reaction was conducted, it was found that the conversion of 1 to 2 involves rapid aromatic and benzylic C-H activation by a coordinatively unsaturated dinuclear complex (L(2)Zr)(Cp*Ir)(H)(2) (3).

  15. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Barakat, Nasser A M; Yasin, Ahmed S; Yousef, Ahmed; Choi, Ho-Suk

    2016-08-15

    Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo

    2003-04-01

    A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.

  17. Palladium-doped-ZrO2-multiwalled carbon nanotubes nanocomposite: an advanced photocatalyst for water treatment

    NASA Astrophysics Data System (ADS)

    Anku, William Wilson; Oppong, Samuel Osei-Bonsu; Shukla, Sudheesh Kumar; Agorku, Eric Selorm; Govender, Poomani Penny

    2016-06-01

    The photocatalytic degradation of organic pollutants from water using palladium-doped-zirconium oxide-multiwalled carbon nanotubes (Pd-ZrO2-MWCNTs) nanocomposites is presented. A series of Pd doped-ZrO2-MWCNTs nanocomposites with varying percentage compositions of Pd were prepared by the homogenous co-precipitation method. The photocatalytic applicability of the materials was investigated by the degradation of acid blue 40 dye in water under simulated solar light. The optical, morphological and structural properties of the nanocomposites were evaluated using X-ray powder diffraction, Fourier transformer infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, BET surface area analysis and (UV-Vis) spectroscopy. The Pd-ZrO2-MWCNTs nanocomposites showed enhanced photocatalytic activity toward the degradation of the acid blue 40 dye under visible light compared with bare ZrO2 and ZrO2-MWCNTs alone. The remarkable photocatalytic activity of Pd-ZrO2-MWCNTs nanocomposites in the visible light makes it an ideal photocatalyst for the removal of organic pollutants in water. The 0.5 % Pd-ZrO2-MWCNT was the most efficient photocatalyst with 98 % degradation after 3 h with corresponding K a and band gap values of 16.8 × 10-3 m-1 and 2.79 eV, respectively.

  18. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14-

    NASA Astrophysics Data System (ADS)

    Gaunt, Andrew J.; May, Iain; Collison, David; Travis Holman, K.; Pope, Michael T.

    2003-08-01

    Two new composite polyoxotungstate anions with unprecedented structural features, [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- (1) and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14- (2) contain polyoxo-uranium and -zirconium clusters as bridging units. The anions are synthesized by reaction of Na12[P2W15O56] with solutions of UO2(NO3)2 and ZrCl4. The structure of 1 in the sodium salt contains four [P2W15O56]12- anions assembled into an overall tetrahedral cluster by means of trigonal bridging groups formed by three equatorial-edge-shared UO7 pentagonal bipyramids. The structure of anion 2 consists of a centrosymmetric assembly of two [P2W16O59]12- anions linked by a {Zr4O2(OH)2(H2O)4}10+ cluster. Both complexes in solution yield the expected two-line 31P-NMR spectra with chemical shifts of -2.95, -13.58 and -6.45, -13.69 ppm, respectively.

  19. Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Zircaloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, I.; Zikry, M.A.; Ziaei, S.

    2017-04-01

    In this time period, we have continued to focus on (i) refining the thermo-mechanical fracture model for zirconium (Zr) alloys subjected to large deformations and high temperatures that accounts for the cracking of ZrH and ZrH2 hydrides, (ii) formulating a framework to account intergranular fracture due to iodine diffusion and pit formation in grain-boundaries (GBs). Our future objectives are focused on extending to a combined population of ZrH and ZrH2 populations and understanding how thermo-mechanical behavior affects hydride reorientation and cracking. We will also refine the intergranular failure mechanisms for grain boundaries with pits.

  20. Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in Al-Zr-Y alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Haiyan, E-mail: gaohaiyan@sjtu.edu.cn

    Structural and compositional evolution of Al{sub 3}(Zr,Y) precipitates in aged Al-Zr-Y alloy was investigated through atom probe tomography (APT) and transmission electron microscope (TEM) analysis and first principles calculations. The results show that short-bar-shaped D0{sub 19}-Al{sub 3}Y with some Zr atoms dissolved in precipitated at the very beginning of decomposition and worked as heterogeneous nuclei for L1{sub 2}-Al{sub 3}Zr with spherical morphology after being aged at 400 °C for 2 h. Quasi-static coarsening happened as the aging treatment lasted from 2 h to 200 h. However, distribution of Zr and Y atoms in Al{sub 3}(Zr,Y) is nearly uniform and Al{submore » 3}(Zr,Y) do not have the typical “Al{sub 3}RE core-Al{sub 3}Zr shell” structure which observed in other RE containing Al-Zr-RE alloys with L1{sub 2}-Al{sub 3}RE as nuclei. First principles calculations revealed that binding energy between Y and Zr is strong during the growth of Al{sub 3}(Zr,Y), which led to the co-precipitation of Y and Zr atoms and attribute to the evolution of Al{sub 3}(Zr,Y). - Highlights: •Al{sub 3}Y precipitated firstly and then became nuclei for Al{sub 3}Zr during aging of Al-Zr-Y. •Al{sub 3}(Zr,Y) precipitates do not have the typical “Al{sub 3}Y core-Al{sub 3}Zr shell” structure. •Strong binding between Y and Zr led to the co-precipitation of Y and Zr atoms.« less

  1. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.

    2014-04-01

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less

  2. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Minhua; Dou, Maobin; Yu, Yingzhe

    2018-03-01

    Methanol synthesis from CO2 hydrogenation on the ZrO2 doped In2O3(110) surface (Zr-In2O3(110)) with oxygen vacancy has been studied using the density functional theory calculations. The calculated results show that the doped ZrO2 species prohibits the excessive formation of oxygen vacancies and dissociation of H2 on In2O3 surface slightly, but enhances the adsorption of CO2 on both perfect and defective Zr-In2O3(110) surface. Methanol is formed via the HCOO route. The hydrogenation of CO2 to HCOO is both energetically and kinetically facile. The HCOO hydrogenates to polydentate H2CO (p-H2CO) species with an activation barrier of 0.75 eV. H3CO is produced from the hydrogenation of monodentate H2CO (mono-H2CO), transformation from p-H2CO with 0.82 eV reaction energy, with no barrier whether there is hydroxyl group between the mono-H2CO and the neighboring hydride or not. Methanol is the product of H3CO protonation with 0.75 eV barrier. The dissociation and protonation of CO2 are both energetically and kinetically prohibited on Zr-In2O3(110) surface. The doped ZrO2 species can further enhance the adsorption of all the intermediates involved in CO2 hydrogenation to methanol, activate the adsorbed CO2 and H2CO, and stabilize the HCOO, H2CO and H3CO, especially prohibit the dissociation of H2CO or the reaction of H2CO with neighboring hydride to form HCOO and gas phase H2. All these effects make the ZrO2 supported In2O3 catalyst exhibit higher activity and selectivity on methanol synthesis from CO2 hydrogenation.

  3. Thermodynamic modelling of the C-U and B-U binary systems

    NASA Astrophysics Data System (ADS)

    Chevalier, P. Y.; Fischer, E.

    2001-02-01

    The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.

  4. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  5. Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application

    NASA Astrophysics Data System (ADS)

    Kondaiah, P.; Mohan Rao, G.; Uthanna, S.

    2012-11-01

    Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.

  6. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  7. Afterglow based detection and dosimetry of beta particle irradiated ZrO2.

    PubMed

    Salas-Juárez, Ch J; Cruz-Vázquez, C; Avilés-Monreal, R; Bernal, R

    2018-08-01

    In this work, we report on the afterglow (AG) response characterization of commercially available ZrO 2 . Pellet shaped samples previously annealed in air at 1000°C during 24h were exposed to beta particle irradiation in the dose range from 0.5 up to 128Gy and their AG decay curves recorded during 600s after irradiation exposure. The characteristic glow curves of beta particle irradiated ZrO 2 show two maxima located around 80°C and 150°C. The first one rapidly vanishes at room temperature, giving rise to AG. The integrated AG signal increases as dose increases from 0.5 to 128Gy, with a linear dependence from 0.5 up to ca. 32Gy. Excellent reproducibility of the AG response was observed in 10 irradiation - AG readout cycles, showing that the studied ZrO 2 samples are reusable. The results here presented show that ZrO 2 is a promising material for use as a radiation dosimeter based on the AG phenomenon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Magnetic and crystallographic properties of ZrM 2-δZn 20+δ (M=Cr–Cu)

    DOE PAGES

    Svanidze, E.; II, M. Kindy; Georgen, C.; ...

    2016-04-29

    Single crystals of the cubic Laves ternaries ZrM 2-δZn 20+δ (M=Mn, Fe, Co, Ni and Cu, 0 ≤ δ ≤ 1) have been synthesized in this paper using a self-flux method. The magnetic properties of these compounds were compared with structurally similar cubic binaries ZrM 2 (M=Mn, Fe, Co, Ni and Cu). A transition from local to itinerant moment magnetism was observed for M=Fe and M=Mn, while all other ternaries exhibit weakly para- or diamagnetic behavior. The local-to-itinerant crossover can be explained by a nearly two-fold increase of the M–M bond length d M–M in ZrM 2-δZn 20+δ compounds, asmore » compared with the ZrM 2 binaries. Additionally, we report two new compounds in this series ZrCrZn 21 and ZrCu 2Zn 20. Finally, analysis of crystallographic and magnetic trends in these materials will aid in understanding of magnetism in general and 3d intermetallics in particular.« less

  9. Radiation damage in cubic ZrO 2 and yttria-stabilized zirconia from molecular dynamics simulations

    DOE PAGES

    Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2014-11-20

    Here, we perform molecular dynamics simulation on cubic ZrO 2 and yttria-stabilized zirconia (YSZ) to elucidate defect cluster formation resulting from radiation damage, and evaluate the impact of Y-dopants. Interstitial clusters composed of split-interstitial building blocks, i.e., Zr-Zr or Y-Zr are formed. Moreover, oxygen vacancies control cation defect migration; in their presence, Zr interstitials aggregate to form split-interstitials whereas in their absence Zr interstitials remain immobile, as isolated single-interstitials. Y-doping prevents interstitial cluster formation due to sequestration of oxygen vacancies.

  10. Hydrothermal synthesis of copper zirconium phosphate hydrate [Cu(OH)2Zr(HPO4)2·2H2O] and an investigation of its lubrication properties in grease.

    PubMed

    Zhang, Xiaosheng; Xu, Hong; Zuo, Zhijun; Lin, Zhi; Ferdov, Stanislav; Dong, Jinxiang

    2013-08-28

    Copper zirconium phosphate hydrate (Cu(OH)2Zr(HPO4)2·2H2O, hereafter referred to as Cu-α-ZrP) with high crystallinity was directly synthesized in a NaF-CuO-ZrO-P2O5-H2O system under hydrothermal conditions. The copper ion was confirmed to be an exchangeable cation in the Cu-α-ZrP through elemental analysis and a proton ion exchange process. The crystal structure of the Cu-α-ZrP was determined ab initio by using X-ray powder diffraction data. In the structure, the CuO6 octahedron would be located in an exchangeable atom position. Moreover, Cu-α-ZrP was evaluated as an additive in grease in a four ball test. The maximum nonseizure load (PB, representing the load-carrying capacity) of the base grease containing Cu-α-ZrP was increased from 353 to 1235 N. The excellent load-carrying capacity may be explained by the easier adherence of the material to the worn surface forming a tight protective film.

  11. Effects of Zr/Ce molar ratio and water content on thermal stability and structure of ZrO{sub 2}–CeO{sub 2} mixed oxides prepared via sol–gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenzhi; Yang, Jili; Wang, Chunjie

    2012-09-15

    Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less

  12. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation andmore » confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.« less

  13. Quantitative analysis of deuterium in zircaloy using double-pulse laser-induced breakdown spectrometry (LIBS) and helium gas plasma without a sample chamber.

    PubMed

    Suyanto, H; Lie, Z S; Niki, H; Kagawa, K; Fukumoto, K; Rinda, Hedwig; Abdulmadjid, S N; Marpaung, A M; Pardede, M; Suliyanti, M M; Hidayah, A N; Jobiliong, E; Lie, T J; Tjia, M O; Kurniawan, K H

    2012-03-06

    A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 μs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 μg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 μm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future.

  14. Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloux, R.M.; Ballinger, R.; Lucas, G.

    1979-01-01

    An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less

  15. Synthesis of antimicrobial Nisin-phosphorylated soybean protein isolate/poly(L-lactic acid)/ZrO2 membranes.

    PubMed

    Jiang, Suwei; Wang, Hualin; Chu, Chenjiang; Ma, Xingkong; Sun, Min; Jiang, Shaotong

    2015-01-01

    Electrospinning technique was used to fabricate the model drug Nisin loaded phosphorylated soybean protein isolate/poly(l-lactic acid)/zirconium dioxide (Nisin-PSPI/PLLA/ZrO2) nanofibrous membranes. The average diameter of drug carrier PSPI/PLLA/ZrO2 nanofibers increased with the increase of content PSPI and some spindle-shape beads appeared when PSPI content reached 25 wt%. The loading dosage of Nisin caused no significant changes in the size and morphology of nanofibers when Nisin content was below 9 wt%. There existed hydrogen and Zr-O-C bonds among PSPI, PLLA and ZrO2 units, and the crystalline of PLLA matrix decreased owning to the introducing of PSPI and ZrO2 units. Moreover, the water absorption capability and degradation rate of PSPI/PLLA/ZrO2 nanofibrous membranes increased with increasing PSPI content. The antimicrobial activity and release experimental results showed that Nisin-PSPI/PLLA/ZrO2 nanofibrous membranes displayed well controlled release and better antimicrobial activity against Staphylococcus aureus (S. aureus), and the Nisin release from the medicated nanofibers could be described by Fickian diffusion model. The Nisin-PSPI/PLLA/ZrO2 nanofibrous membranes may have potential as a new nanofibrous membrane in drug delivery, food active packaging and wound dressing. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effect of ambient oxygen on the photoluminescence of sol-gel-derived nanocrystalline ZrO2:Eu,Nb

    NASA Astrophysics Data System (ADS)

    Puust, Laurits; Kiisk, Valter; Eltermann, Marko; Mändar, Hugo; Saar, Rando; Lange, Sven; Sildos, Ilmo; Dolgov, Leonid; Matisen, Leonard; Jaaniso, Raivo

    2017-06-01

    The development of inorganic nanophosphors is an active research field due to many applications, including optical gas sensing materials. We found a systematic dependence of the photoluminescence (PL) of europium (Eu3+) impurity ions in zirconia (ZrO2) nanocrystals on the ambient oxygen concentration in a O2/N2 mixture at normal pressure. Europium-doped ZrO2 powders were synthesized via a sol-gel route. Heat-treatment at 1200 °C resulted in a well-developed monoclinic phase (XRD crystallite size of ~50 nm) and an intense PL of Eu3+ ions residing in the dominant phase (Eu3+ was excited directly at 395 or 464 nm). Co-doping with niobium resulted in a narrowing of the PL emission lines. Only Nb5+ was detected by XPS and is believed to charge-compensate Eu3+ activators throughout the material leading to a more regular crystal lattice. At room temperature, the exposure to oxygen suppressed the Eu3+ fluorescence, whereas, at elevated temperatures (300 °C), the effect was reversed. At 300 °C and under a focused continuous laser beam, a substantial PL response (>50%) was achieved when switching 100% of N2 for 100% of O2. PL decay kinetics clearly showed that at 300 °C fluorescence quenching centers were induced within the material by oxygen desorption. The relatively fast (<5 min) and sub-linear PL response to the changes of oxygen concentration shows that ZrO2:Eu,Nb is a promising PL-based oxygen sensing material over a wide-range of oxygen pressures.

  17. Statistical Modeling of Zr/Hf Extraction using TBP-D2EHPA Mixtures

    NASA Astrophysics Data System (ADS)

    Rezaeinejhad Jirandehi, Vahid; Haghshenas Fatmehsari, Davoud; Firoozi, Sadegh; Taghizadeh, Mohammad; Keshavarz Alamdari, Eskandar

    2012-12-01

    In the present work, response surface methodology was employed for the study and prediction of Zr/Hf extraction curves in a solvent extraction system using D2EHPA-TBP mixtures. The effect of change in the levels of temperature, nitric acid concentration, and TBP/D2EHPA ratio (T/D) on the Zr/Hf extraction/separation was studied by the use of central composite design. The results showed a statistically significant effect of T/D, nitric acid concentration, and temperature on the extraction percentage of Zr and Hf. In the case of Zr, a statistically significant interaction was found between T/D and nitric acid, whereas for Hf, both interactive terms between temperature and T/D and nitric acid were significant. Additionally, the extraction curves were profitably predicted applying the developed statistical regression equations; this approach is faster and more economical compared with experimentally obtained curves.

  18. Raman Spectrum of Er-Y-codoped ZrO2 and Fluorescence Properties of Er3+

    NASA Astrophysics Data System (ADS)

    He, Jun; Luo, Meng-fei; Jin, Ling-yun; He, Mai; Fang, Ping; Xie, Yun-long

    2007-02-01

    Er-Y-codoped ZrO2 mixed oxides with monoclinic, tetragonal and cubic structures were prepared by a sol-gel method. The crystal structure of ZrO2 matrix and the effect of the ZrO2 phases on the fluorescence properties of Er3+ were studied using Raman spectroscopy. The results indicated that the fluorescence properties of Er3+ depend on its local ZrO2 crystal structures. As ZrO2 matrix transferred from monoclinic to tetragonal and cubic phase, the Raman and fluorescence bands of Er3+ decreased in intensities and tended to form a single peak. With 632.8 nm excitation, the bands between 640 and 680 nm were attributed to the fluorescence of Er3+ in the ZrO2 environment. However, only the fluorescence was observed and no Raman spectra were seen under 514.5 nm excitation, while only Raman spectra were observed under 325 nm excitation. UV Raman spectroscopy was found to be more sensitive in the surface region while the information provided by XRD mainly came from the bulk. The phase with lower symmetry forms more easily on the surface than in the bulk.

  19. Combinatorial Investigation of ZrO2-Based Dielectric Materials for Dynamic Random-Access Memory Capacitors

    NASA Astrophysics Data System (ADS)

    Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi

    2011-06-01

    We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).

  20. Ca2+-exchange in layered zirconium orthophosphate, α-ZrP: Chemical study and potential application for zinc corrosion inhibition

    NASA Astrophysics Data System (ADS)

    Bouali, Imane; Rocca, Emmanuel; Veys-Renaux, Delphine; Rhouta, Benaissa; Khalil, Aziza; Aït Aghzzaf, Ahmed

    2017-11-01

    The control of the corrosion phenomenon occurring at the metal interface requires the development of new non-toxic anticorrosion additives. For this purpose, zirconium orthophosphate compounds (Zr(HPO4)2,H2O noted α-ZrP) were synthesized by both hydrothermal and refluxing methods The Ca2+-cationic exchange in the layered structure is kinetically favoured by low crystallinity of α-ZrP synthesized by refluxing process, and leads to the formation of CaZr(PO4)2,4H2O, noted Ca2+-ZrP. The H+/Ca2+ exchange mechanism is mainly triggered by acid-base considerations, and especially the pKa of α-ZrP/Ca2+-ZrP acid-base couple (evaluated to 2.5). Both compounds are acidic compounds by internal exchangeable H+ for α-ZrP and surface protons for Ca2+-ZrP, and can be used as potential inhibitors of zinc corrosion. Electrochemical measurements show that Ca2+-ZrP compounds dispersed in the NaCl electrolyte buffer the pH value over a long time and therefore allow controlling the corrosion rate of zinc.

  1. Does dinitrogen hydrogenation follow different mechanisms for [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(mu2,eta2,eta2-N2) complexes? A computational study.

    PubMed

    Bobadova-Parvanova, Petia; Wang, Qingfang; Quinonero-Santiago, David; Morokuma, Keiji; Musaev, Djamaladdin G

    2006-09-06

    The mechanisms of dinitrogen hydrogenation by two different complexes--[(eta(5)-C(5)Me(4)H)(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)), synthesized by Chirik and co-workers [Nature 2004, 427, 527], and {[P(2)N(2)]Zr}(2)(mu(2),eta(2),eta(2)-N(2)), where P(2)N(2) = PhP(CH(2)SiMe(2)NSiMe(2)CH(2))(2)PPh, synthesized by Fryzuk and co-workers [Science 1997, 275, 1445]--are compared with density functional theory calculations. The former complex is experimentally known to be capable of adding more than one H(2) molecule to the side-on coordinated N(2) molecule, while the latter does not add more than one H(2). We have shown that the observed difference in the reactivity of these dizirconium complexes is caused by the fact that the former ligand environment is more rigid than the latter. As a result, the addition of the first H(2) molecule leads to two different products: a non-H-bridged intermediate for the Chirik-type complex and a H-bridged intermediate for the Fryzuk-type complex. The non-H-bridged intermediate requires a smaller energy barrier for the second H(2) addition than the H-bridged intermediate. We have also examined the effect of different numbers of methyl substituents in [(eta(5)-C(5)Me(n)H(5)(-)(n))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) for n = 0, 4, and 5 (n = 5 is hypothetical) and [(eta(5)-C(5)H(2)-1,2,4-Me(3))(eta(5)-C(5)Me(5))(2)Zr](2)(mu(2),eta(2),eta(2)-N(2)) and have shown that all complexes of this type would follow a similar H(2) addition mechanism. We have also performed an extensive analysis on the factors (side-on coordination of N(2) to two Zr centers, availability of the frontier orbitals with appropriate symmetry, and inflexibility of the catalyst ligand environment) that are required for successful hydrogenation of the coordinated dinitrogen.

  2. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Laxmi J., E-mail: laxmi-tomar86@yahoo.com; Bhatt, Piyush J.; Desai, Rahul K.

    TiO{sub 2}-ZrO{sub 2} and Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X –ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO{sub 2}, TiO{sub 2}-ZrO{sub 2} and Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphitemore » coated conducting glass plate was used as counter electrode. The I – V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO{sub 2}, TiO{sub 2}-ZrO{sub 2} and Zn doped TiO{sub 2}-ZrO{sub 2} nanocomposites were found 0.71%, 1.97% and 4.58% respectively.« less

  3. Phase study of SiO2-ZrO2 composites prepared from polymorphic combination of starting powders via a ball-milling followed by calcination

    NASA Astrophysics Data System (ADS)

    Musyarofah; Nurlaila, R.; Muwwaqor, N. F.; Saukani, M.; Kuswoyo, A.; Triwikantoro; Pratapa, S.

    2017-04-01

    The effects of SiO2-ZrO2 polymorphic combinations as starting powders and calcination temperature on phase composition of the SiO2-ZrO2 composites were studied. Stoichiometric (1:1 mol%) mixtures of the SiO2-ZrO2 composites were mechanically activated using a ball-milling for 5 h followed by calcinations at 1000, 1100 and 1200 °C for 3 h. The composites used in the present study were a-SiO2+ a-ZrO2, a-SiO2+ t-ZrO2, c-SiO2+ a-ZrO2 and c-SiO2+ t-ZrO2 which were symbolized by AA, AT, CA and CT, respectively. Prefixes a, t and c denote amorphous, tetragonal and cristobalite, respectively. The phase composition was determined by Rietveld analysis of X-ray diffraction (XRD) data using Rietica software. The identified phases for all calcined samples were a combination among t-ZrO2, c-SiO2, m-ZrO2 and zircon (ZrSiO4). Amorphous zirconia formed a transient tetragonal zirconia phase during heating, which reacted with silica to form zircon. The zircon phase was not found to form even at 1200 °C in the AT and CT mixtures and at 1100 °C in the CA mixture. The AA mixture in particular crystallized to form zircon at a lower temperature with more composition fraction than the others, ca 82.9 (14) mol%.

  4. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.

    PubMed

    Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi

    2006-04-01

    Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.

  5. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  6. Influence of the physico-chemical properties of CeO 2-ZrO 2 mixed oxides on the catalytic oxidation of NO to NO 2

    NASA Astrophysics Data System (ADS)

    Atribak, Idriss; Guillén-Hurtado, Noelia; Bueno-López, Agustín; García-García, Avelina

    2010-10-01

    Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N 2 adsorption at -196 °C and XPS, and were tested for NO oxidation to NO 2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.

  7. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Z.; Chen, Y.; Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes overmore » 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.« less

  8. The regulation of progesterone receptor by 17 beta estradiol and tamoxifen in the Zr-75-1 human breast cancer cell line in defined medium.

    PubMed

    Allegra, J C; Korat, O; Do, H M; Lippman, M

    1981-01-01

    The regulation of progesterone receptor by 17 beta estradiol and tamoxifen in the ZR-75-1 human breast cancer cell line in defined medium is described. ZR-75-1 cells maintained in serum free hormone supplemented medium minus estradiol lack progesterone receptor activity. Readdition of estradiol to these cells leads to a marked stimulation of progesterone receptor activity (0 to greater than 100 fmols of specifically bound progesterone per million cells). Tamoxifen (10(-6)M-10(-8)M) does not stimulate progesterone receptor activity in this cell line. The presence of progesterone receptor activity is not directly related to growth. Withdrawal of insulin in the continued presence of estradiol has no effect on progesterone receptor concentration although net cell growth ceases. Conversely, withdrawal of estradiol in the continued presence of insulin induces a cessation of net cell growth accompanied by a loss of all progesterone receptor activity within 3-5 days.

  9. Twelve inequivalent Dirac cones in two-dimensional ZrB2

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro

    2018-01-01

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB2 is presented. Two-dimensional ZrB2 is a mechanically stable d - and p -orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is able to remove selectively the Dirac cones. A rational explanation in terms of d - and p -orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. The versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.

  10. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    NASA Technical Reports Server (NTRS)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  11. C60 and U ion irradiation of Gd 2Ti xZr 2-xO 7 pyrochlore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik

    2015-08-01

    Gd 2Ti xZr 2-xO 7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C 60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd 2Ti 2O 7 and Gd 2TiZrO 7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.

  12. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    NASA Astrophysics Data System (ADS)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  13. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region andmore » region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.« less

  14. PRELIMINARY EVALUATION OF FeCrAl CLADDING AND U-Si FUEL FOR ACCIDENT TOLERANT FUEL CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Gamble, K. A.

    2015-09-01

    Since the accident at the Fukushima Daiichi Nuclear Power Station, enhancing the accident tolerance of light water reactors (LWRs) has become an important research topic. In particular, the community is actively developing enhanced fuels and cladding for LWRs to improve safety in the event of accidents in the reactor or spent fuel pools. Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system, can tolerate loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normalmore » operations and operational transients. This paper presents early work in developing thermal and mechanical models for two materials that may have promise: U-Si for fuel, and FeCrAl for cladding. These materials would not necessarily be used together in the same fuel system, but individually have promising characteristics. BISON, the finite element-based fuel performance code in development at Idaho National Laboratory, was used to compare results from normal operation conditions with Zr-4/UO2 behavior. In addition, sensitivity studies are presented for evaluating the relative importance of material parameters such as ductility and thermal conductivity in FeCrAl and U-Si in order to provide guidance on future experiments for these materials.« less

  15. Investigation of mechanical and microstructural properties of Zircaloy-4 under different experimental conditions

    DOE PAGES

    Silva, Chinthaka M.; Leonard, Keith J.; Van Abel, Eric; ...

    2017-12-09

    Here two types of Zircaloy-4 (alpha-annealed and beta-quenched) were investigated in their different forms. It was found that mechanical properties of Zircaloy-4 are affected significantly by welding and hydrogen-charging followed by neutron irradiation. Evaluation of microstructural properties of samples showed that these changes are mainly due to the formation of secondary phases such as hydrides—mostly along grain boundaries, dislocation channeling and their disruptions, and the increase in the type dislocation loops.

  16. Investigation of mechanical and microstructural properties of Zircaloy-4 under different experimental conditions

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Leonard, Keith J.; Van Abel, Eric; Geringer, J. Wilna; Bryan, Chris D.

    2018-02-01

    Two types of Zircaloy-4 (alpha-annealed and beta-quenched) were investigated in their different forms. It was found that mechanical properties of Zircaloy-4 are affected significantly by welding and hydrogen-charging followed by neutron irradiation. Evaluation of microstructural properties of samples showed that these changes are mainly due to the formation of secondary phases such as hydrides-mostly along grain boundaries, dislocation channeling and their disruptions, and the increase in the type dislocation loops.

  17. Microstructure characterization and phase transformation kinetic study of ball-milled m-ZrO 2-30 mol% a-TiO 2 mixture by Rietveld method

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dutta, H.

    2005-05-01

    High-energy ball milling of monoclinic ZrO 2-30 mol% anatase TiO 2 mixture at different durations results in the formation of m-ZrO 2-a-TiO 2 solid solution from which the nucleation of nanocrystalline cubic (c) ZrO 2 polymorphic phase sets in. Post-annealing of 12 h ball-milled sample at different elevated temperatures for 1 h results in almost complete formation of c-ZrO 2 phase. Microstructure of the unmilled, all the ball milled and annealed samples has been characterized by Rietveld's X-ray powder structure refinement method. Particle size, rms lattice strain, change in lattice parameters and phase content of individual phases have been estimated from Rietveld analysis, and are utilized to interpret the results. In course of milling, (1 1 1) of cubic lattice became parallel to ( 1bar 1 1) plane of monoclinic lattice due to the orientation effect and cubic phase may have been formed on the (0 0 1) of the m-ZrO 2-a-TiO 2 solid solution lattice. A comparative study of microstructure and phase transformation kinetics of ZrO 2-10, 20 and 30 mol% a-TiO 2 ball-milled and post-annealed samples reveals that rate of phase transformation m→c-ZrO 2 increases with increasing a-TiO 2 concentration and ∼30 mol% of nanocrystalline c-ZrO 2 phase can be obtained within 4 h of milling time in the presence of 30 mol% of a-TiO 2. The post-annealing treatment at 773, 873 and 973 K for 1 h duration each reveals that rate of c-ZrO 2 formation with increasing temperature is retarded with increasing a-TiO 2 concentration but the amount of c-ZrO 2 becomes almost equal (∼95 mol%) at 973 K. It suggests that almost fully stabilized nanocrystalline c-ZrO 2 can be formed by adding a tetravalent solute to m-ZrO 2.

  18. Multi-clad black display panel

    DOEpatents

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  19. Oriented and ordered mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Luyi, E-mail: zhuly@sdu.edu.cn; Liu, Benxue; Qin, Weiwei, E-mail: jiuyuan.1001@163.com

    Graphical abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface area under higher temperatures were prepared by a simple EISA process. - Highlights: • The ZrO{sub 2}/TiO{sub 2} fibers were prepared by EISA process combined with steam heat-treatment. • The mesoporous ZrO{sub 2}/TiO{sub 2} fibers have well-organized linear and spring structure. • The fibers were composed of oval rod nanocrystals of ZrTiO{sub 4}. - Abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface areas under higher temperatures were prepared by a (simplemore » evaporation-induced assembly) EISA process. The preparation, microstructures and formation processes were characterized by Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N{sub 2} adsorption–absorption measurements. The fibers take on pinstripe configuration which is very orderly along or perpendicular to the axial direction of the fibers. The diameters of the pinstripe are in the region of 200–400 nm and arranges regularly, which are composed of oval rod nanocrystals of ZrTiO{sub 4}.« less

  20. Role of the Cu-ZrO 2 Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO 2 and H 2 [The Role of the Cu-ZrO 2 Interfacial Sites for Ethanol Conversion to Ethyl Acetate and Methanol Synthesis from CO 2 and H 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ro, Insoo; Liu, Yifei; Ball, Madelyn R.

    Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less

  1. Role of the Cu-ZrO 2 Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO 2 and H 2 [The Role of the Cu-ZrO 2 Interfacial Sites for Ethanol Conversion to Ethyl Acetate and Methanol Synthesis from CO 2 and H 2

    DOE PAGES

    Ro, Insoo; Liu, Yifei; Ball, Madelyn R.; ...

    2016-09-06

    Well-defined Cu catalysts containing different amounts of zirconia were synthesized by controlled surface reactions (CSRs) and atomic layer deposition methods and studied for the selective conversion of ethanol to ethyl acetate and for methanol synthesis. Selective deposition of ZrO 2 on undercoordinated Cu sites or near Cu nanoparticles via the CSR method was evidenced by UV–vis absorption spectroscopy, scanning transmission electron microscopy, and inductively coupled plasma absorption emission spectroscopy. The concentrations of Cu and Cu-ZrO 2 interfacial sites were quantified using a combination of subambient CO Fourier transform infrared spectroscopy and reactive N 2O chemisorption measurements. The oxidation states ofmore » the Cu and ZrO 2 species for these catalysts were determined using X-ray absorption near edge structure measurements, showing that these species were present primarily as Cu 0 and Zr 4+, respectively. Here, it was found that the formation of Cu-ZrO 2 interfacial sites increased the turnover frequency by an order of magnitude in both the conversion of ethanol to ethyl acetate and the synthesis of methanol from CO 2 and H 2.« less

  2. Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2005-04-01

    A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.

  3. Descriptions of crack growth behaviors in glass-ZrO2 bilayers under thermal residual stresses.

    PubMed

    Belli, Renan; Wendler, Michael; Zorzin, José I; Petschelt, Anselm; Tanaka, Carina B; Meira, Josete; Lohbauer, Ulrich

    2016-09-01

    This study was intended to separate residual stresses arising from the mismatch in coefficients of thermal expansion between glass and zirconia (ZrO2) from those stresses arising solely from the cooling process. Slow crack growth experimentes were undertaken to demonstrate how cracks grow in different residual stress fields. Aluminosilicate glass discs were sintered onto ZrO2 to form glass-ZrO2 bilayers. Glass discs were allowed to bond to the ZrO2 substrate during sintering or prevented from bonding by means of coating the ZrO2 with a thin boron nitrade coating. Residual stress gradients on "bonded" and "unbonded" bilayers were assessed using birefringence measurements. Unbonded glass discs were further tested under biaxial flexure in dynamic fatigue conditions in order to evaluate the effect of residual stress on the slow crack growth behavior. When fast-ccoling was induced, residual tensile stresses on the glass increased significantly on the side toward the ZrO2 substrate. By allowing the bond between glass and ZrO2, those tensile stresses observed in unbonded specimens are overwhelmed by the contraction mismatch stresses between the ZrO2 substrate and the glassy overlayer. Specimens containing residual tensile stresses on the bending surface showed a time-dependent strength increase in relation to stress-free annealed samples in the dynamic biaxial bending test, with this effect being dependent on the magnitude of the residual tensile stress. The phenomenon observed is explained here on the basis of the water toughening effect, in which water diffuses into the glass promoting local swelling. An additional residual tensile stress at the crack tip adds an applied-stress-independent (Kres) term to the total tip stress intensity factor (Ktip), increasing the stress-enhanced diffusion and the shielding of the crack tip through swelling of the crack faces. Residual stresses in the glass influence the crack growth behavior of veneered-ZrO2 bilayered dental prostheses

  4. Thermal conductivity of ZrO2-4mol%Y2O3 thin coatings by pulsed thermal imaging method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byung-Koog; Sun, Jiangang; Kim, Seongwon

    Thin ZrO2-4mol% Y2O3 coatings were deposited onto ZrO2 substrates by electron beam-physical vapor deposition. The coated samples revealed a feather-like columnar microstructure. The main phase of the ZrO2-4mol% Y2O3 coatings was the tetragonal phase. To evaluate the influence of the coating’s thickness on the thermal conductivity of thin ZrO2-4mol% Y2O3 coatings, the pulsed thermal imaging method was employed to obtain the thermal conductivity of the coating layer in the two-layer (coating and substrate) samples with thickness between 56 and 337 micrometers. The thermal conductivity of the coating layer was successfully evaluated and compared well with those obtained by the lasermore » flash method for similar coatings. The thermal conductivity of coatings shows an increasing tendency with an increase in the coating’s thickness.« less

  5. Zr diffusion in titanite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-11-01

    Chemical diffusion of Zr under anhydrous, pO2-buffered conditions has been measured in natural titanite. The source of diffusant was either zircon powder or a ZrO2-Al2O3-titanite mixture. Experiments were run in sealed silica glass capsules with solid buffers (to buffer at NNO or QFM). Rutherford Backscattering Spectrometry (RBS) was used to measure diffusion profiles. The following Arrhenius parameters were obtained for Zr diffusion parallel to c over the temperature range 753-1,100°C under NNO-buffered conditions: D Zr = 5.33 × 10-7 exp(-325 ± 30 kJ mol-1/RT) m2 s-1 Diffusivities are similar for experiments buffered at QFM. These data suggest that titanite should be moderately retentive of Zr chemical signatures, with diffusivities slower than those for O and Pb in titanite, but faster than those for Sr and the REE. When applied in evaluation of the relative robustness of the recently developed Zr-in-titanite geothermometer (Hayden and Watson, Abstract, 16th V.M. Goldschmidt Conference 2006), these findings suggest that Zr concentrations in titanite will be less likely to be affected by later thermal disturbance than the geothermometer based on Zr concentrations in rutile (Zack et al. in Contrib Mineral Petrol 148:471-488, 2004; Watson et al. in Contrib Mineral. Petrol, 2006), but much less resistant to diffusional alteration subsequent to crystallization than the Ti-in-Zircon geothermometer (Watson and Harrison in Science 308:841-844, 2005).

  6. Quantum origins of moment fragmentation in Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Benton, Owen

    2016-09-01

    Spin-liquid states are often described as the antithesis of magnetic order. Recently, however, it has been proposed that in certain frustrated magnets the magnetic degrees of freedom may "fragment" in such a way as to give rise to a coexistence of spin liquid and ordered phases. Recent neutron-scattering results [S. Petit, E. Lhotel, B. Canals, M. Ciomaga Hatnean, J. Ollivier, H. Muttka, E. Ressouche, A. R. Wildes, M. R. Lees, and G. Balakrishnan, Nat. Phys. 12, 746 (2016), 10.1038/nphys3710] suggest that this scenario may be realized in the pyrochlore magnet Nd2Zr2O7 . These observations show the characteristic pinch-point features of a Coulombic spin liquid occurring alongside the Bragg peaks of an "all-in-all-out" ordered state. Here we explain the quantum origins of this apparent magnetic moment fragmentation, within the framework of a quantum model of nearest-neighbor exchange, appropriate to Nd2Zr2O7 . This model is able to capture both the ground-state order and the pinch points observed at finite energy. The observed fragmentation arises due to the combination of the unusual symmetry properties of the Nd3 + ionic wave functions and the structure of equations of motion of the magnetic degrees of freedom. The results of our analysis suggest that Nd2Zr2O7 is proximate to a U (1 ) spin-liquid phase and is a promising candidate for the observation of a Higgs transition in a magnetic system.

  7. Performance of U3Si2 Fuel in a Reactivity Insertion Accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lap Y.; Cuadra, Arantxa; Todosow, Michael

    In this study we examined the performance of the U3Si2 fuel cladded with Zircaloy (Zr) in a reactivity insertion accident (RIA) in a PWR core. The power excursion as a result of a $1 reactivity insertion was calculated by a TRACE PWR plant model using point-kinetics, for alternative cores with UO2 and U3Si2 fuel assemblies. The point-kinetics parameters (feedback coefficients, prompt-neutron lifetime and group constants for six delayed-neutron groups) were obtained from beginning-of-cycle equilibrium full core calculations with PARCS. In the PARCS core calculations, the few-group parameters were developed utilizing the TRITON/NEWT tools in the SCALE package. In order tomore » assess the fuel response in finer detail (e.g. the maximum fuel temperature) the power shape and thermal boundary conditions from the TRACE/PARCS calculations were used to drive a BISON model of a fuel pin with U3Si2 and UO2 respectively. For a $1 reactivity transient both TRACE and BISON predicted a higher maximum fuel temperature for the UO2 fuel than the U3Si2 fuel. Furthermore, BISON is noted to calculate a narrower gap and a higher gap heat transfer coefficient than TRACE. This resulted in BISON predicting consistently lower fuel temperatures than TRACE. This study also provides a systematic comparison between TRACE and BISON using consistent transient boundary conditions. The TRACE analysis of the RIA only reflects the core-wide response in power. A refinement to the analysis would be to predict the local peaking in a three-dimensional core as a result of control rod ejection.« less

  8. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7

    NASA Astrophysics Data System (ADS)

    Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária

    2012-07-01

    While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.

  9. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    NASA Astrophysics Data System (ADS)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  10. Electrical characteristics and thermal stability of n+ polycrystalline- Si/ZrO2/SiO2/Si metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lim, Kwan-Yong; Park, Dae-Gyu; Cho, Heung-Jae; Kim, Joong-Jung; Yang, Jun-Mo; Ii, Choi-Sang; Yeo, In-Seok; Park, Jin Won

    2002-01-01

    We have investigated the thermal stability of n+ polycrystalline-Si(poly-Si)/ZrO2(50-140 Å)/SiO2(7 Å)/p-Si metal-oxide-semiconductor (MOS) capacitors via electrical and material characterization. The ZrO2 gate dielectric was prepared by atomic layer chemical vapor deposition using ZrCl4 and H2O vapor. Capacitance-voltage hysteresis as small as ˜12 mV with the flatband voltage of -0.5 V and the interface trap density of ˜5×1010cm-2 eV-1 were attained with activation anneal at 750 °C. A high level of gate leakage current was observed at the activation temperatures over 750 °C and attributed to the interfacial reaction of poly-Si and ZrO2 during the poly-Si deposition and the following high temperature anneal. Because of this, the ZrO2 gate dielectric is incompatible with the conventional poly-Si gate process. In the MOS capacitors having a smaller active area (<50×50 μm2), fortunately, the electrical degradation by further severe silicidation does not occur up to an 800 °C anneal in N2 for 30 min.

  11. Ethanol dehydrogenation on copper catalysts with ytterbium stabilized tetragonal ZrO2 support

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Pylinina, A. I.; Podzorova, L. I.; Mikhailina, N. A.; Mikhalenko, I. I.

    2016-12-01

    The physicochemical and catalytic properties of Cu-containing crystalline zirconia, obtained via sol-gel synthesis in the presence of Yb3+ ions and polyvinylpyrrolidone, are studied. DTG/DSC, TEM, XRD and BET methods are used to analyze the crystallization, texture, phase uniformity, surface and porosity of ZrO2 nanopowders. It is shown that increasing the copper content (1, 3, and 5 wt % from ZrO2) raises the dehydrogenation activity in the temperature range of 100-400°C and lowers the activation energy of acetaldehyde formation. It is found that the activity of all Cu/ t-ZrO2 catalysts grows under the effects of the reaction medium, due to the migration and redispersion of copper.

  12. Synthesis of Defect Perovskites (He 2–x⟂ x)(CaZr)F 6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, Brett R.; dos Santos, António M.; Molaison, Jamie J.

    Defect perovskites (He 2–x⟂ x)(CaZr)F 6 can be prepared by inserting helium into CaZrF 6 at high pressure. They can be recovered to ambient pressure at low temperature. There are no prior examples of perovskites with noble gases on the A-sites. The insertion of helium gas into CaZrF 6 both elastically stiffens the material and reduces the magnitude of its negative thermal expansion. It also suppresses the onset of structural disorder, which is seen on compression in other media. Measurements of the gas released on warming to room temperature and Rietveld analyses of neutron diffraction data at low temperature indicatemore » that exposure to helium gas at 500 MPa leads to a stoichiometry close to (He 1⟂ 1)(CaZr)F 6. Helium has a much higher solubility in CaZrF 6 than silica glass or crystobalite. An analogue with composition (H 2) 2(CaZr)F 6 would have a volumetric hydrogen storage capacity greater than current US DOE targets. We anticipate that other hybrid perovskites with small neutral molecules on the A-site can also be prepared and that they will display a rich structural chemistry.« less

  13. Raman spectroscopy and electron-phonon coupling in Eu3+ doped Gd2Zr2O7 nanopowders

    NASA Astrophysics Data System (ADS)

    Krizan, G.; Gilic, M.; Ristic-Djurovic, J. L.; Trajic, J.; Romcevic, M.; Krizan, J.; Hadzic, B.; Vasic, B.; Romcevic, N.

    2017-11-01

    The Raman spectra of Eu3+ doped Gd2Zr2O7 nanopowders were measured. We registered three phonons at 177 cm-1, 268 cm-1, and 592 cm-1, as well as their overtones at 354 cm-1, 445 cm-1, 708 cm-1, 1062 cm-1, 1184 cm-1, ∼1530 cm-1, and ∼1720 cm-1. The phonon at 592 cm-1 is known to be characteristic for Gd2Zr2O7 fluorite-type structure; however, the other two have not been registered so far. We found that the position of the newly detected phonons agrees well with the observed electron-phonon interaction. On the other hand, the registered multiphonon processes were a consequence of miniaturization that further induced changes in electronic structure of Eu3+ doped Gd2Zr2O7 nanopowders.

  14. THE DETERMINATION OF BORON IN ZIRCALOY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freegarde, M.; Cartwright, J.

    1962-03-01

    An account is given of the development of a simple and reliable procedure for determining boron in Zircaloy at the parts per million level. The sample is dissolved in a mixture of bromine and methanol, and the boron is separated by distillation and determined as its rosocyanin complex with curcumin. The reproducibility of the method is characterized by a standard deviation of 0.03 ppm at the 0.3 ppm level. (auth)

  15. Cladding glass ceramic for use in high powered lasers

    DOEpatents

    Marker, A.J.; Campbell, J.H.

    1998-02-17

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  16. Cladding glass ceramic for use in high powered lasers

    DOEpatents

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  17. Elastico-mechanoluminescence in CaZr(PO4)2:Eu2+ with multiple trap levels.

    PubMed

    Zhang, Jun-Cheng; Xu, Chao-Nan; Long, Yun-Ze

    2013-06-03

    We report on a novel elastico-mechanoluminescence (EML) phosphor of CaZr(PO4)2:Eu2+ for simultaneous luminescent sensing and imaging to mechanical load by the light-emitting of Eu2+ ions. The EML properties of CaZr(PO4)2:Eu2+ show an intense luminance (above 15 mcd m(-2)), a low load threshold (below 5 N), a broad measurement range for the dynamic load (up to 2000 N), and an accurate linear relationship of EML intensity against the applied load. The excellent EML characteristics are considered to originate from the piezoelectric crystal structure and the multiple trap levels with appropriate depths. An EML mechanism based on the electrons as the main charge carriers is proposed.

  18. The Experimental Study of Nuclear Astrophysics Reaction Rate of 93Zr(n,γ)94Zr

    NASA Astrophysics Data System (ADS)

    Gan, L.; Li, Z. H.; Su, J.; Yan, S. Q.; Guo, B.; Du, X. C.; Wu, Z. D.; Zeng, S.; Jin, S. J.; Wang, Y. B.; Bai, X. X.; Zhang, W. J.; Sun, H. B.; Li, E. T.

    The slow neutron capture (s-) process plays a very important role in the nucleosynthesis, which produces about half of the elements heavier than iron. 94Zr is mainly from 93Zr(n,γ)94Zr in the s-process, and the direct component of the 93Zr(n,γ)94Zr capture reaction can be derived from the neutron spectroscopic factor of 94Zr. As the existing neutron spectroscopic factors of 94Zr vary from each other up to 60%, a new work should be adopted to measure it exactly. In the present work, the angular distributions of 94Zr(13C,13C)94Zr, 94Zr(12C,12C)94Zr and 94Zr(12C,13C)93Zr were obtained using the highprecision Q3D magnetic spectrograph. In addition, distorted-wave Born approximation (DWBA) calculations of the transfer differential cross sections were performed. The calculated result displays a good agreement with the experiment data, and a value of 2.60±0.20 for the neutron spectroscopic factor of 94Zr was extracted, and the direct capture cross section versus neutron energy of 93Zr(n,γ)94Zr for the ground state of 94Zr was obtained too.

  19. High- and Low-Temperature Deformation Behavior of Different Orientation Hot-Rolled Annealed Zircaloy-4

    NASA Astrophysics Data System (ADS)

    Zong, Yingying; Gen, Qingfeng; Jiang, Hongwei; Shan, Debin; Guo, Bin

    2018-03-01

    In this paper, the hot-rolled annealed Zircaloy-4 samples with different orientation were subjected to uniaxial compression with a strain rate of 0.001 s-1 to obtain the stress-strain curves of different initial orientation samples at different temperatures. Electron backscatter diffraction (EBSD) technique and transmission electron microscope (TEM) technique were used to analyze the microstructures and textures of compressed samples. The mechanical properties and microstructural evolution of rolling directions (RD), transverse directions (TD) and normal directions (ND) were investigated under the conditions of - 150 °C low temperature, room temperature and 200 °C high temperature (simulated lunar temperature environment). The results show that the strength of Zircaloy-4 decreases with the increase in deformation temperature, and the strength in three orientations is ND > TD > RD. The deformation mechanism of hot-rolled annealed Zircaloy-4 with different orientation is different. In RD, { 10\\bar{1}0} < {a} > prismatic slip has the highest Schmid factor (SF), so it is most easy to activate the slip, followed by TD orientation, and ND orientation is the most difficult to activate. The deformed grains abide slip→twinning→slip rule, and the different orientation Zircaloy-4 deformation mechanisms mainly are the twinning coordinated with the slip.

  20. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  1. Twelve inequivalent Dirac cones in two-dimensional ZrB 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Bezanilla, Alejandro

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less

  2. Twelve inequivalent Dirac cones in two-dimensional ZrB 2

    DOE PAGES

    Lopez-Bezanilla, Alejandro

    2018-01-29

    Theoretical evidence of the existence of 12 inequivalent Dirac cones at the vicinity of the Fermi energy in monolayered ZrB 2 is presented. Two-dimensional ZrB 2 is a mechanically stable d- and p-orbital compound exhibiting a unique electronic structure with two Dirac cones out of high-symmetry points in the irreducible Brillouin zone with a small electron-pocket compensation. First-principles calculations demonstrate that while one of the cones is insensitive to lattice expansion, the second cone vanishes for small perturbation of the vertical Zr position. Internal symmetry breaking with external physical stimuli, along with the relativistic effect of spin-orbit coupling, is ablemore » to remove selectively the Dirac cones. A rational explanation in terms of d- and p-orbital mixing is provided to elucidate the origin of the infrequent Dirac cones in a flat structure. In conclusion, the versatility of transition-metal d orbitals combined with the honeycomb lattice provided by the B atoms yields particular features in a two-dimensional material.« less

  3. Enhanced electrical properties of SrBi4Ti4O15 ceramic with addition of ZrO2

    NASA Astrophysics Data System (ADS)

    Mamatha, B.; Rani, G. Neeraja; Shankar, J.

    2018-04-01

    Polycrystalline SrBi4Ti3.95Zr0.05O15 (SBZT) ceramic was prepared by solid-state double sintering method. It was characterized by X-Ray Diffraction (XRD) and Scanning Electron Micrograph (SEM). With the increased addition of ZrO2, the electrical properties as dielectric, ferroelectric and piezoelectric were studied. From XRD, single-phase formation with orthorhombic structure was identified by the increase of ZrO2. The remnant polarization (Pr) and dielectric constant was found to be increased with the increase of ZrO2. With the increase of ZrO2, Curie temperature (Tc) was found to be decreased. The planar electromechanical coupling coefficient (Kp = 0.57) and Piezoelectric coefficient (d33 = 18 pC/N) was found to be increased with the increase of ZrO2.

  4. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  5. Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Srinivasan, A.; Rajendran, N.

    2015-08-01

    The effect of Si:Zr ratio on the in vitro bioactivity and electrochemical corrosion behavior of SiO2:ZrO2-mixed oxide-coated 316L stainless steel (SS) was evaluated in simulated body fluid (SBF) solution for 72, 120, and 168 h. Growth of Hydroxyapatite (HAp) was accelerated when Si content in the coating was increased. The Zr content in the coating improved the corrosion resistance of 316L SS rather than accelerating the HAp growth. When the Si:Zr ratio was 50:50, the coating exhibited significant improvement in corrosion resistance as well as HAp growth. The mechanism of HAp growth was proposed based on the change in surface zeta potential values of the coatings. Potentiodynamic polarization studies revealed about 10 and 5 times reduction in corrosion current density ( i corr) values for SiO2:ZrO2 (50:50)-coated 316L SS after 168 h of immersion compared to SiO2, ZrO2, and Si:Zr (70:30) coatings in SBF solutions thus confirming the superior corrosion resistance. The equivalent circuit parameters derived from electrochemical impedance spectroscopy studies further confirmed significant improvement in charge transfer resistance value even after 168 h of exposure.

  6. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    PubMed

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  7. Effect of annealing temperature on optical and electrical properties of ZrO2-SnO2 based nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Anitha, V. S.; Lekshmy, S. Sujatha; Berlin, I. John; Joy, K.

    2014-01-01

    Transparent nanocomposite ZrO2-SnO2 thin films were prepared by sol-gel dip-coating technique. Films were annealed at 500°C, 800°C and 1200°C respectively. X-ray diffraction(XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. The grain size of all the three phases' increased with annealing temperature. An average transmittance greater than 85%(in UV-Visible region) is observed for all the films. The band gap for the films decreased from 4.79 eV to 4.62 eV with increase in annealing temperature from 500 to 1200 °C. The electrical resistivity increased with increase in annealing temperature. Such composite ZrO2-SnO2 films can be used in many applications and in optoelectronic devices.

  8. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    PubMed

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  9. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    PubMed Central

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-01-01

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519

  10. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    PubMed

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  11. Structural and dielectric properties of CTAB modified ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sidhu, Gaganpreet Kaur; Tripathi, S. K.; Kumar, Rajesh

    2016-05-01

    Zirconia (ZrO2) has been considered as one of the most investigated materials among various metal oxides due its outstanding dielectric properties and ionic conduction properties, which is mainly due to its high oxygen ion conduction. ZrO2 nanoparticles were synthesized using surfactant (CTAB) to study the variation of its dielectric behavior at room temperature. Surfactants form a unique class of chemical compounds, because of their remarkable ability to influence the properties of surfaces and interfaces of nanostructures. The dielectric properties of prepared nanoparticles were studied using LCR meter.

  12. Effect of annealing temperature on microstructural evolution and electrical properties of sol-gel processed ZrO2/Si films

    NASA Astrophysics Data System (ADS)

    Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong

    2011-01-01

    High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.

  13. Evaluation of a Zirconium Recycle Scrubber System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Barry B.; Bruffey, Stephanie H.

    2017-04-01

    A hot-cell demonstration of the zirconium recycle process is planned as part of the Materials Recovery and Waste Forms Development (MRWFD) campaign. The process treats Zircaloy® cladding recovered from used nuclear fuel with chlorine gas to recover the zirconium as volatile ZrCl4. This releases radioactive tritium trapped in the alloy, converting it to volatile tritium chloride (TCl). To meet regulatory requirements governing radioactive emissions from nuclear fuel treatment operations, the capture and retention of a portion of this TCl may be required prior to discharge of the off-gas stream to the environment. In addition to demonstrating tritium removal from amore » synthetic zirconium recycle off-gas stream, the recovery and quantification of tritium may refine estimates of the amount of tritium present in the Zircaloy cladding of used nuclear fuel. To support these objectives, a bubbler-type scrubber was fabricated to remove the TCl from the zirconium recycle off-gas stream. The scrubber was fabricated from glass and polymer components that are resistant to chlorine and hydrochloric acid solutions. Because of concerns that the scrubber efficiency is not quantitative, tests were performed using DCl as a stand-in to experimentally measure the scrubbing efficiency of this unit. Scrubbing efficiency was ~108% ± 3% with water as the scrubber solution. Variations were noted when 1 M NaOH scrub solution was used, values ranged from 64% to 130%. The reason for the variations is not known. It is recommended that the equipment be operated with water as the scrubbing solution. Scrubbing efficiency is estimated at 100%.« less

  14. Hydroxyaptite nanorods patterned ZrO2 bilayer coating on zirconium for the application of percutaneous implants.

    PubMed

    Zhang, Lan; Han, Yong; Tan, Guoxin

    2015-03-01

    Percutaneous implant requires a tight bond between the underlying dermis of skin and implant surface to prevent epithelial down-growth and infection, while fibroblasts play a key role in the skin-implant integration. In this work, nanorod-shaped hydroxyaptite (HA) with a mean diameter of 70 nm and length of 400 nm was hydrothermally grown on micro-arc oxidized (MAOed) Ca- and P-doped ZrO2 to form a bilayer coating. The hydrothermal formation mechanism of HA nanorods was explored, and the adsorption of total protein on the coating from α-MEM medium containing 10% fetal bovine serum was examined. Employing L-929 cells, the behaviors of fibroblasts on the bilayer coating, including adhesion and proliferation were evaluated together the polished Zr and as-MAOed ZrO2. The obtained results show that the HA nanorods nucleated on ZrO2 and grew at the expense of the doped Ca and P ions during the hydrothermal treatment (HT). The HA nanorods patterned coating enhanced protein absorption, and significantly improved the adhesion and proliferation of fibroblasts compared to the as-MAOed ZrO2 and polished Zr. It suggests that the HA nanorods/ZrO2 coated zirconium has a potential application for percutaneous implants to enhance the attachment of skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  16. High temperature gradient cobalt based clad developed using microwave hybrid heating

    NASA Astrophysics Data System (ADS)

    Prasad, C. Durga; Joladarashi, Sharnappa; Ramesh, M. R.; Sarkar, Anunoy

    2018-04-01

    The development of cobalt based cladding on a titanium substrate using microwave cladding technique is benchmark in coating area. The developed cladding would serve the function of a corrosion resistant coating under high temperatures. Clads of thickness 500 µm have been developed by microwave hybrid heating. A microwave furnace of 2.45GHz frequency was used at a 900W power level for processing. Impact of processing time on melting and adhesion of clad has been discussed. The study also extended to static thermal analysis of simple parts with cladding using commercial Finite Element analysis (FEA) software. A comparative study is explored between four variants of the clad being developed. The analysis has been conducted using a square sample. Similar temperature gradient is also shown for a proposed multi-layer coating, which includes a thermal barrier coating yttria stabilized zirconia (YSZ) on top of the corrosion resistant clad. The YSZ coating would protect the corrosion resistant cladding and substrate from high temperatures.

  17. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  18. A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ling; Chang, Hsiang-Yu; Lou, Jesse Jen-Chung; Tseng, Tseung-Yuen

    2016-04-01

    In this study, the switching properties of an indium tin oxide (ITO)/zirconium oxide (ZrO2)/ITO single layer device and those of a device with an aluminum oxynitride (AlON) layer were investigated. The devices with highly transparent characteristics were fabricated. Compared with the ITO/ZrO2/ITO single layer device, the ITO/ZrO2/AlON/ITO bilayer device exhibited a larger ON/OFF ratio, higher endurance performance, and superior retention properties by using a simple two-step forming process. These substantial improvements in the resistive switching properties were attributed to the minimized influence of oxygen migration through the ITO top electrode (TE), which can be realized by forming an asymmetrical conductive filament with the weakest part at the ZrO2/AlON interface. Therefore, in the ITO/ZrO2/AlON/ITO bilayer device, the regions where conductive filament formation and rupture occur can be effectively moved from the TE interface to the interior of the device.

  19. Zr-doped SnO2 thin films synthesized by spray pyrolysis technique for barrier layers in solar cells

    NASA Astrophysics Data System (ADS)

    Reddy, N. Nanda Kumar; Akkera, Harish Sharma; Sekhar, M. Chandra; Park, Si-Hyun

    2017-12-01

    In the present work, we investigated the effect of Zr doping (0-6 at%) on the structural, electrical, and optical properties of tin oxide (SnO2) thin films deposited onto glass substrates using a spray pyrolysis technique. The room-temperature X-ray diffraction pattern shows that all deposited films exhibit polycrystalline tetragonal structure. The pure SnO2 film is grown along a preferred (200) direction, whereas Zr-doped SnO2 (Zr:SnO2) films started growing along the (220) orientation along with a high intensity peak of (200). Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the grains of the films are spherical in structure, and the grain size decreased with increasing of Zr concentration. The optical transmission spectra of deposited films as a function of wavelength confirm that the average optical transmittance is > 85% for Zr:SnO2 films. The value of the optical bandgap is significantly decreased from 3.94 to 3.68 eV with increasing Zr concentration. Furthermore, the electrical measurements found that the sheet resistance ( R sh) and resistivity ( ρ) values are decreased with increasing of Zr doping. The lowest values of R sh = 6.82 Ω and ρ = 0.4 × 10- 3 Ω cm are found in 6-at% Zr-doped SnO2 film. In addition, a good efficiency value of the figure of merit ( ɸ = 3.35 × 10- 3 Ω-1) is observed in 6-at% Zr-doped SnO2 film. These outstanding properties of Zr-doped SnO2 films make them useful for several optoelectronic device applications.

  20. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  1. Formation of freestanding ZrO{sub 2} nanotubes for Cr(VI) removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashirom, Nurulhuda, E-mail: nurulhuda.usm2014@gmail.com; Ye, Beh Chin, E-mail: cyebeh@gmail.com; Razak, Khairunisak Abdul, E-mail: khairunisak@usm.my

    2016-07-06

    Freestanding ZrO{sub 2} nanotubes (ZNTs) were produced using a simple anodization method in fluorinated ethylene glycol electrolyte containing 1 ml 1 M K{sub 2}CO{sub 3}. The pH of the bath was kept constant at 8. The potassium carbonate (K{sub 2}CO{sub 3}) was added into electrolyte to promote the detachment of anodic ZrO{sub 2} film from the underlying zirconium (Zr) substrate. The poor adherence of ZNTs layer was due to generation of CO{sub 2} gas that was thought to occur between metal|oxide interfaces. The effect of anodization voltages towards the detachment of ZNTs layer was systematically studied at 20 V, 40more » V, 50 V and 60 V for 1 hour. The formation of CO{sub 2} gas is a function of anodization voltage, in which at 60 V, a good anodic film separation seen due to higher formation of CO{sub 2} gas. A preliminary study shown the capability of ZNTs in removing 5 ppm of Cr(VI) aqueous solution under illumination of UV light.« less

  2. New results in low-energy fusion of 40Ca+Zr,9290

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; Čolović, P.; Corradi, L.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Soić, N.; Strano, E.; Szilner, S.

    2017-07-01

    Background: Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca+96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca+90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840 μ b ). A rather complete data set is available for 40Ca+94Zr , while no measurement of 40Ca+92Zr fusion has been performed in the past. Purpose: Our aim is to measure the full excitation function of 40Ca+92Zr near the barrier and to extend downward the existing data on 40Ca+90Zr , in order to estimate the transfer couplings that should be used in coupled-channels calculations of the fusion of these two systems and of 40Ca+94Zr . Methods: 40Ca beams from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro were used, bombarding thin metallic 90Zr (50 μ g /cm2 ) and 92ZrO2 targets (same thickness) enriched to 99.36 % and 98.06 % in masses 90 and 92, respectively. An electrostatic beam deflector allowed the detection of fusion evaporation residues (ER) at very forward angles, and angular distributions of ER were measured. Results: The excitation function of 40Ca+92Zr has been measured down to the level of ≃60 μ b . Coupled-channels (CC) calculations using a standard Woods-Saxon (WS) potential and following the line of a previous analysis of 40Ca+96Zr fusion data give a good account of the new data, as well as of the existing data for 40Ca+94Zr . The previous excitation function of 40Ca+90Zr has been extended down to 40 μ b . Conclusions: Transfer couplings play an important role in explaining the fusion data for 40Ca+92Zr and 40Ca+94Zr . The strength of the pair-transfer coupling is deduced by applying a simple recipe based on the value obtained for 40Ca+96Zr . The logarithmic slopes and the S factors for fusion are reproduced

  3. The improvement of retention time of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (ZrO2)-semiconductor transistors and capacitors by leakage current reduction using surface treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min

    2007-11-01

    Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.

  4. Fuel pin cladding

    DOEpatents

    Vaidyanathan, S.; Adamson, M.G.

    1986-01-28

    Disclosed is an improved fuel pin cladding, particularly adapted for use in breeder reactors, consisting of composite tubing with austenitic steel on the outer portion of the thickness of the tube wall and with nickel and/or ferritic material on the inner portion of the thickness of the tube wall. The nickel forms a sacrificial barrier as it reacts with certain fission products thereby reducing fission product activity at the austenitic steel interface. The ferritic material forms a preventive barrier for the austenitic steel as it is immune to liquid metal embrittlement. The improved cladding permits the use of high density fuel which in turn leads to a better breeding ratio in breeder reactors, and will increase the threshold at which failure occurs during temperature transients. 2 figs.

  5. Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation

    NASA Astrophysics Data System (ADS)

    Villa-Sanchéz, G.; Mendoza-Anaya, D.; Gutiérrez-Wing, C.; Pérez-Hernández, R.; González-Martínez, P. R.; Ángeles-Chavez, C.

    2007-07-01

    The goal of this work was to analyse ZrO2 in the pure state and when doped with Ag nanoparticles, by electron microscopy, x-ray diffraction and thermoluminescence methods. According to the results obtained, Ag nanoparticles did not modify the morphology or the crystalline structure of the ZrO2. The thermoluminescent (TL) response of pure ZrO2 showed two peaks, one at 334 K and the other at 417 K, when it was exposed to ultraviolet (UV) radiation, and at 342 and 397 K when gamma radiation was used. For ZrO2 impregnated with Ag nanoparticles a diminished TL intensity due to nanoparticle shielding was observed, but the glow curve shape was similar. However, when Ag nanoparticles were added during the ZrO2 synthesis, a shift of the TL peaks towards higher temperature values with reference to pure ZrO2 was observed. A linear dependence of the integrated TL signal as a function of the irradiation dose was observed in all analysed samples. It was possible to determine some kinetic parameters, such as activation energy, kinetic order and frequency factor, using the sequential quadratic programming glow curve deconvolution; it was found that these values are highly dependent on the type of radiation used. Ag nanoparticles present in ZrO2 also modified the kinetic parameters, mainly when they were added during the synthesis of ZrO2. Our results reinforce the possibilities of using pure and doped ZrO2 as an appropriate dosimetric material in radiation physics.

  6. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.

    PubMed

    Lucky, R A; Charpentier, P A

    2009-05-13

    In this study the thermal behavior of bimetallic ZrO(2)-TiO(2) (10/90 mol/mol) nanotubes are discussed which were synthesized via a sol-gel process in supercritical carbon dioxide (scCO(2)). The effects of calcination temperature on the morphology, phase structure, mean crystallite size, specific surface area and pore volume of the nanotubes were investigated by using a variety of physiochemical techniques. We report that SEM and TEM images showed that the nanotubular structure was preserved at up to 800 degrees C calcination temperature. When exposed to higher temperatures (900-1000 degrees C) the ZrO(2)-TiO(2) tubes deformed and the crystallites fused together, forming larger crystallites, and a bimetallic ZrTiO(4) species was detected. These results were further examined using TGA, FTIR, XRD and HRTEM analysis. The BET textural properties demonstrated that the presence of a small amount of Zr in the TiO(2) matrix inhibited the grain growth, stabilized the anatase phase and increased the thermal stability.

  7. Irradiation test of tungsten clad uranium carbide-zirconium carbide ((U,Zr)C) specimens for thermionic reactor application at conditions conductive to long-term performance

    NASA Technical Reports Server (NTRS)

    Creagh, J. W. R.; Smith, J. R.

    1973-01-01

    Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.

  8. Effect of photocatalytic reduction of carbon dioxide by N-Zr co-doped nano TiO2.

    PubMed

    Zhang, Ru; Wang, Li; Kang, Zhuo; Li, Qiang; Pan, Huixian

    2017-11-01

    Modified sol-gel method was adopted to prepare TiO 2 , Zr-TiO 2 and N/Zr-TiO 2 composite catalyst. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunner- Emmet- Teller measurement and UV-Vis diffuse reflectance spectroscopy. And the photocatalytic performance toward CO 2 reduction was evaluated under ultraviolet light. The catalyst particles were demonstrated in the nanometer level size. When N and Zr are co-doped, on the one hand, Ti 4+ can be replaced by Zr 4  +, which leads to lattice distortion and inhibits electron-hole recombination. On the other hand, N enters into TiO 2 lattice gap to form O-Ti-N bond structure, and partial Ti 4+ are reduced to Ti 3+ . Compared with pristine TiO 2 , the specific surface area and the band gap of N/Zr-TiO 2 were improved and reduced, respectively. The N and Zr synergistically contribute to the obviously strengthened absorption intensity in visible region, as well as significantly improved photocatalytic activity. In the gas phase reactor, when the calcination temperature was 550°C, 0.125N/0.25Zr-TiO 2 composite performed the highest photocatalytic activity UV irradiation for 8 h, and the corresponding CH 4 yield was 11.837 µmol/g, which was 87.8% higher than that of pristine TiO 2 . For the visible light, the CH 4 yield was 9.003 µmol/g after 8 h irradiation, which was 83.9% higher than that of pristine TiO 2 .

  9. Mechanical properties and rapid low-temperature consolidation of nanocrystalline Cu-ZrO2 composites by pulsed current activated heating

    NASA Astrophysics Data System (ADS)

    Kang, Bo-Ram; Yoon, Jin-kook; Hong, Kyung-Tae; Shon, In-Jin

    2015-07-01

    Metal-ceramic compositr can be obtained with an optimum combination of low density, high oxidation resistance, and high hardness of the ceramic and toughness of the metal. Therefore, metal matrix composites are recognized as candidates for aerospace, automotive, biomaterials, and defense applications. Despite its many attractive properties, the low fracture toughness of ZrO2 limits its wide application. One of the most obvious tactics to improve the mechanical properties has been to fabricate a nanostructured material and composite material. Nano-powders of Cu and ZrO2 were synthesized from 2CuO and Zr powders by high-energy ball milling. Nanocrystalline 2Cu-ZrO2 composite was consolidated within 5 minutes from mechanically synthesized powders of ZrO2 and 2Cu at low temperature, by a pulsed current activated sintering method. The relative density of the composite was 98.5%. The fracture toughness of 2Cu-ZrO2 composite in this study is higher than that of monolithic ZrO2, without great decrease of hardness.

  10. Electronic structure of a laterally graded ZrO2-TiO2 film on Si(100) prepared by metal-organic chemical vapor deposition in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Karlsson, P. G.; Sandell, A.

    2008-05-01

    A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.

  11. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-24

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  13. Photoemission properties of Eu-doped Zr1- x Ce x O2 (x = 0-0.2) nanoparticles prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Matsumoto, Masashi; Hattori, Masatomo

    2018-01-01

    Photoluminescent Eu-doped ZrO2 and Zr1- x Ce x O2 (x = 0-0.2) nanoparticles were prepared by a hydrothermal method. X-ray diffraction and Raman spectra indicated the formation of tetragonal crystals of ZrO2 and its solid solutions with a grain size of less than 10 nm diameter after heat treatment at 400 °C. The photoemission spectra of Zr1- x Ce x O2:Eu3+ nanocrystalline samples showed the typical emission of Eu3+ ions assigned to 5D0 → 7F1 (590 nm) and 5D0 → 7F2 (610 nm) transitions and additional emissions of 5D0 → 7F J with higher J of 3-5. Increasing the CeO2 concentration reduced the emission intensity, and the emission peak shift was affected by a local lattice distortion, i.e., CeO2 concentration. The present study provided fundamental knowledge that is expected to enable the fabrication of ZrO2-based nanocrystal phosphor materials and a measure for controlling the emission peak shift and intensity in oxide fluorite-based phosphor.

  14. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  15. Modification of tribology and high-temperature behavior of Ti 48Al 2Cr 2Nb intermetallic alloy by laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Bo; Wang, Hua-Ming

    2006-06-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm × 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7C 3, TiC and both continuous and dense Al 2O 3, Cr 2O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials.

  16. High catalytic activity and stability of Ni/CexZr1-xO2/MSU-H for CH4/CO2 reforming reaction

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoqian; Liu, Bingsi; Xia, Hong; Amin, Roohul

    2018-06-01

    How to reduce emission of CO2 as greenhouse gases, which resulted in global warming, is of very important significance. A series of Ni/CexZr1-xO2/MSU-H catalysts was prepared by means of hexagonally ordered mesoporous MSU-H with thermal and hydrothermal stabilities, which is cheap and can be synthesized in the large scale. The 10%Ni/Ce0.75Zr0.25O2/MSU-H catalyst presents high catalytic activity, stability and the ability of coke-resistance for CH4/CO2 reforming reaction due to high SBET (428 m2/g) and smaller Nio nanoparticle size (3.14 nm). The high dispersed Nio nanoparticles over MSU-H promoted the decomposition of CH4 and the carbon species accumulated on active Nio sites reacting with crystal lattice oxygen in Ce0.75Zr0.25O2 to form CO molecules. In the meantime, the remained oxygen vacancies on the interface between Nio and Ce0.75Zr0.25O2 could be supplemented via CO2. HRTEM images and XRD results of Ni/Ce0.75Zr0.25O2/MSU-H verified that high dispersion of Ni nanoparticles over Ni/Ce0.75Zr0.25O2/MSU-H correlated closely with the synergistic action between Ce0.75Zr0.25O2 and MSU-H as well as hexagonally ordered structure of MSU-H, which can provide effectively the oxygen storage capacity and inhibit the formation of coke.

  17. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    PubMed

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  18. Zr/ZrC modified layer formed on AISI 440B stainless steel by plasma Zr-alloying

    NASA Astrophysics Data System (ADS)

    Shen, H. H.; Liu, L.; Liu, X. Z.; Guo, Q.; Meng, T. X.; Wang, Z. X.; Yang, H. J.; Liu, X. P.

    2016-12-01

    The surface Zr/ZrC gradient alloying layer was prepared by double glow plasma surface alloying technique to increase the surface hardness and wear resistance of AISI 440B stainless steel. The microstructure of the Zr/ZrC alloying layer formed at different alloying temperatures and times as well as its formation mechanism were discussed by using scanning electron microscopy, glow discharge optical emission spectrum, X-ray diffraction and X-ray photoelectron spectroscopy. The adhesive strength, hardness and tribological property of the Zr/ZrC alloying layer were also evaluated in the paper. The alloying surface consists of the Zr-top layer and ZrC-subsurface layer which adheres strongly to the AISI 440B steel substrate. The thickness of the Zr/ZrC alloying layer increases gradually from 16 μm to 23 μm with alloying temperature elevated from 900 °C to 1000 °C. With alloying time from 0.5 h to 4 h, the alloyed depth increases from 3 μm to 30 μm, and the ZrC-rich alloyed thickness vs time is basically parabola at temperature of 1000 °C. Both the hardness and wear resistance of the Zr/ZrC alloying layer obviously increase compared with untreated AISI 440B steel.

  19. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    NASA Astrophysics Data System (ADS)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  20. Fabrication of solution-processed InSnZnO/ZrO2 thin film transistors.

    PubMed

    Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Lim, Jun Hyung; Joo, Jinho

    2013-11-01

    We fabricated InSnZnO (ITZO) thin-film transistors (TFTs) with a high-permittivity (K) ZrO2 gate insulator using a solution process and explored the microstructure and electrical properties. ZrO2 and ITZO (In:Sn:Zn = 2:1:1) precursor solutions were deposited using consecutive spin-coating and drying steps on highly doped p-type Si substrate, followed by annealing at 700 degrees C in ambient air. The ITZO/ZrO2 TFT device showed n-channel depletion mode characteristics, and it possessed a high saturation mobility of approximately 9.8 cm2/V x s, a small subthreshold voltage swing of approximately 2.3 V/decade, and a negative V(TH) of approximately 1.5 V, but a relatively low on/off current ratio of approximately 10(-3). These results were thought to be due to the use of the high-kappa crystallized ZrO2 dielectric (kappa approximately 21.8) as the gate insulator, which could permit low-voltage operation of the solution-processed ITZO TFT devices for applications to high-throughput, low-cost, flexible and transparent electronics.

  1. Ca(5)Zr(3)F(22).

    PubMed

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Avignant, Daniel

    2012-04-01

    Single crystals of Ca(5)Zr(3)F(22), penta-calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF(2) and ZrF(4) in the presence of AgF. The structure of the title compound is isotypic with that of Sr(5)Zr(3)F(22) and can be described as being composed of layers with composition [Zr(3)F(20)](8-) made up from two different [ZrF(8)](4-) square anti-prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca(2+) cations, forming a three-dimensional network. Amongst the four crystallographically different Ca(2+) ions, three are located on twofold rotation axes. The Ca(2+) ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca(2+) ions occupy inter-stices between the layers whereas the other two are located in void spaces of the [Zr(3)F(20)](8-) layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.

  2. Novel approach to Zr powder production by smooth ZrCl4 bubbling through molten salt

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Na; Choi, Mi-Seon; Lee, Go-Gi; Kim, Seon-Hyo

    2016-01-01

    A reduction process using ZrCl4 bubbles as a reactant was investigated to produce zirconium metals. ZrCl4 vapor was bubbled through the lance in the bath, in which Mg melt and MgCl2 salt were separated. Zr powder was formed by a reduction of ZrCl4 bubbles in magnesium layer. However, the lance was clogged by the aggregate of zirconium occurred during ZrCl4 vapor injecting leading to interruption of ZrCl4 supply into the bath. This phenomenon could be caused by the presence of magnesium at the lance tip, which passes through MgCl2 salt during bubbling, and then zirconium was formed in the forms of intermetallic compounds with aluminum. In this study, the effect of molten salt on the troubled phenomena was investigated and it was verified that CaCl2 with relatively low Weber number meaning relatively high surface tension as molten salt is effective in inhibiting the lance clogging phenomena. Then, a few micrometer-sized Zr powder with the high purity of 91.6 wt% was obtained smoothly without the formation of intermetallic compound.

  3. Examination of T-111 clad uranium nitride fuel pins irradiated up to 13,000 hours at a clad temperature of 990 C

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.; Siegel, B. L.

    1973-01-01

    The examination of 27 fuel pins irradiated for up to 13,000 hours at 990 C is described. The fuel pin clad was a tantalum alloy with uranium nitride as the nuclear fuel. Two nominal fuel pin diameters were tested with a maximum burnup of 2.34 atom percent. Twenty-two fuel pins were tested for fission gas leaks; thirteen pins leaked. Clad ductility tests indicated clad embrittlement. The embrittlement is attributed to hydrogen from an n,p reaction in the fuel. Fuel swelling was burnup dependent, and the amount of fission gas release was low, generally less than 0.5 percent. No incompatibilities between fuel, liner, and clad were in evidence.

  4. The effect of plastic strain on the evolution of crystallographic texture in Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Ballinger, R. G.; Lucas, G. E.; Pelloux, R. M.

    1984-09-01

    The evolution of crystallographic texture during plastic deformation was investigated in Zircaloy-2 using X-ray and metallographic techniques. Inverse pole figures, the resolved fraction of basal poles, and the volume fraction of twinned material, were determined as a function of plastic strain for several strain paths and initial textures at 298 K and 623 K. Incremental transverse platic strain ratios ( R) were mesured as a function of plastic strain. Texture rotation occurs early in the deformation process, after as little as 1.5% plastic strain. For compressive plastic strains, the resolved fraction of basal poles increases in the direction parallel to the strain axis. For tensile plastic strains, the resolved fraction of basal poles decreases in the direction parallel to the strain axis. The rate of change of the resolved fraction of basal poles with plastic strain is a function of the initial resolved fraction of basal poles. The texture rotation can be explained by considering the operation of the principal tensile twinning systems, {101¯2}<1¯011>.

  5. Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor

    NASA Astrophysics Data System (ADS)

    Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.

    2004-01-01

    ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.

  6. In-beam studies of sup 96 Zr and sup 98 Zr: Collective excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, E.A.; Meyer, R.A.; Aprahamian, A.

    1988-04-18

    Nearly two decades ago signatures of deformation in the ground state bands of {sup 100}Zr and {sup 102}Zr were identified, and the rapid change in the deformation of heavy zirconium nuclei noted. It is now well accepted that the short-range proton-neutron interaction between the 1g{sub 9/2} and 1g{sub 7/2} spin-orbit partners plays an important role in producing ground state deformation in this region. Nevertheless, recent studies of zirconium nuclei, including those in the transition region, continue to refine our understanding of the interplay between single-particle and collective degrees of freedom. In this report we discuss some aspects of the levelmore » structures of {sup 96}Zr and {sup 98}Zr with emphasis on collective excitations. 18 refs., 2 tabs.« less

  7. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, K. A.; Hales, J. D.; Zhang, Y.

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. Thismore » allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the

  8. Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.

    2018-02-01

    An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.

  9. Lifetime measurements of the first 2 + states in 104,106Zr: Evolution of ground-state deformations

    DOE PAGES

    Browne, F.; Bruce, A. M.; Sumikama, T.; ...

    2015-09-25

    In this study, the first fast-timing measurements from nuclides produced via the in-flight fission mechanism are reported. The lifetimes of the first 2 + states in 104,106Zr nuclei have been measured via β-delayed γ-ray timing of stopped radioactive isotope beams. An improved precision for the lifetime of the 2 + 1 in 104Zr was obtained, τ(2 + 1) = 2.90 +25 –20, as well as a first measurement of the 2 + 1 state in 106Zr, τ(2 + 1) = 2.60 +20 –15 ns, with corresponding reduced transition probabilities.

  10. Research on Microstructure and Property of TiC-Co Composite Material Made by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The experiment of laser cladding on the surface of 2Cr13 steel was made. Titanium carbide (TiC) powder and Co-base alloy powder were used as cladding material. The microstructure and property of laser cladding layer were tested. The research showed that laser cladding layer had better properties such as minute crystals, deeper layer, higher hardness and good metallurgical bonding with base metal. The structure of cladding was supersaturated solid solution with dispersed titanium carbide. The average hardness of cladding zone was 660HV0.2. 2Cr13 steel was widely used in the field of turbine blades. Using laser cladding, the good wear layer would greatly increase the useful life of turbine blades.

  11. NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.

    1983-01-01

    The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).

  12. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  13. Fabrication of modified GIC: GIC-nanoSiO2-HA-ZrO2 using two different mixing methods

    NASA Astrophysics Data System (ADS)

    Ghazali, Nor Ainon Maziah; Bakar, Wan Zaripah Wan; Rahman, Ismail Ab; Masudi, Sam'an Malik

    2017-12-01

    Conventional glass ionomer cement (GIC) is among the mostly used material in dentistry but some modifications were needed due to its deficiencies such as low mechanical strength and opacity. In this study, a new nanocomposite, GIC-nanoSiO2-HA-ZrO2 was fabricated whereby zirconia is added to improve the hardness. The nanocomposite of SiO2-HA-ZrO2 was synthesized using two different mixing methods which are one pot and spatulation methods. One pot method involved the addition of zirconia nanopowder during the one pot synthesis of nanoSiO2-HA and spatulation method involved the addition of zirconia nanopowder by controlled grinding process using mortar and pestle. Different weight percentage from 1-20 % of nanoSiO2-HA-ZrO2 was added to GIC and the hardness was analyzed using Vickers Tester. The one pot method recorded the highest and significant hardness value at 3 % addition which is ˜75.27 HV (± 2.48) compared to spatulation method ˜69.53 HV (± 7.78) at p < 0.05. Scanning Electron Microscope image from one pot method showed less agglomeration of the nanopowder and nanozirconia is uniformly distributed. Within the limitation of this study, one pot method produced better GIC-nanoSiO2-HA-ZrO2 composite.

  14. Comparative study on cubic and tetragonal CexZr1-xO2 supported MoO3-catalysts for sulfur-resistant methanation

    NASA Astrophysics Data System (ADS)

    Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin

    2018-03-01

    In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.

  15. a Novel Catalyst for Reductive Dechlorination of Chlorobenzene in Subcritical Water:. Bifunctional Fe/ZrO2

    NASA Astrophysics Data System (ADS)

    Wei, Guang-Tao; Wei, Chao-Hai; He, Feng-Mei; Wu, Chao-Fei

    Bifunctional Fe/ZrO2 was prepared by mechanical mixing method, and its bifunctional effect on reductive dechlorination of chlorobenzene in subcritical water was studied. Dechlorination efficiency increased with increasing iron content in catalyst and catalyst amount. Dechlorination efficiency slowed when the iron content in catalyst reached 30%; bifunctional catalyst of Fe/ZrO2 was more efficient in dechlorination of chlorobenzene than Fe alone. Catalyst of Fe (30%)/ZrO2 was characterized by means of X-ray diffraction (XRD), H2 temperature programmed desorption (H2-TPD), and N2 adsorption. The possible mechanism of dechlorination in subcritical water by this bifunctional catalyst was proposed. H+ produced in the water dissociation formed the highly reactive spillover hydrogen on the surface of catalyst, and then reacted with chlorobenzene adsorbed on the catalyst surface by ZrO2 to form benzene and chloride ions.

  16. Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.

    PubMed

    Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K

    2006-07-01

    Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.

  17. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases

    PubMed Central

    Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M; ArRejaie, Aws S

    2016-01-01

    Background Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists. Aim of the study This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2) on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA) denture bases. Materials and methods One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test) and divided into three main groups: one control group (intact specimens) and two groups divided according to surface design (45° bevels and butt joints), in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant. Results Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05). The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano-ZrO2. The impact strength values of all repaired groups were significantly lower than those of the control group (P<0.05). Among repaired groups, the higher impact strength value was seen in the butt group reinforced with 2.5% nano-ZrO2. The bevel joint demonstrated mainly cohesive failure, whereas the butt joint demonstrated mainly adhesive failure. Conclusion Incorporation of nano-ZrO2 into the repair resin improved the flexural strength

  18. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.

  19. ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Taushiyah, Ana; Badriatun Najah, Fitri; Azmi, Ulil

    2018-04-01

    Preparation, characterization and catalytic activity of ZrO2/bamboo leaves ash (BLA) catalyst for conversion of rice bran oil to biodiesel have been investigated. The catalyst was prepared by impregnation method of ZrOCl2 as ZrO2 precursor with BLA at a theoretical content of 20% wt. followed by calcination. The physicochemical properties of the catalyst material were characterized by x-ray diffraction (XRD), FTIR and surface acidity measurement. Activity test of materials in biodiesel conversion of rice bran oil was used by reflux method and microwave (MW) assisted method. Reaction variables studied in the investigation were the effect of catalyst weight and time of MW irradiation compared with the use reflux method. The results showed that ZrO2/BLA catalyst exhibited competitively effective and efficient processes for the production of biodiesel. The reflux method demonstrated an higher conversion (%) compared to MW method, however MW method showed the better reusable properties.

  20. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.