Science.gov

Sample records for zts single crystals

  1. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    NASA Astrophysics Data System (ADS)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  2. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  3. Single Crystal Faceplate Evaluation

    DTIC Science & Technology

    1993-10-25

    conventional powder phosphor. The utility of garnets is amplified by the high state of the art of liquid phase epitaxy ( LPE ). Liquid phase epitaxy of...7]. Much the research at Allied-Signal, Inc. in garnet layer growth has been involved with the kinetics of crystallization of garnet from LPE melts...acceptable resolution and light output characteristics. Single crystal faceplates being evaluated are composed of yttrium aluminum garnet (YAG) with an

  4. Bioengineering single crystal growth.

    PubMed

    Wu, Ching-Hsuan; Park, Alexander; Joester, Derk

    2011-02-16

    Biomineralization is a "bottom-up" synthesis process that results in the formation of inorganic/organic nanocomposites with unrivaled control over structure, superior mechanical properties, adaptive response, and the capability of self-repair. While de novo design of such highly optimized materials may still be out of reach, engineering of the biosynthetic machinery may offer an alternative route to design advanced materials. Herein, we present an approach using micro-contact-printed lectins for patterning sea urchin embryo primary mesenchyme cells (PMCs) in vitro. We demonstrate not only that PMCs cultured on these substrates show attachment to wheat germ agglutinin and concanavalin A patterns but, more importantly, that the deposition and elongation of calcite spicules occurs cooperatively by multiple cells and in alignment with the printed pattern. This allows us to control the placement and orientation of smooth, cylindrical calcite single crystals where the crystallographic c-direction is parallel to the cylinder axis and the underlying line pattern.

  5. GROWTH AND CHARACTERIZATION OF SINGLE CRYSTALS OF RARE EARTH COMPOUNDS.

    DTIC Science & Technology

    SINGLE CRYSTALS, CRYSTAL GROWTH), (*CRYSTAL GROWTH, SINGLE CRYSTALS), (*RARE EARTH COMPOUNDS, SINGLE CRYSTALS), EPITAXIAL GROWTH, SODIUM COMPOUNDS, CHLORIDES, VAPOR PLATING, ELECTROSTATIC FIELDS, ENERGY, ATOMIC PROPERTIES , BONDING

  6. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    NASA Astrophysics Data System (ADS)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  7. Development of single crystal membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Cocks, F. H.

    1972-01-01

    The design and construction of a high pressure crystal growth chamber was accomplished which would allow the growth of crystals under inert gas pressures of 2 MN/sq m (300 psi). A novel crystal growth technique called EFG was used to grow tubes and rods of the hollandite compounds, BaMgTi7O16, K2MgTi7O16, and tubes of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina. Rods and tubes grown are characterized using metallographic and X-ray diffraction techniques. The hollandite compounds are found to be two or three-phase, composed of coarse grained orientated crystallites. Single crystal c-axis tubes of sodium beta-alumina were grown from melts containing excess sodium oxide. Additional experiments demonstrated that crystals of magnesia doped beta-alumina and potassium beta-alumina also can be achieved by this EFG technique.

  8. Single crystal diamond lapping procedure

    SciTech Connect

    Grayson, R.A.

    A facility capable of resharpening quality cutting edges on single crystal diamond cutting tools was needed as the demand in precision machining of special optical surfaces became a common occurrence here at Lawrence Livermore National Laboratory. A specially constructed lapping machine using an air bearing spindle was built to achieve the required edge quality. The basic design for this lap was taken out of a technical report by W.L. Duke and R.T. Lovell of Oak Ridge Y-12 Plant Union Carbide Corp. We have also purchased two commercially built lapping machines recommended to us by Mr. Cory A. Knottenbelt, formerly ofmore » R.C.A. Diamond Lapping Facility, in Indianapolis, Indiana, now doing state-of-the-art polishing and relapping at LLNL facilities.« less

  9. Single crystals of selected titanates and tungstates

    NASA Technical Reports Server (NTRS)

    Loiacono, G. M.

    1972-01-01

    The compound preparation and crystal growth of a number of mixed titanate compositions was investigated. None of the compounds studied were found to melt congruently and therefore, crystal growth was extremely difficult. Various single crystal preparation methods always resulted in mixed phases from which 1-2 mm size crystals could be separated. It is concluded from this study that before successful single crystal growth can be accomplished, a detailed study of the phase diagrams in each of the systems of interest must be completed.

  10. Single-crystal silicon optical fiber by direct laser crystallization

    DOE PAGES

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...

    2016-12-05

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  11. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  12. Ultratough single crystal boron-doped diamond

    DOEpatents

    Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  13. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2018-01-16

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  14. Method of making single crystal fibers

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J. (Inventor)

    1990-01-01

    Single crystal fibers are made from miniature extruded ceramic feed rods. A decomposable binder is mixed with powders to inform a slurry which is extruded into a small rod which may be sintered, either in air or in vacuum, or it may be used in the extruded and dried condition. A pair of laser beams focuses onto the tip of the rod to melt it thereby forming a liquid portion. A single crystal seed fiber of the same material as the feed rod contacts this liquid portion to establish a zone of liquid material between the feed rod and the single crystal seed fiber. The feed rod and the single crystal feed fiber are moved at a predetermined speed to solidify the molten zone onto the seed fiber while simultaneously melting additional feed rod. In this manner a single crystal fiber is formed from the liquid portion.

  15. Single crystal diamond membranes for nanoelectronics.

    PubMed

    Bray, Kerem; Kato, Hiromitsu; Previdi, Rodolfo; Sandstrom, Russell; Ganesan, Kumaravelu; Ogura, Masahiko; Makino, Toshiharu; Yamasaki, Satoshi; Magyar, Andrew P; Toth, Milos; Aharonovich, Igor

    2018-02-22

    Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes has remained an unreachable goal. In this work we present a complete nanofabrication methodology for engineering high aspect ratio, electrically active single crystal diamond membranes. The membranes have large lateral directions, exceeding ∼500 × 500 μm 2 and are only several hundreds of nanometers thick. We further realize vertical single crystal p-n junctions made from the diamond membranes that exhibit onset voltages of ∼10 V and a current of several mA. Moreover, we deterministically introduce optically active color centers into the membranes, and demonstrate for the first time a single crystal nanoscale diamond LED. The robust and scalable approach to engineer the electrically active single crystal diamond membranes offers new pathways for advanced nanophotonic, nanoelectronic and optomechanical devices employing diamond.

  16. Mechanochemical Synthesis of Carbon Nanothread Single Crystals.

    PubMed

    Li, Xiang; Baldini, Maria; Wang, Tao; Chen, Bo; Xu, En-Shi; Vermilyea, Brian; Crespi, Vincent H; Hoffmann, Roald; Molaison, Jamie J; Tulk, Christopher A; Guthrie, Malcolm; Sinogeikin, Stanislav; Badding, John V

    2017-11-15

    Synthesis of well-ordered reduced dimensional carbon solids with extended bonding remains a challenge. For example, few single-crystal organic monomers react under topochemical control to produce single-crystal extended solids. We report a mechanochemical synthesis in which slow compression at room temperature under uniaxial stress can convert polycrystalline or single-crystal benzene monomer into single-crystalline packings of carbon nanothreads, a one-dimensional sp 3 carbon nanomaterial. The long-range order over hundreds of microns of these crystals allows them to readily exfoliate into fibers. The mechanochemical reaction produces macroscopic single crystals despite large dimensional changes caused by the formation of multiple strong, covalent C-C bonds to each monomer and a lack of reactant single-crystal order. Therefore, it appears not to follow a topochemical pathway, but rather one guided by uniaxial stress, to which the nanothreads consistently align. Slow-compression room-temperature synthesis may allow diverse molecular monomers to form single-crystalline packings of polymers, threads, and higher dimensional carbon networks.

  17. Spray printing of organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim

    2016-11-01

    Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.

  18. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  19. Characterization of zinc selenide single crystals

    NASA Technical Reports Server (NTRS)

    Gerhardt, Rosario A.

    1996-01-01

    ZnSe single crystals of high quality and low impurity levels are desired for use as substrates in optoelectronic devices. This is especially true when the device requires the formation of homoepitaxial layers. While ZnSe is commercially available, it is at present extremely expensive due to the difficulty of growing single crystal boules with low impurity content and the resultant low yields. Many researchers have found it necessary to heat treat the crystals in liquid Zn in order to remove the impurities, lower the resistivity and activate the photoluminescence at room temperature. The physical vapor transport method (PVT) has been successfully used at MSFC to grow many single crystals of II-VI semiconducting materials including ZnSe. The main goal at NASA has been to try to establish the effect of gravity on the growth parameters. To this effect, crystals have been grown vertically upwards or horizontally. Both (111) and (110) oriented ZnSe crystals have been obtained via unseeded PVT growth. Preliminary characterization of the horizontally grown crystals has revealed that Cu is a major impurity and that the low temperature photoluminescence spectra is dominated by the copper peak. The ratio of the copper peak to the free exciton peak is being used to determine variations in composition throughout the crystal. It was the intent of this project to map the copper composition of various crystals via photoluminescence first, then measure their electrical resistivity and capacitance as a function of frequency before proceeding with a heat treatment designed to remove the copper impurities. However, equipment difficulties with the photoluminescence set up, having to establish a procedure for measuring the electrical properties of the as-grown crystals and time limitations made us re-evaluate the project goals. Vertically grown samples designated as ZnSe-25 were chosen to be measured electrically since they were not expected to show as much variation in their

  20. Single crystal fibers for high power lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Florea, C.; Baker, C.; Gibson, D.; Shaw, L. B.; Bowman, S.; O'Connor, S.; Villalobos, G.; Bayya, S.; Aggarwal, I. D.; Sanghera, J. S.

    2012-11-01

    In this paper, we present our recent results in developing cladded-single crystal fibers for high power single frequency fiber lasers significantly exceeding the capabilities of existing silica fiber based lasers. This fiber laser would not only exploit the advantages of crystals, namely their high temperature stability, high thermal conductivity, superior environmental ruggedness, high propensity for rare earth ion doping and low nonlinearity, but will also provide the benefits from an optical fiber geometry to enable better thermal management thereby enabling the potential for high laser power output in short lengths. Single crystal fiber cores with diameters as small as 35μm have been drawn using high purity rare earth doped ceramic or single crystal feed rods by Laser Heated Pedestal Growth (LHPG) process. The mechanical, optical and morphological properties of these fibers have been characterized. The fibers are very flexible and show good overall uniformity. We also measured the optical loss as well as the non-radiative loss of the doped crystal fibers and the results show that the fibers have excellent optical and morphological quality. The gain coefficient of the crystal fiber matches the low quantum defect laser model and it is a good indication of the high quality of the fibers.

  1. Single Crystal Diffuse Neutron Scattering

    DOE PAGES

    Welberry, Richard; Whitfield, Ross

    2018-01-11

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  2. Single Crystal Diffuse Neutron Scattering

    SciTech Connect

    Welberry, Richard; Whitfield, Ross

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  3. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  4. Single crystal, liquid crystal, and hybrid organic semiconductors

    NASA Astrophysics Data System (ADS)

    Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.

    2003-07-01

    The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.

  5. Inkjet printing of single-crystal films.

    PubMed

    Minemawari, Hiromi; Yamada, Toshikazu; Matsui, Hiroyuki; Tsutsumi, Jun'ya; Haas, Simon; Chiba, Ryosuke; Kumai, Reiji; Hasegawa, Tatsuo

    2011-07-13

    The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science. Whether based on inorganic or organic materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. 'Printed electronics' is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials. However, because of the strong self-organizing tendency of the deposited materials, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid-air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C(8)-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm(2) V(-1) s(-1). This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

  6. Single crystal to polycrystal neutron transmission simulation

    SciTech Connect

    Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.

    A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less

  7. Single crystal to polycrystal neutron transmission simulation

    DOE PAGES

    Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.

    2018-02-02

    A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less

  8. Single-Crystal Germanium Core Optoelectronic Fibers

    SciTech Connect

    Ji, Xiaoyu; Page, Ryan L.; Chaudhuri, Subhasis

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  9. Ammonothermal Growth of Chalcogenide Single Crystal Materials

    DTIC Science & Technology

    1997-11-05

    chalcogenide with an acidic mineraiizer 15 in presence of liquid ammonia solvent at high pressures and at temperatures in the range of about 300 to 550°C...demonstrates growth of binary CaS single crystals in a medium consisting of CaS powder and NH4I acid mineraiizer in ammonia solvent in a fused quartz

  10. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  11. Experimental Investigation of Orthoenstatite Single Crystal Rheology

    NASA Astrophysics Data System (ADS)

    fraysse, G.; Girard, J.; Holyoke, C. W.; Raterron, P.

    2013-12-01

    The plasticity of enstatite, upper mantle second most abundant mineral, is still poorly constrained, mostly because of its high-temperature (T) transformation into proto- and clino-enstatite at low pressure (P). Mackwell (1991, GRL, 18, 2027) reports a pioneer study of protoenstatite (Pbcn) single-crystal rheology, but the results do not directly apply to the orthorhombic (Pbca) mantle phase. Ohuchi et al. (2011, Contri. Mineral. Petrol , 161, 961) carried out deformation experiments at P=1.3 GPa on oriented orthoenstatite crystals, investigating the activity of [001](100) and [001](010) dislocation slip systems; they report the first rheological laws for orthoenstatite crystals. However, strain and stress were indirectly constrained in their experiments, which questioned whether steady state conditions of deformation were achieved. Also, data reported for [001](100) slip system were obtained after specimens had transformed by twinning into clinoenstatite. We report here new data from deformation experiments carried out at high T and P ranging from 3.5 to 6.2 GPa on natural Fe-bearing enstatite single crystals, using the Deformation-DIA apparatus (D-DIA) that equipped the X17B2 beamline of the NSLS (NY, USA). The applied stress and specimen strain rates were measured in situ by X-ray diffraction and imaging techniques (e.g., Raterron & Merkel, 2009, J. Sync. Rad., 16, 748; Raterron et al., 2013, Rev. Sci. Instr., 84, 043906). Three specimen orientations were tested: i) with the compression direction along [101]c crystallographic direction, which forms a 45° angle with both [100] and [001] axes, to investigate [001](100) slip-system activity; ii) along [011]c direction to investigate [001](010) system activity; iii) and along enstatite [125] axis, to activate both slip systems together. Crystals were deformed two by two, to compare slip system activities, or against enstatite aggregates or orientated olivine crystals of known rheology for comparison. Run products

  12. SSME single-crystal turbine blade dynamics

    NASA Technical Reports Server (NTRS)

    Moss, Larry A.

    1988-01-01

    A study was performrd to determine the dynamic characteristics of the Space Shuttle Main Engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified base. Crystal axis orientation optimization indicated that the third mode interference will exist in any SC orientation.

  13. SSME single crystal turbine blade dynamics

    NASA Technical Reports Server (NTRS)

    Moss, Larry A.; Smith, Todd E.

    1987-01-01

    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation.

  14. Shock Hugoniot of single crystal copper

    NASA Astrophysics Data System (ADS)

    Chau, R.; Stölken, J.; Asoka-Kumar, P.; Kumar, M.; Holmes, N. C.

    2010-01-01

    The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], and [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from molecular dynamics calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu.

  15. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  16. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    PubMed

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Single-crystal gallium nitride nanotubes.

    PubMed

    Goldberger, Joshua; He, Rongrui; Zhang, Yanfeng; Lee, Sangkwon; Yan, Haoquan; Choi, Heon-Jin; Yang, Peidong

    2003-04-10

    Since the discovery of carbon nanotubes in 1991 (ref. 1), there have been significant research efforts to synthesize nanometre-scale tubular forms of various solids. The formation of tubular nanostructure generally requires a layered or anisotropic crystal structure. There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling. These nanotubes, however, are either amorphous, polycrystalline or exist only in ultrahigh vacuum. The growth of single-crystal semiconductor hollow nanotubes would be advantageous in potential nanoscale electronics, optoelectronics and biochemical-sensing applications. Here we report an 'epitaxial casting' approach for the synthesis of single-crystal GaN nanotubes with inner diameters of 30-200 nm and wall thicknesses of 5-50 nm. Hexagonal ZnO nanowires were used as templates for the epitaxial overgrowth of thin GaN layers in a chemical vapour deposition system. The ZnO nanowire templates were subsequently removed by thermal reduction and evaporation, resulting in ordered arrays of GaN nanotubes on the substrates. This templating process should be applicable to many other semiconductor systems.

  18. Single-Crystal Diamond Nanobeam Waveguide Optomechanics

    NASA Astrophysics Data System (ADS)

    Khanaliloo, Behzad; Jayakumar, Harishankar; Hryciw, Aaron C.; Lake, David P.; Kaviani, Hamidreza; Barclay, Paul E.

    2015-10-01

    Single-crystal diamond optomechanical devices have the potential to enable fundamental studies and technologies coupling mechanical vibrations to both light and electronic quantum systems. Here, we demonstrate a single-crystal diamond optomechanical system and show that it allows excitation of diamond mechanical resonances into self-oscillations with amplitude >200 nm . The resulting internal stress field is predicted to allow driving of electron spin transitions of diamond nitrogen-vacancy centers. The mechanical resonances have a quality factor >7 ×105 and can be tuned via nonlinear frequency renormalization, while the optomechanical interface has a 150 nm bandwidth and 9.5 fm /√{Hz } sensitivity. In combination, these features make this system a promising platform for interfacing light, nanomechanics, and electron spins.

  19. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  20. Spall response of single-crystal copper

    NASA Astrophysics Data System (ADS)

    Turley, W. D.; Fensin, S. J.; Hixson, R. S.; Jones, D. R.; La Lone, B. M.; Stevens, G. D.; Thomas, S. A.; Veeser, L. R.

    2018-02-01

    We performed a series of systematic spall experiments on single-crystal copper in an effort to determine and isolate the effects of crystal orientation, peak stress, and unloading strain rate on the tensile spall strength. Strain rates ranging from 0.62 to 2.2 × 106 s-1 and peak shock stresses in the 5-14 GPa range, with one additional experiment near 50 GPa, were explored as part of this work. Gun-driven impactors, called flyer plates, generated flat top shocks followed by spall. This work highlights the effect of crystal anisotropy on the spall strength by showing that the spall strength decreases in the following order: [100], [110], and [111]. Over the range of stresses and strain rates explored, the spall strength of [100] copper depends strongly on both the strain rate and shock stress. Except at the very highest shock stress, the results for the [100] orientation show linear relationships between the spall strength and both the applied compressive stress and the strain rate. In addition, hydrodynamic computer code simulations of the spall experiments were performed to calculate the relationship between the strain rate near the spall plane in the target and the rate of free surface velocity release during the pullback. As expected, strain rates at the spall plane are much higher than the strain rates estimated from the free surface velocity release rate. We have begun soft recovery experiments and molecular dynamics calculations to understand the unusual recompression observed in the spall signature for [100] crystals.

  1. Sponge-like nanoporous single crystals of gold

    PubMed Central

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  2. Load relaxation of olivine single crystals

    NASA Astrophysics Data System (ADS)

    Cooper, Reid F.; Stone, Donald S.; Plookphol, Thawatchai

    2016-10-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo88-90) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500°C and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log stress versus log strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different than that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, we argue, indicates flow that is rate limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  3. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  4. Hydrolytic weakening in olivine single crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob A.; Zimmerman, Mark E.; Kohlstedt, David L.

    2017-05-01

    Deformation experiments on single crystals of San Carlos olivine under hydrous conditions were performed to investigate the microphysical processes responsible for hydrolytic weakening during dislocation creep. Hydrogen was supplied to the crystals using either talc or brucite sealed in nickel capsules with the crystal. Deformation experiments were carried out using a gas medium apparatus at temperatures of 1050° to 1250°C, a confining pressure of 300 MPa, differential stresses of 45 to 294 MPa, and resultant strain rates of 1.5 × 10-6 to 4.4 × 10-4 s-1. For talc-buffered (i.e., water and orthopyroxene-buffered) samples at high temperatures, the dependence of strain rate on stress follows a power law relationship with a stress exponent (n) of ˜2.5 and an activation energy of ˜490 kJ/mol. Brucite-buffered samples deformed faster than talc-buffered samples but contained similar hydrogen concentrations, demonstrating that strain rate is influenced by orthopyroxene activity under hydrous conditions. The values of n and dependence of strain rate on orthopyroxene activity are consistent with hydrolytic weakening occurring in the climb-controlled dislocation creep regime that is associated with deformation controlled by lattice diffusion under hydrous conditions and by pipe diffusion under anhydrous conditions. Analyses of postdeformation electron-backscatter diffraction data demonstrate that dislocations with [100] Burgers vectors are dominant in the climb-controlled regime and dislocations with [001] are dominant in the glide-controlled regime. Comparison of the experimentally determined constitutive equations demonstrates that under hydrous conditions crystals deform 1 to 2 orders of magnitude faster than under anhydrous conditions.

  5. Growth of single crystals of BaFe12O19 by solid state crystal growth

    NASA Astrophysics Data System (ADS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-10-01

    Single crystals of BaFe12O19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe12O19 are buried in BaFe12O19+1 wt% BaCO3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe12O19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe12O19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth.

  6. Porosity Evolution in a Creeping Single Crystal (Preprint)

    DTIC Science & Technology

    2012-08-01

    1] indicated that the growth of initially present processing induced voids in a nickel based single crystal superalloy played a significant role in...processing induced voids in a nickel based single crystal superalloy played a significant role in limiting creep life. Also, creep tests on single...experimental observations of creep deformation and failure of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni

  7. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium

    NASA Astrophysics Data System (ADS)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening

  8. Load Relaxation of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Cooper, R. F.; Stone, D. S.; Plookphol, T.

    2016-12-01

    Single crystals of ferromagnesian olivine (San Carlos, AZ, peridot; Fo90-92) have been deformed in both uniaxial creep and load relaxation under conditions of ambient pressure, T = 1500ºC and pO2 = 10-10 atm; creep stresses were in the range 40 ≤ σ1 (MPa) ≤ 220. The crystals were oriented such that the applied stress was parallel to [011]c, which promotes single slip on the slowest slip system in olivine, (010)[001]. The creep rates at steady state match well the results of earlier investigators, as does the stress sensitivity (a power-law exponent of n = 3.6). Dislocation microstructures, including spatial distribution of low-angle (subgrain) boundaries, additionally confirm previous investigations. Inverted primary creep (an accelerating strain rate with an increase in stress) was observed. Load-relaxation, however, produced a singular response—a single hardness curve—regardless of the magnitude of creep stress or total accumulated strain preceding relaxation. The log-stress v. log-strain rate data from load-relaxation and creep experiments overlap to within experimental error. The load-relaxation behavior is distinctly different that that described for other crystalline solids, where the flow stress is affected strongly by work hardening such that a family of distinct hardness curves is generated, which are related by a scaling function. The response of olivine for the conditions studied, thus, indicates flow that is rate-limited by dislocation glide, reflecting specifically a high intrinsic lattice resistance (Peierls stress).

  9. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to

  10. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  11. Method of Making Lightweight, Single Crystal Mirror

    NASA Technical Reports Server (NTRS)

    Bly, Vincent T. (Inventor)

    2015-01-01

    A method of making a mirror from a single crystal blank may include fine grinding top and bottom surfaces of the blank to be parallel. The blank may then be heat treated to near its melting temperature. An optical surface may be created on an optical side of the blank. A protector may be bonded to the optical surface. With the protector in place, the blank may be light weighted by grinding a non-optical surface of the blank using computer controlled grinding. The light weighting may include creating a structure having a substantially minimum mass necessary to maintain distortion of the mirror within a preset limit. A damaged layer of the non-optical surface caused by light weighting may be removed with an isotropic etch and/or repaired by heat treatment. If an oxide layer is present, the entire blank may then be etched using, for example, hydrofluoric acid. A reflecting coating may be deposited on the optical surface.

  12. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  13. Submicron diameter single crystal sapphire optical fiber

    DOE PAGES

    Hill, Cary; Homa, Daniel; Liu, Bo; ...

    2014-10-02

    In this work, a submicron-diameter single crystal sapphire optical fiber was demonstrated via wet acid etching at elevated temperatures. Etch rates on the order 2.3 µm/hr were achievable with a 3:1 molar ratio sulfuric-phosphoric acid solution maintained at a temperature of 343°C. A sapphire fiber with an approximate diameter of 800 nm was successfully fabricated from a commercially available fiber with an original diameter of 50 µm. The simple and controllable etching technique provides a feasible approach to the fabrication of unique waveguide structures via traditional silica masking techniques. The ability to tailor the geometry of sapphire optical fibers ismore » the first step in achieving optical and sensing performance on par with its fused silica counterpart.« less

  14. Electrical switching in cadmium boracite single crystals

    NASA Technical Reports Server (NTRS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.

  15. Dynamic characteristics of single crystal SSME blades

    NASA Technical Reports Server (NTRS)

    Moss, L. A.; Smith, T. E.

    1987-01-01

    The Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) blades are currently manufactured using a directionally solidified (DS) material, MAR-M-246+Hf. However, a necessity to reduce the occurrence of fatigue cracking within the DS blades has lead to an interest in the use of a single crystal (SC) material, PWA-1480. A study was initiated to determine the dynamic characteristics of the HPFTP blades made of SC material and find possible critical engine order excitations. This study examined both the first and second stage drive turbine blades of the HPFTP. The dynamic characterization was done analytically as well as experimentally. The analytical study examined the SC first stage HPFTP blade dynamic characteristics under typical operating conditions. The blades were analyzed using MSC/NASTRAN and a finite element model. Two operating conditions, 27500 RPM and 35000 RPM, were investigated.

  16. Piezoelectric single crystals for ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lam, Kwok Ho; Zheng, Hairong; Qiu, Weibao; Shung, K. Kirk

    2014-01-01

    Piezoelectric single crystals, which have excellent piezoelectric properties, have extensively been employed for various sensors and actuators applications. In this paper, the state–of–art in piezoelectric single crystals for ultrasonic transducer applications is reviewed. Firstly, the basic principles and design considerations of piezoelectric ultrasonic transducers will be addressed. Then, the popular piezoelectric single crystals used for ultrasonic transducer applications, including LiNbO3 (LN), PMN–PT and PIN–PMN–PT, will be introduced. After describing the preparation and performance of the single crystals, the recent development of both the single–element and array transducers fabricated using the single crystals will be presented. Finally, various biomedical applications including eye imaging, intravascular imaging, blood flow measurement, photoacoustic imaging, and microbeam applications of the single crystal transducers will be discussed. PMID:25386032

  17. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.

  18. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    SciTech Connect

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  19. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  20. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J [Washington, DC; Mao, Ho-kwang [Washington, DC; Yan, Chih-shiue [Washington, DC

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  1. Development of n- and p-type Doped Perovskite Single Crystals Using Solid-State Single Crystal Growth (SSCG) Technique

    DTIC Science & Technology

    2017-10-09

    doped BaTiO3 single crystal) could be also fabricated by using a BaTiO3 ceramics with the same compositional gradient (Fig. 8). This result has...piezoelectric applications. Compositionally PZT ceramics lie near the MPB between the tetragonal and rhombohedral phases and MPB compositions ...single crystal growth) technique are suitable to grow a variety of “n- and p-type doped” perovskite single crystals of complicated compositions . The

  2. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker; Miller, Dean J.; Shi, Donglu; Sengupta, Suvankar

    1998-01-01

    A method of fabricating bulk YBa.sub.2 Cu.sub.3 O.sub.x where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa.sub.2 Cu.sub.3 O.sub.x are heated in the presence of a Nd.sub.1+x Ba.sub.2-x Cu.sub.3 O.sub.y seed crystal to a temperature sufficient to form a liquid phase in the YBa.sub.2 Cu.sub.3 O.sub.x while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa.sub.2 Cu.sub.3 O.sub.x material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material.

  3. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber

    NASA Astrophysics Data System (ADS)

    Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.

    2014-11-01

    In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.

  4. How far could energy transport within a single crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick

    Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.

  5. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  6. Single crystal micromechanical resonator and fabrication methods thereof

    DOEpatents

    Olsson, Roy H.; Friedmann, Thomas A.; Homeijer, Sara Jensen; Wiwi, Michael; Hattar, Khalid Mikhiel; Clark, Blythe; Bauer, Todd; Van Deusen, Stuart B.

    2016-12-20

    The present invention relates to a single crystal micromechanical resonator. In particular, the resonator includes a lithium niobate or lithium tantalate suspended plate. Also provided are improved microfabrication methods of making resonators, which does not rely on complicated wafer bonding, layer fracturing, and mechanical polishing steps. Rather, the methods allow the resonator and its components to be formed from a single crystal.

  7. A Quick Method for Determining the Density of Single Crystals.

    ERIC Educational Resources Information Center

    Roman, Pascual; Gutierrez-Zorrilla, Juan M.

    1985-01-01

    Shows how the Archimedes method is used to determine the density of a single crystal of ammonium oxalate monohydrate. Also shows how to calculate the density of other chemicals when they are available as single crystals. Experimental procedures and materials needed are included. (JN)

  8. Distributed Feedback Laser Based on Single Crystal Perovskite

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  9. Study of single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Doty, J. P.; Reising, J. A.

    1973-01-01

    The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.

  10. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    NASA Astrophysics Data System (ADS)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  11. Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties

    DOE PAGES

    Liu, Yujing; Zang, Huidong; Wang, Ling; ...

    2016-09-25

    Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less

  12. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  13. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  14. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.

  15. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana, E-mail: r.shankarisai@gmail.com

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a functionmore » of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a

  16. High quality factor single-crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.

    2012-10-01

    Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.

  17. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.

    PubMed

    Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U

    2015-01-25

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Three-Dimensional Conformation of Folded Polymers in Single Crystals

    NASA Astrophysics Data System (ADS)

    Hong, You-lee; Yuan, Shichen; Li, Zhen; Ke, Yutian; Nozaki, Koji; Miyoshi, Toshikazu

    2015-10-01

    The chain-folding mechanism and structure of semicrystalline polymers have long been controversial. Solid-state NMR was applied to determine the chain trajectory of 13C CH3 -labeled isotactic poly(1-butene) (i PB 1 ) in form III chiral single crystals blended with nonlabeled i PB 1 crystallized in dilute solutions under low supercooling. An advanced 13C - 13C double-quantum NMR technique probing the spatial proximity pattern of labeled 13C nuclei revealed that the chains adopt a three-dimensional (3D) conformation in single crystals. The determined results indicate a two-step crystallization process of (i) cluster formation via self-folding in the precrystallization stage and (ii) deposition of the nanoclusters as a building block at the growth front in single crystals.

  19. Fabrication of graded index single crystal in glass

    PubMed Central

    Veenhuizen, Keith; McAnany, Sean; Nolan, Daniel; Aitken, Bruce; Dierolf, Volkmar; Jain, Himanshu

    2017-01-01

    Lithium niobate crystals were grown in 3D through localized heating by femtosecond laser irradiation deep inside 35Li2O-35Nb2O5-30SiO2 glass. Laser scanning speed and power density were systematically varied to control the crystal growth process and determine the optimal conditions for the formation of single crystal lines. EBSD measurements showed that, in principle, single crystals can be grown to unlimited lengths using optimal parameters. We successfully tuned the parameters to a growth mode where nucleation and growth occur upon heating and ahead of the scanning laser focus. This growth mode eliminates the problem reported in previous works of non-uniform polycrystallinity because of a separate growth mode where crystallization occurs during cooling behind the scanning laser focus. To our knowledge, this is the first report of such a growth mode using a fs laser. The crystal cross-sections possessed a symmetric, smooth lattice misorientation with respect to the c-axis orientation in the center of the crystal. Calculations indicate the observed misorientation leads to a decrease in the refractive index of the crystal line from the center moving outwards, opening the possibility to produce within glass a graded refractive index single crystal (GRISC) optically active waveguide. PMID:28287174

  20. Rotating lattice single crystal architecture on the surface of glass

    DOE PAGES

    Savytskii, D.; Jain, H.; Tamura, N.; ...

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the examplemore » of Sb 2S 3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.« less

  1. g-Tensor determination from single-crystal ESR data

    NASA Astrophysics Data System (ADS)

    Byrn, Marianne P.; Strouse, Charles E.

    A general method is presented for extraction of the g tensor from single-crystal electron spin resonance data. This method does not depend on knowledge of crystal morphology or on the presence of crystallographic symmetry. The g values are obtained from rotations around three arbitrarily chosen but accurately known axes.

  2. Measurement of single crystal surface parameters

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Bell, A. E.; Strayer, R. W.

    1972-01-01

    The sticking coefficient and thermal desorption spectra of Cs from the (110) plane of W was investigated. A sticking coefficient of unity for the monolayer region was measured for T 250 K. Several distinct binding states were observed in the thermal desorption spectrum. Work function and electron reflection measurements were made on the (110) and (100) crystal faces of Mo. Both LEED and Auger were used to determine the orientation and cleanliness of the crystal surfaces. The work function values obtained for the (110) and (100) planes of Mo were 4.92 and 4.18 eV respectively.

  3. Synthetic Superconductivity in Single-Layer Crystals

    NASA Astrophysics Data System (ADS)

    Levitov, Leonid; Borgnia, Dan; Lee, Patrick

    2015-03-01

    Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ɛ (ω) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.

  4. Large single domain 123 material produced by seeding with single crystal rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.; Miller, D.J.; Shi, D.; Sengupta, S.

    1998-07-07

    A method of fabricating bulk YBa{sub 2}Cu{sub 3}O{sub x} where compressed powder oxides and/or carbonates of Y and Ba and Cu present in mole ratios to form YBa{sub 2}Cu{sub 3}O{sub x} are heated in the presence of a Nd{sub 1+x}Ba{sub 2{minus}x}Cu{sub 3}O{sub y} seed crystal to a temperature sufficient to form a liquid phase in the YBa{sub 2}Cu{sub 3}O{sub x} while maintaining the seed crystal solid. The materials are slowly cooled to provide a YBa{sub 2}Cu{sub 3}O{sub x} material having a predetermined number of domains between 1 and 5. Crack-free single domain materials can be formed using either plate shaped seed crystals or cube shaped seed crystals with a pedestal of preferential orientation material. 7 figs.

  5. Life Prediction of Turbine Blade Nickel Base Superalloy Single Crystals.

    DTIC Science & Technology

    1986-08-01

    mechanical properties between single crystals and the DS version of Mar-M200. Soon it was recognized again through the mechanical property - structure ... property achievements demonstrated by screening and simulated engine tests. 1 Single crystals are the results of extensive investigation on the mechanical ...behavior, (especially fatigue and creep) of, and the structure - property correlations in the equiaxed and directionally solidified (DS) nickel-base

  6. Process for Forming a High Temperature Single Crystal Canted Spring

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J (Inventor); Ritzert, Frank J (Inventor); Nathal, Michael V (Inventor); Dunlap, Patrick H (Inventor); Steinetz, Bruce M (Inventor)

    2017-01-01

    A process for forming a high temperature single crystal canted spring is provided. In one embodiment, the process includes fabricating configurations of a rapid prototype spring to fabricate a sacrificial mold pattern to create a ceramic mold and casting a canted coiled spring to form at least one canted coil spring configuration based on the ceramic mold. The high temperature single crystal canted spring is formed from a nickel-based alloy containing rhenium using the at least one coil spring configuration.

  7. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  8. Analytical studies on the crystal melt interface shape in the Czochralski process for oxide single crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Ja Hoon; Kang, In Seok

    2000-09-01

    Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.

  9. Crystal structure, spectral, thermal and dielectric studies of a new zinc benzoate single crystal

    NASA Astrophysics Data System (ADS)

    Bijini, B. R.; Prasanna, S.; Deepa, M.; Nair, C. M. K.; Rajendra Babu, K.

    2012-11-01

    Single crystals of zinc benzoate with a novel structure were grown in gel media. Sodium metasilicate of gel density 1.04 g/cc at pH 6 was employed to yield transparent single crystals. The crystal structure of the compound was ascertained by single crystal X-ray diffractometry. It was noted that the crystal belongs to monoclinic system with space group P21/c with unit cell parameters a = 10.669(1) Å, b = 12.995(5) Å, c = 19.119(3) Å, and β = 94.926(3)°. The crystal was seen to possess a linear polymeric structure along b-axis; with no presence of coordinated or lattice water. CHN analysis established the stoichiometric composition of the crystal. The existence of functional groups present in the single crystal system was confirmed by FT-IR studies. The thermal characteristic of the sample was analysed by TGA-DTA techniques, and the sample was found to be thermally stable up to 280 °C. The kinetic and thermodynamic parameters were also determined. UV-Vis spectroscopy corroborated the transparency of the crystal and revealed the optical band gap to be 4 eV. Dielectric studies showed decrease in the dielectric constant of the sample with increase in frequency.

  10. Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Jordan, E. H.

    1985-01-01

    A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.

  11. Iron single crystal growth from a lithium-rich melt

    NASA Astrophysics Data System (ADS)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  12. Improved growth method of (SN) x single crystals

    NASA Astrophysics Data System (ADS)

    Nakada, Ichiroh

    1981-12-01

    The crystal growth of pure and sizable single crystals of polysulfur nitride (SN) x was improved by adopting a monitor system with a quadrapole mass spectrometer and a Pirani gauge. The mass spectrometer helped to find a temperature appropriate for trapping (SN) 2 selectively on a cold finger and removing other unnecessary or harmful materials produced by the thermal decomposition of (SN) 4 as well as out-gassing water vapour from the glass wall. Leakage of gasses in the vessel was monitored with the Pirani gauge. With a heat pipe the crystal tube is cooled locally so that only a small number of nuclei start to grow. (SN) x single crystals with dimensions of 1 to 6 mm in edge size have been obtained. The relation between the crystal habit and the crystallographic axes has also been determined.

  13. Modified floating-zone growth of organic single crystals

    NASA Astrophysics Data System (ADS)

    Kou, S.; Chen, C. P.

    1994-04-01

    For organic materials floating-zone crystal growth is superior to other melt growth processes in two significant respects: (1) the absence of crucible-induced mechanical damage and (2) minimum heating-induced chemical degradation. Due to the rather low surface tension of organic melts, however, floating-zone crystal growth under normal gravity has not been possible so far but microgravity is ideal for such a purpose. With the help of a modified floating-zone technique, organic single crystals of small cross-sections were test grown first under normal gravity. These small crystals were round and rectangular single crystals of benzil and salol, up to about 7 cm long and 6 mm in diameter or 9 mm × 3 mm in cross-section.

  14. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    SciTech Connect

    Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012; Sukumar, M.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure andmore » doped benzimidazole crystals measured using Kurtz powder test.« less

  15. Crystal growth and characterization of semi organic nonlinear optical (NLO) piperazinium tetrachlorozincate monohydrate (PTCZ) single crystal

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2018-04-01

    The semi-organic single crystal of piperazinium tetrachlorozincate monohydrate (PTCZ) was successfully grown by slow evaporation solution technique (SEST). The grown crystal was subjected to the single crystal XRD studies for confirming the unit cell parameters. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis and the optical band gap energy was calculated. The photoconductivity study reveals that the grown crystal has positive photoconductive nature. The mechanical stability of the grown crystal was analyzed using Vickers microhardness analyzer. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 640 nm using solid state laser.

  16. Attenuation of thermal neutrons by an imperfect single crystal

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Adib, M.

    1996-06-01

    A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.

  17. Brooker's merocyanine: Comparison of single crystal structures

    NASA Astrophysics Data System (ADS)

    Hayes, Kathleen L.; Lasher, Emily M.; Choczynski, Jack M.; Crisci, Ralph R.; Wong, Calvin Y.; Dragonette, Joseph; Deschner, Joshua; Cardenas, Allan Jay P.

    2018-06-01

    Brooker's merocyanine and its derivatives are well-studied molecules due to their very interesting optical properties. Merocyanine dyes exhibit different colors in solution depending on the solvent's polarity, pH, aggregation and intermolecular interactions. The synthesis of 1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine (MOED) dye yielded a particularly interesting solid state structure where in one crystal lattice, MOED and its protonated form are bound by hydrogen bonding interactions.

  18. Special Features of the Structure of Single-Crystal Refractory Nickel Alloy Under Directed Crystallization

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. A.; Echin, A. B.; Surova, V. A.; Kolodyazhnyi, M. Yu.

    2017-05-01

    The effect of the conditions of directed crystallization (the temperature gradient and the crystallization rate) on the dendrite spacing, on the size of the particles of the hardening γ'-phase in the arms and arm spaces of the dendrites, on the volume fraction and size of the pores, on the size of the particles of the eutectic γ/γ'-phase, and on the features of dendritic segregation in a single-crystal castable refractory alloy is studied.

  19. Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation

    PubMed Central

    Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito

    2012-01-01

    A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523

  20. Selective Metal Cation Capture by Soft Anionic Metal-Organic Frameworks via Drastic Single-Crystal-to-Single-Crystal Transformations

    SciTech Connect

    Tian, Jian; Saraf, Laxmikant V.; Schwenzer, Birgit

    2012-05-25

    Flexible anionic metal-organic frameworks transform to neutral heterobimetallic systems via single-crystal-to-single-crystal processes invoked by cation insertion. These transformations are directed by cooperative bond breakage and formation, resulting in expansion or contraction of the 3D framework by up to 33% due to the flexible nature of the organic linker. These MOFs displays highly selective uptake of divalent transition metal cations (Co2+ and Ni2+ for example) over alkali metal cations (Li+ and Na+).

  1. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  2. Light emission from organic single crystals operated by electrolyte doping

    NASA Astrophysics Data System (ADS)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  3. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  4. Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Philominathan, P.

    2017-11-01

    An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.

  5. Method of making macrocrystalline or single crystal semiconductor material

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  6. Benzothiazolium Single Crystals: A New Class of Nonlinear Optical Crystals with Efficient THz Wave Generation.

    PubMed

    Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil

    2017-08-01

    Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Purification, crystal growth and characterization of CdSe single crystals

    NASA Astrophysics Data System (ADS)

    Burger, A.; Henderson, D. O.; Morgan, S. H.; Silberman, E.

    1991-02-01

    CdSe single crystals have been grown from the stoichiometric melt and from Se rich solutions. Here we report the first mid and far infrared spectra of CdSe crystals free of any known impurity bands. Previous studies of the lattice vibrational properties of CdSe crystals have shown the presence of two bands at 538 and 270 cm -1. Modifications in the purification and crystal growth conditions lead us to assign these two bands to a sulfur impurity. Low temperature photoluminescence spectra are also presented and discussed.

  8. Growth and nonlinear optical characterization of organic single crystal films

    NASA Astrophysics Data System (ADS)

    Zhou, Ligui

    1997-12-01

    Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard

  9. Single-Crystal Structure of a Covalent Organic Framework

    SciTech Connect

    Zhang, YB; Su, J; Furukawa, H

    2013-11-06

    The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is anmore » important advance in the development of COF chemistry.« less

  10. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  11. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  12. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  13. Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-06-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals

  14. Observation of Spectral Diffusion in Crystals Using Single Impurity Molecules

    DTIC Science & Technology

    1990-10-31

    from 12pentacene photophysical parameters including intersystem crossing . Apparently (and not surprisingly), the local pentacene environment this... pentacene molecules inp-terphenyl, both stable as well as spectrally diffusing single molecules can be observed. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121...with ultrathin sublimed crystals have removed this obstacle. For the case of pentacene impurities in crystals of p-terphenyl, we observe two radically

  15. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  16. Mesoscale martensitic transformation in single crystals of topological defects

    PubMed Central

    Martínez-González, José A.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-01-01

    Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter. PMID:28874557

  17. Bridgman growth and scintillation properties of calcium tungstate single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; Jiang, Linwen; Chen, Yaping; Chen, Peng; Chen, Hongbing; Mao, Rihua

    2017-12-01

    CaWO4 single crystal with large size was grown by Bridgman method. The results of transmission spectra show that the transmittance of CaWO4 crystal reaches 79-85% in 320-800 nm wavelength range. The refraction index is near 1.80 in visible and infrared region. CaWO4 crystal shows a broad emission band centered at 424 nm under X-ray excitation and centered at 416 nm under ultraviolet (λex = 280 nm) excitation. The decay kinetics of CaWO4 single crystal shows double-exponential decay with fast decay constant τ1 = 5.4 μs and slow decay constant τ2 = 177.1 μs. The energy resolution of CaWO4 crystal was found to be 31.6% in the net peak of 545.9 channel. Meanwhile, the absolute output is at the lever of 19,000 ± 1000 photons/MeV. The results indicate the scintillator of CaWO4 single crystal has great potential in the applications of high-energy physics and nuclear physics due to its high light output and great energy resolution.

  18. Heterogeneous Monolithic Integration of Single-Crystal Organic Materials.

    PubMed

    Park, Kyung Sun; Baek, Jangmi; Park, Yoonkyung; Lee, Lynn; Hyon, Jinho; Koo Lee, Yong-Eun; Shrestha, Nabeen K; Kang, Youngjong; Sung, Myung Mo

    2017-02-01

    Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Deformation induced microtwins and stacking faults in aluminum single crystal.

    PubMed

    Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F

    2008-09-12

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  20. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  1. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    PubMed Central

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  2. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  3. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  4. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Dreshfield, R. L.; Maier, R. D.

    1980-01-01

    The influence of orientation on the tensile and stress rupture behavior of 52 Mar-M247 single crystals was studied. Tensile tests were performed at temperatures between 23 and 1093 C; stress rupture behavior was examined between 760 and 1038 C. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factor contours for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The tensile properties correlated well with the appropriate Schmid factor contours. The stress rupture lives at lower testing temperatures were greatly influenced by the lattice rotations required to produce cross slip. A unified analysis was attained for the stress rupture life data generated for the Mar-M247 single crystals at 760 and 774 C under a stress of 724 MPa and the data reported for Mar-M200 single crystals tested at 760 C under a stress of 689 MPa. Based on this analysis, the stereographic triangle was divided into several regions which were rank ordered according to stress rupture life for this temperature regime.

  5. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  6. Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.

    2017-09-01

    Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.

  7. Apparatus And Method For Producing Single Crystal Metallic Objects

    DOEpatents

    Huang, Shyh-Chin; Gigliotti, Jr., Michael Francis X.; Rutkowski, Stephen Francis; Petterson, Roger John; Svec, Paul Steven

    2006-03-14

    A mold is provided for enabling casting of single crystal metallic articles including a part-defining cavity, a sorter passage positioned vertically beneath and in fluid communication with the part-defining cavity, and a seed cavity positioned vertically beneath and in fluid communication with the sorter passage. The sorter passage includes a shape suitable for encouraging a single crystal structure in solidifying molten metal. Additionally, a portion of the mold between the sorter passage and the part-defining cavity includes a notch for facilitating breakage of a cast article proximate the notch during thermal stress build-up, so as to prevent mold breakage or the inclusion of part defects.

  8. Cryogenic motion performances of a piezoelectric single crystal micromotor

    NASA Astrophysics Data System (ADS)

    Li, Xiaotian; Wu, Yuting; Chen, Zhijiang; Wei, Xiaoyong; Luo, Haosu; Dong, Shuxiang

    2014-04-01

    This study investigates the cryogenic performances of a millimeter-size piezoelectric ultrasonic linear micromotor. The piezoelectric vibrator of the micromotor is made of Pb(In1/2Nb1/2)O3 -Pb(Mg1/3Nb2/3)-PbTiO3 single crystal and operated in first-bending wobbling mode. Experiments show that the piezoelectric single crystal micromotor works effectively even at extremely low temperature of -175 °C, although its resonance peaks vary with temperature significantly. This work confirms the feasibility of cryogenic operation of the piezo-micromotor, which is meaningful for aerospace or superconducting microwave application.

  9. Investigation and characterization of ZnO single crystal microtubes

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  10. Single-Crystal Material on Non-Single-Crystalline Substrate

    DTIC Science & Technology

    1999-02-01

    point frit or solder glass can be deposited on a surface and bonded to a second surface using pressure and temperature. A sodium silicate material...interface. A metal or silicide at the bonding interface may be advantageous fQr electrical current conduction across the interface. 10 Applications...substrate, or a silicide or metal to aid bonding and vertical electrical current conduction. In some cases, it is difficult to polish the non- single

  11. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach

  12. Ordered macro-microporous metal-organic framework single crystals

    NASA Astrophysics Data System (ADS)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  13. Atomistic simulation of shocks in single crystal and polycrystalline Ta

    NASA Astrophysics Data System (ADS)

    Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.

    2011-06-01

    Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.

  14. Single-crystal diffraction instrument TriCS at SINQ

    NASA Astrophysics Data System (ADS)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  15. Low-cost single-crystal turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Heath, B.; Fujii, M.

    1983-01-01

    The exothermic casting process was successfully developed into a low cost nonproprietary method for producing single crystal (SC) castings. Casting yields were lower than expected, on the order of 20 percent, but it is felt that the casting yield could be significantly improved with minor modifications to the process. Single crystal Mar-M 247 and two derivative SC alloys were developed. NASAIR 100 and SC Alloy 3 were fully characterized through mechanical property testing. SC Mar-M 247 shows no significant improvement in strength over directionally solidified (DS) Mar-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. The 1000 hr/238 MPa (20 ksi) stress rupture capability compared to DS Mar-M 247 was improved over 28 C. Firtree testing, holography, and strain gauge rig testing were used to evaluate the effects of the anisotropic characteristics of single crystal materials. In general, the single crystal material behaved similarly to DS Mar-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined.

  16. Some Debye temperatures from single-crystal elastic constant data

    USGS Publications Warehouse

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  17. High Pressure Single Crystal Diffraction at PX 2

    SciTech Connect

    Zhang, Dongzhou; Dera, Przemyslaw K.; Eng, Peter J.

    2017-01-01

    In this report, we describe detailed procedures for carrying out single crystal X-ray diffraction experiments with a diamond anvil cell at the GSECARS 13-BM-C beamline at the Advanced Photon Source. ATREX and RSV programs are used to analyze the data.

  18. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  19. High definition TV projection via single crystal faceplate technology

    NASA Astrophysics Data System (ADS)

    Kindl, H. J.; St. John, Thomas

    1993-03-01

    Single crystal phosphor faceplates are epitaxial phosphors grown on crystalline substrates with the advantages of high light output, resolution, and extended operational life. Single crystal phosphor faceplate industrial technology in the United States is capable of providing a faceplate appropriate to the projection industry of up to four (4) inches in diameter. Projection systems incorporating cathode ray tubes utilizing single crystal phosphor faceplates will produce 1500 lumens of white light with 1000 lines of resolution, non-interlaced. This 1500 lumen projection system will meet all of the currently specified luminance and resolution requirements of Visual Display systems for flight simulators. Significant logistic advantages accrue from the introduction of single crystal phosphor faceplate CRT's. Specifically, the full performance life of a CRT is expected to increase by a factor of five (5); ie, from 2000 to 10,000 hours of operation. There will be attendant reductions in maintenance time, spare CRT requirements, system down time, etc. The increased brightness of the projection system will allow use of lower gain, lower cost simulator screen material. Further, picture performance characteristics will be more balanced across the full simulator.

  20. Organic field-effect transistors using single crystals.

    PubMed

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm 2 Vs -1 , achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  1. Organic field-effect transistors using single crystals

    PubMed Central

    Hasegawa, Tatsuo; Takeya, Jun

    2009-01-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for ‘plastic electronics’. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps. PMID:27877287

  2. Dynamic actuation of single-crystal diamond nanobeams

    SciTech Connect

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko, E-mail: loncar@seas.harvard.edu

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  3. Transverse Mode Multi-Resonant Single Crystal Transducer

    NASA Technical Reports Server (NTRS)

    Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)

    2015-01-01

    A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.

  4. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  5. A STUDY OF DISLOCATION STRUCTURE OF SUBBOUNDARIES IN MOLYBDENUM SINGLE CRYSTALS,

    DTIC Science & Technology

    MOLYBDENUM, *DISLOCATIONS), GRAIN STRUCTURES(METALLURGY), SINGLE CRYSTALS, ZONE MELTING, ELECTRON BEAM MELTING, GRAIN BOUNDARIES, MATHEMATICAL ANALYSIS, ETCHED CRYSTALS, ETCHING, ELECTROEROSIVE MACHINING, CHINA

  6. Shock wave-induced phase transition in RDX single crystals.

    PubMed

    Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M

    2007-09-20

    The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.

  7. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  8. Optical properties of Sulfur doped InP single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  9. Mechanical and optical nanodevices in single-crystal quartz

    NASA Astrophysics Data System (ADS)

    Sohn, Young-Ik; Miller, Rachel; Venkataraman, Vivek; Lončar, Marko

    2017-12-01

    Single-crystal α-quartz, one of the most widely used piezoelectric materials, has enabled a wide range of timing applications. Owing to the fact that an integrated thin-film based quartz platform is not available, most of these applications rely on macroscopic, bulk crystal-based devices. Here, we show that the Faraday cage angled-etching technique can be used to realize nanoscale electromechanical and photonic devices in quartz. Using this approach, we demonstrate quartz nanomechanical cantilevers and ring resonators featuring Qs of 4900 and 8900, respectively.

  10. Transformations of the dislocation structure of nickel single crystals

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.; Lychagina, L. L.; Tsvetkov, N. A.

    2017-12-01

    A relationship between different-scale deformations of crystals has not been established yet. In order to solve this task, we investigate the development of a deformation relief and dislocation structure in nickel single crystals after deformation. The stress tensor, crystallography, and geometry of specimens affect the organization of some shear along corresponding systems of sliding. The organization of shear shows some features of self-organization. It is associated with the self-organization in the dislocation subsystem analyzed previously. The effectiveness of reducing external and internal stresses determines patterns of deformation processes at different scale levels.

  11. Trapezoidal diffraction grating beam splitters in single crystal diamond

    NASA Astrophysics Data System (ADS)

    Kiss, Marcell; Graziosi, Teodoro; Quack, Niels

    2018-02-01

    Single Crystal Diamond has been recognized as a prime material for optical components in high power applications due to low absorption and high thermal conductivity. However, diamond microstructuring remains challenging. Here, we report on the fabrication and characterization of optical diffraction gratings exhibiting a symmetric trapezoidal profile etched into a single crystal diamond substrate. The optimized grating geometry diffracts the transmitted optical power into precisely defined proportions, performing as an effective beam splitter. We fabricate our gratings in commercially available single crystal CVD diamond plates (2.6mm x 2.6mm x 0.3mm). Using a sputter deposited hard mask and patterning by contact lithography, the diamond is etched in an inductively coupled oxygen plasma with zero platen power. The etch process effectively reveals the characteristic {111} diamond crystal planes, creating a precisely defined angled (54.7°) profile. SEM and AFM measurements of the fabricated gratings evidence the trapezoidal shape with a pitch of 3.82μm, depth of 170 nm and duty cycle of 35.5%. Optical characterization is performed in transmission using a 650nm laser source perpendicular to the sample. The recorded transmitted optical power as function of detector rotation angle shows a distribution of 21.1% in the 0th order and 23.6% in each +/-1st order (16.1% reflected, 16.6% in higher orders). To our knowledge, this is the first demonstration of diffraction gratings with trapezoidal profile in single crystal diamond. The fabrication process will enable beam splitter gratings of custom defined optical power distribution profiles, while antireflection coatings can increase the efficiency.

  12. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  13. Thermoelectric Behavior of PbSe Single Crystals

    DOE PAGES

    Kogo, Gilbert; Pradhan, Aswini K.; Roy, Utpal N.

    2016-12-05

    The electrical conductivity and Seebeck coefficient of PbSe single crystals grown by the Bridgman technique display metallic behavior. The Seebeck coefficient increases linearly with increasing temperature and showed positive Seebeck values, typically valid for a p-type PbSe crystal. The electronic thermal conductivity decreases with increase in temperature. The power factor increases gradually with temperature until the maximum value of 6.51 × 10 -3 W/mK2 at 260 K, other values are 5.95 × 10 -3 W/mK 2 at 300 K, and 5.40 × 10 -3 W/mK 2 at 320 K. Our results demonstrate that as-grown PbSe crystal is generically p-type duemore » to excess in Pb and can be a potential candidate for thermoelectric power generation.« less

  14. Apparatus for single ice crystal growth from the melt.

    PubMed

    Zepeda, Salvador; Nakatsubo, Shunichi; Furukawa, Yoshinori

    2009-11-01

    A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8 ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10 mm working distance objective lens. Temperature could be established to within +/-10 mK in as little as 3.5 min and controlled to within +/-2 mK after 15 min for at least 10 h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.

  15. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  16. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  17. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystalmore » pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.« less

  18. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  20. Converting ceria polyhedral nanoparticles into single-crystal nanospheres.

    PubMed

    Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein

    2006-06-09

    Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.

  1. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less

  2. Properties of pure single crystals of actinide compounds

    NASA Astrophysics Data System (ADS)

    Vogt, O.

    1989-07-01

    Actinide research started with substances of poor quality and a multitude of "unexplainable" results mostly found on powder samples of doubtful quality exerted some pressure on the crystal growers. As an example we may mention the measurements on UP. Type I antiferromagnetism was found below 123 K by neutron diffraction experiments on powdered samples. At 23 K another transition becomes apparent in susceptibility measurements. The change of the magnetic moments associated with this transition remained unexplained. It was only after the discovery of multi k structures in other actinide compounds that the need was seen to perform even inelastic neutron diffraction experiments on single crystals so that finally the true nature of the transition in UP could be revealed. NpAs is another illustrative example for the fact that sometimes it takes decades to get a clear understanding for things even so simple as macroscopic magnetic properties. The main reason for the need of single crystals is certainly the anisotropy of the magnetic moment encountered in all actinide compounds. Self-heating effects may prevent research on big crystals or might call for isotopic purity of certain samples.

  3. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  4. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.

    PubMed

    Kara, V; Sohn, Y-I; Atikian, H; Yakhot, V; Lončar, M; Ekinci, K L

    2015-12-09

    Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond nanocantilevers with different linear dimensions and frequencies in three gases, He, N2, and Ar. We observe that a subtle interplay between the length scale and the frequency governs the scaling of the fluidic dissipation. Second, we obtain a comparison of the surface accommodation of different gases on the diamond surface by analyzing the dissipation in the molecular flow regime. Finally, we measure the thermal fluctuations of the nanocantilevers in water and compare the observed dissipation and frequency shifts with theoretical predictions. These findings set the stage for developing diamond nanomechanical resonators operable in fluids.

  5. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  6. Spall behaviour of single crystal aluminium at three principal orientations

    NASA Astrophysics Data System (ADS)

    Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.

    2017-10-01

    A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.

  7. Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals

    NASA Astrophysics Data System (ADS)

    Tysoe, Wilfred T.

    The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.

  8. Neutron Transmission of Single-crystal Sapphire Filters

    NASA Astrophysics Data System (ADS)

    Adib, M.; Kilany, M.; Habib, N.; Fathallah, M.

    2005-05-01

    An additive formula is given that permits the calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of sapphire temperature and crystal parameters. We have developed a computer program that allows calculations of the thermal neutron transmission for the sapphire rhombohedral structure and its equivalent trigonal structure. The calculated total cross-section values and effective attenuation coefficient for single-crystalline sapphire at different temperatures are compared with measured values. Overall agreement is indicated between the formula and experimental data. We discuss the use of sapphire single crystal as a thermal neutron filter in terms of the optimum cystal thickness, mosaic spread, temperature, cutting plane and tuning for efficient transmission of thermal-reactor neutrons.

  9. Depressed scattering across grain boundaries in single crystal graphene

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Jin, Zhi; Ma, Peng; Wang, Hong; Wang, Haomin; Shi, Jingyuan; Peng, Songang; Liu, Xinyu; Ye, Tianchun

    2012-10-01

    We investigated the electrical and quantum properties of single-crystal graphene (SCG) synthesized by chemical vapor deposition (CVD). Quantum Hall effect and Shubnikov de Hass oscillation, a distinguishing feature of a 2-dimensional electronic material system, were observed during the low temperature transport measurements. Decreased scattering from grain boundaries in SCG was proven through extracting information from weak localization theory. Our results facilitate understanding the electrical properties of SCG grown by CVD and its applications in high speed transistor and quantum devices.

  10. Elastic Domain Wall Waves in Ferroelectric Ceramics and Single Crystals

    DTIC Science & Technology

    1988-07-01

    properties of piezoelectric and electrostrictive types of ferroelectric ceramics and single crystals. This was for the purpose of shedding light on the...effectiveness and general characteristics of fabrication techniques, as well as exploring basic physical mechanisms playing a role in the technology of...routing and processing devices on small ferroelectric wafers, fabricated by simple inexpensive poling and biasing techniques. Such devices ma) be

  11. Three-dimensional charge transport in organic semiconductor single crystals.

    PubMed

    He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang

    2012-04-24

    Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Internal friction measurement in high purity tungsten single crystal

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.

    1974-01-01

    Internal friction peaks observed after small deformation in high purity tungsten single crystals between liquid helium temperature and 800 K in the frequency range 30-50 KHz, are studied as a function of orientation. An orientation effect is observed in the internal friction spectra due to the creation of internal stresses. The elementary processes related to these peaks are discussed in terms of kink generation and geometric kink motion on screw and edge dislocations in an internal stress field.

  13. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  14. Structural differences between single crystal and polycrystalline UBe 13

    SciTech Connect

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  15. Structural differences between single crystal and polycrystalline UBe 13

    DOE PAGES

    Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...

    2018-05-16

    Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less

  16. Synthesis, crystal structure, NLO and Hirshfeld surface analysis of 1,2,3-triazolyl chalcone single crystal

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Guruswamy, B.; Lokanath, N. K.; Kumara, Karthik; Goveas, Janet

    2018-05-01

    Needle shaped brown coloured single crystal of the title compound was grown by slow evaporation technique using methanol as solvent. The grown crystal was characterized using FT-IR, Single crystal XRD, UV-visible and NLO studies. Crystal structure was confirmed by FT-IR study and the functional groups were identified. XRD study reveals that the crystal belongs to orthorhombic crystal system with pnaa space group and the corresponding cell parameters were calculated. UV-visible spectrum shows that the crystal is transparent in the entire visible region and absorption takes place in the UV-range. NLO efficiency of the crystal obtained 0.66 times that of urea was determined by SHG test. The intermolecular interaction and percentage contribution of each individual atom in the crystal lattice was quantized using Hirshfeld surface and 2D finger print analysis.

  17. Diamond turning of Si and Ge single crystals

    SciTech Connect

    Blake, P.; Scattergood, R.O.

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  18. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, C.M.

    1995-05-09

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.

  19. Method for thermal processing alumina-enriched spinel single crystals

    DOEpatents

    Jantzen, Carol M.

    1995-01-01

    A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.

  20. Laser radiation frequency doubling in a single-crystal fibre based on a stoichiometric LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Kashin, V. V.; Nikolaev, D. A.; Rusanov, S. Ya; Tsvetkov, V. B.

    2015-01-01

    We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO2 laser (LHPG-method).

  1. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    NASA Astrophysics Data System (ADS)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  2. Single crystalline hollow metal-organic frameworks: a metal-organic polyhedron single crystal as a sacrificial template.

    PubMed

    Kim, Hyehyun; Oh, Minhak; Kim, Dongwook; Park, Jeongin; Seong, Junmo; Kwak, Sang Kyu; Lah, Myoung Soo

    2015-02-28

    Single crystalline hollow metal-organic frameworks (MOFs) with cavity dimensions on the order of several micrometers and hundreds of micrometers were prepared using a metal-organic polyhedron single crystal as a sacrificial hard template. The hollow nature of the MOF crystal was confirmed by scanning electron microscopy of the crystal sliced using a focused ion beam.

  3. Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment

    USGS Publications Warehouse

    Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0

  4. Standard Reference Material (SRM 1990) For Single Crystal Diffractometer Alignment

    PubMed Central

    Wong-Ng, W.; Siegrist, T.; DeTitta, G. T.; Finger, L. W.; Evans, H. T.; Gabe, E. J.; Enright, G. D.; Armstrong, J. T.; Levenson, M.; Cook, L. P.; Hubbard, C. R.

    2001-01-01

    An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material® for single crystal diffractometer alignment. This SRM is a set of ≈3500 units of Cr-doped Al2O3, or ruby spheres [(0.420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals: the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 ű0.0062 Å, and c=12.9979 ű0.020 Å (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Hägg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies– are rhombohedral, with space group R3¯c. The certified mean unit cell parameters are a=4.76080±0.00029 Å, and c=12.99568 ű0.00087 Å (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Hägg transmission measurements on five samples of powdered rubies (a=4.7610 ű0.0013 Å, and c = 12

  5. Growth, properties, and applications of potassium niobate single crystals

    SciTech Connect

    Mizell, G.; Fay, W.R.; Alekel, T. III

    1994-12-31

    Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm maymore » be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.« less

  6. Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Merlini, M.

    2013-12-01

    The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 μm3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe

  7. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate

    SciTech Connect

    Silambarasan, A.; Rajesh, P., E-mail: rajeshp@ssn.edu.in; Ramasamy, P.

    2015-06-24

    The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.

  8. An electron paramagnetic resonance study on irradiated triphenylphosphinselenid single crystal

    NASA Astrophysics Data System (ADS)

    Aras, Erdal; Karatas, Ozgul; Meric, Yasemin; Abbass, Hind Kh; Birey, Mehmet; Kilic, Ahmet

    2014-09-01

    The single crystals of triphenylphosphinselenid [C18H15PSe] were produced by slow evaporation of concentrated ethyl acetate solutions. These single crystals were exposed to 60Co gamma (γ) rays with a dose speed of 0.980 kGy/h at the room temperature for 72 h. The free radical over the sample was observed using electron paramagnetic resonance (EPR)-X band spectrometer. The EPR spectra were recorded between 120 and 400 K. Furthermore, the sample irradiated was rotated in steps of 10° and analyzed for different orientations of the crystal in the magnetic field. Only one radical structure was determined on the molecule. The hyperfine constants of the sample were found to be anisotropic. The average values of these constants and value of g were calculated as following: g=2.007656, aSe=37.47 G, aP=27.44 G, aHa=17.28 G, and aHb=18.16 G.

  9. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). Themore » orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.« less

  10. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    SciTech Connect

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  11. Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-Ornithine monohydrochloride.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2009-03-01

    Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.

  12. Crystal oscillators using negative voltage gain, single pole response amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

  13. Polarized IR-microscope spectra of guanidinium hydrogenselenate single crystal.

    PubMed

    Drozd, M; Baran, J

    2005-10-01

    The polarized IR-microscope spectra of C(NH2)3.HSeO4 small single crystal samples were measured at room temperature. The spectra are discussed with the framework of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the O...O distance of 2.616 A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polarizer angle are described. Detailed assignment for bands derived from stretching and bending modes of selenate anions and guanidinium cations were performed. The observed intensities of these bands in polarized infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  14. Drift mobility of holes in phenanthrene single crystals

    NASA Technical Reports Server (NTRS)

    Sonnonstine, T. J.; Hermann, A. M.

    1974-01-01

    The temperature dependence of drift mobilities of holes in single crystals of phenanthrene was measured in the range from 203 to 353 K in three crystallographic directions. Below the anomaly temperature of 72 C, the mobility temperature dependences are consistent with the Munn and Siebrand slow-phonon hopping process in the b direction and the Munn and Siebrand slow-phonon coherent mode in the a and c prime directions. The drift mobility temperature dependences in crystals that have been cooled through the anomaly temperature in the presence of illumination and an electric field are consistent with the model of Spielberg et al. (1971), in which the hindered vibration of the 4,5 hydrogens introduces a new degree of freedom above 72 C.

  15. Polarised IR-microscope spectra of guanidinium hydrogensulphate single crystal.

    PubMed

    Drozd, M; Baran, J

    2006-07-01

    Polarised IR-microscope spectra of C(NH(2))(3)*HSO(4) small single crystal samples were measured at room temperature. The spectra are discussed on the basis of oriented gas model approximation and group theory. The stretching nuOH vibration of the hydrogen bond with the Ocdots, three dots, centeredO distance of 2.603A gives characteristic broad AB-type absorption in the IR spectra. The changes of intensity of the AB bands in function of polariser angle are described. Detailed assignments for bands derived from stretching and bending modes of sulphate anions and guanidinium cations were performed. The observed intensities of these bands in polarised infrared spectra were correlated with theoretical calculation of directional cosines of selected transition dipole moments for investigated crystal. The vibrational studies seem to be helpful in understanding of physical and chemical properties of described compound and also in design of new complexes with exactly defined behaviors.

  16. Shock-Induced phase transition of single crystal copper

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2017-05-01

    We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.

  17. Magnetic order of Nd 5 Pb 3 single crystals

    SciTech Connect

    Yan, Jiaqiang; Ochi, Masayuki; Cao, Huibo B.

    We report millimeter-sized Nd 5Pb 3 single crystals grown out of a Nd–Co flux. We experimentally study the magnetic order of Nd 5Pb 3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector $k=(0.5, 0, 0)$ . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupledmore » antiferromagnetically along the a-axis for the $k=(0.5, 0, 0)$ magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd 5Pb 3 has the same electronic structure as does Y 5Si 3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb 3 (R = rare earth) can be a materials playground for the study of magnetic electrides. To conclude, this deserves further study after experimental confirmation of the presence of anionic electrons.« less

  18. Pressure driven spin transition in siderite and magnesiosiderite single crystals.

    PubMed

    Weis, Christopher; Sternemann, Christian; Cerantola, Valerio; Sahle, Christoph J; Spiekermann, Georg; Harder, Manuel; Forov, Yury; Kononov, Alexander; Sakrowski, Robin; Yavaş, Hasan; Tolan, Metin; Wilke, Max

    2017-11-28

    Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO 3 and magnesiosiderite (Mg 0.74 Fe 0.26 )CO 3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.

  19. Magnetic order of Nd5Pb3 single crystals

    NASA Astrophysics Data System (ADS)

    Yan, J.-Q.; Ochi, M.; Cao, H. B.; Saparov, B.; Cheng, J.-G.; Uwatoko, Y.; Arita, R.; Sales, B. C.; Mandrus, D. G.

    2018-04-01

    We report millimeter-sized Nd5Pb3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd5Pb3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1  =  44 K and T N2  =  8 K. The magnetic cells can be described with a propagation vector k=(0.5, 0, 0) . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the k=(0.5, 0, 0) magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd5Pb3 has the same electronic structure as does Y5Si3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  20. Magnetic order of Nd5Pb3 single crystals.

    PubMed

    Yan, J-Q; Ochi, M; Cao, H B; Saparov, B; Cheng, J-G; Uwatoko, Y; Arita, R; Sales, B C; Mandrus, D G

    2018-04-04

    We report millimeter-sized Nd 5 Pb 3 single crystals grown out of a Nd-Co flux. We experimentally study the magnetic order of Nd 5 Pb 3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1   =  44 K and T N2   =  8 K. The magnetic cells can be described with a propagation vector [Formula: see text]. Cooling below T N1 , Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupled antiferromagnetically along the a-axis for the [Formula: see text] magnetic domain. Cooling below T N2 , Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2 , no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd 5 Pb 3 has the same electronic structure as does Y 5 Si 3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5 Pb 3 (R  =  rare earth) can be a materials playground for the study of magnetic electrides. This deserves further study after experimental confirmation of the presence of anionic electrons.

  1. Magnetic order of Nd 5 Pb 3 single crystals

    DOE PAGES

    Yan, Jiaqiang; Ochi, Masayuki; Cao, Huibo B.; ...

    2018-03-02

    We report millimeter-sized Nd 5Pb 3 single crystals grown out of a Nd–Co flux. We experimentally study the magnetic order of Nd 5Pb 3 single crystals by measuring the anisotropic magnetic properties, electrical resistivity under high pressure up to 8 GPa, specific heat, and neutron single crystal diffraction. Two successive magnetic orders are observed at T N1 = 44 K and T N2 = 8 K. The magnetic cells can be described with a propagation vector $k=(0.5, 0, 0)$ . Cooling below T N1, Nd1 and Nd3 order forming ferromagnetic stripes along the b-axis, and the ferromagnetic stripes are coupledmore » antiferromagnetically along the a-axis for the $k=(0.5, 0, 0)$ magnetic domain. Cooling below T N2, Nd2 orders antiferromagnetically to nearby Nd3 ions. All ordered moments align along the crystallographic c-axis. The magnetic order at T N1 is accompanied by a quick drop of electrical resistivity upon cooling and a lambda-type anomaly in the temperature dependence of specific heat. At T N2, no anomaly was observed in electrical resistivity but there is a weak feature in specific heat. The resistivity measurements under hydrostatic pressures up to 8 GPa suggest a possible phase transition around 6 GPa. Our first-principles band structure calculations show that Nd 5Pb 3 has the same electronic structure as does Y 5Si 3 which has been reported to be a one-dimensional electride with anionic electrons that do not belong to any atom. Our study suggests that R 5Pb 3 (R = rare earth) can be a materials playground for the study of magnetic electrides. To conclude, this deserves further study after experimental confirmation of the presence of anionic electrons.« less

  2. Polarization-dependent exciton dynamics in tetracene single crystals

    SciTech Connect

    Zhang, Bo; Zhang, Chunfeng, E-mail: cfzhang@nju.edu.cn; Xu, Yanqing

    2014-12-28

    We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.

  3. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    NASA Astrophysics Data System (ADS)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  4. Depressurization amorphization of single-crystal boron carbide.

    PubMed

    Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W

    2009-02-20

    We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.

  5. PHz current switching in calcium fluoride single crystal

    SciTech Connect

    Kwon, Ojoon; Kim, D., E-mail: kimd@postech.ac.kr; Max Planck Center for Attosecond Science, Max Planck POSTECH/Korea Res. Init., Pohang 37673

    2016-05-09

    We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (10{sup 15} Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.

  6. The sublimation kinetics of GeSe single crystals

    NASA Technical Reports Server (NTRS)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  7. Defect sensitive etching of hexagonal boron nitride single crystals

    NASA Astrophysics Data System (ADS)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  8. Structural, optical, mechanical and dielectric studies of pure and doped L-Prolinium trichloroacetate single crystals.

    PubMed

    Renuka, N; Ramesh Babu, R; Vijayan, N; Vasanthakumar, Geetha; Krishna, Anuj; Ramamurthi, K

    2015-02-25

    In the present work, pure and metal substituted L-Prolinium trichloroacetate (LPTCA) single crystals were grown by slow evaporation method. The grown crystals were subjected to single crystal X-ray diffraction (XRD), powder X-ray diffraction, FTIR, UV-Visible-NIR, hardness, photoluminescence and dielectric studies. The dopant concentration in the crystals was measured by inductively coupled plasma (ICP) analysis. Single crystal X-ray diffraction studies of the pure and metal substituted LPTCA revealed that the grown crystals belong to the trigonal system. Ni(2+) and Co(2+) doping slightly altered the lattice parameters of LPTCA without affecting the basic structure of the crystal. FTIR spectral analysis confirms the presence of various functional groups in the grown crystals. The mechanical behavior of pure and doped crystals was analyzed by Vickers's microhardness test. The optical transmittance, dielectric and photoluminescence properties of the pure and doped crystals were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Crystal growth and electrical properties of CuFeO 2 single crystals

    NASA Astrophysics Data System (ADS)

    Dordor, P.; Chaminade, J. P.; Wichainchai, A.; Marquestaut, E.; Doumerc, J. P.; Pouchard, M.; Hagenmuller, P.; Ammar, A.

    1988-07-01

    Delafossite-type CuFeO 2 single crystals have been prepared by a flux method: crystals obtained in a Cu crucible with LiBO 2 as flux are n-type whereas those prepared in a Pt crucible with a Cu 2O flux are p-type. Electrical measurements have revealed that n-type crystals exhibit weak anisotropic conductivities with large activation energies and small mobilities (r.t. values perpendicular and parallel to the c-axis: μ⊥ = 5 × 10 -5 and μ‖ = 10 -7 cm -2 V -1 sec -1). p-type crystals, less anisotropic, are characterized by low activation energies and higher mobilities ( μ⊥ = 34 and μ‖ = 8.9 cm 2 V -1 sec -1). A two -conduction-band model is proposed to account for the difference observed between the energy gap value deduced from photoelectrochemical measurements and the activation energy of the electrical conductivity in the intrinsic domain.

  10. Synthesis, crystal growth, structural, thermal, optical and mechanical properties of solution grown 4-methylpyridinium 4-hydroxybenzoate single crystal.

    PubMed

    Sudhahar, S; Krishna Kumar, M; Sornamurthy, B M; Mohan Kumar, R

    2014-01-24

    Organic nonlinear optical material, 4-methylpyridinium 4-hydroxybenzoate (4MPHB) was synthesized and single crystal was grown by slow evaporation solution growth method. Single crystal and powder X-ray diffraction analyses confirm the structure and crystalline perfection of 4MPHB crystal. Infrared, Raman and NMR spectroscopy techniques were used to elucidate the functional groups present in the compound. TG-DTA analysis was carried out in nitrogen atmosphere to study the decomposition stages, endothermic and exothermic reactions. UV-visible and Photoluminescence spectra were recorded for the grown crystal to estimate the transmittance and band gap energy respectively. Linear refractive index, birefringence, and SHG efficiency of the grown crystal were studied. Laser induced surface damage threshold and mechanical properties of grown crystal were studied to assess the suitability of the grown crystals for device applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Growth and surface topography of WSe{sub 2} single crystal

    SciTech Connect

    Dixit, Vijay, E-mail: vijdix1@gmail.com; Vyas, Chirag; Pataniya, Pratik

    2016-05-06

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe{sub 2} were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe{sub 2} crystals. Single crystalline nature of the crystals was confirmed by SAED.

  12. Temperature dependence of magnetoresistance in copper single crystals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  13. Process for Making Single-Domain Magnetite Crystals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Lofgren, Gary E.; McKay, Gordan A.; Schwandt, Craig S.; Lauer, Howard V., Jr.; Socki, Richard A.

    2004-01-01

    A process for making chemically pure, single-domain magnetite crystals substantially free of structural defects has been invented as a byproduct of research into the origin of globules in a meteorite found in Antarctica and believed to have originated on Mars. The globules in the meteorite comprise layers of mixed (Mg, Fe, and Ca) carbonates, magnetite, and iron sulfides. Since the discovery of the meteorite was announced in August 1996, scientists have debated whether the globules are of biological origin or were formed from inorganic materials by processes that could have taken place on Mars. While the research that led to the present invention has not provided a definitive conclusion concerning the origin of the globules, it has shown that globules of a different but related chemically layered structure can be grown from inorganic ingredients in a multistep precipitation process. As described in more detail below, the present invention comprises the multistep precipitation process plus a subsequent heat treatment. The multistep precipitation process was demonstrated in a laboratory experiment on the growth of submicron ankerite crystals, overgrown by submicron siderite and pyrite crystals, overgrown by submicron magnesite crystals, overgrown by submicron siderite and pyrite. In each step, chloride salts of appropriate cations (Ca, Fe, and Mg) were dissolved in deoxygenated, CO2- saturated water. NaHCO3 was added as a pH buffer while CO2 was passed continuously through the solution. A 15-mL aliquot of the resulting solution was transferred into each of several 20 mL, poly(tetrafluoroethylene)-lined hydrothermal pressure vessels. The vessels were closed in a CO2 atmosphere, then transferred into an oven at a temperature of 150 C. After a predetermined time, the hydrothermal vessels were removed from the oven and quenched in a freezer. Supernatant solutions were decanted, and carbonate precipitates were washed free of soluble salts by repeated decantations with

  14. The Ni and Co substitutions in iron chalcogenide single crystals

    NASA Astrophysics Data System (ADS)

    Bezusyy, V. L.; Gawryluk, D. J.; Malinowski, A.; Berkowski, M.; Cieplak, Marta Z.

    2015-03-01

    We study the ab-plane resistivity and Hall effect in Fe1-yMyTe0.65Se0.35 single crystals with M =Co or Ni, and y up to 0.2. The crystals are grown by Bridgman's method. The low-temperature Hall coefficient RH changes sign to negative for crystals with y exceeding 0.135 (Co) and 0.06 (Ni), consistent with the electron doping induced by these impurities. However, the RH remains positive for all samples at high T, suggesting that remnant hole pockets survive the doping, but the holes become localized at low T in heavily doped crystals. Superconducting transition temperature (Tc) approaches zero for y = 0.14 (Co), and 0.03 (Ni), while the resistivity at the Tc onset is only weakly affected by Co doping, but it increases strongly for the Ni. These results suggest that in case of Co impurity the Tc suppression may be attributed to electron doping. On the other hand, the Ni substitution, in addition to electron doping, induces strong localization effects at small impurity contents. Using two-band conduction model we argue that the localization of electron carriers is responsible for strong superconductivity suppression by Ni impurity. Supported by EC through the FunDMS Advanced Grant of the ERC (FP7 Ideas), by the Polish NCS Grant 2011/01/B/ST3/00462, and by the French-Polish Program PICS 2012. Performed in the laboratories co-financed by NanoFun Project POIG.02.02.00-00-025/09.

  15. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE PAGES

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  16. Strength and deformation of shocked diamond single crystals: Orientation dependence

    SciTech Connect

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  17. Strength and deformation of shocked diamond single crystals: Orientation dependence

    NASA Astrophysics Data System (ADS)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  18. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  19. Single Crystal Diamond Needle as Point Electron Source.

    PubMed

    Kleshch, Victor I; Purcell, Stephen T; Obraztsov, Alexander N

    2016-10-12

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  20. Single Crystal Diamond Needle as Point Electron Source

    PubMed Central

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-01-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. PMID:27731379

  1. Single Crystal Diamond Needle as Point Electron Source

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2-0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  2. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  3. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  4. OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2016-08-01

    This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.

  5. Electronic transport properties of single-crystal bismuth nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Sun, Xiangzhong; Dresselhaus, M. S.; Ying, Jackie Y.; Heremans, J.

    2000-02-01

    We present here a detailed study of the electrical transport properties of single-crystal bismuth nanowire arrays embedded in a dielectric matrix. Measurements of the resistance of Bi nanowire arrays with different wire diameters (60-110 nm) have been carried out over a wide range of temperatures (2.0-300 K) and magnetic fields (0-5.4 T). The transport properties of a heavily Te-doped Bi nanowire array have also been studied. At low temperatures, we show that the wire boundary scattering is the dominant scattering process for carriers in the undoped single-crystal Bi nanowires, while boundary scattering is less important for a heavily Te-doped sample, consistent with general theoretical considerations. The temperature dependences of the zero-field resistivity and of the longitudinal magneto-coefficient of the Bi nanowires were also studied and were found to be sensitive to the wire diameter. The quantum confinement of carriers is believed to play an important role in determining the overall temperature dependence of the zero-field resistivity. Theoretical considerations of the quantum confinement effects on the electronic band structure and on the transport properties of Bi nanowires are discussed. Despite the evidence for localization effects and diffusive electron interactions at low temperatures (T<=4.0 K), localization effects are not the dominant mechanisms affecting the resistivity or the magnetoresistance in the temperature range of this study.

  6. Synthesis of millimeter-scale transition metal dichalcogenides single crystals

    DOE PAGES

    Gong, Yongji; Ye, Gonglan; Lei, Sidong; ...

    2016-02-10

    The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm -2, leading to millimeter-scale MoSe 2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation canmore » also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm 2 V -1 s -1, for back-gated MoSe 2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe 2 single crystals.« less

  7. The fatigue damage behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1988-01-01

    The uniaxial fatigue behavior of a single crystal superalloy, PWA 1480, is described. Both monotonic tensile and constant amplitude fatigue tests were conducted at room temperature, in an effort to assess the applicability of polycrystalline-based fatigue life prediction methods to a single crystal superalloy. The observed constant amplitude behavior correlated best using a stress-based life criterion. Nearly all specimens failed at surface or slightly subsurface microporosity; this is thought to be responsible for the unusually large amount of scatter in the test results. An additional term is developed in the stress-life equation for the purpose of accounting for the effect of microporosity on fatigue life. The form chosen is a function of the effective area of the failure-producing microporosity projected on a plane perpendicular to the loading axis, as well as the applied stress. This additional term correlated the data to within factors of two on life. Although speculative, extrapolation of the microporosity relation to zero micropore area indicates that approximately an order of magnitude improvement in fatigue life should result.

  8. Transient lateral photovoltaic effect in synthetic single crystal diamond

    NASA Astrophysics Data System (ADS)

    Prestopino, G.; Marinelli, M.; Milani, E.; Verona, C.; Verona-Rinati, G.

    2017-10-01

    A transient lateral photovoltaic effect (LPE) is reported for a metal-semiconductor structure of synthetic single crystal diamond (SCD). A SCD Schottky photodiode was specifically designed to measure a LPE under collimated irradiation from a tunable pulsed laser. A transient lateral photovoltage parallel to the Schottky junction was indeed detected. LPE on the p-type doped SCD side showed a non-linearity of 2% and a fast response time, with a rise time of 2 μs and a decay time of 12 μs. The position sensitivity (up to 30 mV/mm at a laser wavelength of 220 nm and a pulse energy density of 2.9 μJ/mm2) was measured as a function of laser wavelength, and an ultraviolet (UV)-to-visible contrast ratio of about four orders of magnitude with a sharp cutoff at 225 nm was observed. Our results demonstrate that a large LPE at UV wavelengths is achievable in synthetic single crystal diamond, potentially opening opportunities for the study and application of LPE in diamond and for the fabrication of high performance visible blind UV position sensitive detectors with high sensitivity and microsecond scale response time.

  9. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  10. Growth of EuO Single Crystals at Reduced Temperatures

    NASA Astrophysics Data System (ADS)

    Besara, Tiglet; Ramirez, Daniel; Whalen, Jeffrey; Siegrist, Theo

    Single crystals of Eu1-xBaxO have been grown in a barium-magnesium flux at moderate temperatures up to 1000°C, producing single crystals with barium doping levels ranging from x = 0 . 03 to x = 0 . 25 . Magnetic measurements show that the ferromagnetic Curie temperature TC correlates with the Ba doping levels, and a modified Heisenberg model is employed to describe the TC dependence on the stoichiometry. The decrease in TC is dominated by the Ba substitution on the Eu lattice with a small contribution arising from the lattice strain. Extrapolation of results indicates that a sample at x = 0 . 72 should have a TC = 0 K, potentially producing a quantum phase transition in this material. DOE SC-0008832, NSF DMR-1157490. This work was supported by the Department of Energy, Office of Basic Science, under contract DOE SC-0008832. This work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and the U.S. Department of Energy.

  11. Ultrafast dynamic response of single crystal β-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  12. Modal reduction in single crystal sapphire optical fiber

    SciTech Connect

    Cheng, Yujie; Hill, Cary; Liu, Bo

    2015-10-12

    A new type of single crystal sapphire optical fiber (SCSF) design is proposed to reduce the number of guided modes via a highly dispersive cladding with a periodic array of high and low index regions in the azimuthal direction. The structure retains a “core” region of pure single crystal (SC) sapphire in the center of the fiber and a “cladding” region of alternating layers of air and SC sapphire in the azimuthal direction that is uniform in the radial direction. The modal characteristics and confinement losses of the fundamental mode were analyzed via the finite element method by varying themore » effective core diameter and the dimensions of the “windmill” shaped cladding. The simulation results showed that the number of guided modes were significantly reduced in the “windmill” fiber design, as the radial dimension of the air and SC sapphire cladding regions increase with corresponding decrease in the azimuthal dimension. It is anticipated that the “windmill” SCSF will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that were limited by the extremely large modal volume of unclad SCSF.« less

  13. Single crystals of metal solid solutions: A study

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Gelles, S. H.

    1975-01-01

    Report describes growth of silver-alloy crystals under widely varying conditions of growth rate, temperature gradient, and magnetic field. Role of gravitation and convection on crystal substructure is analyzed, as well as influence of magnetic fields applied during crystallization.

  14. Crystal growth, structural, thermal and mechanical behavior of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals.

    PubMed

    Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y

    2014-12-10

    Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Postsynthetic Improvement of the Physical Properties in a Metal-Organic Framework through a Single Crystal to Single Crystal Transmetallation.

    PubMed

    Grancha, Thais; Ferrando-Soria, Jesús; Zhou, Hong-Cai; Gascon, Jorge; Seoane, Beatriz; Pasán, Jorge; Fabelo, Oscar; Julve, Miguel; Pardo, Emilio

    2015-05-26

    A single crystal to single crystal transmetallation process takes place in the three-dimensional (3D) metal-organic framework (MOF) of formula Mg(II) 2 {Mg(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅45 H2 O (1; Me3 mpba(4-) =N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)). After complete replacement of the Mg(II) ions within the coordination network and those hosted in the channels by either Co(II) or Ni(II) ions, 1 is transmetallated to yield two novel MOFs of formulae Co2 (II) {Co(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅56 H2 O (2) and Ni2 (II) {Ni(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅ 54 H2 O (3). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Astrophysics Data System (ADS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-09-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  17. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  18. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  19. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and

  20. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  1. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin, E-mail: huseyin@illinois.edu

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximationmore » for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.« less

  2. Secondary orientation effects in a single crystal superalloy under mechanical and thermal loads

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The nickel-base single crystal superalloy PWA 1480 is a candidate blading material for the advanced turbopump development program of the SSME. In order to improve thermal fatigue resistance of the turbine blades, the single crystal superalloy PWA 1480 is grown along the low modulus zone axes (001) crystal orientation by a directional solidification process. Since cubic single crystal materials such as PWA 1480 exhibit anisotropic elastic behavior, the stresses developed within the single crystal superalloy due to mechanical and thermal loads are likely to be affected by the exact orientation of the secondary crystallographic direction with respect to the geometry of the turbine blade. The effects of secondary crystal orientation on the elastic response of single crystal PWA 1480 superalloy were investigated.

  3. Silicon nanostructure arrays prepared by single step metal assisted chemical etching from single crystal wafer

    NASA Astrophysics Data System (ADS)

    Sarkar, Kalyan; Das, Debajyoti

    2018-04-01

    Arrays of silicon nanostructures have been produced by single step Metal Assisted Chemical Etching (MACE) of single crystal Si-wafers at room temp and normal atmospheric condition. By studying optical and structural properties of the silicon nanowire like structures synthesized by Ag catalyst assisted chemical etching, a significant change in the reflectance spectra has been obtained leading to a gross reduction in reflectance from ˜31% to less than 1%. In comparison with bulk c-Si, the surface areas of the nanostructured samples have been increased significantly with the etching time, leading to an efficient absorption of light, favorable for photovoltaic applications.

  4. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  5. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less

  6. A discrete dislocation dynamics model of creeping single crystals

    NASA Astrophysics Data System (ADS)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  7. Simulations of surface stress effects in nanoscale single crystals

    NASA Astrophysics Data System (ADS)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  8. Structural defects caused by swift ions in fluorite single crystals

    NASA Astrophysics Data System (ADS)

    Assylbayev, Ruslan; Lushchik, Aleksandr; Lushchik, Cheslav; Kudryavtseva, Irina; Shablonin, Evgeni; Vasil'chenko, Evgeni; Akilbekov, Abdirash; Zdorovets, Maxim

    2018-01-01

    A comparative study of radiation damage caused by the irradiation of oxygen-free calcium fluoride single crystals with ∼GeV 132Xe or 209Bi heavy ions, 100-keV light hydrogen ions (protons) or X-rays at room temperature has been performed. Optical absorption in a wide spectral region from NIR to VUV (1.5-10.5 eV), its dependence on stepwise preheating of the irradiated CaF2 crystals to a certain temperature as well as thermally stimulated luminescence accompanying the main annealing stages have been analyzed. It is shown that in addition to different F-type aggregates, Ca colloids and trifluorine quasi-molecules, complex and temperature stable structural defects responsible for VUV absorption (in particular, the 9.8 eV band) are induced in CaF2 only after irradiation with swift heavy ions. The origin and tentative creation mechanisms of such defects as well as the features of the used irradiation types are considered.

  9. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  10. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  11. Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Wei, J. Y. T.; Fridman, Igor; Yeh, Kuo-Wei; Wu, Maw-Kuen; Hu, Rongwei; Petrovic, C.

    2011-03-01

    We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the ``11'' family including Fe 1-y Te 1-x Se x and Fe 1-y Te 1-x Sx . Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors. Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

  12. Nonlinear pyroelectric energy harvesting from relaxor single crystals.

    PubMed

    Khodayari, Akram; Pruvost, Sebastien; Sebald, Gael; Guyomar, Daniel; Mohammadi, Saber

    2009-04-01

    Energy harvesting from temperature variations in a Pb(Zn(1/3)Nb(2/3))(0.955)Ti(0.045)O(3) single crystal was studied and evaluated using the Ericsson thermodynamic cycle. The efficiency of this cycle related to Carnot cycle is 100 times higher than direct pyroelectric energy harvesting, and it can be as high as 5.5% for a 10 degrees C temperature variation and 2 kV/mm electric field. The amount of harvested energy for a 60 degrees C temperature variation and 2 kV/mm electric field is 242.7 mJ x cm(-3). The influence of ferroelectric phase transitions on the energy harvesting performance is discussed and illustrated with experimental results.

  13. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  14. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  15. Growth of single-crystal YAG fiber optics.

    PubMed

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  16. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  17. Growth and microtopographic study of CuInSe{sub 2} single crystals

    SciTech Connect

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  18. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  19. Third order nonlinear optical properties of a paratellurite single crystal

    NASA Astrophysics Data System (ADS)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  20. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  1. Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal

    NASA Astrophysics Data System (ADS)

    Priyadharshini, A.; Kalainathan, S.

    2018-04-01

    2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.

  2. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    DOE PAGES

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-08-02

    We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less

  3. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.

    2017-11-01

    A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.

  4. Water weakening in experimentally deformed milky quartz single crystals

    NASA Astrophysics Data System (ADS)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FI´s decrepitate. Cracks heal and small neonate FI´s form, increasing the number of FI´s drastically. During subsequent deformation, the size of FI´s is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FI´s. The deformation processes in these crystals represent a recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  5. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    NASA Astrophysics Data System (ADS)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  6. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  7. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    PubMed

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111

  8. Brownmillerite Ca 2 Co 2 O 5 : Synthesis, Stability, and Re-entrant Single Crystal to Single Crystal Structural Transitions

    SciTech Connect

    Zhang, Junjie; Zheng, Hong; Malliakas, Christos D.

    2014-11-20

    We synthesized Ca 2Co 2O 5 in the brownmillerite form using a high-pressure optical-image floating zone furnace, and single crystals with dimensions up to 1.4×0.8×0.5 mm 3 were obtained. At room temperature, Ca 2Co 2O 5 crystallizes as a fully ordered brownmillerite variant in the orthorhombic space group Pcmb (No. 57) with unit cell parameters a=5.28960(10) Å, b=14.9240(2) Å, and c=10.9547(2) Å. Furthermore, with decreasing temperature, it undergoes re-entrant sequence of first-order structural phase transitions (Pcmb→ P2/c11→ P121/m1→ Pcmb) that is unprecedented among brownmillerites, broadening the family of space groups available to these materials and challenging current approaches for sortingmore » the myriad variants of brownmillerite structures. Magnetic susceptibility data indicate antiferromagnetic ordering in Ca 2Co 2O 5 occurs near 240 K, corroborated by neutron powder diffraction. Below 140 K, Ca 2Co 2O 5 shows a weak ferromagnetic component directed primarily along the b axis, and it also exhibits thermal and magnetic history dependence in magnetization.« less

  9. Crystal growth, piezoelectric, non-linear optical and mechanical properties of lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-05-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution growth technique at 35 °C. Single crystal X-ray diffraction study showed that the grown crystal belongs to the triclinic system with space group P1. The mechanical strength decreases with increasing load. The piezoelectric coefficient is found to be 1.41 pC/N. The nonlinear optical property was measured using Kurtz Perry powder technique and SHG efficiency was almost equal to that of KDP.

  10. Fabrication of Single Crystal MgO Capsules

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa

    2012-01-01

    A method has been developed for machining MgO crystal blocks into forms for containing metallic and silicate liquids at temperatures up to 2,400 C, and pressures up to at least 320 kilobars. Possible custom shapes include tubes, rods, insulators, capsules, and guides. Key differences in this innovative method include drilling along the crystallographic zone axes, use of a vibration minimizing material to secure the workpiece, and constant flushing of material swarf with a cooling medium/lubricant (water). A single crystal MgO block is cut into a section .5 mm thick, 1 cm on a side, using a low-speed saw with a 0.004 blade. The cut is made parallel to the direction of cleavage. The block may be cut to any thickness to achieve the desired length of the piece. To minimize drilling vibrations, the MgO block is mounted on a piece of adhesive putty in a vise. The putty wad cradles the bottom half of the entire block. Diamond coring tools are used to drill the MgO to the desired custom shape, with water used to wet and wash the surface of swarf. Compressed air may also be used to remove swarf during breaks in drilling. The MgO workpiece must be kept cool at all times with water. After all the swarf is rinsed off, the piece is left to dry overnight. If the workpiece is still attached to the base of the MgO block after drilling, it may be cut off by using a diamond cutoff wheel on a rotary hand tool or by using a low-speed saw.

  11. Defects induced in cerium dioxide single crystals by electron irradiation

    DOE PAGES

    Costantini, Jean-Marc; Miro, Sandrine; Touati, Nadia; ...

    2018-01-12

    In this work, Micro-Raman spectroscopy, X-band electron paramagnetic resonance (EPR) spectroscopy, and UV-visible optical absorption spectroscopy were used to study the damage production in cerium dioxide (CeO 2) single crystals by electron irradiation for three energies (1.0, 1.4, and 2.5 MeV). The Raman-active T 2g peak was left unchanged after 2.5-MeV electron irradiation at a high fluence. This shows that no structural modifications occurred for the cubic fluorite structure. UV-visible optical absorption spectra exhibited a characteristic sub band-gap tail for 1.4-MeV and 2.5-MeV energies, but not for 1.0 MeV. Narrow EPR lines were recorded near liquid-helium temperature after 2.5-MeV electronmore » irradiation; whereas no such signal was found for the virgin un-irradiated crystal or after 1.0-MeV irradiation for the same fluence. The angular variation of these lines in the {111} plane revealed a weak g-factor anisotropy assigned to Ce 3+ ions (with the 4f 1 configuration) in a high-symmetry local environment. Finally, it is concluded that Ce 3+ ions may be produced by a reduction resulting from the displacement damage process. However, no evidence of F + or F 0 center or hole center formation due to irradiation was found from the present EPR and optical absorption spectra.« less

  12. Defects induced in cerium dioxide single crystals by electron irradiation

    SciTech Connect

    Costantini, Jean-Marc; Miro, Sandrine; Touati, Nadia

    In this work, Micro-Raman spectroscopy, X-band electron paramagnetic resonance (EPR) spectroscopy, and UV-visible optical absorption spectroscopy were used to study the damage production in cerium dioxide (CeO 2) single crystals by electron irradiation for three energies (1.0, 1.4, and 2.5 MeV). The Raman-active T 2g peak was left unchanged after 2.5-MeV electron irradiation at a high fluence. This shows that no structural modifications occurred for the cubic fluorite structure. UV-visible optical absorption spectra exhibited a characteristic sub band-gap tail for 1.4-MeV and 2.5-MeV energies, but not for 1.0 MeV. Narrow EPR lines were recorded near liquid-helium temperature after 2.5-MeV electronmore » irradiation; whereas no such signal was found for the virgin un-irradiated crystal or after 1.0-MeV irradiation for the same fluence. The angular variation of these lines in the {111} plane revealed a weak g-factor anisotropy assigned to Ce 3+ ions (with the 4f 1 configuration) in a high-symmetry local environment. Finally, it is concluded that Ce 3+ ions may be produced by a reduction resulting from the displacement damage process. However, no evidence of F + or F 0 center or hole center formation due to irradiation was found from the present EPR and optical absorption spectra.« less

  13. Study of the possibility of growing germanium single crystals under low temperature gradients

    NASA Astrophysics Data System (ADS)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  14. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  15. The density and compositional analysis of titanium doped sapphire single crystal grown by the Czocharlski method

    NASA Astrophysics Data System (ADS)

    Kusuma, H. H.; Ibrahim, Z.; Othaman, Z.

    2018-03-01

    Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.

  16. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    NASA Technical Reports Server (NTRS)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test

  17. Growth and characterization of divalent transition metal ions doped zinc hydrogen phosphate single crystals

    NASA Astrophysics Data System (ADS)

    D'Souza, Delma; Jagannatha, N.; Nagaraja, K. P.; Rohith, P. S.; Pradeepkumar, K. V.

    2018-05-01

    Zinc hydrogen phosphate (ZnHP) single crystal co-doped with divalent transition metal ions Cobalt (Co2+) and Cadmium (Cd2+) is grown by gel technique in silica hydro gel media. The presence of Co2+ and Cd2+ dopants in the ZnHP crystal was confirmed by Energy Dispersive X-ray Analysis (EDAX).FTIR spectra of the grown crystal depict the stretching and bending vibration of PO4 units, water of crystallization and metal-oxygen bonds. Powder XRD analysis reveals that the grown crystal belongs to monoclinic system with spacegroup P 21. The thermal stability of the grown crystal is rectified from TG-DSC studies.

  18. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  19. Growth and characterization of 4-chloro-3-nitrobenzophenone single crystals using vertical Bridgman technique

    SciTech Connect

    Aravinth, K., E-mail: anandcgc@gmail.com; Babu, G. Anandha, E-mail: anandcgc@gmail.com; Ramasamy, P., E-mail: anandcgc@gmail.com

    2014-04-24

    4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.

  20. EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz

    2017-06-01

    Bis(cyclopentadienyl)zirconium dichloride (BCZD; zirconocene dichloride) single crystals were exposed to 60Co-γ irradiation at room temperature. The irradiated single crystals were investigated between 125 and 470 K by electron paramagnetic resonance spectroscopy. The spectra of the crystals were found to be temperature independent. The paramagnetic center was attributed to the cyclopentadienyl radical. The g values of the radiation damage center observed in BCZD single crystal and the hyperfine structure constants of the free electron with nearby protons were obtained.

  1. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    PubMed

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

    NASA Astrophysics Data System (ADS)

    Rajkumar, R.; Praveen Kumar, P.

    2018-05-01

    Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

  3. Thermal conductivity of high purity synthetic single crystal diamonds

    NASA Astrophysics Data System (ADS)

    Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.

    2018-04-01

    Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.

  4. Radiation tolerance of piezoelectric bulk single-crystal aluminum nitride

    SciTech Connect

    David A. Parks; Bernhard R. Tittmann

    2014-07-01

    For practical use in harsh radiation environments, we pose selection criteria for piezoelectric materials for nondestructive evaluation (NDE) and material characterization. Using these criteria, piezoelectric aluminum nitride is shown to be an excellent candidate. The results of tests on an aluminumnitride-based transducer operating in a nuclear reactor are also presented. We demonstrate the tolerance of single-crystal piezoelectric aluminum nitride after fast and thermal neutron fluences of 1.85 × 1018 neutron/cm2 and 5.8 × 1018 neutron/cm2, respectively, and a gamma dose of 26.8 MGy. The radiation hardness of AlN is most evident from the unaltered piezoelectric coefficient d33, which measured 5.5more » pC/N after a fast and thermal neutron exposure in a nuclear reactor core for over 120 MWh, in agreement with the published literature value. The results offer potential for improving reactor safety and furthering the understanding of radiation effects on materials by enabling structural health monitoring and NDE in spite of the high levels of radiation and high temperatures, which are known to destroy typical commercial ultrasonic transducers.« less

  5. Single crystal CVD diamond membranes for betavoltaic cells

    NASA Astrophysics Data System (ADS)

    Delfaure, C.; Pomorski, M.; de Sanoit, J.; Bergonzo, P.; Saada, S.

    2016-06-01

    A single crystal diamond large area thin membrane was assembled as a p-doped/Intrinsic/Metal (PIM) structure and used in a betavoltaic configuration. When tested with a 20 keV electron beam from a high resolution scanning electron microscope, we measured an open circuit voltage (Voc) of 1.85 V, a charge collection efficiency (CCE) of 98%, a fill-factor of 80%, and a total conversion efficiency of 9.4%. These parameters are inherently linked to the diamond membrane PIM structure that allows full device depletion even at 0 V and are among the highest reported up to now for any other material tested for betavoltaic devices. It enables to drive a high short-circuit current Isc up to 7.12 μA, to reach a maximum power Pmax of 10.48 μW, a remarkable value demonstrating the high-benefit of diamond for the realization of long-life radioisotope based micro-batteries.

  6. Radiation attenuation by single-crystal diamond windows

    SciTech Connect

    Guthrie, M.; Pruteanu, C. G.; Donnelly, M. -E.

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  7. Radiation attenuation by single-crystal diamond windows

    SciTech Connect

    Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  8. Radiation attenuation by single-crystal diamond windows

    DOE PAGES

    Guthrie, Malcolm; Pruteanu, Ciprian G.; Donnelly, Mary -Ellen; ...

    2017-02-01

    As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leadingmore » to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. Furthermore, this article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.« less

  9. Analysis of ripple formation in single crystal spot welds

    SciTech Connect

    Rappaz, M.; Corrigan, D.; Boatner, L.A.

    1997-10-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 {micro}m) and spacing (typically {approximately} 60 {micro}m) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f{sub 0} given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v{sub s}/f{submore » 0}, where v{sub s} is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.« less

  10. Deformation of periodic nanovoid structures in Mg single crystals

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing; Zare Chavoshi, Saeed

    2018-01-01

    Large scale molecular dynamics (MD) simulations in Mg single crystal containing periodic cylindrical voids subject to uniaxial tension along the z direction are carried out. Models with different initial void sizes and crystallographic orientations are explored using two interatomic potentials. It is found that (i) a larger initial void always leads to a lower yield stress, in agreement with an analytic prediction; (ii) in the model with x[\\bar{1}100]-y[0001]-z[11\\bar{2}0] orientations, the two potentials predict different types of tension twins and phase transformation; (iii) in the model with x[0001]-y[11\\bar{2}0]-z[\\bar{1}100] orientations, the two potentials identically predict the nucleation of edge dislocations on the prismatic plane, which then glide away from the void, resulting in extrusions at the void surface; in the case of the smallest initial void, these surface extrusions pinch the void into two voids. Besides bringing new physical understanding of the nanovoid structures, our work highlights the variability and uncertainty in MD simulations arising from the interatomic potential, an issue relatively lightly addressed in the literature to date.

  11. On plastic flow in notched hexagonal close packed single crystals

    NASA Astrophysics Data System (ADS)

    Selvarajou, Balaji; Kondori, Babak; Benzerga, A. Amine; Joshi, Shailendra P.

    2016-09-01

    The micromechanics of anisotropic plastic flow by combined slip and twinning is investigated computationally in single crystal notched specimens. Constitutive relations for hexagonal close packed materials are used which take into account elastic anisotropy, thirty potential deformation systems, various hardening mechanisms and rate-sensitivity. The specimens are loaded perpendicular to the c-axis but the presence of a notch generates three-dimensional triaxial stress states. The study is motivated by recent experiments on a polycrystalline magnesium alloy. To enable comparisons with these where appropriate, three sets of activation thresholds for the various deformation systems are used. For the conditions that most closely mimic the alloy material, attention is focused on the relative roles of pyramidal 〈 c + a 〉 and prismatic 〈 a 〉 slip, as well as on the emergence of {1012bar}[101bar1] extension twinning at sufficiently high triaxiality. In all cases, the spatial variations of stress triaxiality and plastic strain, inclusive of various system activities, are quantified along with their evolution upon straining. The implications of these findings in fundamental understanding of ductile failure of HCP alloys in general and Mg alloys in particular are discussed.

  12. Single crystal CVD diamond membranes for betavoltaic cells

    SciTech Connect

    Delfaure, C.; Pomorski, M., E-mail: michal.pomorski@cea.fr; Sanoit, J. de

    2016-06-20

    A single crystal diamond large area thin membrane was assembled as a p-doped/Intrinsic/Metal (PIM) structure and used in a betavoltaic configuration. When tested with a 20 keV electron beam from a high resolution scanning electron microscope, we measured an open circuit voltage (V{sub oc}) of 1.85 V, a charge collection efficiency (CCE) of 98%, a fill-factor of 80%, and a total conversion efficiency of 9.4%. These parameters are inherently linked to the diamond membrane PIM structure that allows full device depletion even at 0 V and are among the highest reported up to now for any other material tested for betavoltaic devices. Itmore » enables to drive a high short-circuit current I{sub sc} up to 7.12 μA, to reach a maximum power P{sub max} of 10.48 μW, a remarkable value demonstrating the high-benefit of diamond for the realization of long-life radioisotope based micro-batteries.« less

  13. Superconducting Properties of CeIr3 Single Crystal

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiki J.; Nakamura, Ai; Shimizu, Yusei; Maurya, Arvind; Homma, Yoshiya; Li, Dexin; Honda, Fuminori; Aoki, Dai

    2018-05-01

    Superconducting properties of CeIr3 single crystal with rhombohedral structure were examined for the first time using DC magnetization, specific heat, and electrical resistivity measurements. A bulk type-II superconductivity was clearly detected at Tc = 3.4 K, which is the second highest Tc among Ce-based intermetallic compounds. The thermodynamic properties as well as an upper critical field Hc2(0) ˜ 46.5 kOe for the H || c-axis are fully consistent with the weak-coupling BCS regime. The observed √{H} variation of C(H)/T becomes less pronounced upon cooling, possibly suggesting a suppression of low-energy quasiparticle excitations in an anisotropic s-wave gap in CeIr3, as observed in CeRu2. The origin of superconductivity is discussed from the viewpoints of the valence of Ce atom and Ir 5d-electron with a strong spin-orbit coupling.

  14. Reduction of precursor decay anomaly in single crystal lithium fluoride

    NASA Astrophysics Data System (ADS)

    Sano, Yukio

    2000-08-01

    The purpose of this study is to reveal that the precursor decay anomaly in single crystal lithium fluoride is reduced by Sano's decay curve [Y. Sano, J. Appl. Phys. 85, 7616 (1999)], which is much smaller in slope than Asay's decay curve [J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, J. Appl. Phys. 43, 2132 (1972)]. To this end, strain, particle, velocity, and stress in a precursor and near the leading edge of the follower changing with time along Sano's decay curve are first analyzed quantitatively. The analysis verified the existence of degenerate contraction waves I and II and a subrarefaction wave R', and the decay process [Y. Sano, J. Appl. Phys. 77, 3746 (1995)] caused in sequence by evolving followers C, I, II, R', Rb. Next, inequalities relating decay rates qualitatively to plastic strain rates at the leading edge of the follower, which are derived using the properties of the followers, are incorporated into the analysis. Calculation results showed that the plastic strain rates were reduced by low decay rates. This indicates that the precursor decay anomaly might be greatly reduced by Sano's decay curve.

  15. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass.

    PubMed

    Emmer, Hal; Chen, Christopher T; Saive, Rebecca; Friedrich, Dennis; Horie, Yu; Arbabi, Amir; Faraon, Andrei; Atwater, Harry A

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnesses below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17  cm -3 that exhibited mobilities as high as 16 cm 2 V -1 s -1 . Due to their unique optical properties, these films hold much promise for use in advanced optical devices.

  16. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    SciTech Connect

    Solar, B.; Graafsma, H.; Potdevin, G.

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (

  17. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE PAGES

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca; ...

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  18. Magnetic Torque in Single Crystal Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hobza, Anthony; Müllner, Peter

    2017-06-01

    Magnetic shape memory alloys deform in an external magnetic field in two distinct ways: by axial straining—known as magnetic-field-induced strain—and by bending when exposed to torque. Here, we examine the magnetic torque that a magnetic field exerts on a long Ni-Mn-Ga rod. A single crystal specimen of Ni-Mn-Ga was constrained with respect to bending and subjected to an external magnetic field. The torque required to rotate the specimen in the field was measured as a function of the orientation of the sample with the external magnetic field, strain, and the magnitude of the external magnetic field. The torque was analyzed based on the changes in the free energy with the angle between the field and the sample. The contributions of magnetocrystalline anisotropy and shape anisotropy to the Zeeman energy determine the net torque. The torque is large when magneotcrystalline and shape anisotropies act synergistically and small when these anisotropies act antagonistically.

  19. SHG in DASMS single-crystal film producing ultraviolet

    NASA Astrophysics Data System (ADS)

    Ahyi, Ayayi; Khatavkar, Sanchit; Thakur, Mrinal

    2002-03-01

    Single-crystal film of the molecular salt, DASMS (noncentrosymmetric phase), has been grown using the modified shear method.^1 The DASMS film is orange in color, showing strong birefringence. The absorption spectrum of DASMS has a maximum at 590 nm, with the onset at about 600 nm and continuing to UV but with a dip around 400 nm. Such a spectrum allows efficient SHG at short wavelengths (400 nm). A Ti:Sapphire laser producing 200 fs pulses at 82 MHz with an average power of 50mW was used for the SHG experiment. The fundamental wavelength was 760nm giving SHG at 380 nm corresponding to the dip in the absorption spectrum. The beam was focused on the film using a 4" focal length lens. From the power measurements, an efficiency of 0.1% in SHG has been observed in a 1μm thick film indicating that the magnitude of d-coefficient is larger than 2000 pm/V. 1. M. Thakur and S. Meyler, Macromolecules, 18 2341 (1985); M. Thakur, Y. Shani, G.C. Chi and K. O'Brien, Synth. Met., 28 D595 (1989).

  20. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    SciTech Connect

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  1. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.

    PubMed

    Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong

    2018-04-24

    For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6  K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.

  2. Ultraviolet Laser-induced ignition of RDX single crystal

    PubMed Central

    Yan, Zhonghua; Zhang, Chuanchao; Liu, Wei; Li, Jinshan; Huang, Ming; Wang, Xuming; Zhou, Guorui; Tan, Bisheng; Yang, Zongwei; Li, Zhijie; Li, Li; Yan, Hongwei; Yuan, Xiaodong; Zu, Xiaotao

    2016-01-01

    The RDX single crystals are ignited by ultraviolet laser (355 nm, 6.4 ns) pulses. The laser-induced damage morphology consisted of two distinct regions: a core region of layered fracture and a peripheral region of stripped material surrounding the core. As laser fluence increases, the area of the whole crack region increases all the way, while both the area and depth of the core region increase firstly, and then stay stable over the laser fluence of 12 J/cm2. The experimental details indicate the dynamics during laser ignition process. Plasma fireball of high temperature and pressure occurs firstly, followed by the micro-explosions on the (210) surface, and finally shock waves propagate through the materials to further strip materials outside and yield in-depth cracks in larger surrounding region. The plasma fireball evolves from isotropic to anisotropic under higher laser fluence resulting in the damage expansion only in lateral direction while maintaining the fixed depth. The primary insights into the interaction dynamics between laser and energetic materials can help developing the superior laser ignition technique. PMID:26847854

  3. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    NASA Astrophysics Data System (ADS)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  4. Arc-melting preparation of single crystal LaB.sub.6 cathodes

    DOEpatents

    Gibson, Edwin D.; Verhoeven, John D.

    1977-06-21

    A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).

  5. Growth of single crystals from solutions using semi-permeable membranes

    NASA Astrophysics Data System (ADS)

    Varkey, A. J.; Okeke, C. E.

    1983-05-01

    A technique suitable for growth of single crystals from solutions using semi-preamble membranes is described. Using this technique single crystals of copper sulphate, potassium bromide and ammonium dihydrogen phosphate have been successfully grown. Advantages of this technique over other methods are discussed.

  6. A novel ultra-broadband single polarization single mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Jiang, Linghong; Zheng, Yi; Hou, Lantian; Zheng, Kai; Peng, Jiying; Zhao, Xingtao

    2017-08-01

    The concept of employing a central hole infiltrated with nematic liquid crystal (NLC) and two additional air holes in the core region is exploited to obtain an ultra-broadband single polarization single mode photonic crystal fiber (SPSM-PCF). The effects of structural parameters on the SPSM operation are studied using the full-vectorial finite element method. Numerical results show that the proposed structure can attain the SPSM operation bandwidth of 1610 nm (from 1.51 to 3.12 μm) with confinement loss lower than 0.01 dB/km. The SPSM operation range can also be widely tuned to shorter wavelengths by adjusting the structure parameters. And meanwhile, a broad dispersion-flattened SPSM PCF is also obtained around the communication wavelength. Moreover, the dual-core SPSM PCF has also been investigated, enabling potential applications in the wavelength splitter of 1.31 and 1.55 μm bands at a short fiber length of 1.629 mm with SPSM operation.

  7. Electrical characteristics of organic perylene single-crystal-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop

    2007-12-01

    We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.

  8. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-01

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  9. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  10. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  11. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    NASA Astrophysics Data System (ADS)

    Wang, Ruili; Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo

    2015-01-01

    NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness.

  12. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  13. Crystal growth and characterization of third order nonlinear optical piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) single crystal

    NASA Astrophysics Data System (ADS)

    Pichan, Karuppasamy; Muthu, Senthil Pandian; Perumalsamy, Ramasamy

    2017-09-01

    The organic single crystal of piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) was grown by slow evaporation solution technique (SEST) at room temperature. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. Functional groups of P4HBS crystal were confirmed by FTIR spectrum analysis. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis. The grown crystal has good optical transmittance in the range of 410-1100 nm. In photoluminescence spectrum, sharp emission peaks are observed, which indicates the ultraviolet (UV) emission. The photoconductivity study reveals that the grown crystal has negative photoconductive nature. The thermal behaviour of the P4HBS crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). The mechanical stability of grown crystal was analyzed and the indentation size effect (ISE) was explained by Hays-Kendall's (HK) approach and proportional specimen resistance model (PSRM). Chemical etching study was carried out and the etch pit density (EPD) was calculated. The dielectric constant (ε‧) and dielectric loss (tan δ) as a function of frequency were measured for the grown crystal. The solid state parameters such as valence electron, plasma energy, Penn gap and Fermi energy were evaluated theoretically for the P4HBS using the empirical relation. The estimated values are used to calculate the electronic polarizability. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 632.8 nm using He-Ne laser.

  14. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  15. Growth of PBI 2 single crystals from stoichiometric and Pb excess melts

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Kinpara, M.; Wang, J. F.; Mimura, K.; Isshiki, M.

    2008-01-01

    We have successfully grown high-purity and -quality PbI 2 single crystals by the vertical Bridgman method. The rocking curves of four-crystal X-ray diffraction (XRD) show 120 arcsec in full-width at half-maximum (FWHM). The photoluminescence (PL) spectra at 7.8 K show the resolved intensive exciton emission line and the weak DAP emission band. The deep-level emissions are not observed. The measurement of the electrical and radiographic properties show that Leadiodide (PbI 2) single crystal has a resistivity of 5×10 10 Ω cm and imager lag is 8 s, respectively. In order to improve the controllability of crystal growth, PbI 2 single crystals were also grown from a lead (Pb) excess PbI 2 source. The experimental results show very good reproducibility. In addition, the growth models of crystal are proposed, and the growth mechanism is discussed.

  16. Method for the growth of large low-defect single crystals

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor); Trunek, Andrew J. (Inventor); Spry, David J. (Inventor)

    2008-01-01

    A method and the benefits resulting from the product thereof are disclosed for the growth of large, low-defect single-crystals of tetrahedrally-bonded crystal materials. The process utilizes a uniquely designed crystal shape whereby the direction of rapid growth is parallel to a preferred crystal direction. By establishing several regions of growth, a large single crystal that is largely defect-free can be grown at high growth rates. This process is particularly suitable for producing products for wide-bandgap semiconductors, such as SiC, GaN, AlN, and diamond. Large low-defect single crystals of these semiconductors enable greatly enhanced performance and reliability for applications involving high power, high voltage, and/or high temperature operating conditions.

  17. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    SciTech Connect

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that themore » C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.« less

  18. Crystalline perfection and optical studies of L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) single crystals

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.; Bhagavannarayana, G.

    2015-10-01

    Single crystals of L-Histidinium dihydrogenphosphate orthophosphoric acid (LHDP) were grown by slow evaporation solution growth technique. The grown crystals were confirmed by single crystal X-ray diffraction techniques. The HRXRD rocking curve measurements revealed the crystalline perfection of grown crystal and the absence of structural grain boundaries. The lower optical cut-off wavelength for this crystal was observed at 240 nm. The third order nonlinear refractive index (n2), nonlinear absorption coefficient (β) and susceptibility (χ(3)) were calculated by Z-scan studies using Nd: YAG laser as a source. The single shot laser damage threshold of grown crystal was measured to be 6.286 GW/cm2 using Nd: YAG laser.

  19. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  20. Synthesis, crystal growth and characterization of a phase matchable nonlinear optical single crystal: p-chloro dibenzylideneacetone

    NASA Astrophysics Data System (ADS)

    Ravindra, H. J.; John Kiran, A.; Nooji, Satheesha Rai; Dharmaprakash, S. M.; Chandrasekharan, K.; Kalluraya, Balakrishna; Rotermund, Fabian

    2008-05-01

    Good quality single crystals of p-chloro dibenzylideneacetone (CDBA) of size 13 mm×8 mm×2 mm were grown by slow evaporation solution growth technique. The grown crystals were confirmed by elemental analysis, Fourier transform infrared (FTIR) analysis and single crystal X-ray diffraction techniques. From the thermo gravimetric/differential thermal (TG/DT) analysis, the CDBA was found to be thermally stable up to 250 °C. The mechanical stability of the crystal is comparable with that of the other reported chalcones. The lower optical cut-off wavelength for this crystal was observed at 440 nm. The laser damage threshold of the crystal was 0.6 GW/cm 2 at 532 nm. The second harmonic generation conversion efficiency of the powder sample of CDBA was found to be 4.5 times greater than that of urea. We also demonstrate the existence of the phase matching property in this crystal using Kurtz powder technique.

  1. Single-Crystal Sapphire Optical Fiber Sensor Instrumentation

    SciTech Connect

    Pickrell, Gary; Scott, Brian; Wang, Anbo

    2013-12-31

    This report summarizes technical progress on the program “Single-Crystal Sapphire Optical Fiber Sensor Instrumentation,” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. This project was completed in three phases, each with a separate focus. Phase I of the program, from October 1999 to April 2002, was devoted to development of sensing schema for use in high temperature, harsh environments. Different sensing designs were proposed and tested in the laboratory. Phase II of the program, frommore » April 2002 to April 2009, focused on bringing the sensor technologies, which had already been successfully demonstrated in the laboratory, to a level where the sensors could be deployed in harsh industrial environments and eventually become commercially viable through a series of field tests. Also, a new sensing scheme was developed and tested with numerous advantages over all previous ones in Phase II. Phase III of the program, September 2009 to December 2013, focused on development of the new sensing scheme for field testing in conjunction with materials engineering of the improved sensor packaging lifetimes. In Phase I, three different sensing principles were studied: sapphire air-gap extrinsic Fabry-Perot sensors; intensity-based polarimetric sensors; and broadband polarimetric sensors. Black body radiation tests and corrosion tests were also performed in this phase. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. At the beginning of Phase II, in June 2004, the BPDI sensor was tested at the Wabash River coal

  2. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  3. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  4. Covalently Bound Monomolecular Layers on Si Single Crystals

    NASA Astrophysics Data System (ADS)

    Chidsey, Christopher E. D.

    1996-03-01

    Methods and reagents borrowed from the molecular synthetic chemistry of silicon compounds have been used to form covalently bound monomolecular layers on silicon single crystals. Organic monolayers bound covalently to silicon could form the basis for silicon/organic interfaces useful in sensor structures. In a representative reaction, alkyl monolayers with densities approaching that of crystalline polyethylene have been prepared by the radical-initiated insertion of 1-alkenes into the Si-H bonds of hydrogen-terminated Si(111) surfaces footnote M. R. Linford, P. Fenter, P. M. Eisenberger and C. E. D Chidsey, J. Am. Chem. Soc. 117, 3145-3155 (1995). It has recently been found that this insertion reaction can also be initiated by illumination with UV light having sufficient energy to break the Si-H bond. Synchrotron-based high-resolution photoelectron spectroscopy and diffraction have demonstrated the expected Si-C bond in such monolayers footnote J. H. Terry, R. Cao, P. A. Pianetta, M. R. Linford and C. E. D. Chidsey, unpublished results. An alternate approach to similar monolayers has been found to be the chlorination of hydrogen-terminated Si(111) with Cl_2, followed by the nucleophilic displacement of chlorine with alkyl lithium reagents. The well-behaved chemical transformations of the hydrogen-terminated silicon surfaces appear to result from the essentially bulk termination of the silicon lattice with closed-shell silicon hydride "functional groups" on the surface. In addition to the formation of novel organic layers, a full understanding of the reactivity of the hydrogen-terminated silicon surfaces should lead to better control of key technological silicon interfaces such as Si/SiO_2, Si/epi-Si, and Si/metal.

  5. Localized deformation in Ni-Mn-Ga single crystals

    NASA Astrophysics Data System (ADS)

    Davis, Paul H.; Efaw, Corey M.; Patten, Lance K.; Hollar, Courtney; Watson, Chad S.; Knowlton, William B.; Müllner, Peter

    2018-06-01

    The magnetomechanical behavior of ferromagnetic shape memory alloys such as Ni-Mn-Ga, and hence the relationship between structure and nanoscale magnetomechanical properties, is of interest for their potential applications in actuators. Furthermore, due to its crystal structure, the behavior of Ni-Mn-Ga is anisotropic. Accordingly, nanoindentation and magnetic force microscopy were used to probe the nanoscale mechanical and magnetic properties of electropolished single crystalline 10M martensitic Ni-Mn-Ga as a function of the crystallographic c-axis (easy magnetization) direction relative to the indentation surface (i.e., c-axis in-plane versus out-of-plane). Load-displacement curves from 5-10 mN indentations on in-plane regions exhibited pop-in during loading, whereas this phenomenon was absent in out-of-plane regions. Additionally, the reduced elastic modulus measured for the c-axis out-of-plane orientation was ˜50% greater than for in-plane. Although heating above the transition temperature to the austenitic phase followed by cooling to the room temperature martensitic phase led to partial recovery of the indentation deformation, the magnitude and direction of recovery depended on the original relative orientation of the crystallographic c-axis: positive recovery for the in-plane orientation versus negative recovery (i.e., increased indent depth) for out-of-plane. Moreover, the c-axis orientation for out-of-plane regions switched to in-plane upon thermal cycling, whereas the number of twins in the in-plane regions increased. We hypothesize that dislocation plasticity contributes to the permanent deformation, while pseudoelastic twinning causes pop-in during loading and large recovery during unloading in the c-axis in-plane case. Minimization of indent strain energy accounts for the observed changes in twin orientation and number following thermal cycling.

  6. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through-transmission mode using two transducers, or in pulse-echo mode. The transducer is a unique combination of material, design, and fabrication technique. It is based on single-crystal lead magnesium niobate lead titanate (PMN-PT) piezoelectric material. As compared to the commonly used piezoceramics, this piezocrystal has superior piezoelectric and elastic properties, which results in devices with superior bandwidth, source level, and power requirements. This design necessitates a single resonant frequency. However, by operating in a transverse length-extensional mode, with the electric field applied orthogonally to the extensional direction, resonators of different sizes can share common electrodes, resulting in a multiply-resonant structure. With carefully sized resonators, and the superior bandwidth of piezocrystal, the resonances can be made to overlap to form a smooth, wide-bandwidth characteristic.

  7. Demonstration of single crystal growth via solid-solid transformation of a glass

    DOE PAGES

    Savytskii, Dmytro; Knorr, Brian; Dierolf, Volkmar; ...

    2016-03-18

    Many advanced technologies have relied on the availability of single crystals of appropriate material such as silicon for microelectronics or superalloys for turbine blades. Similarly, many promising materials could unleash their full potential if they were available in a single crystal form. However, the current methods are unsuitable for growing single crystals of these oftentimes incongruently melting, unstable or metastable materials. Here we demonstrate a strategy to overcome this hurdle by avoiding the gaseous or liquid phase, and directly converting glass into a single crystal. Specifically, Sb 2S 3 single crystals are grown in Sb-S-I glasses as an example ofmore » this approach. In this first unambiguous demonstration of an all-solid-state glass → crystal transformation, extraneous nucleation is avoided relative to crystal growth via spatially localized laser heating and inclusion of a suitable glass former in the composition. Lastly, the ability to fabricate patterned single-crystal architecture on a glass surface is demonstrated, providing a new class of micro-structured substrate for low cost epitaxial growth, active planar devices, etc.« less

  8. Elastic response of zone axis (001)-oriented PWA 1480 single crystal: The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  9. Elastic response of (001)-oriented PWA 1480 single crystal - The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Azis, Ali; Mcgaw, Michael

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  10. Electrical resistivity measurements on fragile organic single crystals in the diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Tanaka, H.; Kobayashi, H.; Miyazaki, T.

    2001-05-01

    A method of sample assembly for four-probe resistivity measurements on fragile organic single crystals using a diamond anvil cell is presented. A procedure to keep insulation between the metal gasket and four leads of thin gold wires bonded to the sample crystal by gold paint is described in detail. The resistivity measurements performed on a single crystal of an organic semiconductor and that of neutral molecules up to 15 GPa and down to 4.2 K showed that this new procedure of four-probe diamond anvil resistivity measurements enables us to obtain sufficiently accurate resistivity data of organic crystals.

  11. Crystal growth and transport properties of CuAlO2 single crystal

    NASA Astrophysics Data System (ADS)

    Brahimi, R.; Rekhila, G.; Trari, M.; Bessekhouad, Y.

    2014-12-01

    The transport properties of the delafossite CuAlO2 single crystal, grown by the flux method, are confined in ∞[AlO2] layers extending in the (001) plans. The dielectric properties are measured up to 490 K in the frequency range (102-105 Hz). The small variation of the dielectric loss tan(δ) is attributed to the wide space charge region. The linear plot log (conductivity) vs. 1000/ T follows an Arrhenius type law and the results are discussed in terms of electron hopping among localized states. The activation energy (0.18 eV) gives an effective mass of 16 m 0 indicating that the levels in the vicinity of the Fermi level are strongly localized. Hence, the increase of the conductivity (σ) results from a thermal activation of the mobility (μ300 K = 1.2 × 10-5 cm-2 V-1 s-1). The sign of hole like small polarons is that of p type carriers originating from oxygen intercalation. The thermopower is little temperature dependent and characteristic of non degenerate conductivity with a low holes concentration and a large concentration of surface states within the gap region.

  12. Crystal growth, structural, optical, thermal and dielectric properties of lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-11-01

    The vibrational groups of the lithium hydrogen oxalate monohydrate have been investigated by FTIR and FT- Raman analyses. It has low absorbance in the UV-Vis-NIR region. The laser damage threshold study confirms that the material withstands upto 30 mJ with time of 7 s, after that circular dot damage is seen on the surface. The dark region of the surface damage spot occurs due to the thermal effects. The material is thermally stable upto 93 °C and there is no weight loss below this temperature. The dielectric studies were carried out at the frequency regions of 1 kHz-1 MHz and different temperatures from 40 °C to 80 °C. Semi-organic non-linear optical (NLO) single crystal lithium hydrogen oxalate monohydrate has been grown by slow evaporation solution growth technique. The Hirshfeld surface analysis was performed to understand the different intermolecular interactions in the title compound. The fingerprint plots contain the highest portion of H⋯O/O⋯H (48.3%) interactions.

  13. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    NASA Astrophysics Data System (ADS)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due

  14. Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.

    PubMed

    Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan

    2012-03-07

    Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.

  15. Containerless processing of single crystals in low-G environment

    NASA Technical Reports Server (NTRS)

    Walter, H. U.

    1974-01-01

    Experiments on containerless crystal growth from the melt were conducted during Skylab missions SL3 and SL4 (Skylab Experiment M-560). Six samples of InSb were processed, one of them heavily doped with selenium. The concept of the experiment is discussed and related to general crystal growth methods and their merits as techniques for containerless processing in space. The morphology of the crystals obtained is explained in terms of volume changes associated with solidification and wetting conditions during solidification. All samples exhibit extremely well developed growth facets. Analysis by X-ray topographical methods and chemical etching shows that the crystals are of high structural perfection. Average dislocation density as revealed by etching is of the order of 100 per sq cm; no dislocation clusters could be observed in the space-grown samples. A sequence of striations that is observed in the first half of the selenium-doped sample is explained as being caused by periodic surface breakdown.

  16. Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives

    SciTech Connect

    Whitley, Von H; Mcgrane, Shawn D; Moore, David S

    2009-01-01

    We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, samplemore » quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.« less

  17. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  18. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.

  19. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    NASA Astrophysics Data System (ADS)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  20. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    DTIC Science & Technology

    2016-03-30

    have recently implemented Josephson junction superconducting devices into qubits [1-6]. Before a multi -qubit quantum computer is realized, however...Low-Leakage Superconducting Tunnel Junctions with a Single-Crystal Al2O3 Barrier* S Oh1,2, K Cicak1, R McDermott3, K B Cooper3, K D Osborn1, R W...growth scheme for single-crystal Al2O3 tunnel barriers. The barriers are epitaxially grown on single-crystal rhenium (Re) base electrodes that are

  1. Ductile-to-Brittle transition in <111> hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Chumlyakov, Yu. I.

    2010-10-01

    The deformation mechanism and the character of fracture of <111> austenitic Hadfield steel single crystals are studied during tension in the temperature range 77-673 K by scanning and transmission electron microscopy. It is found that a change in the fracture mechanism from ductile to brittle fracture according to the fractography criterion takes place at a higher temperature than that determined from a change in the elongation to failure of the single crystals. The ductile-to-brittle transition in the Hadfield steel single crystals is shown to be related to a high level of deforming stresses induced by solid-solution hardening and to mechanical twinning.

  2. Anisotropic constitutive modeling for nickel base single crystal superalloys using a crystallographic approach

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.; Sheh, M. Y.

    1988-01-01

    A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.

  3. Erbium Distribution in Single Crystal YAG Fibers Grown by Laser-Heated Pedestal Growth Technique

    DTIC Science & Technology

    2015-08-28

    single crystal YAG fibers grown by laser - heated pedestal growth technique Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host...inserted into a SC YAG tube. This rod-in-tube was used as a preform in our laser -heated pedestal growth (LHPG) apparatus to grow a fiber with a radial...fibers grown by laser -heated pedestal growth technique Report Title Single crystal (SC) yttrium aluminum garnet (YAG, Y3Al5O12) as a host material has

  4. Method for preparing homogeneous single crystal ternary III-V alloys

    DOEpatents

    Ciszek, Theodore F.

    1991-01-01

    A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.

  5. Compression of Single-Crystal Orthopyroxene to 60GPa

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Dera, P. K.; Holl, C. M.; Dorfman, S. M.; Duffy, T. S.

    2010-12-01

    Orthopyroxene ((Mg,Fe)SiO3) is one of the dominant phases in Earth’s upper mantle - it makes up ~20% of the upper mantle by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. However, when compressed at low temperature and high-pressure, orthopyroxene is predicted to exhibit metastable behavior(1). Previous researchers have found orthoenstatite (Mg endmember of orthopyroxene) persists up to ~10 GPa, and diffraction(2-3), Raman(4), and elasticity(5) experiments suggest a phase transition above this pressure to an as-yet unidentified structure. While earlier diffraction data has surprisingly only been evaluated for structural information to ~9 GPa(2), changes in high-pressure Raman spectra to ~70 GPa indicate that several more high-pressure phase transitions in orthopyroxene are likely, including at least one change in Si-coordination(6). We have recently conducted exploratory experiments to further elucidate the high-pressure behavior of orthopyroxene. Compressing a single crystal of Fe-rich orthopyroxene (Fe0.66Mg0.24Ca0.05SiO3) using a diamond anvil cell, we observe phase transitions at ~10, 14, and 30 GPa, with the new phases having monoclinic, orthorhombic, and orthorhombic symmetries, respectively. While the first two transitions do not show a significant change in volume, the phase transition at ~30 GPa shows a large decrease in volume, which is consistent with a change in Si coordination number to mixed 4- and 6-fold coordination. References: [1] S. Jahn, American Mineralogist 93, 528-532 (2008). [2] R. J. Angel, J. M. Jackson, American Mineralogist 87, 558-561 (2002). [3] R. J. Angel, D. A. Hugh-Jones, Journal of Geophysical Research-Solid Earth 99, 19,777-19,783 (1994). [4] G. Serghiou, Journal of Raman Spectroscopy 34, 587-590 (2003). [5] J. Kung et al., Physics of the Earth and Planetary Interiors 147, 27-44 (2004). [6] G. Serghiou, A. Chopelas, R. Boehler, Journal of Physics: Condensed

  6. Charged-particle spectroscopy in organic semiconducting single crystals

    SciTech Connect

    Ciavatti, A.; Basiricò, L.; Fraboni, B.

    2016-04-11

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the chargemore » collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτ{sub coplanar} = (5 .5 ± 0.6 ) × 10{sup −6} cm{sup 2}/V and μτ{sub sandwich} = (1 .9 ± 0.2 ) × 10{sup −6} cm{sup 2}/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.« less

  7. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    NASA Astrophysics Data System (ADS)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  8. Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals

    SciTech Connect

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay, E-mail: b3kumar69@yahoo.co.in

    2015-04-15

    Highlights: • A new semiorganic single crystal of LSO grown by slow evaporation technique. • Morphological studies of the LSO crystal deduced by BFDH law. • In the UV–vis spectrum wide transparent region and large band gap were found. • SHG is equal to KDP crystal and d{sub 33} was found to be equal to 6pC/N. • Grown crystal belongs to softer category. - Abstract: New semiorganic crystal of lithium sulfate monohydrate oxalate (LSO) for nonlinear application was synthesized by controlled slow evaporation method. The growth rate of various planes of the grown crystal was estimated by morphological study. Singlemore » crystal XRD analysis confirmed that the crystal belongs to triclinic lattice with space group P1. High transparency (∼95%) with large band gap (4.57 eV) was analyzed by UV–vis studies. FTIR and Raman spectroscopy were used to identify various functional groups present in the LSO crystal. SHG efficiency was found to be equal to the KDP crystal. Thermal stability (up to 117.54 °C) and melting point (242 °C) of the crystal were studied by TG-DTA. In dielectric measurements, the value of dielectric constant decreases with increase in frequency. Hardness studies confirmed soft nature of crystals. The piezoelectric coefficient was found to be 6pC/N along [0 0 1].« less

  9. Gallium arsenide single crystal solar cell structure and method of making

    NASA Technical Reports Server (NTRS)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  10. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  11. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-04-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd3Ga3Al2O12:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu)3Ga3Al2O12:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal.

  12. Morphological, spectroscopic and thermal studies of samarium chloride coordinated single crystal grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Raina, Bindu; Gupta, Rashmi; Bamzai, K. K.

    2018-05-01

    The synthesis of samarium chloride coordinated single crystal was carried out at room temperature by slow evaporation method. The crystal possesses a well defined hexagonal morphology with six symmetrically equivalent growth sectors separated by growth boundaries. The theoretical morphology has been established by structural approach using Bravaise-Friedele-Donnaye-Harker (BFDH) law. Fourier transform infra red spectroscopy was carried in order to study the geometry and structure of the crystal. The detailed thermogravimetric analysis elucidates the thermal stability of the complex.

  13. Preliminary experiments on phase conjugation for flow visualization. [barium titanate single crystals

    NASA Technical Reports Server (NTRS)

    Weimer, D.; Howes, W. L.

    1984-01-01

    Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.

  14. Study on the temperature field of large-sized sapphire single crystal furnace

    NASA Astrophysics Data System (ADS)

    Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.

    2018-01-01

    In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.

  15. Structural, spectral and birefringence studies of semiorganic nonlinear optical single crystal: Calcium5-sulfosalicylate

    NASA Astrophysics Data System (ADS)

    Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.

    2017-11-01

    Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.

  16. Growth and characterization of high-purity SiC single crystals

    NASA Astrophysics Data System (ADS)

    Augustine, G.; Balakrishna, V.; Brandt, C. D.

    2000-04-01

    High-purity SiC single crystals with diameter up to 50 mm have been grown by the physical vapor transport method. Finite element analysis was used for thermal modeling of the crystal growth cavity in order to reduce stress in the grown crystal. Crystals are grown in high-purity growth ambient using purified graphite furniture and high-purity SiC sublimation sources. Undoped crystals up to 50 mm in diameter with micropipe density less than 100 cm -2 have been grown using this method. These undoped crystals exhibit resistivities in the 10 3 Ω cm range and are p-type due to the presence of residual acceptor impurities, mainly boron. Semi-insulating SiC material is obtained by doping the crystal with vanadium. Vanadium has a deep donor level located near the middle of the band gap, which compensates the residual acceptor resulting in semi-insulating behavior.

  17. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    PubMed Central

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  18. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji

    2018-06-01

    The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.

  19. Synthesis, crystal structure and magnetic properties of superconducting single crystals of HgBa2CuO4+δ

    NASA Astrophysics Data System (ADS)

    Bertinotti, A.; Viallet, V.; Colson, D.; Marucco, J.-F.; Hammann, J.; Forget, A.; Le Bras, G.

    1996-02-01

    Single crystals of HgBa2CuO4+δ of submillimetric sizes were grown with the same one step, low pressure, gold amalgamation technique used to obtain single crystals of HgBa2Ca2Cu3O8+δ. Remarkable superconducting properties are displayed by the samples which are optimally doped as grown. The sharpness of the transition profiles of the magnetic susceptibility, its anisotropy dependence and the volume fraction exhibiting the Meissner effect exceed the values obtained with the best crystal samples of Hg-1223. X-rays show that no substitutional defects have been found in the mercury plane, in particular no mixed occupancy of copper at the mercury site. The interstitial oxygen content at (1/2, 1/2, 0) δ = 0.066+/-0.008 is about one third that observed in optimally doped Hg-1223, resulting in an identical doping level per CuO2 plane in both compounds.

  20. Growth of propyl-p-hydroxybenzoate single crystals and its characterizations

    NASA Astrophysics Data System (ADS)

    Karunagaran, N.; Ramasamy, P.

    2012-06-01

    Single crystals of Propyl-p-hydroxybenzoate (PHB) crystals have been grown by slow evaporation solution technique (SEST) using methanol as a solvent. The PHB single crystal of dimension up to 27×16×8 mm3 has been grown in a period of 18 days at room temperature. The optical transparency of the grown PHB crystal has been measured on (212) plane by UV-Vis-NIR spectrophotometer. The crystal has 60% of transparency in the entire visible region. The thermo gravimetric analysis (TG) and differential thermal analysis (DTA) studies reveal that the crystal is thermally stable up to 99°C. The mechanical strength of the grown PHB crystal is measured using Vickers microhardness tester. The chemical etching studies were carried out on (212) plane using methanol etchant. The laser damage threshold of PHB crystal is 1.3 GW/cm2. The dielectric properties have been investigated. The birefringence value is found to be 0.10148 at the wavelength of 504 nm. The refractive index of grown PHB single crystal is 1.6753.

  1. Study of structural and optical properties of YAG and Nd:YAG single crystals

    SciTech Connect

    Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less

  2. A single-solenoid pulsed-magnet system for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob P. C.; Das, Ritesh K.; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Welp, Ulrich; Canfield, Paul C.

    2012-03-01

    We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to ˜30 T with a zero-to-peak-field rise time of ˜2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (˜23.6°) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets. Furthermore, it offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  3. Crystal-field analysis of U3+ ions in K2LaX5 (X=Cl, Br or I) single crystals

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Edelstein, N.; Gajek, Z.; Drożdżyński, J.

    1998-11-01

    An analysis of low temperature absorption spectra of U3+ ions doped in K2LaX5 (X=Cl, Br or I) single crystals is reported. The energy levels of the U3+ ion in the single crystals were assigned and fitted to a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions at the Cs symmetry site. An analysis of the nephelauxetic effect and crystal-field splittings in the series of compounds is also reported.

  4. Synthesis, growth and characterization of L-Phenylalaninium methanesulfonate nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, K.; Ravichandran, A. T.; Anitha, K.; Manivel, A.

    2018-03-01

    The titled compound, L-Phenylalaninium methanesulfonate (LPA-MS) was synthesized and grown into single crystals by slow solvent evaporation solution growth technique in aqueous solution containing equimolar concentrations of L-phenylalanine and methanesulfonic acid at room temperature. The grown crystals were subjected to single crystal X-ray diffraction studies. It crystallizes in the monoclinic crystal structure with P21 space group and the unit cell parameters are a = 5.312 (10) Å, b = 8.883 (2) Å and c = 25.830 (7) Å. The functional groups of the LPA-MS crystal were confirmed with FT-IR and FT-Raman analysis. The carbon-hydrogen skeleton was confirmed with 1H NMR and 13C NMR analysis. TG-DTG and DSC studies were carried out to determine the thermal stability of the crystals. The optical transparency ranges were studied through UV-vis-spectroscopy and the crystal was found to be transparent in the visible region. The second Harmonic generation (SHG) efficiency of the grown LPA-MS crystal was measured by the Kurtz-Perry powder technique. The dipolar nature of the L-phenylalaninium methanesulfonate and the presence of the intermolecular hydrogen bonding between the molecules are the vital factors responsible for the existence of SHG activity in the crystal.

  5. Self-reporting inhibitors: single crystallization process to get two optically pure enantiomers.

    PubMed

    Wan, Xinhua; Ye, Xichong; Cui, Jiaxi; Li, Bowen; Li, Na; Zhang, Jie

    2018-05-22

    Collection of two optically pure enantiomers in a single crystallization process can significantly increase the chiral separation efficiency but it's hard to realize nowadays. Herein we describe, for the first time, a self-reporting strategy for visualizing the crystallization process by a kind of dyed self-assembled inhibitors made from the copolymers with tri(ethylene glycol)-grafting polymethylsiloxane as main chains and poly(N6-methacryloyl-L-lysine) as side chains. When applied with seeds together for the fractional crystallization of conglomerates, the inhibitors can label the formation of the secondary crystals and guide us to completely separate the crystallization process of two enantiomers with colorless crystals as the first product and red crystals as the secondary product. This method leads to high optical purity of D/L-Asn·H2O (99.9 ee% for D-crystals and 99.5 ee% for L-crystals) in a single crystallization process. Moreover, it requires low feeding amount of additives and shows excellent recyclability. We foresee its great potential in developing novel chiral separation methods that can be used in different scales. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals

    NASA Astrophysics Data System (ADS)

    Uçar, N.

    1997-03-01

    The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.

  7. Methods for producing single crystal mixed halide perovskites

    DOEpatents

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  8. III-V semiconductor solid solution single crystal growth

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  9. Method for Growing Low-Defect Single Crystal Heteroepitaxial Films

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Neudeck, Philip G. (Inventor)

    2002-01-01

    A method is disclosed for growing high-quality low-defect crystal films heteroepitaxially on substrates that are different than the crystal films. The growth of the first two heteroepitaxial bilayers is performed on a first two-dimensional nucleate island before a second growth of two-dimensional nucleation is allowed to start. The method is particularly suited for the growth of 3C-SiC, 2H-AlN, or 2H-GaN on 6H-SiC, 4H-SiC, or silicon substrates.

  10. The Growth of Berlinite (AlPO4) Single Crystals.

    DTIC Science & Technology

    1980-03-01

    Solubility of AlPO 4 18 6. Solubility Data of Jahn and Kordes on AlPO4 19 7. AlPO 4 Seed Crystal 23 8. Tem-Pres Hydrothermal Research Unit 25 9...Since the vapor pressure of water rises rapidly with temperature, a closed hydrothermal system was used. In a seeded hydrothermal growth process, the...to investigate the hydrothermal growth of Berlinite (AlPO4 ) to determine the optimum growth conditions for large high quality crystals. Over thirty

  11. Development of a Single-Crystal Fifth-Generation Nickel Superalloy

    NASA Astrophysics Data System (ADS)

    Petrushin, N. V.; Elyutin, E. S.; Visik, E. M.; Golynets, S. A.

    2017-11-01

    The chemical and phase compositions of a rhenium-ruthenium-containing fifth-generation VZhM8 nickel superalloy, which is intended for single-crystal turbine blades of an aviation engine, are calculated using computer simulation. VZhM8 alloy <001>, <011>, and <111> single crystals are fabricated. The microstructure, the γ/γ' misfit, the segregation coefficients of alloying elements, the dissolution temperature of the γ' phase, and the solidus and liquidus temperatures of the VZhM8 alloy single crystals in the as-cast state and after heat treatment are studied. The temperature-time dependences of the static elastic modulus, the short-term mechanical properties, and the long-term strength of the alloy single crystals are determined

  12. Dry-growth of silver single-crystal nanowires from porous Ag structure

    SciTech Connect

    Chen, Chuantong, E-mail: chenchuantong@sanken.osaka-u.ac.jp; Nagao, Shijo; Jiu, Jinting

    A fabrication method of single crystal Ag nanowires in large scale is introduced without any chemical synthesis in wet processes, which usually generates fivefold twinned nanowires of fcc metals. Dense single-crystal nanowires grow on a mechanically polished surface of micro-porous Ag structure, which is created from Ag micro-particles. The diameter and the length of the nanowires can be controlled simply by changing the temperature and the time of the heating during the nanowire growth in air. Unique growth mechanism is described in detail, based on stress-induced migration accelerated by the micro-porous structure where the origin of Ag nanowires growth ismore » incubated. Transmission electron microscopy analysis on the single crystal nanowires is also presented. This simple method offered an alternative preparation for metallic nanowires, especially with the single crystal structure in numerous applications.« less

  13. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  14. Electron spin resonance of an irradiated single crystal of potassium hydrogen maleate

    SciTech Connect

    Iwasaki, Machio; Itoh, Koichi

    1963-09-15

    Electron spin resonance absorptions of x-irradiated single crystals of potassium hydrogen maleate and potassium deuterium maleate were observed. Both compounds gave the same hyperfine structures, although the slightly sharper line widths were observed for the deuterium exchanged compound.

  15. Solution Growth and Characterization of Single Crystals on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Crystal growth has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high-technology devices, and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this Technical Memorandum (TM) an attempt is made to give the fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, the authors proposed a new cooled-sting technique to grow crystals in space. The authors experience from conducting two Space Shuttle solution crystal growth experiments are also detailed in this TM and the complexity of solution growth experiments to grow crystals in space are also discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that shares basic principles of the solution growth technique is given, along with some flight hardware information for growth in microgravity.

  16. Growth and Characteristics of Bulk Single Crystals Grown from Solution on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Lal, R. B.; Penn, Benjamin G.; Frazier, Donald O.

    2011-01-01

    The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high technology devices and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to give some fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authors? experiences of conducting two space shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that also shares basic principles of solution growth technique is given along with some flight hardware information for its growth in microgravity.

  17. High-Temperature Properties of Piezoelectric Langatate Single Crystals

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Klemenz, Christine

    2007-01-01

    Langasite type crystals belong to non-polar point group of 32 and do not show any phase transformations up to the melting temperature. Langatate (La3Ga(5.5)Ta(0.5)O14) demonstrates piezoelectric activity better than quartz and possesses attractive properties for high temperature sensors, resonators and filter applications. High-quality and colorless langatate crystals were grown by the Czochralski technique. The electromechanical and electrical properties of langatate crystals in different crystallographic directions were characterized at elevated temperature. The piezoelectric coefficient along x-axis was 7 pC/N as measured by a Berlincourt meter for a plate geometry with an aspect ratio of 10:1. The dielectric constant did not exhibit any significant temperature dependence (K33 approx. 21 at 30 C and K33 approx. 23 at 600 C). Loss tangent at 100 kHz remained <0.003 up to 300 C and <0.65 at 600 C. The dielectric properties along the y-axis were similar and its temperature dependence was analogous to the x-axis. Electromechanically, the inactive z-axis exhibited no resonance with K33 approx. 84 at room temperature, decreasing down to approx. 49 at 600 C. Resistivity of these crystals along x-axis decreased from approx. 6x10(exp 11) omega-cm at room temperature, to approx. 1.6x10(exp 6) omega-cm at 600 C.

  18. Crystal growth, structural, low temperature thermoluminescence and mechanical properties of cubic fluoroperovskite single crystal (LiBaF3)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Ramasamy, P.; Ramaseshan, R.; Kim, H. J.; Kim, Sunghwan; Bhagavannarayana, G.; Cheon, Jong-Kyu

    2017-10-01

    Polycrystalline compounds of LiBaF3 were synthesized using conventional solid state reaction route and the phase purity was confirmed using powder X-ray diffraction technique. Using vertical Bridgman technique single crystal was grown from melt. Rocking curve measurements have been carried out to study the structural perfection of the grown crystal. The single peak of diffraction curve clearly reveals that the grown crystal was free from the structural grain boundaries. The low temperature thermoluminescence of the X-ray irradiated sample has been analyzed and found four distinguishable peaks having maximum temperatures at 18, 115, 133 and 216 K. Activation energy (E) and frequency factor (s) for the individual peaks have been studied using Peak shape method and the computerized curve fitting method combining with the Tmax- TStop procedure. Nanoindentation technique was employed to study the mechanical behaviour of the crystal. The indentation modulus and Vickers hardness of the grown crystal have values of 135.15 GPa and 680.81 respectively, under the maximum indentation load of 10 mN.

  19. Modeling Nonlinear Elastic-plastic Behavior of RDX Single Crystals During Indentation

    DTIC Science & Technology

    2012-01-01

    single crystals has also been probed using shock experiments (6, 12) and molecular dynamics simulations (12–14). RDX undergoes a polymorphic phase...Patterson, J.; Dreger, Z.; Gupta, Y. Shock-wave Induced Phase Transition in RDX Single Crystals. J. Phys. Chem. B 2007, 111, 10897–10904. 17. Bedrov, D...and Volume Compression of β - HMX and RDX . In Proc. Int. Symp. High Dynamic Pressures; Commissariat a l’Energie Atomique: Paris, 1978; pp 3–8. 24

  20. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  1. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  2. Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal.

    PubMed

    Balakrishnan, T; Bhagavannarayana, G; Ramamurthi, K

    2008-11-15

    Nonlinear optical single crystals of ammonium pentaborate (APB) were grown by the slow cooling method from aqueous solution. Grown crystal was characterized by powder X-ray diffraction (PXRD) and FT-IR spectral analysis. Perfection of the grown crystal was evaluated by high-resolution X-ray diffractometry (HRXRD). The effect of nylon threading on the perfection of the grown bigger crystal was also studied by HRXRD. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties were investigated by TG-DTA and DSC analyses. Its mechanical hardness was estimated by Vickers microhardness tester.

  3. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    SciTech Connect

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  4. Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.

    2016-02-01

    The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.

  5. Perovskite single crystals and thin films for optoelectronic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Gang; Han, Qifeng; Yang, Yang; Bae, Sang-Hoon; Sun, Pengyu

    2016-09-01

    Hybrid organolead trihalide perovskite (OTP) solar cells have developed as a promising candidate in photovoltaics due to their excellent properties including a direct bandgap, strong absorption coefficient, long carrier lifetime, and high mobility. Most recently, formamidinium (NH2CH=NH2+ or FA) lead iodide (FAPbI3) has attracted significant attention due to several advantages: (1) the larger organic FA cation can replace the MA cation and form a more symmetric crystal structure, (2) the smaller bandgap of FAPbI3 allows for near infrared (NIR) absorption, and (3) FAPbI3 has an elevated decomposition temperature and thus potential to improve stability. Single crystals provide an excellent model system to study the intrinsic electrical and optical properties of these materials due to their high purity, which is particularly important to understand the limits of these materials. In this work, we report the growth of large ( 5 millimeter size) single crystal FAPbI3 using a novel liquid based crystallization method. The single crystal FAPbI3 demonstrated a δ-phase to α-phase transition with a color change from yellow to black when heated to 185°C within approximately two minutes. The crystal structures of the two phases were identified and the PL emission peak of the α-phase FAPbI3 (820 nm) shows clear red-shift compared to the FAPbI3 thin film (805 nm). The FAPbI3 single crystal shows a long carrier lifetime of 484 ns, a high carrier mobility of 4.4 cm2·V-1·s-1, and even more interestingly a conductivity of 1.1 × 10-7(ohm·cm)-1, which is approximately one order of magnitude higher than that of the MAPbI3 single crystal. Finally, high performance photoconductivity type photodetectors were successfully demonstrated using the single crystal FAPbI3.

  6. Magnetic field controlled floating-zone single crystal growth of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Gerbeth, G.; Priede, J.

    2013-03-01

    Radio-frequency (RF) floating zone single crystal growth is an important technique for the preparation of single bulk crystals. The advantage of the floating-zone method is the crucible-free growth of single crystals of reactive materials with high melting points. The strong heat diffusion on the surface, as well as the melt convection in the molten zone due to induction heating, often leads to an undesired solid-liquid interface geometry with a concave (towards the solid phase) outer rim. These concave parts aggravate the single crystal growth over the full cross-section. A two-phase stirrer was developed at IFW Dresden in order to avoid the problems connected with these concave parts. It acts as a magnetic field pump and changes the typical double vortex structure to a single roll structure, thus pushing hot melt into the regions where the concave parts may arise. The current in the secondary coil is induced by the primary coil, and the capacitor and the resistance of the secondary circuit are adjusted to get a stable 90 degree phase-shift between the coil currents. Single crystal growth of industrial relevant RuAl and TiAl intermetallic compounds was performed based on the material parameters and using the adjusted two-phase stirrer. Very recently, the magnetic system was applied to the crystal growth of biocompatible TiNb alloys and antiferromagnetic Heusler MnSi compounds.

  7. Micro pulling down growth of very thin shape memory alloys single crystals

    NASA Astrophysics Data System (ADS)

    López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.

    Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.

  8. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  9. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  10. Effect of amaranth dye on the growth and properties of conventional and SR method grown KAP single crystals

    NASA Astrophysics Data System (ADS)

    Babu Rao, G.; P., Rajesh; Ramasamy, P.

    2018-04-01

    The 0.1 mol% amaranth added KAP single crystals were grown from aqueous solutions by both slow evaporation solution technique and Sankaranarayanan-Ramasamy method. The single crystal having dimension of 45 mm length and 12 mm diameter was grown with growth rate of 1.5 mm/day using SR method. 87 % transmittance is obtained for SR method grown amaranth added KAP single crystal. The high intense luminescence at 661 nm is obtained from amaranth added conventional and SR method grown KAP single crystal. The amaranth added KAP single crystal possesses good mechanical and laser damage threshold stability.

  11. Optical, structural, thermal and dielectric spectroscopy characterizations of seeded melt grown 2-hydroxy biphenyl single crystal.

    PubMed

    Sadhasivam, S; Rajesh, Narayana Perumal

    2014-09-15

    Organic single crystal of 2-hydroxy biphenyl (2-HB) was grown by top seeded melt growth method. Scanning electron microscopy studies has been carried out on the surface of the grown crystals to investigate the nature of growth and defects. The crystalline perfection and lattice parameters of 2-HB has been determined by single crystal XRD analysis and it belongs to orthorhombic crystal system with space group Fdd2. The functional groups and molecular associations were confirmed by FT-IR. The optical characteristics such as cut-off and transmittance were carried out using UV-Vis-NIR spectra. Absence of absorption in the region between 320 and 1100 nm makes the grown crystal desirable to optical applications. Thermal stability of grown crystals was characterized by thermogravimetric (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) analyses. Broadband dielectric studies reveals that dielectric constant of grown crystal is low. The resistivity of grown crystal was studied by impedance analysis. The second harmonic generation intensity of 3.8 mJ was studied. The grown crystal belongs to soft material studied by hardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Growth and characterization of benzyl 4-hydroxybenzoate single crystal by vertical Bridgman technique for optical applications

    NASA Astrophysics Data System (ADS)

    Solanki, S. Siva Bala; Rajesh, N. P.; Suthan, T.

    2018-07-01

    The benzyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique. The grown crystal was confirmed by single crystal X-ray diffraction studies. The presence of functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) spectral studies. The thermal behaviour of the grown crystal was analyzed by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies. Optical behaviour of the grown benzyl 4-hydroxybenzoate crystal was studied by UV-Vis-NIR spectral analysis. Fluorescence spectrum shows near violet light emission. The second harmonic generation behaviour of benzyl 4-hydroxybenzoate was analyzed. The laser damage threshold value of benzyl 4-hydroxybenzoate was measured as 2.16 GW/cm2. The dielectric measurements of benzyl 4-hydroxybenzoate crystal were carried out with different frequencies 1 kHz to 1 MHz versus different temperatures ranging from 313 to 353 K. Photoconductivity study shows that the grown benzyl 4-hydroxybenzoate crystal belongs to negative photoconductivity property. The mechanical strength of the crystal was calculated by Vickers microhardness study.

  13. Unidirectional growth, rocking curve, linear and nonlinear optical properties of LPHCl single crystals

    NASA Astrophysics Data System (ADS)

    Kumar, P. Ramesh; Gunaseelan, R.; Raj, A. Antony; Selvakumar, S.; Sagayaraj, P.

    2012-06-01

    Nonlinear optical amino-acid single crystal of L-phenylalanine hydrochloride (LPHCl) was successfully grown by unidirectional Sankaranarayanan-Ramasamy (SR) method under ambient conditions for the first time. The grown single crystal was subjected to different characterization analyses in order to find out its suitability for device fabrication. The crystalline perfection was evaluated using high-resolution X-ray diffractometry. It is evident from the optical absorption study that crystal has excellent transmission in the entire visible region with its lower cut off wavelength around 290 nm.

  14. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  15. Morphology of growth of Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Wolf, Th.; Berger, H.; Benoit, W.

    1996-12-01

    A good correlation of twins on the basal surface of flux-grown Bi2Sr2CaCu2Ox (BSCCO) single crystals with surface. growth steps is observed, the b-axis being perpendicular to the steps and, thus, parallel to the growth direction. It is found that mono-twin BSCCO single crystals produced by the travelling solvent floating zone method also grow preferentially along b, i.e. nearly perpendicularly to the boule axis, contrary to the common belief. This new understanding of the morphology of growth explains the nature of major defects in these crystals, which considerably change their measured superconducting properties, in a different way.

  16. Method for single crystal growth of photovoltaic perovskite material and devices

    SciTech Connect

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  17. Scanning electron microscope study of polytetrafluoroethylene sliding on aluminum single crystals

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1973-01-01

    Friction experiments were conducted in air with polytetrafluoroethylene (PTFE) sliding on aluminum single crystals. Mechanical scoring of the crystals with (110) and (100) orientations was observed with a single pass of the PTFE slider. No scoring was observed on the (111). The degree of scoring of the crystals is related to the hardness, with the hardest surface (111) showing no damage and the softest surface (110) showing the most severe scoring. Scoring is caused by work-hardened pieces of aluminum which, as a consequence of the adhesion between PTFE and aluminum, were pulled out of the bulk and became embedded in the PTFE polymer.

  18. Dielectric and domain studies on Fe doped KNbO3 single crystal

    NASA Astrophysics Data System (ADS)

    Shamkuwar, Sanjaykumar H.; Patil, Naresh M.; Korde, Vivek B.; Pradnyakar, Namrata V.

    2018-05-01

    Synthesis of Fe doped KNbO3 single crystals by flux method is reported here. The effect of Fe-doping on phase transition temperatures of KNbO3 single crystals was investigated using dielectric studies. The phase transition temperatures were found to be 225°C and 425°C which almost same as reported by others. The domain studies were carried out using metallurgical microscope and it shows the presence of 60° and 90° domains in the grown crystals.

  19. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals.

    PubMed

    Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R

    2015-06-15

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    NASA Astrophysics Data System (ADS)

    Yanagi, Hisao; Tamura, Kenji; Sasaki, Fumio

    2016-08-01

    Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P). Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE) is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  1. Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures

    DOE PAGES

    Pagan, Darren C.; Miller, Matthew P.

    2016-09-01

    A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less

  2. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.

    1982-01-01

    Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.

  3. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.

    1981-01-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  4. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  5. Seeded growth of boron arsenide single crystals with high thermal conductivity

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Song, Bai; Lv, Bing; Sun, Jingying; Huyan, Shuyuan; Wu, Qi; Mao, Jun; Ni, Yizhou; Ding, Zhiwei; Huberman, Samuel; Liu, Te-Huan; Chen, Gang; Chen, Shuo; Chu, Ching-Wu; Ren, Zhifeng

    2018-01-01

    Materials with high thermal conductivities are crucial to effectively cooling high-power-density electronic and optoelectronic devices. Recently, zinc-blende boron arsenide (BAs) has been predicted to have a very high thermal conductivity of over 2000 W m-1 K-1 at room temperature by first-principles calculations, rendering it a close competitor for diamond which holds the highest thermal conductivity among bulk materials. Experimental demonstration, however, has proved extremely challenging, especially in the preparation of large high quality single crystals. Although BAs crystals have been previously grown by chemical vapor transport (CVT), the growth process relies on spontaneous nucleation and results in small crystals with multiple grains and various defects. Here, we report a controllable CVT synthesis of large single BAs crystals (400-600 μm) by using carefully selected tiny BAs single crystals as seeds. We have obtained BAs single crystals with a thermal conductivity of 351 ± 21 W m-1 K-1 at room temperature, which is almost twice as conductive as previously reported BAs crystals. Further improvement along this direction is very likely.

  6. Reusability of contaminated seed crystal for cast quasi-single crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Li, Zaoyang; Liu, Lijun; Zhou, Genshu

    2015-04-01

    Reusing seed crystal is beneficial for reducing the production costs for cast quasi-single crystalline (QSC) silicon ingots. We numerically investigate the reusability of seed crystal in the casting processes with quartz crucible and silicon feedstock of different purities. The reused seed crystal is recycled from the standard QSC ingot and has been highly contaminated by iron impurity. Transient simulations of iron transport are carried out and special attention is paid to the diffusion and distribution characteristics of iron impurity at the ingot bottom. The heights of the bottom iron contaminated region are compared for silicon ingots grown from normal and recycled seed crystals. The results show that the purity of quartz crucible can influence the reusability of seed crystal more significantly than that of the feedstock. The recycled seed crystal with high iron concentration can be reused for casting processes with standard crucible, whereas it is not recommended for reusing for processes with pure crucible.

  7. Growth and characterization of unidirectional benzil single crystal for photonic applications

    NASA Astrophysics Data System (ADS)

    Saranraj, A.; Thirupathy, J.; Dhas, S. Sahaya Jude; Jose, M.; Vinitha, G.; Dhas, S. A. Martin Britto

    2018-06-01

    Organic nonlinear optical benzil single crystal of fine quality with the dimensions of 168 × 14 mm2 was successfully grown in (100) plane from saturated solution by unidirectional SR method. The structural identity of the grown crystal was confirmed by powder XRD. High-resolution X-ray diffraction analysis indicates the crystalline perfection of the grown benzil crystal. The optical analysis was carried out by UV-visible spectroscopy which shows that the benzil crystal's cut off wavelength is 437 nm. The dielectric constant and dielectric loss of benzil crystal are found to be very much depending upon temperature and frequency. Ferroelectric nature of grown crystal was identified by P- E hysteresis analysis and to find the values of spontaneous polarization and coercive field. The laser damage threshold energy was studied with the help of Nd:YAG laser. The presence of third harmonic generation was identified by z-scan techniques.

  8. Linear, non-linear and thermal properties of single crystal of LHMHCl

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  9. Growth of L-Valinium Aluminium Chloride single crystal for OLED and super-capacitor applications

    NASA Astrophysics Data System (ADS)

    Kalaivani, D.; Vijayalakshmi, S.; Theras, J. Elberin Mary; Jayaraman, D.; Joseph, V.

    2015-12-01

    L-Valinium Aluminium Chloride (LVAC), a novel semi-organic material, was grown using slow evaporation under isothermal condition. The single crystal data reveal that the grown crystal belongs to monoclinic system. The SEM micrographs give clear picture about the surface morphology. Further, they confirm the inclusion of aluminium chloride into atomic sites of L-Valine. The compositional elements present in the crystal were identified through EDAX analysis. The mass spectral analysis was carried out to determine the molecular weight of the grown crystal. The optical transparency of the grown crystal was investigated by UV-vis-NIR spectrum. FTIR spectral study was used to identify the functional groups present in the grown material. The luminescence characteristics of grown material were analysed to confirm the effect of metal ion on the ligand. This property makes the material suitable for OLED application. The supercapacitive performance of the grown crystal was finally studied using cyclic voltammetry.

  10. Synthesis, growth, structural and optical studies of a novel organic Piperazine (bis) p-toluenesulfonate single crystal.

    PubMed

    Rekha, P; Peramaiyan, G; NizamMohideen, M; Kumar, R Mohan; Kanagadurai, R

    2015-03-15

    A novel organic single crystal of Piperazinium (bis) p-toluenesulfonate (PPTS) was grown by a slow evaporation solution growth technique. The structure of the grown crystal was determined using single crystal X-ray diffraction analysis. The PPTS crystal belongs to the triclinic crystal system with space group of P1¯. The presence of functional groups was confirmed by FTIR spectral analysis. The optical transmittance range and cut-off wavelength were identified by UV-vis-NIR spectral studies. The luminescent properties of PPTS crystal were investigated. The thermal behavior of PPTS crystal was studied by TG-DT analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Low cycle fatigue of MAR-M 200 single crystals at 760 and 870 deg C

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.; Bill, R. C.

    1984-01-01

    Fully reversed low cycle fatigue tests were conducted on single crystals of the nickel-base superalloys Mar-M 200 at 760 C and 870 C. At 760 C, planar slip (octahedral) lead to orientation-dependent strain hardening and cyclic lives. Multiple slip crystals strain hardened the most, resulting in relatively high stress ranges and low lives. Single slip crystals strain hardened the least, resulting in relatively low stress ranges and higher lives. A preferential crack initiation site which was related to slip plane geometry was observed in single slip orientated crystals. At 870 C, the trends were quite different, and the slip character was much more homogeneous. As the tensile axis orientation deviated from 001 , the stress ranges increased and the cyclic lives decreased. Two possible mechanisms were proposed to explain the behavior: one is based on Takeuchi and Kuramoto's cube cross-slip model, and the other is based on orientation-dependent creep rates.

  12. Eutectic Formation During Solidification of Ni-Based Single-Crystal Superalloys with Additional Carbon

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2017-11-01

    γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.

  13. Single crystal growth of submillimeter diameter sapphire tube by the micro-pulling down method

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Murakami, Rikito; Kochurikhin, Vladimir V.; Luidmila, Gushchina; Jin Kim, Kyoung; Shoji, Yasuhiro; Yamaji, Akihiro; Kurosawa, Shunsuke; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2018-06-01

    This paper addresses several aspects of the μ-PD growth technology as applied to submillimeter diameter sapphire tubes for UFD application. The μ-PD method has been successfully adapted for single crystal sapphire tube growth. A compound crucible made possible the growth of single crystal sapphire tube as small as around 0.70-0.72 mm in outer diameter and 0.28-0.29 in inner diameter over 160 mm in length at growth rate of 2-4 mm/min along 〈0 0 1〉 direction. An Ir crucible with a die composed of an equivalent hole and Ir wire was heated by RF coil in N2 atmosphere. The μ-PD method has been successfully adapted for single crystal sapphire tube growth. Grown crystal tube showed good XRC value of 30.2 arcsec.

  14. Anisotropic constitutive modeling for nickel-base single crystal superalloys. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sheh, Michael Y.

    1988-01-01

    An anisotropic constitutive model was developed based on crystallographic slip theory for nickel base single crystal superalloys. The constitutive equations developed utilizes drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments were conducted to evaluate the existence of back stress in single crystal superalloy Rene N4 at 982 C. The results suggest that: (1) the back stress is orientation dependent; and (2) the back stress state variable is required for the current model to predict material anelastic recovery behavior. The model was evaluated for its predictive capability on single crystal material behavior including orientation dependent stress-strain response, tension/compression asymmetry, strain rate sensitivity, anelastic recovery behavior, cyclic hardening and softening, stress relaxation, creep and associated crystal lattice rotation. Limitation and future development needs are discussed.

  15. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    SciTech Connect

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less

  16. Translation effects on vertical Bridgman growth and optical, mechanical and surface analysis of 2-phenylphenol single crystal

    SciTech Connect

    Sadhasivam, S., E-mail: sadha.phy1@gmail.com; Perumal, Rajesh Narayana

    2-phenylphenol optical crystals were grown in cone ampoules using vertical Bridgman technique. Single crystal of 2-phenylphenol with 150 mm length has been grown. The inclination on the conical part of the ampoule reduces the growth defects in the 2-phenylphenol single crystal. The lattice parameters and structure studied using single crystal X-ray diffraction method. 2-phenylphenol single crystal belongs to orthorhombic space group Fdd2. The micro translation rate affects crystal growth of 2-phenylphenol crystal was studied. The translation rate dependent defects present in the crystal were investigated by transmittance, indentation and etching characterizations. The dislocation induced indentation crack lengths variations were studied. Etchmore » pits and striations observed for the selective etchants furnish significant information on growth aspects and degree of defect present in the crystal.« less

  17. A finite-strain homogenization model for viscoplastic porous single crystals: I - Theory

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2017-10-01

    This paper presents a homogenization-based constitutive model for the finite-strain, macroscopic response of porous viscoplastic single crystals. The model accounts explicitly for the evolution of the average lattice orientation, as well as the porosity, average shape and orientation of the voids (and their distribution), by means of appropriate microstructural variables playing the role of internal variables and serving to characterize the evolution of both the "crystallographic" and "morphological" anisotropy of the porous single crystals. The model makes use of the fully optimized second-order variational method of Ponte Castañeda (2015), together with the iterated homogenization approach of Agoras and Ponte Castañeda (2013), to characterize the instantaneous effective response of the porous single crystals with fixed values of the microstructural variables. Consistent homogenization estimates for the average strain rate and vorticity fields in the phases are then used to derive evolution equations for the associated microstructural variables. The model is 100% predictive, requiring no fitting parameters, and applies for porous viscoplastic single crystals with general crystal anisotropy and average void shape and orientation, which are subjected to general loading conditions. In Part II of this work (Song and Ponte Castañeda, 2017a), results for both the instantaneous response and the evolution of the microstructure will be presented for porous FCC and HCP single crystals under a wide range of loading conditions, and good agreement with available FEM results will be shown.

  18. Growth and characterization of CaCu3Ti4O12 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Hui Eun; Yang, Sang-don; Lee, Jung-Woo; Park, Hyun Min; Yoo, Sang-Im

    2014-12-01

    The CaCu3Ti4O12 (CCTO) single crystals could be grown from the melt with the nominal composition of Ca:Cu:Ti=1:59:20 in a platinum (Pt) crucible using a self-flux method. The flux-grown CCTO single crystals have well-developed {100} habit planes, and their compositions are close to the ratio of Ca:Cu:Ti=1:3:4. Interestingly, flux-grown CCTO single crystals exhibited two different back reflection Laue patterns; one exhibited only [100] cubic Laue patterns, and the other showed not only [100] cubic Laue patterns but also the satellite spots related to the twin boundary, implying that twin-free CCTO single crystals can be grown by the self-flux method. Both the dielectric constants and losses of twinned CCTO single crystal are significantly higher than those of untwined CCTO crystal at relatively low frequency regime (<10 kHz), suggesting that the dielectric property is sensitive to the twin boundary.

  19. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  20. Effects of withdrawal rate and starter block size on crystal orientation of a single crystal Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Kermanpur, A.; Sadeghi, F.

    2018-03-01

    Fabrication of single crystal (SC) Ni-based gas turbine blades with a minimum crystal misorientation has always been a challenge in gas turbine industry, due to its significant influence on high temperature mechanical properties. This paper reports an experimental investigation and numerical simulation of the SC solidification process of a Ni-based superalloy to study effects of withdrawal rate and starter block size on crystal orientation. The results show that the crystal misorientation of the sample with 40 mm starter block height is decreased with increasing withdrawal rate up to about 9 mm/min, beyond which the amount of misorientation is increased. It was found that the withdrawal rate, height of the starter block and temperature gradient are completely inter-dependent and indeed achieving a SC specimen with a minimum misorientation needs careful optimization of these process parameters. The height of starter block was found to have higher impact on crystal orientation compared to the withdrawal rate. A suitable withdrawal rate regime along with a sufficient starter block height was proposed to produce SC parts with the lowest misorientation.

  1. Raman Spectroscopy of Rdx Single Crystals Under Static Compression

    NASA Astrophysics Data System (ADS)

    Dreger, Zbigniew A.; Gupta, Yogendra M.

    2007-12-01

    To gain insight into the high pressure response of energetic crystal of RDX, Raman measurements were performed under hydrostatic compression up to 15 GPa. Several distinct changes in the spectra were found at 4.0±0.3 GPa, confirming the α-γ phase transition previously observed in polycrystalline samples. Symmetry correlation analyses indicate that the γ-polymorph may assume a space group isomorphous with a point group D2h with eight molecules occupying the C1 symmetry sites, similar to the α-phase. It is proposed that factor group coupling can account for the observed increase in the number of modes in the γ-phase.

  2. Onset of bulk pinning in BSCCO single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Li, T. W.; Benoit, W.

    1996-11-01

    The long growth defects often found in Bi2Sr2CaCu2O8, “single” crystals effectively weaken the geometrical barrier and lower the field of first flux penetration. This means that the intrinsic (bulk) magnetic properties can be more easily accessed using magnetic measurements. Thus, the onset of strong bulk flux pinning in the sample bulk is determined to lie at T ≈ 40 K, indepedent of whether the field strength is above or below the field of the second peak in the magnetisation.

  3. Enhanced optical, thermal and piezoelectric behavior in dye doped potassium acid phthalate (KAP) single crystal

    NASA Astrophysics Data System (ADS)

    Rao, G. Babu; Rajesh, P.; Ramasamy, P.

    2017-06-01

    Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Pure and 0.1 mol% amaranth doped KAP single crystals, were grown from aqueous solutions by slow evaporation technique at room temperature. The grown crystals are up to the dimension of 12×10×3 mm3. Attempt is made to improve the growth rate, optical, piezoelectric and photoconductive properties of pure KAP single crystal with addition of amaranth dye as a dopant. Various characterization studies were made for both pure and dye doped KAP. Thermal stability of the crystals is tested from thermogravimetric and differential thermal analysis (TG/DTA). There is only one endothermic peak indicating decomposition point. Higher optical transparency for dye doped KAP crystal was identified from the UV-vis spectrum. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with amaranth dye. The positive photoconductive nature is observed from both pure and amaranth doped KAP.

  4. A finite-strain homogenization model for viscoplastic porous single crystals: II - Applications

    NASA Astrophysics Data System (ADS)

    Song, Dawei; Ponte Castañeda, P.

    2017-10-01

    In part I of this work (Song and Ponte Castañeda, 2017a), a new homogenization-based constitutive model was developed for the finite-strain, macroscopic response of porous viscoplastic single crystals. In this second part, the new model is first used to investigate the instantaneous response and the evolution of the microstructure for porous FCC single crystals for a wide range of loading conditions. The loading orientation, Lode angle and stress triaxiality are found to have significant effects on the evolution of porosity and average void shape, which play crucial roles in determining the overall hardening/softening behavior of porous single crystals. The predictions of the model are found to be in fairly good agreement with numerical simulations available from the literature for all loadings considered, especially for low triaxiality conditions. The model is then used to investigate the strong effect of crystal anisotropy on the instantaneous response and the evolution of the microstructure for porous HCP single crystals. For uniaxial tension and compression, the overall hardening/softening behavior of porous HCP crystals is found to be controlled mostly by the evolution of void shape, and not so much by the evolution of porosity. In particular, porous HCP crystals exhibit overall hardening behavior with increasing porosity, while they exhibit overall softening behavior with decreasing porosity. This interesting behavior is consistent with corresponding results for porous FCC crystals, but is found to be more significant for porous HCP crystals with large anisotropy, such as porous ice, where the non-basal slip systems are much harder than the basal systems.

  5. Growth of 2 Inch Eu-doped SrI2 single crystals for scintillator applications

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Shoji, Yasuhiro; Yokota, Yuui; Kurosawa, Shunsuke; Hayasaka, Shoki; Chani, Valery I.; Ito, Tomoki; Kamada, Kei; Ohashi, Yuji; Kochurikhin, Vladimir

    2016-10-01

    A vertical Bridgman (VB) crystal growth process was established using modified micro-pulling-down (μ-PD) crystal growth system with a removable chamber that was developed for the growth of deliquescent halide single crystals because conventional μ-PD method does not allow growth of large bulk single crystals. Eu:SrI2 crystals were grown from the melt of (Sr0.98Eu0.02)I2 composition using carbon crucibles. Undoped μ-PD SrI2 crystals were used as seeds that were affixed to the bottom of the crucible. All the preparations preceding the growths and the hot zone assembling were performed in a glove box with Ar gas. Then the removable chamber was taken out of the glove box, attached to the μ-PD system, connected with a Turbo Molecular pump, and evacuated down to 10-4 Pa at 300 °C. After the baking procedure, high purity Ar gas (6N) was injected into the chamber. The crucible was heated by a high frequency induction coil up to the melting point of Eu:SrI2. After melting the starting materials, the crucible was displaced in downward direction for the crystal growth and then cooled down to room temperature. Thus, 2 in. and crack-free Eu:SrI2 bulk crystals were produced. The crystals had high transparency and did not contain any visible inclusions. The crystals were cut and polished in the glove box and then sealed in an aluminum container with an optical window for characterization. The details of the crystal growth are discussed.

  6. Single crystal substrates for surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Barsch, G. R.; Spear, K. E.

    1981-01-01

    In order to search for new temperature compensated materials for surface acoustic wave (SAW) devices with low ultrasonic attenuation and high electromechanical coupling, the following experimental and theoretical investigations were carried out: (1) Crystal growth research centered around: designing, constructing, and writing the software for a computer controlled constant-diameter attachment for our Czochralski crystal pullers; a major experimental effort on the growth of lead potassium niobate (PKN); Pb2KNb5O15, and lead bismuth niobate (PBN) PbBi2Nb2O9, and a minor experimental effort on the growth of lithium metasilicate, Li2SiO3; and bismuth molybdate, Bi2MoO6. (2) The dielectric constants and the associated loss tangents of alpha-berlinite were measured at eleven frequencies from 100 to 10,000 Hz between -150 and 200 C. The temperature dependence of the dielectric constants and the relaxation behavior are similar to the results obtained earlier, but the absolute values are 20 to 30 percent smaller than reported previously. (3) The temperature dependence of the two shear modes propagating in (001) has been measured from 10 to 315K for Bi4Ti3O12. A monotonical decrease of the associated shear moduli has been found. (4) Considerable effort was devoted to specimen preparation of lead bismuth niobate which was hampered by the easy cleavage of this material perpendicular to 001 .

  7. Terahertz excitation spectra of InP single crystals

    NASA Astrophysics Data System (ADS)

    Norkus, R.; Arlauskas, A.; Krotkus, A.

    2018-07-01

    Investigation of terahertz (THz) pulse generation from semi-insulating and n-type InP crystals surfaces is presented in this letter. In order to determine energy separation between the main and subsidiary conduction band valleys, THz pulse amplitude dependences on the photoexcitation wavelength (in a range of 410–950 nm) were measured. These dependences had a clear maximum at ∼540 nm, from which the inter-valley energy separation in the conduction band of InP as equal to 0.75 eV was determined. Moreover, THz generation mechanisms at laser excited surfaces of InP were investigated by additionally analyzing the azimuthal angle dependences of the emitted THz signal amplitude and power. It has been shown that the main physical mechanism of the surface THz emission in this material is the spatial separation of photoexcited electrons and holes, which can also lead to a symmetry similar to the second order optical nonlinearity. Photocurrent surge in the surface electric field can also contribute to the THz emission from a semi-insulating crystal illuminated by optical pulses with the wavelengths close to the absorption edge.

  8. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  9. Generalized Reliability Methodology Applied to Brittle Anisotropic Single Crystals. Degree awarded by Washington Univ., 1999

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.

    2002-01-01

    A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.

  10. Synthesis, structural, optical and thermal studies of an organic nonlinear optical 4-aminopyridinium maleate single crystal.

    PubMed

    Pandi, P; Peramaiyan, G; Kumar, M Krishna; Kumar, R Mohan; Jayavel, R

    2012-03-01

    Synthesis and growth of a novel organic nonlinear optical (NLO) crystal of 4-aminopyridinium maleate (4APM) in larger size by the slow evaporation solution growth technique are reported. Single crystal and powder X-ray diffraction analyses reveal that 4APM crystallizes in monoclinic system with space group P2(1) with cell parameters a=8.140(4)Å, b=5.457(5)Å, c=10.926(10)Å and volume=481.4(7)Å(3). The grown crystal has been characterized by Fourier transform infrared and UV-visible spectral analyses. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have been carried out to study its thermal properties. Dielectric measurements have been carried out to study the distribution of charges within the crystal. The mechanical strength of the crystal has been studied by using Vickers' microhardness test. The etching studies have been carried out on the grown crystal. The Kurtz and Perry powder SHG technique confirms the NLO property of the grown crystal and the SHG efficiency of 4APM was found to be 4.8 times greater than that of KDP crystal. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Single crystal growth by gel technique and characterization of lithium hydrogen tartrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2015-02-01

    Single crystal growth of lithium hydrogen tartrate by gel encapsulation technique is reported. Dependence of crystal count on gel density, gel pH, reactant concentration and temperature are studied and the optimum conditions for these crystals are worked out. The stoichiometric composition of the grown crystals is determined using EDAX/AES and CH analysis. The grown crystals are characterized by X-ray diffraction, FTIR and Uv-Visible spectroscopy. It is established that crystal falls under orthorhombic system and space group P222 with the cell parameters as: a=10.971 Å, b=13.125 Å and c=5.101 Å; α=90.5o, β=γ=90°. The morphology of the crystals as revealed by SEM is illustrated. Crystallite size, micro strain, dislocation density and distortion parameters are calculated from the powder XRD results of the crystal. UV-vis spectroscopy shows indirect allowed transition with an optical band gap of 4.83 eV. The crystals are also shown to have high transmittance in the entire visible region. Dependence of dielectric constant, dielectric loss and conductivity on frequency of the applied ac field is analyzed. The frequency-dependent real part of the complex ac conductivity is found to follow the universal dielectric response: σac (ω) ωs. The trend in the variation of frequency exponent with frequency corroborates the fact that correlated barrier hopping is the dominant charge-transport mechanism in the present system.

  12. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  13. Intrinsic Josephson junctions in mesas and ultrathin BSCCO single crystals: Ultimate control of shape and dimensions

    NASA Astrophysics Data System (ADS)

    Yurgens, A.; You, L. X.; Torstensson, M.; Winkler, D.

    2007-09-01

    We describe experiments which are only possible through an ultimate control of sample shape and dimensions down to nanometer scale whereby transport measurements can be done in various restricted geometries. We use photolithography patterning together with a flip-chip technique to isolate very thin (d ∼ 100 nm) pieces of Bi2Sr2CaCu2O8+δ (BSCCO) single crystals. Ar-ion milling allows us to further thin these crystals down to a few nanometers in a controlled way. With decreasing thickness below two to three unit cells, the superconducting transition temperature gradually decreases to zero and the in-plane resistivity increases to large values indicating the existence of a superconductor-insulator transition in these ultrathin single crystals. In a refined technique, a precise control of the etching depth from both sides of the crystal makes it possible to form stacks of intrinsic Josephson junctions (IJJs) inside the ultrathin single crystals. The stacks can be tailor-made to any microscopic height (0-9 nm < d), i.e. enclosing a specific number of IJJs (0-6). In certain geometries, by feeding current into the topmost Cu2O4-layer of a mesa on the surface of a BSCCO single crystal, we measured the critical value of this current by detecting a sharp upturn or break in the current-voltage characteristics. From this, we estimate the sheet critical current density of a single Cu2O4 plane to be ∼0.3-0.7 A/cm at 4.5 K, corresponding to a bulk current density of ∼2-5 MA/cm2. These values are among the largest ever reported for BSCCO single crystals, thin-films and tapes.

  14. High purity low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1982-01-01

    Recent advances in GaAs bulk crystal growth using the LEC (liquid encapsulated Czochralski) technique are described. The dependence of the background impurity concentration and the dislocation density distribution on the materials synthesis and growth conditions were investigated. Background impurity concentrations as low as 4 x 10 to the 15th power were observed in undoped LEC GaAs. The dislocation density in selected regions of individual ingots was very low, below the 3000 cm .3000/sq cm threshold. The average dislocation density over a large annular ring on the wafers fell below the 10000/sq cm level for 3 inch diameter ingots. The diameter control during the program advanced to a diameter variation along a 3 inch ingot less than 2 mm.

  15. Single-Crystal Bismuth Iodide Gamma-Ray Spectrometers

    DTIC Science & Technology

    2012-02-01

    the density of the crystal (g/cm\\ M is the molecular weight of the vapor (g/mole), and R is the gas constant (cai/(K·mole)). Equation (6) indicates...along the vertical axis with a fixed rate. This simulated the downward movement of the ampoule in the conventional vertical Bridgman method. The...3cl512 1.03 4512 4.6 961 Pd Pd3d 336.5 Pd 3d512 1.03 6796 4.6 1477 Pdb N3d 340.3 Pd 3d3J2 1.03 2978 4.6 647 Pd Pd3d 341.7 Pd 3d3J2 1.03 4486 4.6 975

  16. Single Crystal Epitaxy and Characterization of Beta-SiC.

    DTIC Science & Technology

    1982-07-01

    and CH4 (35, 40), SiC] 4 and C3H8 (40-43), SiCl4 and C6H6 (37), SiCl4 and C7H8 (37, 44), and SiC]4 and CCI 4 (45-47). In all cases, the carrier gas...crystal layer on top of the as-formed 8-SiC substrate. Their problem may arise from the use of the gas combination of SiCl4 and CCI 4, because still...falling between those for the CH4- and the C2H4-c-ritaining systems. (4) The SiCl4 /CCI4/H2 System The species considered to be in the gaseous phase of

  17. Modified Bridgman-Stockbarger growth and characterization of LiInSe{sub 2} single crystal

    SciTech Connect

    Vijayakumar, P., E-mail: ramasamyp@ssn.edu.in; Magesh, M., E-mail: ramasamyp@ssn.edu.in; Arunkumar, A., E-mail: ramasamyp@ssn.edu.in

    2014-04-24

    The LiInSe{sub 2} polycrystalline materials were successfully synthesized from melt and temperature oscillation method. 8 mm diameter and 32 mm length single crystal was grown from Bridgman-Stockbarger method with steady ampoule rotation. Crystalline phase was confirmed by powder XRD pattern. Thermo gravimetric and differential thermal analysis confirms that the melting point of the grown crystal is 897°C. Rutherford backscattering analysis (RBS) gives the crystal composition as Li{sub 0.8}In{sub 1.16}Se{sub 2.04}. The crystalline perfection of the grown crystal was analyzed by High resolution X-ray diffraction measurements (HRXRD). The electrical properties of the grown crystal were analyzed by Hall effect measurements andmore » it confirms the n-type semiconducting nature.« less

  18. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  19. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-03-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  20. Multiphysical simulation analysis of the dislocation structure in germanium single crystals

    NASA Astrophysics Data System (ADS)

    Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.

    2016-09-01

    To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.

  1. Synthesis of formamidinium lead iodide perovskite bulk single crystal and its optical properties

    NASA Astrophysics Data System (ADS)

    Zheng, Hongge; Duan, Junjie; Dai, Jun

    2017-07-01

    Formamidinium lead iodide (FAPbI3) is a promising hybrid perovskite material for optoelectronic devices. We synthesized bulk single crystal FAPbI3 by a rapid solution crystallization method. X-ray diffraction (XRD) was performed to characterize the crystal structure. Temperature-dependent photoluminescence (PL) spectra of the bulk single crystal FAPbI3 were measured from 10 to 300 K to explain PL recombination mechanism. It shows that near band edge emission blueshifts with the temperature increasing from 10 to 120 K and from 140 K to room temperature, a sudden emission band redshift demonstrates near 140 K because of the phase transition from orthorhombic phase to cubic phase. From the temperature-dependent PL spectra, the temperature coefficients of the bandgap and thermal activation energies of FAPbI3 perovskite are fitted.

  2. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  3. Absorption of Dy3+ and Nd3+ ions in Ba R 2F8 single crystals

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pushkar', A. A.; Uvarova, T. V.; Chernov, S. P.

    2008-09-01

    The Dy3+ absorption and excitation spectra of BaY2F8 and BaYb2F8 single crystals are investigated in the ultraviolet, vacuum ultraviolet, and visible ranges at a temperature of 300 K. These crystals exhibit intense broad absorption bands due to the spin-allowed 4 f-5 d transitions in the range (56-78) × 10-3 cm-1 and less intense absorption bands that correspond to the spin-forbidden transitions in the range (50-56) × 10-3 cm-1. The Nd3+ absorption spectra of BaY2F8 single crystals are studied in the range (34-82) × 10-3 cm-1 at 300 K for different crystal orientations.

  4. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    NASA Astrophysics Data System (ADS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  5. Floating zone growth of α-Na 0.90MnO 2 single crystals

    DOE PAGES

    Dally, Rebecca; Clement, Raphaele J.; Chisnell, Robin; ...

    2016-12-03

    Here, single crystal growth of α-Na xMnO 2 (x=0.90) is reported via the floating zone technique. The conditions required for stable growth and intergrowth-free crystals are described along with the results of trials under alternate growth atmospheres. Chemical and structural characterizations of the resulting α-Na 0.90MnO 2 crystals are performed using ICP-AES NMR, XANES, XPS, and neutron diffraction measurements. As a layered transition metal oxide with large ionic mobility and strong correlation effects, α-Na xMnO 2 is of interest to many communities, and the implications of large volume, high purity, single crystal growth are discussed.

  6. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  7. Single crystal growth of the Er2PdSi3 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Mazilu, I.; Frontzek, M.; Löser, W.; Behr, G.; Teresiak, A.; Schultz, L.

    2005-02-01

    Single crystals of the Er2PdSi3 intermetallic compound melting congruently at 1648 ∘C, were grown by a floating zone method with radiation heating. The control of oxygen content was the key factor to avoid oxide precipitates, which can affect effective grain selection in the crystal growth process. Crystals grown at velocities of 5 mm/h with a preferred direction close to (1 0 0) with inclination angles of about 12 ∘ against the rod axis show very distinct facets at the rod surface. The crystals are Pd-depleted and Si-rich with respect to the nominal Er2PdSi3 stoichiometry, but exhibit inferior element segregation. Measurements on oriented single crystalline samples revealed antiferromagnetic ordering below 7 K, a magnetic easy axis parallel to the (0 0 1) axis of the AlB2-type hexagonal unit cell, and anisotropic electric properties.

  8. Molecular dynamics simulation of fast particle irradiation on the single crystal CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-11-01

    We used a molecular dynamics method to simulate structural relaxation caused by the high-energy-ion irradiation of single crystal CeO2. As the initial condition, we assumed high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order diameter located in the center of the single crystal. The potential proposed by Inaba et al. was utilized to calculate interactions between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it was dissipated in the crystal. We compared the obtained results with those of computer simulations for UO2 and found that CeO2 was more stable than UO2 when supplied with high thermal energy.

  9. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    SciTech Connect

    Goto, Kaname; Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp; Yanagi, Hisao

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even inmore » the “half-vertical cavity surface emitting lasing” microcavity structure.« less

  10. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect

    Bayn, I.; Mouradian, S.; Li, L.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  11. Yb3+-doped cadmium molybdato-tungstate single crystal - Its structural, optical, magnetic and transport properties

    NASA Astrophysics Data System (ADS)

    Groń, T.; Tomaszewicz, E.; Berkowski, M.; Głowacki, M.; Oboz, M.; Kusz, J.; Sawicki, B.; Kukuła, Z.; Duda, H.

    2018-06-01

    Single crystal of new cadmium and ytterbium molybdato-tungstate (Cd0.9706⎕0.0098Yb0.0196(MoO4)0.9706(WO4)0.0294, where ⎕ denotes cationic vacancies) has been successfully grown by the Czochralski method in air and under 1 MPa. X-ray crystallographic analysis reveals that the as-grown single crystal belongs to a scheelite-type structure (a = b = 5.15539(12) and c = 11.1919(3) Å, space group I41/a), in which Yb3+ ions do not show long-range order and are randomly distributed in the unit cell, substituting the Cd2+ ones. The as-grown single crystal does not show anisotropy of optical properties, i.e. its direct band gap reaches Eg = 1.76 or 1.75 eV along (100) and (001) crystallographic directions, respectively. The single crystal exhibits paramagnetic state with short-range antiferromagnetic and long-range ferrimagnetic interactions, a magnetization with zero coercivity and, a remanence that is almost a universal function of H/T, characterizing superparamagnetic-like behaviour. Electrical studies of the new ytterbium-doped cadmium molybdato-tungstate single crystal show a relatively small dielectric constant (εr<12), large lossiness of Joule-Lenz type observed at low frequencies as well as nonlinear I-V characteristics of Schottky or Maxwell-Wagner type.

  12. DAST single-nanometer crystal preparation using a substrate-supported rapid evaporation crystallization method.

    PubMed

    Tian, Tian; Cai, Bin; Sugihara, Okihiro

    2016-12-07

    A substrate-supported rapid evaporation crystallization (SSREC) method was used to develop a highly nonlinear optical material, 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST), which satisfies the Rayleigh scattering requirement for the fabrication of highly transparent composites. DAST nanocrystals have a second harmonic generation active crystal structure and a high signal-to-noise ratio second harmonic generation signal when excited by using a 1064 nm cw laser. The nanocrystals also possess size-dependent UV-vis absorption and fluorescence behavior which is not seen in the bulk state. SSREC offers a very convenient means of nanocrystal size control for fabricating nonlinear optical nanomaterials, and the unique properties of these DAST NCs provide potential applications in the fields of lasing, fluorescence probes, and other nonlinear optical photonics.

  13. Phase transition in a multiferroic Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Veřtát, P.; Drahokoupil, J.; Perevertov, O.; Heczko, O.

    2016-08-01

    We studied martensitic phase transformation, crystal structure and twinned microstructure of resulting martensite of a Ni-Mn-Ga single crystal as essential conditions for magnetic shape memory effect. Thermal dependence of electric resistivity, magnetic susceptibility and dilatation measurements were measured to characterise kinetics of the transformation. With the help of XRD analysis and optical microscopy we evaluated the hierarchical twinning microstructure in the 10M martensite.

  14. Facile growth of a single-crystal pattern: a case study of HKUST-1.

    PubMed

    Li, Shaozhou; Lu, Guang; Huang, Xiao; Li, Hai; Sun, Yinghui; Zhang, Hua; Chen, Xiaodong; Huo, Fengwei

    2012-12-18

    In order to fabricate metal-organic framework (MOF) based devices, it is desirable to precisely position high-quality and mono-sized MOF crystals on supports. In this work, we demonstrate a facile solution procedure for the fabrication of oriented and monodispersed single-crystal MOF pattern. We expect that such capability will expand the scope of applications of MOFs to advanced fields.

  15. Solubility of oxygen in CdS single crystals and their physicochemical properties

    SciTech Connect

    Morozova, N. K., E-mail: MorozovaNK@mail.ru; Kanakhin, A. A.; Shnitnikov, A. S.

    2016-07-15

    The specific features of oxygen dissolution in CdS using the example of single crystals grown by the gas-transport method with deviations from stoichiometry at 1100°C are considered. The effect of various types of intrinsic point defects in crystals of different composition on the form in the presence of oxygen is analyzed. It is shown that the most stable composition thermodynamically is that corresponding to nonstoichiometric “self-activated cadmium sulphide” stabilized with oxygen.

  16. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  17. Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Aşik, Biray

    2008-06-01

    The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.

  18. Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal

    NASA Astrophysics Data System (ADS)

    Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.

    2018-05-01

    Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.

  19. Micro-pulling-down furnace modification and single crystal fibers growth

    NASA Astrophysics Data System (ADS)

    Yuan, Dongsheng; Jia, Zhitai; Li, Yang; Wu, Baiyi; Tao, Xutang

    2016-03-01

    Single crystal fiber (SCF) combines the excellent instinct properties of conventional bulk laser crystals, and the special geometry advantage of active optical fibers. YAG and LuAG are proper host candidates for single crystal fiber laser with high thermal conductivity. Despite a lower thermal conductivity for pure crystal than YAG, LuAG crystal is easier to obtain homogeneous optical quality, and has a thermal conductivity nearly independent from the doping level. Micropulling- down (μ-PD) has relatively small thermal gradient, and here we use μ-PD to carry out high quality SCFs. Through the μ-PD furnace manufactured by ourselves, crystal fibers with different diameters have been grown successfully. We designed and fabricated a method to adjust the thermal distribution, and with the favor of pulling-down rate, the specific diameter can be controlled perfectly. The crystalline quality and homogeneity along the whole fiber were investigated, and LuAG SCF was confirmed to have a fine crystal quality for laser.

  20. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    PubMed

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  1. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  2. Single crystal growth and characterization of pure and sodium-modified copper tartrate

    NASA Astrophysics Data System (ADS)

    Quasim, I.; Firdous, A.; Want, B.; Khosa, S. K.; Kotru, P. N.

    2008-12-01

    Single crystal growth of pure and modified copper tartrate crystals bearing composition (Cu) x(Na) yC 4H 4O 6· nH 2O (where x=1, 0.77, 0.65; y=0, 0.23, 0.35) is achieved using gel technique. The optimum conditions required for the growth of these crystals are worked out. The morphological development of these crystals is studied using optical and scanning electron microscopy. The dominant habit faces of the grown copper tartrate crystals are (0 0 1) and (1 1 1). Calculation of the cell parameters using CRYSFIRE software suggests that the pure copper tartrate crystal belongs to orthorhombic system with space group P2 1/c whereas the modified copper tartrate falls under tetragonal system with the space group P4 2/nbc. The external morphological development is shown to remain unaffected in the modified copper tartrate. The stoichiometric composition of the crystals is established by EDAX analysis, CH analysis, FTIR spectroscopy and thermoanalytical techniques. Thermal analysis of the grown crystals suggests that pure copper tartrate is thermally stable up to 42.84 °C whereas the modified copper tartrate crystals are stable only up to 33.11 and 25.11 °C. Calculation of the percentage weight loss from the thermogram supplemented by EDAX/CH analysis and FTIR spectroscopy suggest that the chemical formula of pure copper tartrate crystal is CuC 4H 4O 6·3H 2O whereas the chemical formula for the modified copper tartrate crystals is (Cu) 0.77(Na) 0.23C 4H 4O 6·3H 2O and (Cu) 0.65(Na) 0.35 C 4H 4O 6·H 2O.

  3. Structural, optical, thermal and mechanical properties of Urea tartaric acid single crystals.

    PubMed

    Vinothkumar, P; Rajeswari, K; Kumar, R Mohan; Bhaskaran, A

    2015-06-15

    Urea tartaric acid (UT) an organic nonlinear optical (NLO) material was synthesized from aqueous solution and the crystals were grown by the slow evaporation technique. The single crystal X-ray diffraction (XRD) analysis revealed that the UT crystal belongs to the orthorhombic system. The functional groups of UT have been identified by the Fourier transform infrared spectral studies. The optical transparent window in the visible and near the IR regions was investigated. The transmittance of UT has been used to calculate the refractive index (n) as a function of the wavelength. The nonlinear optical property of the grown crystal has been confirmed by the Kurtz powder second harmonic generation test. The birefringence of the crystal was determined using a tungsten halogen lamp source. The laser induced surface damage threshold for the grown crystal was measured using the Nd:YAG laser. The anisotropic in mechanical property of the grown crystals was studied using Vicker's microhardness tester at different planes. The etch pit density of UT crystals was investigated. The thermal behavior of UT was investigated using the TG-DTA and DSC studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments

    PubMed Central

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.

    2014-01-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866

  5. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  6. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2009-11-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  7. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  8. X-Ray diffraction on large single crystals using a powder diffractometer

    DOE PAGES

    Jesche, A.; Fix, M.; Kreyssig, A.; ...

    2016-06-16

    Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is sufficient to determine one lattice parameter or the lattice spacing along a certain, high- symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegard’s rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 μm up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimizationmore » of the alignment are discussed in detail. Finally, in particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.« less

  9. Fluorescence XAS using Ge PAD: Application to High-Temperature Superconducting Thin Film Single Crystals

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.

    2007-02-01

    A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.

  10. Laser-Heated Floating Zone Production of Single-Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Westfall, Leonard

    1996-01-01

    This report describes how a laser-heated floating zone apparatus can be used to investigate single-crystal fibers of various compositions. A feedrod with a stoichiometric composition of high-purity powders was connected to a pedestal and fed into a laser scan where it combined with a single-crystal fiber seed. A molten zone was formed at this junction. As the feedrod was continuously fed into the laser scan, a single-crystal fiber of a prescribed orientation was withdrawn from the melt. The resultant fibers, whose diameters ranged from 100 to 250 gm, could then be evaluated on the basis of their growth behavior, physical properties, mechanical properties, and fiber perfection.

  11. Deformation relief evolution during sliding friction of Hadfield steel single crystal

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.

    2017-12-01

    The paper deals with the evolution of the deformation relief formed on lateral faces of single crystals of Hadfield steel during dry sliding friction. The use of single crystals with the predetermined orientation enables to analyze the development of shear systems subject to the duration of tribological tests. As the test duration increases, slip bands are curved and thicken in the near-surface region. After 24 hours of friction, single crystals of Hadfield steel demonstrate the maximum hardening. Afterwards, the wear process begins, which is followed by the repeated strain hardening of the specimens. After 48 hours of friction, the height of the deformation relief nearly halves on all of the three faces, as compared to that observed after 24 hours of friction. Differences in the propagation height of slip bands on the faces occur due to the uneven running-in as well as the complex involvement pattern of shear systems into the deformation process.

  12. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  13. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    PubMed

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  14. Crystallinity of the epitaxial heterojunction of C60 on single crystal pentacene

    NASA Astrophysics Data System (ADS)

    Tsuruta, Ryohei; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Ishii, Hisao; Nakayama, Yasuo

    2017-06-01

    The structure of pn heterojunctions is an important subject in the field of organic semiconductor devices. In this work, the crystallinity of an epitaxial pn heterojunction of C60 on single crystal pentacene is investigated by non-contact mode atomic force microscopy and high-resolution grazing incidence x-ray diffraction. Analysis shows that the C60 molecules assemble into grains consisting of single crystallites on the pentacene single crystal surface. The in-plane mean crystallite size exceeds 0.1 μm, which is at least five time larger than the size of crystallites deposited onto polycrystalline pentacene thin films grown on SiO2. The results indicate that improvement in the crystal quality of the underlying molecular substrate leads to drastic promotion of the crystallinity at the organic semiconductor heterojunction.

  15. High-quality single crystal growth and magnetic property of Mn4Ta2O9

    NASA Astrophysics Data System (ADS)

    Cao, Yiming; Xu, Kun; Yang, Ya; Yang, Wangfan; Zhang, Yuanlei; Kang, Yanru; He, Xijia; Zheng, Anmin; Liu, Mian; Wei, Shengxian; Li, Zhe; Cao, Shixun

    2018-06-01

    A large-size single crystal of Mn4Ta2O9 with ∼3.5 mm in diameter and ∼65 mm in length was successfully grown for the first time by a newly designed one-step method based on the optical floating zone technique. Both the clear Laue spots and sharp XRD Bragg reflections suggest the high quality of the single crystal. In Mn4Ta2O9 single crystal, an antiferromagnetic phase transition was observed below Néel temperature 102 K along c axis, which is similar to the isostructural compound Mn4Nb2O9, but differs from the isostructural Co4Nb2O9. Relative dielectric constant at 30 kOe suggests that no magnetoelectric coupling exists in Mn4Ta2O9.

  16. Magnetic properties of single crystal alpha-benzoin oxime: An EPR study

    NASA Astrophysics Data System (ADS)

    Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan

    2012-02-01

    The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.

  17. Single-crystal-to-single-crystal transformation and solvochromic luminescence of a dinuclear gold(I)-(aza-[18]crown-6)dithiocarbamate compound.

    PubMed

    Tzeng, Biing-Chiau; Chao, An

    2015-01-26

    The treatment of [AuCl(SMe2 )] with an equimolar amount of NaO5 NCS2 (O5 NCS2 =(aza-[18]crown-6)dithiocarbamate) in CH3 CN gave [Au2 (O5 NCS2 )2 ]⋅2 CH3 CN (2⋅2 CH3 CN), and its crystal structure displays a dinuclear gold(I)-azacrown ether ring and an intermolecular gold(I)⋅⋅⋅gold(I) contact of 2.8355(3) Å in crystal lattices. It is noted that two other single crystals of 2⋅tert-butylbenzene⋅H2 O and 2⋅0.5 m-xylene can be successfully obtained from a single-crystal-to-single-crystal (SCSC) transformation process by immersing single crystals of 2⋅2 CH3 CN in the respective solvents, and both also show intermolecular gold(I)⋅⋅⋅gold(I) contacts of 2.9420(5) and 2.890(2)-2.902(2) Å, respectively. Significantly, the emissions of all three 2⋅solvates are well correlated with their respective intermolecular gold(I)⋅⋅⋅gold(I) contacts, where such contacts increase with 2⋅2 CH3 CN (2.8355(3) Å)<2⋅0.5 m-xylene (2.890(2)-2.902(2) Å)<2⋅tert-butylbenzene⋅H2 O (2.9420(5) Å), and their emission energies increase with 2⋅2 CH3 CN (602 nm)<2⋅0.5 m-xylene (583 nm)<2⋅tert-butylbenzene⋅H2 O (546 nm) as well. In this regard, we further examine the solvochromic luminescence for some other aromatics, and finally their emissions are within 546-602 nm. Obviously, the above results are mostly ascribed to the occurrence of intermolecular gold(I)⋅⋅⋅gold(I) contacts in 2⋅solvates, which are induced by the presence of various solvates in the solid state, as a key role to be responsible for their solvochromic luminescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    NASA Astrophysics Data System (ADS)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  19. Flux growth of high-quality CoFe 2O 4 single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Wang, W. H.; Ren, X.

    2006-04-01

    We report the growth of high-quality CoFe 2O 4 single crystals using a borax flux method. The crystals were characterized by powder X-ray diffraction, electron probe microanalysis and Raman spectroscopy. We found the crystals are flux-free and highly homogeneous in composition. X-ray rocking curves of the CoFe 2O 4 single crystals showed a full-width at half-maximum of 0.15°. The saturation magnetization of the CoFe 2O 4 single crystals was measured to be 90 emu/g or equivalently 3.65 μ B/f.u. at 5 K.

  20. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    SciTech Connect

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  1. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE PAGES

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    2017-09-11

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  2. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  3. Anisotropic charge transport in large single crystals of π-conjugated organic molecules.

    PubMed

    Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Koch, Felix Peter Vinzenz; Reiter, Günter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent

    2014-05-07

    The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of π-π stacking (along the long axis of the single crystal) with a mobility value in the order of 10(-3) cm(2) V(-1) s(-1), and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm(2) V(-1) s(-1). The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the π-π stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility.

  4. Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)

    2000-01-01

    A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).

  5. Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond

    NASA Astrophysics Data System (ADS)

    Wan, Noel H.; Mouradian, Sara; Englund, Dirk

    2018-04-01

    Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano-scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes—directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.

  6. Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments

    NASA Astrophysics Data System (ADS)

    Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed

    2013-12-01

    Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.

  7. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVsingle crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers.

  8. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  9. High-pressure hydrogen testing of single crystal superalloys for advanced rocket engine turbopump turbine blades

    NASA Technical Reports Server (NTRS)

    Alter, W. S.; Parr, R. A.; Johnston, M. H.; Strizak, J. P.

    1984-01-01

    A screening program to determine the effects of high pressure hydrogen on selected candidate materials for advanced single crystal turbine blade applications is examined. The alloys chosen for the investigation are CM SX-2, CM SX-4C, Rene N-4, and PWA1480. Testing is carried out in hydrogen and helium at 34 MPa and room temperature, with both notched and unnotched single crystal specimens. Results show a significant variation in susceptibility to Hydrogen Environment Embrittlement (HEE) among the four alloys and a marked difference in fracture topography between hydrogen and helium environment specimens.

  10. The Effect of Hydrogen Annealing on the Oxidation Resistance of Four EPM Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Barrett, Charles A.; Garlick, Ralph G.

    2001-01-01

    Four single crystal EPM (enabling propulsion materials) developmental airfoil superalloys were hydrogen annealed at 1300 C for up to 100 hours to remove sulfur and improve oxidation resistance. Although the 1100 and 1150 C cyclic oxidation resistance was remarkably improved by annealing for 24 or 100 hours, the behavior was still considerably inferior to that of commercially available single crystal superalloys, especially those that are either Y-doped or hydrogen annealed. Excessive degradation in the developmental alloys appeared to be correlated with low Cr contents and, to a lesser extent, high Co and Re contents.

  11. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  12. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.

    PubMed

    Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel

    2006-04-01

    This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

  13. Cavity Pull Rod: Device to Promote Single Crystal Growth from the Melt

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon (Inventor)

    2017-01-01

    A pull rod for use in producing a single crystal from a molten alloy is provided that includes an elongated rod having a first end and a second end, a first cavity defined at the first end and a second cavity defined at the first end and in communication with the first cavity. The first cavity receives the molten alloy and the second cavity vents a gas from the molten alloy to thereby template a single crystal when the pull rod is dipped into and extracted from the molten alloy.

  14. Synthesis, growth, structural, optical and thermal properties of an organic single crystal: 4-nitroaniline 4-aminobenzoic acid.

    PubMed

    Silambarasan, A; Rajesh, P; Ramasamy, P

    2014-01-24

    The organic single crystals of 4-nitroaniline 4-aminobenzoic acid (4NAABA) were grown from ethanol solvent. The lattice parameters of the grown crystal have been confirmed from single crystal XRD analysis. The powder XRD pattern shows the various planes of grown crystal. The FTIR and (1)H NMR spectral analysis confirm the presence of various functional groups and the placement of proton in 4NAABA compound respectively. The UV absorption was carried out which shows the cutoff wavelength around 459 nm. The optical band gap of the crystal has been evaluated from the transmission spectra and absorption coefficient by extrapolation technique. In addition, a fluorescence spectral analysis is carried out for 4NAABA crystals. The thermal properties of crystals were evaluated from thermogravimetrical analysis. It shows that the grown crystal is stable up to 160°C and the crystal has sharp melting point at 151°C. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Thermal-gradient migration of brine inclusions in salt crystals. [Synthetic single crystals of NaCl and KCl

    SciTech Connect

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less

  16. Single-crystal diffraction at megabar conditions by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Merlini, Marco; Hanfland, Michael

    2013-08-01

    Crystal structure determination at extreme pressures is currently possible at synchrotron beamlines optimized for such a purpose. We report the description of the experimental setup available at European Synchrotron Radiation Facility ID09 beamline (Grenoble, France) and, with two examples, we illustrate the state-of-the-art experiments currently performed at third-generation synchrotrons. The first example concerns the determination of the equation of state and the structural behavior of low-spin Fe-bearing siderite in the megabar pressure range. Siderite, in fact, undergoes a first-order isosymmetric transition at 45 GPa, and, above this pressure, it features Fe2+ in electronic low-spin configuration. The local configuration of Fe coordination polyhedra, determined by structural refinements, significantly deviates from a regular octahedron. Nevertheless, no further structural transition is detected up to the maximum pressure reached in our experiments, 135 GPa. The analysis of the Fe-O bond length extrapolated to ambient pressure, which indicates that the difference in ionic radii between the high- and the low-spin state of Fe2+ is 0.172 Å, in excellent agreement with the tabulated data by Shannon and Prewitt [Effective ionic radii in oxides and fluorides. Acta Crystallogr. 1969;B25:925-946]. The second example concerns the determination and refinement of the oP8 structure adopted by sodium in the pressure interval 118-125 GPa, using an experimental dataset collected at 118 GPa. The orthorhombic [a=4.7687(15) Å, b=3.0150(6) Å, c=5.2423(7) Å, V=75.4(3) Å3] oP8 structure is topologically related to the MnP structure, with two non-equivalent atoms in the unit cell. Despite the weak scattering factor of Na atoms, the quality of the data also allows meaningful displacement parameters refinements (R1=4.6%, 14 parameters, 190 diffractions, and 105 unique) demonstrating that the current accuracy of diffraction data at extreme pressures can be comparable with ambient

  17. Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace

    NASA Astrophysics Data System (ADS)

    Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao

    1983-02-01

    A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.

  18. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    PubMed

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  19. Single-Crystal Elastic Constants of Yttria (Y2O3) Measured to High Temperatures

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Palko, James W.; Kriven, Waltraud M.; Sinogeikin, Sergey V.; Bass, Jay D.

    2001-01-01

    Yttria, or yttrium sesquioxide (Y2O3), has been considered for use in nuclear applications and has gained interest relatively recently for use in infrared optics. Single crystals of yttria have been grown successfully at the NASA Glenn Research Center using a laser-heated float zone technique in a fiber and rod. Such samples allow measurement of the single-crystal elastic properties, and these measurements provide useful property data for the design of components using single crystals. They also yield information as to what degree the elastic properties of yttria ceramics are a result of the intrinsic properties of the yttria crystal in comparison to characteristics that may depend on processing, such as microstructure and intergranular phases, which are common in sintered yttria. The single-crystal elastic moduli are valuable for designing such optical components. In particular, the temperature derivatives of elastic moduli allow the dimensional changes due to heating under physical constraints, as well as acoustic excitation, to be determined. The single-crystal elastic moduli of yttria were measured by Brillouin spectroscopy up to 1200 C. The room-temperature values obtained were C(sub 11) = 223.6 + 0.6 GPa, C(sub 44) = 74.6 + 0.5 GPa, and C(sub 12) = 112.4 + 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli were K = 149.5 + 1.0 GPa and G(sub VRH) = 66.3 + 0.8 GPa, respectively. Linear least-squares regressions to the variation of bulk and shear moduli with temperature resulted in derivatives of dK/dT = -17 + 2 MPa/C and dG(sub VRH)/dT = -8 + 2 MPa/ C. Elastic anisotropy was found to remain essentially constant over the temperature range studied.

  20. Radiation damage in dielectric and semiconductor single crystals (direct observation)

    NASA Astrophysics Data System (ADS)

    Adawi, M. A.; Didyk, A. Yu.; Varichenko, V. S.; Zaitsev, A. M.

    1998-11-01

    The surfaces of boron-doped synthetic and natural diamonds have been investigated by using the scanning tunnelling microscope (STM) and the scanning electronic microscope (SEM) before and after irradiating the samples with 40Ar (25 MeV), 84Kr (210 MeV) and 125Xe (124 MeV) ions. The structures observed after irradiation showed craters with diameters ranging from 3 nm up to 20 nm, which could be interpreted as single ion tracks and multiple hits of ions at the nearest positions of the surface. In the case of argon ion irradiation, the surface was found to be completely amorphous, but after xenon irradiation one could see parts of surface without amorphism. This can be explained by the influence of high inelastic energy losses. The energy and temperature criteria of crater formation as a result of heavy ion irradiation are introduced.