Science.gov

Sample records for zucker obese rat

  1. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  2. Submandibular Gland and Caries Susceptibility in the Obese Zucker Rat

    PubMed Central

    Mozaffari, Mahmood S.; Abdelsayed, Rafik; Zakhary, Ibrahim; El-Salanty, Mohammed; Liu, Jun Yao; Wimborne, Hereward; El-Marakby, Ahmed

    2010-01-01

    Background Obesity is a prevalent disorder characterized as marked insulin resistance and low grade inflammation. We tested the hypothesis that obesity upregulates inflammatory markers in the submandibular gland in association with derangements of its architecture and predisposition to caries in obese Zucker rats. We also examined the potential impact of chromium picolinate (Cr(Pic)3), a nutritional supplement suggested to improve glycemic control, on the aforementioned parameters. Design Male obese Zucker rats (OZR) were treated with diets lacking and containing 5 or 10 mg/kg chromium (as Cr(Pic)3) from 6 weeks to about 6 months of age; lean Zucker rats (LZR) served as controls. Thereafter, glycemic status, salivary tissue architecture and levels of several inflammatory markers were determined in association with caries susceptibility. Results OZR showed reduced insulin sensitivity, increased ratio of phospho-nuclear factor kappa B (NF-κB) to total NF-κB and increased intercellular adhesion molecule-1 level but similar histological features compared to LZR. Importantly, compared to LZR, OZR displayed rampant caries and a tendency for reduced dentin mineral density. Treatment of OZR with Cr(Pic)3 attenuated upregulation of these proinflammatory indicators in association with reduced severity of caries without improving insulin sensitivity. Conclusions Obesity promotes proinflammatory changes within the submandibular gland, without affecting glandular architecture, in association with rampant caries; Cr(Pic)3 treatment provided some protective effects. PMID:20973827

  3. Leucine and Protein Metabolism in Obese Zucker Rats

    PubMed Central

    She, Pengxiang; Olson, Kristine C.; Kadota, Yoshihiro; Inukai, Ayami; Shimomura, Yoshiharu; Hoppel, Charles L.; Adams, Sean H.; Kawamata, Yasuko; Matsumoto, Hideki; Sakai, Ryosei; Lang, Charles H.; Lynch, Christopher J.

    2013-01-01

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and

  4. Circadian rhythms of temperature and activity in obese and lean Zucker rats

    NASA Technical Reports Server (NTRS)

    Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.

    1995-01-01

    The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.

  5. Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.

    PubMed

    Iannotti, F A; Piscitelli, F; Martella, A; Mazzarella, E; Allarà, M; Palmieri, V; Parrella, C; Capasso, R; Di Marzo, V

    2013-08-01

    The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Obese and Lean Zucker Rats Demonstrate Differential Sensitivity to Rates of Food Reinforcement in a Choice Procedure

    PubMed Central

    Buckley, Jessica L.; Rasmussen, Erin B.

    2012-01-01

    The obese Zucker rat carries two recessive fa alleles that result in the expression of an obese phenotype. Obese Zuckers have higher food intake than lean controls in free-feed studies in which rats have ready access to a large amount of one type of food. The present study examined differences in obese and lean Zucker rats using concurrent schedules of reinforcement, which more ecologically models food selection using two food choices that have limited, but generally predictable, availability. Lever-pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three concurrent variable interval variable interval (conc VI VI) schedules of sucrose and carrot reinforcement, in which the reinforcer ratios for 45-mg food pellets were 5:1, 1:1, and 1:5. Allocation of responses to the two food alternatives was characterized using the generalized matching equation, which allows sensitivity to reinforcer rates (a) and bias toward one alternative (log k) to be quantified. All rats showed a bias to sucrose, though there were no differences between lean and obese Zucker rats. In addition, obese Zucker rats exhibited higher sensitivity to reinforcement rates than lean rats. This efficient pattern of responding was related to overall higher deliveries of food pellets. Effective matching for food, then, may be another behavioral pattern that contributes to an obese phenotype. PMID:23046726

  7. Cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in obese Zucker rats.

    PubMed

    Overton, J M; Williams, T D; Chambers, J B; Rashotte, M E

    2001-04-01

    The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.

  8. Impulsive-choice patterns for food in genetically lean and obese Zucker rats

    PubMed Central

    Boomhower, Steven R.; Rasmussen, Erin B.; Doherty, Tiffany S.

    2012-01-01

    Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0–10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. PMID:23261877

  9. Impulsive-choice patterns for food in genetically lean and obese Zucker rats.

    PubMed

    Boomhower, Steven R; Rasmussen, Erin B; Doherty, Tiffany S

    2013-03-15

    Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Influence of benzodiazepines on body weight and food intake in obese and lean Zucker rats.

    PubMed

    Blasi, C

    2000-05-01

    1. The gamma-aminobutyric acid (GABA)-ergic system, which is functionally altered in obese (fa/fa) Zucker rats, plays an important role in controlling energy balance within the central nervous system. 2. GABA receptors seem to be involved in the dysfunction of the hypothalamic energy homeostasis-controlling mechanisms in these animals due to a genetically-induced defect of the leptin-neuropeptide Y system. 3. To shed further light on the possible role played by the GABA system in the pathogenesis of this rat model, two benzodiazepine (BDZ) receptor agonists (diazepam and clonazepam) and one BDZ antagonist (flumazenil) were administered intraperitoneally in obese and lean Zucker rats. 4. Body weight gain was reduced by the BDZ agonists in both phenotypes, and one receptor-agonist (diazepam) lowered insulin concentration in obese rats. In GABA-antagonist-treated obese rats, the daily amount of body weight gain and food intake acquired an oscillatory rhythm similar to that of normal rodents. 5. By demonstrating the role of BDZ receptors, these findings may help clarify the pathophysiology of obesity and insulin resistance in fatty Zucker rats.

  11. Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats.

    PubMed

    Merroun, Ikram; Sánchez-González, Cristina; Martínez, Rosario; López-Chaves, Carlos; Porres, Jesús M; Aranda, Pilar; Llopis, Juan; Galisteo, Milagros; Zarzuelo, Antonio; Errami, Mohammed; López-Jurado, María

    2013-11-01

    Recent research suggests that cannabinoid receptor CB1 antagonists can affect appetite and body weight gain, although their influence on other parameters related to metabolic syndrome is not well documented. The present study was designed to assess the effects of chronic treatment with the CB1 receptor inverse agonist AM 251 (3 mg/kg for 3 weeks) in obese and lean Zucker rats on parameters related to metabolic syndrome. Four groups of rats were used: lean Zucker rats, untreated obese Zucker rats, AM 251-treated obese Zucker rats and a pair-fed obese Zucker rat experimental group which received the same amount of food as that consumed by the animals treated with AM251. Food intake, body weight gain, energy expenditure, plasma biochemical parameters, leptin, insulin and hepatic status markers were analysed. Daily injection of AM 251 in obese Zucker rats produced a marked and sustained decrease in daily food intake and body weight and a considerable increase in energy expenditure in comparison with untreated obese Zucker rats. AM 251 administration to obese rats significantly reduced plasma levels of glucose, leptin, AST, ALT, Gamma GT, total bilirubin and LDL cholesterol whereas HDL cholesterol plasma levels increased. The results also showed a decrease in liver/weight body ratio and total fat content in the liver. The main effects of AM251 (3 mg/kg) found in this study were not observed in pair-fed obese animals, highlighting the additional beneficial effects of treatment with AM 251. The results obtained in obese rats can be interpreted as a decrease in leptin and insulin resistance, thereby improving glucose and lipid metabolism, alleviating the steatosis present in the metabolic syndrome and thus favourably modifying plasma levels of hepatic biomarkers. Our results indicate that the cannabinoid CB1 inverse agonist AM 251 represents a promising therapeutic strategy for the treatment of obesity and metabolic syndrome. © 2013.

  12. Effects of Alpha-Lipoic Acid on Oxidative Stress and Kinin Receptor Expression in Obese Zucker Diabetic Fatty Rats.

    PubMed

    Midaoui, Adil El; Talbot, Sébastien; Lahjouji, Karim; Dias, Jenny Pena; Fantus, I George; Couture, Réjean

    2015-06-01

    To investigate the impact of alpha-lipoic acid on superoxide anion production and NADPH oxidase activity as well as on the expression of kinin B1 and B2 receptors in key organs of obese Zucker Diabetic Fatty rats. Superoxide anion production was measured by lucigenin chemiluminescence. Kinin B1 and B2 receptors expression was measured at protein and mRNA levels by western blot and qRT-PCR in key organs of Zucker Diabetic Fatty and Zucker lean control rats treated for a period of 6 weeks with a standard diet or a diet containing the antioxidant α-lipoic acid (1 g/kg). Superoxide anion production and NADPH oxidase activity were significantly enhanced in aorta and adipose tissue of Zucker Diabetic Fatty rats. Kinin B1 and B2 receptors expression levels were also significantly increased in the liver and the gastrocnemius muscle of Zucker Diabetic Fatty rats. Expression of both receptors was not altered in the pancreas of Zucker Diabetic Fatty rats and was undetectable in white retroperitoneal adipose tissue. Alpha-lipoic acid prevented the rise in NADPH oxidase activity in aorta and epididymal adipose tissue of Zucker Diabetic Fatty rats and the upregulation of kinin B1 receptor in liver and gastrocnemius muscle and that of kinin B2 receptor in the liver. Alpha-lipoic acid treatment was found to prevent the final body weight increase without affecting significantly hyperglycemia, hyperinsulinemia and insulin resistance index in Zucker Diabetic Fatty rats. Findings support the hypothesis that oxidative stress is implicated in the induction of kinin B1 receptor in Zucker Diabetic Fatty rats. The ability of α-lipoic acid to blunt the body weight gain appears to be mediated in part by preventing NADPH oxidase activity rise in adipose tissue and reversing the hepatic upregulation of kinin B1 receptor in Zucker Diabetic Fatty rats.

  13. Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats

    NASA Technical Reports Server (NTRS)

    Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.

    2002-01-01

    We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.

  14. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats.

    PubMed

    Pan, S J; Hancock, J; Ding, Z; Fogt, D; Lee, M; Ivy, J L

    2001-04-01

    The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.

  15. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.

    PubMed

    Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L

    2013-01-01

    The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  16. Development of a sleeve gastrectomy weight loss model in obese Zucker rats.

    PubMed

    Lopez, Peter P; Nicholson, Susannah E; Burkhardt, Gabriel E; Johnson, Robert A; Johnson, Fruzsina K

    2009-12-01

    Obesity promotes the development of diabetes and cardiovascular disease. The most effective weight loss treatment is bariatric surgery, but results greatly vary depending on the procedure. Sleeve gastrectomy (SG) has recently emerged as a reduced risk weight loss procedure for super obese patients. However, the mechanism of weight loss from SG and its effects on obesity-induced complications are yet to be determined. Our goal was to develop an experimental model of SG in genetically obese rats. Male obese Zucker rats (400-500 g, leptin-insensitive) were anesthetized with isoflurane. After a midline laparotomy, the stomach was clamped, the greater curvature was excised, and a triple suture line was used to close the gastric remnant. Sham rats underwent laparotomy only. Metabolic parameters were followed for 14 d after surgery. Caloric intake and body weight decreased in SG rats over 14 d by 98 +/- 10 kcal/d and 74 +/- 14 g, respectively. Blood total cholesterol levels were lower in rats that lost weight. Furthermore, blood glucose levels were lower in rats that lost weight. Active ghrelin levels were unchanged in SG rats 14 d after surgery. These results show that SG promotes weight loss in obese Zucker rats. Furthermore, SG-induced weight loss is accompanied by improved plasma cholesterol and glucose profile. However, SG does not promote a prolonged decrease in ghrelin levels. These results suggest that SG is an effective weight loss procedure in leptin insensitivity to improve the lipid profile and decrease insulin resistance and these effects might be independent of changes in ghrelin levels.

  17. Long-term physical exercise and atrial natriuretic peptide in obese Zucker rats.

    PubMed

    Pörsti, Ilkka; Kähönen, Mika; Wu, Xiumin; Arvola, Pertti; Ruskoaho, Heikki

    2002-07-01

    Endurance training increases natriuretic peptide synthesis in the hypertrophied myocardium of spontaneously hypertensive rats. We examined the effects of 22-week-long treadmill exercise on plasma and tissue atrial natriuretic peptide in Zucker rats, a model of genetic obesity and moderate hypertension without clear cardiac hypertrophy. The blood pressures of the animals were measured by the tail-cuff method, and plasma and tissue samples for the peptide determinations were taken at the end of the study. The training increased heart weight to body weight ratio, while atrial natriuretic peptide contents in the right and left atrium, ventricular tissue, and plasma did not change. The exercise prevented the elevation of blood pressure, which was observed in non-exercised obese Zucker rats, and also reduced blood pressure in the lean rats. In conclusion, these results suggest that in the absence of preceding myocardial hypertrophy, the long-term exercise-induced workload is not deleterious to the heart in experimental obesity, since no changes in plasma and tissue atrial natriuretic peptide were detected.

  18. Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo.

    PubMed

    Huhn, R; Heinen, A; Hollmann, M W; Schlack, W; Preckel, B; Weber, N C

    2010-12-01

    Hyperglycaemia blocks sevoflurane-induced postconditioning, and cardioprotection in hyperglycaemic myocardium can be restored by inhibition of the mitochondrial permeability transition pore (mPTP). We investigated whether sevoflurane-induced postconditioning is also blocked in the prediabetic heart and if so, whether cardioprotection could be restored by inhibiting mPTP. Zucker lean (ZL) and Zucker obese (ZO) rats were assigned to one of seven groups. Animals underwent 25 min of ischaemia and 120 min of reperfusion. Control (ZL-/ZO Con) animals were not further treated. postconditioning groups (ZL-/ZO Sevo-post) received sevoflurane for 5 min starting 1min prior to the onset of reperfusion. The mPTP inhibitor cyclosporine A (CsA) was administered intravenously in a concentration of 5 (ZO CsA and ZO CsA+Sevo-post) or 10 mg/kg (ZO CsA10+Sevo-post) 5 min before the onset of reperfusion. At the end of reperfusion, infarct sizes were measured by TTC staining. Blood samples were collected to measure plasma levels of insulin, cholesterol and triglycerides. Sevoflurane postconditioning reduced infarct size in ZL rats to 35±12% (p<0.05 vs. ZL Con: 60±6%). In ZO rats sevoflurane postconditioning was abolished (ZO Sevo-post: 59±12%, n.s. vs. ZO Con: 58±6%). 5 mg and 10 mg CsA could not restore cardioprotection (ZO CsA+Sevo-post: 59±7%, ZO CsA10+Sevo-post: 57±14%; n.s. vs. ZO Con). In ZO rats insulin, cholesterol and triglyceride levels were significant higher than in ZL rats (all p<0.05). Inhibition of mPTP with CsA failed to restore cardioprotection in the prediabetic but normoglycaemic heart of Zucker obese rats in vivo. Copyright © 2009 Elsevier B.V. All rights reserved.

  19. Effect of lateral hypothalamic lesion on brown adipose tissue of Zucker lean and obese rats.

    PubMed

    Holt, S J; York, D A

    1988-01-01

    Acute (10-day) lateral hypothalamic (LH) lesion induced a reduction of food intake in both lean and obese Zucker rats which averaged about 50% over the course of the first 10 days. The aphagia associated with a fall in body weight in both genotypes which was greater than their respective pair-fed controls, indicating a change in energetic efficiency. The reduced level of BAT protein, mitochondria and GDP binding observed in the obese rat was restored after LH lesion, suggesting the reestablishment of a normal sympathetic drive to the tissue. The markedly lower plasma insulin concentration in the LH lesioned obese rat is consistent with a reduction in parasympathetic activity in these animals. Food restriction in the sham lean rat reduced BAT protein content and mitochondrial GDP binding, whereas no such changes were observed in the food restricted obese rat. This demonstrates the insensitivity of the obese rat to dietary signals and may imply that LH lesion restores diet-induced BAT thermogenesis in the obese rat.

  20. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    PubMed

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  1. Increased adipogenic conversion of muscle satellite cells in obese Zucker rats.

    PubMed

    Scarda, A; Franzin, C; Milan, G; Sanna, M; Dal Prà, C; Pagano, C; Boldrin, L; Piccoli, M; Trevellin, E; Granzotto, M; Gamba, P; Federspil, G; De Coppi, P; Vettor, R

    2010-08-01

    Visceral and intermuscular adipose tissue (IMAT) depots account for most obesity-related metabolic and cardiovascular complications. Muscle satellite cells (SCs) are mesenchymal stem cells giving rise to myotubes and also to adipocytes, suggesting their possible contribution to IMAT origin and expansion. We investigated the myogenic differentiation of SCs and the adipogenic potential of both preadipocytes and SCs from genetically obese Zucker rats (fa/fa), focusing on the role of Wnt signaling in these differentiation processes. SCs were isolated by single-fiber technique from flexor digitorum brevis muscle and preadipocytes were extracted from subcutaneous adipose tissue (AT). Morphological features and gene expression profile were evaluated during in vitro myogenesis and adipogenesis. Wingless-type MMTV integration site family member 10b (Wnt10b) expression was quantified by quantitative PCR in skeletal muscle and AT. We did not observe any difference in the proliferation rate and in the myogenic differentiation of SCs from obese and lean rats. However, a decreased insulin-induced glucose uptake was present in myotubes originating from fa/fa rats. Under adipogenic conditions, preadipocytes and SCs of obese animals displayed an enhanced adipogenesis. Wnt10b expression was reduced in obese rats in both muscle and AT. Our data suggest that the increase in different fat depots including IMAT and the reduced muscle insulin sensitivity, the major phenotypical alteration of obese Zucker rats, could be ascribed to an intrinsic defect, either genetically determined or acquired, still present in both muscle and fat precursors. The involvement of Wnt10b as a regulator of both adipogenesis and muscle-to-fat conversion is suggested.

  2. α-Motoneurons maintain biophysical heterogeneity in obesity and diabetes in Zucker rats.

    PubMed

    MacDonell, Christopher W; Chopek, Jeremy W; Gardiner, Kalan R; Gardiner, Phillip F

    2017-10-01

    Small-diameter sensory dysfunction resulting from diabetes has received much attention in the literature, whereas the impact of diabetes on α-motoneurons (MN) has not. In addition, the chance of developing insulin resistance and diabetes is increased in obesity. No study has examined the impact of obesity or diabetes on the biophysical properties of MN. Lean Zucker rats and Zucker diabetic fatty (ZDF) rats were separated into lean, obese (ZDF fed standard chow), and diabetic (ZDF fed high-fat diet that led to diabetes) groups. Glass micropipettes recorded hindlimb MN properties from identified flexor and extensor MN. MN were separated within their groups on the basis of input conductance, which created high- and low-input conductance subpopulations for each. A significant shorter (20%) afterhyperpolarization half-decay (AHP 1/2 ) was found in low-conductance MN for the diabetic group only, whereas AHP½ tended to be shorter in the obese group (19%). Significant positive correlations were found among rheobase and input conductance for both lean and obese animals. No differences were found between the groups for afterhyperpolarization amplitude (AHP amp ), input conductance, rheobase, or any of the rhythmic firing properties (frequency-current slope and spike-frequency adaptation index). MN properties continue to be heterogeneous in obese and diabetic animals. Obesity does not seem to influence lumbar MN. Despite the resistance of MN to the impact of diabetes, the reduced AHP 1/2 decay and the tendency for a reduction in AHP amp may be the first sign of change to MN function. NEW & NOTEWORTHY Knowledge about the impact of obesity and diabetes on the biophysical properties of motoneurons is lacking. We found that diabetes reduces the duration of the afterhyperpolarization and that motoneuron function is unchanged by obesity. A reduced afterhyperpolarization may impact discharge characteristics and may be the first sign of change to motoneuron function. Copyright

  3. Expression of fourteen novel obesity-related genes in Zucker diabetic fatty rats.

    PubMed

    Schmid, Peter M; Heid, Iris; Buechler, Christa; Steege, Andreas; Resch, Markus; Birner, Christoph; Endemann, Dierk H; Riegger, Guenter A; Luchner, Andreas

    2012-07-13

    Genome-wide association studies (GWAS) are useful to reveal an association between single nucleotide polymorphisms and different measures of obesity. A multitude of new loci has recently been reported, but the exact function of most of the according genes is not known. The aim of our study was to start elucidating the function of some of these genes. We performed an expression analysis of fourteen genes, namely BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, LYPLAL1, MCR4, MTCH2, NEGR1, NRXN3, TMEM18, SEC16B and TFAP2B, via real-time RT-PCR in adipose tissue of the kidney capsule, the mesenterium and subcutaneum as well as the hypothalamus of obese Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats at an age of 22 weeks. All of our target genes except for SEC16B showed the highest expression in the hypothalamus. This suggests a critical role of these obesity-related genes in the central regulation of energy balance. Interestingly, the expression pattern in the hypothalamus showed no differences between obese ZDF and lean ZL rats. However, LYPLAL1, TFAP2B, SEC16B and FAIM2 were significantly lower expressed in the kidney fat of ZDF than ZL rats. NEGR1 was even lower expressed in subcutaneous and mesenterial fat, while MTCH2 was higher expressed in the subcutaneous and mesenterial fat of ZDF rats. The expression pattern of the investigated obesity genes implies for most of them a role in the central regulation of energy balance, but for some also a role in the adipose tissue itself. For the development of the ZDF phenotype peripheral rather than central mechanisms of the investigated genes seem to be relevant.

  4. Microvascular disorders in obese Zucker rats are restored by a rice bran diet.

    PubMed

    Justo, M L; Claro, C; Vila, E; Herrera, M D; Rodriguez-Rodriguez, R

    2014-05-01

    Nutritional-based approaches aimed to prevent microvascular dysfunction associated to obesity present potential advantages over pharmacological strategies. Our aim was to test whether a rice bran enzymatic extract (RBEE)-supplemented diet could attenuate microvascular alterations in obese rats. Lean and obese Zucker rats were fed standard diet supplemented or not with 1% and 5% RBEE for 20 weeks. Functional studies were performed in small mesenteric arteries in isometric myograph. Immunoblotting and fluorescence studies were made in arterial homogenates and arterial sections, respectively. RBEE-supplementation restored microvascular function in obese rats through a marked increase in NO and endothelial-derived hyperpolarizing factor contribution by up-regulation of eNOS and calcium-activated potassium channels expression, respectively, in association to a substantial reduction of microvascular inflammation and superoxide anion formation. These data agrees with the beneficial actions of RBEE on dyslipidemia, hyperinsulinemia and hypertension in obesity. The multi-factorial properties of RBEE-diet, especially for restoring the function of small resistance arteries shows this dietary-based approach to be a promising candidate for prevention of microvascular alterations in obesity, which are crucial in cardiovascular events in obese subjects. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effects of 2-AG on the reinforcing properties of wheel activity in obese and lean Zucker rats.

    PubMed

    Smith, Shilo L; Rasmussen, Erin B

    2010-07-01

    The endocannabinoid system plays a role in obesity, primarily by its role in food reward. Activity, also involved in obesity, seems to be at least partially controlled by the endocannabinoid system, but the relevant behavioral and neurochemical mechanisms have not been well established. This study represents an attempt to begin elucidating these mechanisms by examining the effects of an endogenous cannabinoid ligand, 2-arachidonoylglycerol (2-AG), on the reinforcing properties of exercise reinforcement in lean and obese Zucker rats. Ten obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min periods. After baseline breakpoints were established, doses of 2-AG (0.3-3 mg/kg) were administered before experimental sessions. Obese rats exhibited lower breakpoints for wheel activity, lower response rates, and fewer revolutions compared with lean rats. 2-AG decreased breakpoints, response rates, and revolutions for obese rats, and revolutions only for lean rats. These data suggest that 2-AG may reduce the reinforcing properties of activity, and that obese Zuckers may show a greater sensitivity to 2-AG. The data also suggest that endocannabinoids may play a role in the reinforcing properties of exercise.

  6. Comparative studies on fatty acid synthesis, glycogen metabolism, and gluconeogenesis by hepatocytes isolated from lean and obese Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Jenkins, P A; Harris, R A

    1981-12-01

    Hepatocytes isolated from genetically obese female Zucker rats and lean female Zucker rats were compared. Hepatocytes from fed obese rats exhibited greater rates of fatty acid synthesis, more extensive accumulation of lactate and pyruvate from their glycogen stores, increased rates of net glucose utilization but produced less ketone bodies from exogenous fatty acids and had lower citrate levels than hepatocytes from lean rats. Lipogenesis was not as sensitive to dibutyryl cyclic AMP (DBcAMP) inhibition in hepatocytes from obese rats but glycogenolysis was stimulated to the same extent by this nucleotide in both preparations. Ketogenesis was less sensitive to stimulation by DBcAMP in hepatocytes from obese rats. A difference in sensitivity of lipogenesis to DBcAMP was not found when lactate plus pyruvate was added to the incubation medium, suggesting that a greater rate of glycolysis by hepatocytes from obese rats accounts for their relative insensitivity to DBcAMP. Citrate levels were elevated by DBcAMP to a greater extent in hepatocytes from obese rats. Hepatocytes prepared from lean rats starved for 48 hr were glycogen depleted and lacked significant capacity for lipogenesis and glycogen synthesis. In contrast, hepatocytes isolated from starved obese rats retained considerable amounts of liver glycogen and exhibited detectable rates of lipogenesis and glycogen synthesis. Hepatocytes prepared from starved lean rats gave faster apparent rates of lactate gluconeogenesis than hepatocytes prepared from starved obese rats. Thus, hepatocytes prepared from obese Zucker rats are more glycogenic, glycolytic, and lipogenic but less ketogenic and glucogenic than hepatocytes prepared from lean rats.

  7. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats.

    PubMed

    Daubioul, Catherine; Rousseau, Nicolas; Demeure, Roger; Gallez, Bernard; Taper, Henryk; Declerck, Barbara; Delzenne, Nathalie

    2002-05-01

    This study was designed to compare the effects of dietary supplementation with nondigestible carbohydrates, differing in fermentability by colonic bacteria, on hepatic steatosis in growing obese Zucker rats. Male Zucker fa/fa rats were divided into three groups: a control group that received the basal diet, a fructan group that received 10 g highly fermented Synergy 1/100 g diet and a cellulose group that received 10 g poorly fermented Vivapur Microcrystalline cellulose/100 g diet. Rats consuming fructan had a lower energy intake, a lower body weight and less triacylglycerol accumulation in the liver as assessed in vivo by nuclear magnetic resonance (NMR) spectroscopy, and ex vivo by biochemical and histochemical analysis compared with the control and/or cellulose groups. The high fermentation of fructans compared with cellulose was reflected by greater cecal contents and by a twofold greater propionate concentration in the portal vein of rats fed fructan compared with those fed cellulose. By measuring the capacity of hepatocytes isolated from liver of Zucker rats to synthesize triglycerides or total lipids from different precursors, we showed that propionate, at the concentrations measured in the portal vein of rats treated with fructan, selectively decreased the incorporation of acetate into total lipids, a phenomenon that could contribute, along with the lower energy intake, to less triglyceride accumulation in the liver of obese Zucker rats fed dietary fructans.

  8. Leucine and protein metabolism in obese zucker rats

    Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however they increase in obesity and appear to prognosticate diabetes onset. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1...

  9. Implications of obesity for tendon structure, ultrastructure and biochemistry: a study on Zucker rats.

    PubMed

    Biancalana, Adriano; Velloso, Lício Augusto; Taboga, Sebastião Roberto; Gomes, Laurecir

    2012-02-01

    The extracellular matrix consists of collagen, proteoglycans and non-collagen proteins. The incidence of obesity and associated diseases is currently increasing in developed countries. Obesity is considered to be a disease of modern times, and genes predisposing to the disease have been identified in humans and animals. The objective of the present study was to compare the morphological and biochemical aspects of the deep digital flexor tendon of lean (Fa/Fa or Fa/fa) and genetically obese (fa/fa) Zucker rats. Ultrastructural analysis showed the presence of lipid droplets in both groups, whereas disorganized collagen fibril bundles were observed in obese animals. Lean animals presented a larger amount of non-collagen proteins and glycosaminoglycans than obese rats. We propose that the overweight and lesser physical activity in obese animals may have provoked the alterations in the composition and organization of extracellular matrix components but a genetic mechanism cannot be excluded. These alterations might be related to organizational and structural modifications in the collagen bundles that influence the mechanical properties of tendons and the progression to a pathological state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats.

    PubMed

    Brooks, Steven D; DeVallance, Evan; d'Audiffret, Alexandre C; Frisbee, Stephanie J; Tabone, Lawrence E; Shrader, Carl D; Frisbee, Jefferson C; Chantler, Paul D

    2015-12-01

    The metabolic syndrome (MetS) is highly prevalent in the North American population and is associated with increased risk for development of cerebrovascular disease. This study determined the structural and functional changes in the middle cerebral arteries (MCA) during the progression of MetS and the effects of chronic pharmacological interventions on mitigating vascular alterations in obese Zucker rats (OZR), a translationally relevant model of MetS. The reactivity and wall mechanics of ex vivo pressurized MCA from lean Zucker rats (LZR) and OZR were determined at 7-8, 12-13, and 16-17 wk of age under control conditions and following chronic treatment with pharmacological agents targeting specific systemic pathologies. With increasing age, control OZR demonstrated reduced nitric oxide bioavailability, impaired dilator (acetylcholine) reactivity, elevated myogenic properties, structural narrowing, and wall stiffening compared with LZR. Antihypertensive therapy (e.g., captopril or hydralazine) starting at 7-8 wk of age blunted the progression of arterial stiffening compared with OZR controls, while treatments that reduced inflammation and oxidative stress (e.g., atorvastatin, rosiglitazone, and captopril) improved NO bioavailability and vascular reactivity compared with OZR controls and had mixed effects on structural remodeling. These data identify specific functional and structural cerebral adaptations that limit cerebrovascular blood flow in MetS patients, contributing to increased risk of cognitive decline, cerebral hypoperfusion, and ischemic stroke; however, these pathological adaptations could potentially be blunted if treated early in the progression of MetS. Copyright © 2015 the American Physiological Society.

  11. Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats.

    PubMed

    Frisbee, Jefferson C

    2003-07-01

    Whereas previous studies have demonstrated that the development of syndrome X in obese Zucker rats (OZR) is associated with impaired arteriolar reactivity to vasoactive stimuli, additional results from these studies indicate that the passive diameter of skeletal muscle arterioles is reduced in OZR versus lean Zucker rats (LZR). On the basis of these prior observations, the present study evaluated structural alterations to the skeletal muscle microcirculation as potential contributors to an elevated vascular resistance. Isolated skeletal muscle resistance arterioles exhibited a reduced passive diameter at all levels of intralumenal pressure and a left-shifted stress-strain curve in OZR versus LZR, indicative of structural remodeling of individual arterioles. Histological analyses using Griffonia simplicifolia I lectin-stained sections of skeletal muscle demonstrated reduced microvessel density (rarefaction) in OZR versus LZR, suggesting remodeling of entire microvascular networks. Finally, under maximally dilated conditions, constant flow-perfused skeletal muscle of OZR exhibited significant elevations in perfusion pressure versus LZR, indicative of an increased resistance to perfusion within the microcirculation. These data suggest that developing structural alterations to the skeletal muscle microcirculation in OZR result in elevated vascular resistance, which may, acting in concert with impaired arteriolar reactivity, contribute to blunted active hyperemic responses and compromised performance of in situ skeletal muscle with elevated metabolic demand.

  12. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation.

    PubMed

    Trujillo, Joyce; Ramírez, Victoria; Pérez, Jazmín; Torre-Villalvazo, Ivan; Torres, Nimbe; Tovar, Armando R; Muñoz, Rosa M; Uribe, Norma; Gamba, Gerardo; Bobadilla, Norma A

    2005-01-01

    The obese Zucker rat is a valuable model for studying kidney disease associated with obesity and diabetes. Previous studies have shown that substitution of animal protein with soy ameliorates the progression of renal disease. To explore the participation of nitric oxide (NO) and caveolin-1 in this protective effect, we evaluated proteinuria, creatinine clearance, renal structural lesions, nitrites and nitrates urinary excretion (UNO(2)(-)/NO(3)V), and mRNA and protein levels of neuronal NO synthase (nNOS), endothelial NOS (eNOS), and caveolin-1 in lean and fatty Zucker rats fed with 20% casein or soy protein diet. After 160 days of feeding with casein, fatty Zucker rats developed renal insufficiency, progressive proteinuria, and renal structural lesions; these alterations were associated with an important fall of UNO(2)(-)/NO(3)V, changes in nNOS and eNOS mRNA levels, together with increased amount of eNOS and caveolin-1 present in plasma membrane proteins of the kidney. In fatty Zucker rats fed with soy, we observed that soy diet improved renal function, UNO(2)(-)/NO(3)V, and proteinuria and reduced glomerulosclerosis, tubular dilation, intersticial fibrosis, and extracapilar proliferation. Renal protection was associated with reduction of caveolin-1 and eNOS in renal plasma membrane proteins. In conclusion, our results suggest that renal protective effect of soy protein appears to be mediated by improvement of NO generation and pointed out to caveolin-1 overexpression as a potential pathophysiological mechanism in renal disease.

  13. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats

    PubMed Central

    2011-01-01

    Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose) on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group) were fed diets that contained wheat bran, barley or α-cellulose (control). After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC), malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL)-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI)-1, monocyte chemotactic protein (MCP)-1). Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06). Obese rats had higher plasma malondialdehyde (p < 0.01) and lower plasma glutathione peroxidase concentration (p < 0.01) but these levels were not affected by diet type. PAI-1 was elevated in the plasma of obese rats, and the wheat bran diet in comparison to the control group reduced PAI-1 to levels seen in the lean rats (p < 0.05). These changes in circulating PAI-1 levels could not be explained by PAI-1 secretion rates from visceral or subcutaneous adipose tissue. Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of

  14. Tesaglitazar, a dual PPAR{alpha}/{gamma} agonist, ameliorates glucose and lipid intolerance in obese Zucker rats.

    PubMed

    Oakes, Nicholas D; Thalén, Pia; Hultstrand, Therese; Jacinto, Severina; Camejo, Germán; Wallin, Boel; Ljung, Bengt

    2005-10-01

    Insulin resistance, impaired glucose tolerance, high circulating levels of free fatty acids (FFA), and postprandial hyperlipidemia are associated with the metabolic syndrome, which has been linked to increased risk of cardiovascular disease. We studied the metabolic responses to an oral glucose/triglyceride (TG) (1.7/2.0 g/kg lean body mass) load in three groups of conscious 7-h fasted Zucker rats: lean healthy controls, obese insulin-resistant/dyslipidemic controls, and obese rats treated with the dual peroxisome proliferator-activated receptor alpha/gamma agonist, tesaglitazar, 3 mumol.kg(-1).day(-1) for 4 wk. Untreated obese Zucker rats displayed marked insulin resistance, as well as glucose and lipid intolerance in response to the glucose/TG load. The 2-h postload area under the curve values were greater for glucose (+19%), insulin (+849%), FFA (+53%), and TG (+413%) compared with untreated lean controls. Treatment with tesaglitazar lowered fasting plasma glucose, improved glucose tolerance, substantially reduced fasting and postload insulin levels, and markedly lowered fasting TG and improved lipid tolerance. Fasting FFA were not affected, but postprandial FFA suppression was restored to levels seen in lean controls. Mechanisms of tesaglitazar-induced lowering of plasma TG were studied separately using the Triton WR1339 method. In anesthetized, 5-h fasted, obese Zucker rats, tesaglitazar reduced hepatic TG secretion by 47%, increased plasma TG clearance by 490%, and reduced very low-density lipoprotein (VLDL) apolipoprotein CIII content by 86%, compared with obese controls. In conclusion, the glucose/lipid tolerance test in obese Zucker rats appears to be a useful model of the metabolic syndrome that can be used to evaluate therapeutic effects on impaired postprandial glucose and lipid metabolism. The present work demonstrates that tesaglitazar ameliorates these abnormalities and enhances insulin sensitivity in this animal model.

  15. Anti-Obesity Effects of Onion Extract in Zucker Diabetic Fatty Rats

    PubMed Central

    Yoshinari, Orie; Shiojima, Yoshiaki; Igarashi, Kiharu

    2012-01-01

    Anti-obesity effects of onion extract were determined in obesity and diabetes-prone Zucker diabetic fatty rats by measuring the efficacy of markers concerned with diabetes and obesity. Body and adipose tissue weights in 5% of onion extract-fed group were found to be significantly lower than the control group without onion extract. Fasting blood glucose and HOMA-IR levels were also improved, although the serum insulin and leptin levels did not show any remarkable difference. Serum triglyceride and free fatty acid levels in both the 3% and 5%-fed group were found to be reduced compared to the control group. Additionally the feeding of the onion extract increased the glucose tolerance. These results suggest that dietary onion extract is beneficial for improving diabetes by decreasing lipid levels. We also examined differentiation ability of rat white preadipocyte cells using the onion extract and its sulfur-containing components. Cycloalliin, S-methyl-L-cysteine, S-propyl-L-cysteine sulfoxide, dimethyl trisulfide, especially S-methyl-L-cysteine sulfoxide were reported to be effective in inhibiting formation of oil drop in the cells, suggesting that these compounds may be involved in the anti-obesity effect of the onion extract. PMID:23201769

  16. Soy protein isolate modified metabolic phenotype and hepatic Wnt signaling in obese Zucker rats.

    PubMed

    Cain, J; Banz, W J; Butteiger, D; Davis, J E

    2011-10-01

    We have previously shown that soy protein isolate (SPI) with intact phytoestrogen content prevented obesity-related dysfunction. Recent data have suggested that soy ingredients may act as regulators of adipogenic programming in adipose tissue (AT) and liver. Thus, the current study was undertaken to determine whether the beneficial effects of SPI are linked to changes in adipogenic regulators, such as the Wnt signaling cascade. For this, lean (LZR) and obese Zucker (OZR) rats were provided isocaloric and isonitrogenous diets containing SPI, sodium caseinate, or dairy whey protein for 17 weeks. At termination, SPI increased body weight and total adiposity in rodents, which corresponded with an increase in both adipocyte size and number. Furthermore, markers of inflammation, hypercholesterolemia, and hepatic steatosis were all reduced in OZR rats provided SPI. Transcript abundance of several canonical and noncanonical Wnt signaling intermediates in liver, but not AT, was distinctly modified by SPI. Collectively, these data confirm the protective SPI attenuated obesity-related metabolic dysfunction conceivably through regulation of adipogenic programming, as evident by changes in AT morphology and hepatic Wnt signaling. Collectively, this study confirmed the potential utilization of soy protein and its bioactive ingredients for prevention and treatment of obesity-related comorbidities. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effects of antiglucocorticoid RU 486 on development of obesity in obese fa/fa Zucker rats.

    PubMed

    Langley, S C; York, D A

    1990-09-01

    The effects of RU 486 (mitepristone), an antagonist of type II glucocorticoid receptors (GR), on the development of obesity in young 5-wk-old obese fa/fa rats has been investigated. After 15 days of treatment, body composition of obese RU 486-treated rats was similar to that of lean-vehicle rats. Analysis of body composition changes showed that RU 486 effectively reversed the obesity. It stopped fat deposition in obese rats but increased protein deposition to the level of lean-vehicle rats. RU 486 prevented the development of hyperphagia and reduced gross energetic efficiency in the obese rats but had little effect on lean rats. Brown adipose tissue mitochondrial GDP binding was increased in obese rats but was reduced in lean rats by RU 486 treatment. RU 486 also reduced the elevated activity of hippocampal glycerophosphate dehydrogenase, a glucocorticoid-responsive enzyme, of obese rats to the level of lean rats. The evidence suggests that abnormal activity of glucocorticoid GR receptors or abnormal cellular responsiveness to corticosterone receptor complexes may be important in the development of obesity in the fa/fa rat.

  18. Effects of 2 G on adiposity, leptin, lipoprotein lipase, and uncoupling protein-1 in lean and obese Zucker rats

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Horwitz, B. A.; Hamilton, J. S.; Fuller, C. A.

    2001-01-01

    Male Zucker rats were exposed to 2 G for 8 wk to test the hypothesis that the leptin regulatory pathway contributes to recovery from effects of 2 G on feeding, growth, and nutrient partitioning. After initial hypophagia, body mass-independent food intake of the lean rats exposed to 2 G surpassed that of the lean rats maintained at 1 G, but food intake of the obese rats exposed to 2 G remained low. After 8 wk at 2 G, body mass and carcass fat were less in both genotypes. Leptin and percent fat were lower in lean rats exposed to 2 G vs. 1 G but did not differ in obese rats exposed to 2 G vs. 1 G. Although exposure to 2 G did not alter uncoupling protein-1 levels, it did elicit white fat pad-specific changes in lipoprotein lipase activity in obese but not lean rats. We conclude that 2 G affects both genotypes but that the lean Zucker rats recover their food intake and growth rate and retain "normal" lipoprotein lipase activity to a greater degree than do the obese rats, emphasizing the importance of a functional leptin regulatory pathway in this acclimation.

  19. Renoprotective mechanisms of soy protein intake in the obese Zucker rat

    PubMed Central

    Trujillo, Joyce; Cruz, Cristino; Tovar, Armando; Vaidya, Vishal; Zambrano, Elena; Bonventre, Joseph V.; Gamba, Gerardo; Torres, Nimbe; Bobadilla, Norma A.

    2008-01-01

    We previously showed that long-term consumption of a soy protein diet (SoyP) reduces renal damage in obese Zucker (ObeseZ) rats by restoring urinary NO2 and NO3 excretion (UNO2/NO3V), suggesting that nitric oxide (NO) deficiency may contribute to the renal progression observed in this model. In addition, there is compelling evidence that hyperleptinemia produced deleterious effects on the kidney through its interaction with the short leptin receptor (ObRa). This study was designed to evaluate the contribution of the NO/endothelial NO synthase (eNOS) system, renal oxidative stress, and ObRa expression to the renoprotection conferred by the consumption of a SoyP in ObeseZ rats. Ten lean and ten male ObeseZ rats were included. One-half of each group was fed with a 20% SoyP and the other half with a 20% casein protein diet (CasP) over the course of 160 days. eNOS protein levels and phosphorylation, renal lipoperoxidation (rLPO), and antioxidant enzyme activity were assessed. In addition, renal ObRa, TGF-β, and kidney injury molecule (Kim-1) mRNA levels, as well as urinary Kim-1 levels, were measured. Renal injury observed in ObeseZ rats fed with CasP was not associated with changes in eNOS expression or phosphorylation. However, this group did present with increased rLPO, reduced catalase activity, and upregulation of ObRa, TGF-β1, and Kim-1. In contrast, ObeseZ rats fed with a SoyP exhibited a reduction in NOS-Thr495 phosphorylation and rLPO, as well as an enhanced catalase activity. These findings were associated with a significant reduction of ObRa, TGF-β1, and Kim-1 mRNA levels and urinary Kim-1 protein. Our results show that renoprotection by SoyP in ObeseZ rats is in part mediated by increased NO availability secondary to a reduction in eNOS-T495 phosphorylation and oxidative stress, together with a significant reduction in ObRa and TGF-β expression. PMID:18815216

  20. A casein diet added isoflavone-enriched soy protein favorably affects biomarkers of steatohepatitis in obese Zucker rats.

    PubMed

    Gudbrandsen, Oddrun Anita; Wergedahl, Hege; Berge, Rolf Kristian

    2009-05-01

    Dietary supplementation of a soy protein enriched with isoflavones (HDI) has been shown to improve fatty liver in obese rats. The main objective of this study was to investigate whether HDI would influence the inflammatory status in livers of obese rats with fatty liver. Male obese Zucker fa/fa rats were fed casein (controls) or casein supplemented with HDI (containing 4.00 g of genistein and 4.50 g of daidzein per kilogram of diet) for 6 wk. The HDI-fed rats had a markedly lower hepatic concentration of triacylglycerol when compared with controls. The decreased aspartate transaminase/alanine transaminase ratio in plasma, together with lower circulating levels of alkaline phosphatase and bile acids after HDI feeding, implied an improved hepatitis. This was supported by decreased plasma and hepatic mRNA levels of tumor necrosis factor-alpha, lower plasma levels of interleukin-1beta and monocyte chemoattractant protein-1, and an increased anti-inflammatory fatty acid index in plasma. HDI also seemed to protect the rats from oxidative damage, because the level of lipid peroxides in triacylglycerol-rich lipoproteins after in vitro copper oxidation was lower for HDI-fed rats when compared with controls. These results show that isoflavone-enriched soy protein favorably affects biomarkers of hepatic inflammation in obese Zucker fa/fa rats with fatty liver. Thus, dietary soy proteins enriched in isoflavones may be a promising agent to improve steatohepatitis in patients.

  1. Cardiac β-adrenergic responsiveness of obese Zucker rats: The role of AMPK.

    PubMed

    Bussey, Carol T; Thaung, Hp Aye; Hughes, Gillian; Bahn, Andrew; Lamberts, Regis R

    2018-06-05

    What is the central question of the study? What is the main finding and its importance? 1. Is the reduced signalling of AMPK, a key regulator of energy homeostasis in the heart, responsible for the reduced β-adrenergic responsiveness of the heart in obesity? 2. Inhibition of AMPK in isolated hearts prevented the reduced cardiac β-adrenergic responsiveness of obese rats, which was accompanied by reduced phosphorylation of AMPK, a proxy of AMPK activity. This suggests a direct functional link between β-adrenergic responsiveness and AMPK signalling in the heart, and that AMPK might be an important target to restore the β-adrenergic responsiveness in the heart in obesity. The obesity epidemic impacts heavily on cardiovascular health, in part due to changes in cardiac metabolism. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis in the heart, and is regulated by β-adrenoceptors (AR) under normal conditions. In obesity, chronic sympathetic overactivation leads to impaired cardiac β-AR responsiveness, although it is unclear whether AMPK signalling, downstream of β-AR, contributes to this dysfunction. Therefore, we aimed to determine whether reduced AMPK signalling is responsible for the reduced β-AR responsiveness in obesity. In isolated hearts of lean and obese Zucker rats, we tested β-AR responsiveness to β 1 -AR agonist isoproterenol (ISO, 1 × 10 -10 - 5 × 10 -8  M) in the absence and presence of the AMPK inhibitor compound C (CC, 10 μM). β 1 -AR expression and AMPK phosphorylation were assessed by Western blot. β-Adrenergic responsiveness was reduced in the hearts of obese rats (LogEC50 of ISO-developed pressure dose-response curves: lean -8.53 ± 0.13 vs. obese -8.35 ± 0.10 10 x M; p < 0.05 lean vs. obese, n = 6 per group). This difference was not apparent after AMPK inhibition (LogEC50 of ISO-developed pressure curves: lean CC -8.19 ± 0.12 vs. obese CC 8.17 ± 0.13 10 x M, p > 0.05, n = 6 per group

  2. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle

    PubMed Central

    2013-01-01

    Background In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. Methods 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. Results The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). Conclusion The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. PMID:23842456

  3. Rimonabant reduces the essential value of food in the genetically obese Zucker rat: an exponential demand analysis.

    PubMed

    Rasmussen, Erin B; Reilly, William; Buckley, Jessica; Boomhower, Steven R

    2012-02-01

    Research on free-food intake suggests that cannabinoids are implicated in the regulation of feeding. Few studies, however, have characterized how environmental factors that affect food procurement interact with cannabinoid drugs that reduce food intake. Demand analysis provides a framework to understand how cannabinoid blockers, such as rimonabant, interact with effort in reducing demand for food. The present study examined the effects rimonabant had on demand for sucrose in obese Zucker rats when effort to obtain food varied and characterized the data using the exponential ("essential value") model of demand. Twenty-nine male (15 lean, 14 obese) Zucker rats lever-pressed under eight fixed ratio (FR) schedules of sucrose reinforcement, in which the number of lever-presses to gain access to a single sucrose pellet varied between 1 and 300. After behavior stabilized under each FR schedule, acute doses of rimonabant (1-10mg/kg) were administered prior to some sessions. The number of food reinforcers and responses in each condition was averaged and the exponential and linear demand equations were fit to the data. These demand equations quantify the value of a reinforcer by its sensitivity to price (FR) increases. Under vehicle conditions, obese Zucker rats consumed more sucrose pellets than leans at smaller fixed ratios; however, they were equally sensitive to price increases with both models of demand. Rimonabant dose-dependently reduced reinforcers and responses for lean and obese rats across all FR schedules. Data from the exponential analysis suggest that rimonabant dose-dependently increased elasticity, i.e., reduced the essential value of sucrose, a finding that is consistent with graphical depictions of normalized demand curves. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effect of obese and lean Zucker rat sera on human and rat prostate cancer cells: implications in obesity-related prostate tumor biology.

    PubMed

    Lamarre, Neil S; Ruggieri, Michael R; Braverman, Alan S; Gerstein, Matthew I; Mydlo, Jack H

    2007-01-01

    Several reports have demonstrated the effects of obesity on prostate cancer. Also several reports have linked expression of vascular endothelial cell growth factor (VEGF) and basic fibroblast growth factor (FGF-2) to prostate cancer aggressiveness. The objective of this study was to determine whether a difference exists between lean and obese Zucker rat sera on proliferation prostate cancer cell lines, as well as to examine the differences in FGF-2 and VEGF concentrations. Ten-week-old female obese and lean Zucker rat sera were subjected to charcoal stripping and tested for the proliferation of human LNCaP and rat AT3B-1 prostate cancer cells. An acetonitrile extract of the charcoal used to strip the sera was also tested for mitogenicity. VEGF and FGF-2 concentrations were determined by enzyme-linked immunosorbent assay. Both unstripped and charcoal-stripped obese rat sera had a greater mitogenic effect than did the lean sera on the LNCaP cell line. Charcoal stripping of both obese and lean sera reduced the mitogenic effect on the AT3B-1 cell line. The acetonitrile extract of the charcoal used to strip the sera was unable to recover this proliferative effect. The concentration of VEGF was greater in the obese serum than in the lean serum, and charcoal stripping reduced the concentrations of both FGF-2 and VEGF. The finding of greater VEGF in obese rat sera, as well as greater mitogenic responses on human prostate cancer cells in vitro, suggests this as one of the many possible mechanisms involved in obesity-related prostate cancer biology.

  5. Repeated electroacupuncture in obese Zucker diabetic fatty rats: adiponectin and leptin in serum and adipose tissue.

    PubMed

    Peplow, Philip V

    2015-04-01

    Fasted, male, obese, Zucker, diabetic fatty rats aged 10-16 weeks were anesthetized with 1% halothane in nitrous oxide-oxygen (3:1) on alternate weekdays over 2 weeks. Group 1 (n = 4) did not receive electroacupuncture (controls); Group 2 (n = 4) received electroacupuncture using the Zhongwan and the Guanyuan acupoints; Group 3 (n = 4) received electroacupuncture using the bilateral Zusanli acupoints; Group 4 (n = 6) received neither halothane in nitrous oxide:oxygen nor electroacupuncture. At the end of study, animals were injected with sodium pentobarbitone (60 mg/mL, i.p.), and blood and white adipose tissue were collected. Analysis of variance and Duncan's tests showed that the mean leptin in serum was significantly lower and the adiponectin:leptin ratio was significantly higher in Group 2 than in Group 1 (p < 0.05); for Group 4, the serum leptin was significantly higher than it was for Groups 1-3 (p < 0.05), and the adiponectin:leptin ratio was significantly lower than it was for Group 2 (p < 0.05). Similar changes occurred for the leptin levels in the pelvic adipose tissue. In addition, for Group 2, the mean serum insulin: glucose ratio was significantly higher than it was for Group 1 (p < 0.05); for Group 4 the mean serum insulin and insulin: glucose ratio were significantly higher than they were for Groups 1 and 3 (p < 0.05), but not Group 2 (p > 0.05). No significant differences in the serum or the adipose-tissue measurements between Groups 1 and 3 were observed (p > 0.05). Copyright © 2015. Published by Elsevier B.V.

  6. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    PubMed

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  7. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats.

    PubMed

    Zhang, Yan; Li, Rui; Li, Yang; Chen, Wei; Zhao, Shi; Chen, Guoxun

    2012-08-01

    We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.

  9. Joint feedback analysis modeling of nonesterified fatty acids in obese Zucker rats and normal Sprague-Dawley rats after different routes of administration of nicotinic acid.

    PubMed

    Tapani, Sofia; Almquist, Joachim; Leander, Jacob; Ahlström, Christine; Peletier, Lambertus A; Jirstrand, Mats; Gabrielsson, Johan

    2014-08-01

    Data were pooled from several studies on nicotinic acid (NiAc) intervention of fatty acid turnover in normal Sprague-Dawley and obese Zucker rats in order to perform a joint PKPD of data from more than 100 normal Sprague-Dawley and obese Zucker rats, exposed to several administration routes and rates. To describe the difference in pharmacodynamic parameters between obese and normal rats, we modified a previously published nonlinear mixed effects model describing tolerance and oscillatory rebound effects of NiAc on nonesterified fatty acids plasma concentrations. An important conclusion is that planning of experiments and dose scheduling cannot rely on pilot studies on normal animals alone. The obese rats have a less-pronounced concentration-response relationship and need higher doses to exhibit desired response. The relative level of fatty acid rebound after cessation of NiAc administration was also quantified in the two rat populations. Building joint normal-disease models with scaling parameter(s) to characterize the "degree of disease" can be a useful tool when designing informative experiments on diseased animals, particularly in the preclinical screen. Data were analyzed using nonlinear mixed effects modeling, for the optimization, we used an improved method for calculating the gradient than the usually adopted finite difference approximation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Joint Feedback Analysis Modeling of Nonesterified Fatty Acids in Obese Zucker Rats and Normal Sprague–Dawley Rats after Different Routes of Administration of Nicotinic Acid

    PubMed Central

    Tapani, Sofia; Almquist, Joachim; Leander, Jacob; Ahlström, Christine; Peletier, Lambertus A; Jirstrand, Mats; Gabrielsson, Johan

    2014-01-01

    Data were pooled from several studies on nicotinic acid (NiAc) intervention of fatty acid turnover in normal Sprague–Dawley and obese Zucker rats in order to perform a joint PKPD of data from more than 100 normal Sprague–Dawley and obese Zucker rats, exposed to several administration routes and rates. To describe the difference in pharmacodynamic parameters between obese and normal rats, we modified a previously published nonlinear mixed effects model describing tolerance and oscillatory rebound effects of NiAc on nonesterified fatty acids plasma concentrations. An important conclusion is that planning of experiments and dose scheduling cannot rely on pilot studies on normal animals alone. The obese rats have a less-pronounced concentration–response relationship and need higher doses to exhibit desired response. The relative level of fatty acid rebound after cessation of NiAc administration was also quantified in the two rat populations. Building joint normal-disease models with scaling parameter(s) to characterize the “degree of disease” can be a useful tool when designing informative experiments on diseased animals, particularly in the preclinical screen. Data were analyzed using nonlinear mixed effects modeling, for the optimization, we used an improved method for calculating the gradient than the usually adopted finite difference approximation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:2571–2584, 2014 PMID:24986056

  11. trans-trans Conjugated linoleic acid enriched soybean oil reduces fatty liver and lowers serum cholesterol in obese zucker rats.

    PubMed

    Gilbert, William; Gadang, Vidya; Proctor, Andrew; Jain, Vishal; Devareddy, Latha

    2011-10-01

    Conjugated linoleic acid (CLA) is a collection of octadecadienoic fatty acids that have been shown to possess numerous health benefits. The CLA used in our study was produced by the photoisomerization of soybean oil and consists of about 20% CLA; this CLA consists of 75% trans-trans (a mixture of t8,t10; t9,t11; t10,t12) isomers. This method could be readily used to increase the CLA content of all soybean oil used as a food ingredient. The objective of this study was to determine the effects of trans-trans CLA-rich soy oil, fed as a dietary supplement, on body composition, dyslipidemia, hepatic steatosis, and markers of glucose control and liver function of obese fa/fa Zucker rats. The trans-trans CLA-rich soy oil lowered the serum cholesterol and low density lipoprotein-cholesterol levels by 41 and 50%, respectively, when compared to obese controls. Trans-trans CLA-rich soy oil supplementation also lowered the liver lipid content significantly (P < 0.05) with a concomitant decrease in the liver weight in the obese rats. In addition, glycated hemoglobin values were improved in the group receiving CLA-enriched soybean oil in comparison to the obese control. PPAR-γ expression in white adipose tissue was unchanged. In conclusion, trans-trans CLA-rich soy oil was effective in lowering total liver lipids and serum cholesterol.

  12. Contrasting apoptotic responses of conjugated linoleic acid in the liver of obese Zucker rats fed palm oil or ovine fat.

    PubMed

    Lopes, Paula A; Martins, Susana V; Viana, Ricardo S J; Ramalho, Rita M; Alfaia, Cristina M; Pinho, Mário S; Jerónimo, Eliana; Bessa, Rui J B; Castro, Matilde F; Rodrigues, Cecília M P; Prates, José A M

    2011-08-01

    We hypothesized that reducing weight properties of conjugated linoleic acid (CLA) are due to adipocyte apoptosis and that CLA differentially modulates the apoptotic responses in hepatic lipotoxicity from rats fed saturated fat diets. Obese Zucker rats were fed atherogenic diets (2%w/w of cholesterol) formulated with high (15%w/w) saturated fat, from vegetable or animal origin, supplemented or not with 1% of a mixture (1:1) of cis-9, trans-11 and trans-10, cis-12 CLA isomers for 14 weeks. CLA induced no changes on retroperitoneal fat depot weight, which was in line with similar levels of apoptosis. Interestingly, CLA had a contrasting effect on cell death in the liver according to the dietary fat. CLA increased hepatocyte apoptosis, associated with upregulation of Fas protein in rats fed palm oil, compared to rats receiving palm oil alone. However, rats fed ovine fat alone displayed the highest levels of hepatic cell death, which were decreased in rats fed ovine fat plus CLA. This reducing effect of CLA was related to positively restoring endoplasmic reticulum (ER) ATF-6α, BiP and CHOP protein levels and increasing phosphorylated c-Jun NH(2)-terminal kinase (JNK) and c-Jun, thus suggesting an adaptive response of cell survival. These findings reinforce the role of CLA as regulator of apoptosis in the liver. Moreover, the dietary fat composition is a key factor in activation of apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Age-related decrease in sensitivity to glucagon and dibutyryl cyclic AMP inhibition of fatty acid synthesis in hepatocytes isolated from obese female Zucker rats.

    PubMed

    McCune, S A; Durant, P J; Harris, R A

    1984-02-01

    Hepatocytes were isolated from 3 and 5 month old female genetically obese Zucker rats and their lean littermate controls. An age-dependent loss in sensitivity of fatty acid synthesis to inhibition by both glucagon and dibutyryl cyclic AMP was observed with hepatocytes from the obese rats. Hepatocytes from lean animals were much more sensitive to these agents, regardless of age. Low concentrations of glucagon and dibutyryl cyclic AMP actually produced some stimulation of fatty acid synthesis with hepatocytes prepared from the older obese rats. 5-Tetradecyloxy-2-furoic acid, a compound which inhibits fatty acid synthesis, was a very effective inhibitor of fatty acid synthesis by hepatocytes isolated from all rats used in the study. An inhibition of lactate plus pyruvate accumulation and a strong stimulation of glycogenolysis occurred in response to both glucagon and dibutyryl cyclic AMP with hepatocytes from both age groups of lean and obese rats. The results suggest that with aging of the obese female Zucker rat some step of hepatic fatty acid synthesis becomes progressively less sensitive to inhibition by glucagon and dibutyryl cyclic AMP. This may play an important role in maintenance of obesity in these animals.

  14. Diets containing salmon fillet delay development of high blood pressure and hyperfusion damage in kidneys in obese Zucker fa/fa rats.

    PubMed

    Vikøren, Linn A; Drotningsvik, Aslaug; Mwakimonga, Angela; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2018-04-01

    Hypertension is the leading risk factor for cardiovascular and chronic renal diseases, affecting more than 1 billion people. Fish intake is inversely correlated with the prevalence of hypertension in several, but not all, studies, and intake of fish oil and fish proteins has shown promising potential to delay development of high blood pressure in rats. The effects of baked and raw salmon fillet intake on blood pressure and renal function were investigated in obese Zucker fa/fa rats, which spontaneously develop hypertension with proteinuria and renal failure. Rats were fed diets containing baked or raw salmon fillet in an amount corresponding to 25% of total protein from salmon and 75% of protein from casein, or casein as the sole protein source (control group) for 4 weeks. Results show lower blood pressure and lower urine concentrations of albumin and cystatin C (relative to creatinine) in salmon diet groups when compared to control group. Morphological examinations revealed less prominent hyperfusion damage in podocytes from rats fed diets containing baked or raw salmon when compared to control rats. In conclusion, diets containing baked or raw salmon fillet delayed the development of hypertension and protected against podocyte damage in obese Zucker fa/fa rats. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  15. Rimonabant’s Reductive Effects on High Densities of Food Reinforcement, but not Palatability, in Lean and Obese Zucker Rats

    PubMed Central

    Buckley, Jessica Lynn; Rasmussen, Erin B.

    2014-01-01

    Rationale Cannabinoid antagonists purportedly have greater effects in reducing the intake of highly palatable food compared to less palatable food. However, this assertion is based on free-feeding studies in which the amount of palatable food eaten under baseline conditions is often confounded with other variables, such as unequal access to both food options and differences in qualitative features of the foods. Objective We attempted to reduce these confounds by using a model of choice that programmed the delivery rates of sucrose and carrot-flavored pellets. Methods Lever-pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three conditions in which programmed ratios for food pellets on two levers were 5:1, 1:1, and 1:5. In Phase 1, responses on the two levers produced one type of pellet (sucrose or carrot); in Phase 2, responses on one lever produced sucrose pellets and on the other lever produced carrot pellets. After responses stabilized under each food ratio, acute doses of rimonabant (0, 3, and 10 mg/kg) were administered before experimental sessions. The number of reinforcers and responses earned per session under each ratio and from each lever was compared. Results and Conclusions Rimonabant reduced reinforcers in 1:5 and 5:1 food ratios in Phase 1, and across all ratios in Phase 2. Rimonabant reduced sucrose and carrot-flavored pellet consumption similarly; rimonabant did not affect bias toward sucrose, but increased sensitivity to amount differences in lean rats. This suggests that relative amount of food, not palatability, may be an important behavioral mechanism in the effects of rimonabant. PMID:24398820

  16. Rimonabant's reductive effects on high densities of food reinforcement, but not palatability, in lean and obese Zucker rats.

    PubMed

    Buckley, Jessica L; Rasmussen, Erin B

    2014-05-01

    Cannabinoid antagonists purportedly have greater effects in reducing the intake of highly palatable food compared to less palatable food. However, this assertion is based on free-feeding studies in which the amount of palatable food eaten under baseline conditions is often confounded with other variables, such as unequal access to both food options and differences in qualitative features of the foods. We attempted to reduce these confounds by using a model of choice that programmed the delivery rates of sucrose and carrot-flavored pellets. Lever pressing of ten lean (Fa/Fa or Fa/fa) and ten obese (fa/fa) Zucker rats was placed under three conditions in which programmed ratios for food pellets on two levers were 5:1, 1:1, and 1:5. In phase 1, responses on the two levers produced one type of pellet (sucrose or carrot); in phase 2, responses on one lever produced sucrose pellets and on the other lever produced carrot pellets. After responses stabilized under each food ratio, acute doses of rimonabant (0, 3, and 10 mg/kg) were administered before experimental sessions. The number of reinforcers and responses earned per session under each ratio and from each lever was compared. Rimonabant reduced reinforcers in 1:5 and 5:1 food ratios in phase 1, and across all ratios in phase 2. Rimonabant reduced sucrose and carrot-flavored pellet consumption similarly; rimonabant did not affect bias toward sucrose, but increased sensitivity to amount differences in lean rats. This suggests that relative amount of food, not palatability, may be an important behavioral mechanism in the effects of rimonabant.

  17. Mild and Short-Term Caloric Restriction Prevents Obesity-Induced Cardiomyopathy in Young Zucker Rats without Changing in Metabolites and Fatty Acids Cardiac Profile

    PubMed Central

    Ruiz-Hurtado, Gema; García-Prieto, Concha F.; Pulido-Olmo, Helena; Velasco-Martín, Juan P.; Villa-Valverde, Palmira; Fernández-Valle, María E.; Boscá, Lisardo; Fernández-Velasco, María; Regadera, Javier; Somoza, Beatriz; Fernández-Alfonso, María S.

    2017-01-01

    Caloric restriction (CR) ameliorates cardiac dysfunction associated with obesity. However, most of the studies have been performed under severe CR (30–65% caloric intake decrease) for several months or even years in aged animals. Here, we investigated whether mild (20% food intake reduction) and short-term (2-weeks) CR prevented the obese cardiomyopathy phenotype and improved the metabolic profile of young (14 weeks of age) genetically obese Zucker fa/fa rats. Heart weight (HW) and HW/tibia length ratio was significantly lower in fa/fa rats after 2 weeks of CR than in counterparts fed ad libitum. Invasive pressure measurements showed that systolic blood pressure, maximal rate of positive left ventricle (LV) pressure, LV systolic pressure and LV end-diastolic pressure were all significantly higher in obese fa/fa rats than in lean counterparts, which were prevented by CR. Magnetic resonance imaging revealed that the increase in LV end-systolic volume, stroke volume and LV wall thickness observed in fa/fa rats was significantly lower in animals on CR diet. Histological analysis also revealed that CR blocked the significant increase in cardiomyocyte diameter in obese fa/fa rats. High resolution magic angle spinning magnetic resonance spectroscopy analysis of the LV revealed a global decrease in metabolites such as taurine, creatine and phosphocreatine, glutamate, glutamine and glutathione, in obese fa/fa rats, whereas lactate concentration was increased. By contrast, fatty acid concentrations in LV tissue were significantly elevated in obese fa/fa rats. CR failed to restore the LV metabolomic profile of obese fa/fa rats. In conclusion, mild and short-term CR prevented an obesity-induced cardiomyopathy phenotype in young obese fa/fa rats independently of the cardiac metabolic profile. PMID:28203206

  18. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  19. Mixed compared with single-source proteins in high-protein diets affect kidney structure and function differentially in obese fa/fa Zucker rats.

    PubMed

    Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2017-02-01

    Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.

  20. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet.

    PubMed

    Malewiak, M I; Griglio, S; Le Liepvre, X

    1985-07-01

    The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver: study in the experimental model of Zucker rats.

    PubMed

    Ragusa, Rosetta; Cabiati, Manuela; Guzzardi, Maria Angela; D'Amico, Andrea; Giannessi, Daniela; Del Ry, Silvia; Caselli, Chiara

    2017-04-01

    Suppression of tumorigenicity 2 (ST2) mediates the effect of Interleukin-33 (IL-33). Few data are reported on the relationship between IL-33/ST2 and obesity. We aimed to investigate effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver in a rodent model of obesity. The relationship of cardiac expression of IL-33/ST2 system with natriuretic peptides (NPs) system and inflammatory mediators was also studied. mRNA expression of IL-33/ST2 system was evaluated in cardiac, adipose and hepatic biopsies from obese Zucker rats (O) and controls (CO). Expression levels of sST2 was significantly lower in O rats compared with CO (p<0.05) in all tissues. Besides, the mRNA levels of IL-33 decreased significant in fat of O respect to CO, while, expression levels of ST2L was significantly higher in liver of CO than in O. A strong relationship of IL-33/ST2 with NPs and classical inflammatory mediators was observed in cardiac tissue. Expression of sST2 in cardiac, adipose and liver tissue decreased in O compared with controls, suggesting an involvement for IL-33/ST2 system in molecular mechanisms of obesity. The strong relationships with NP systems and inflammatory mediators could suggest an involvement for IL-33/ST2 in molecular pathways leading to cardiac dysfunction and inflammation associated with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats

    PubMed Central

    French, William W.; Dridi, Sami; Shouse, Stephanie A.; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I.

    2017-01-01

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05) compared to O20. O40 rats had lower liver weight (p < 0.05) compared to O20. However, O40 rats had higher orexin (p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 (p < 0.05), with no difference in 5′ AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle. PMID:28594375

  3. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats.

    PubMed

    French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I

    2017-06-08

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake ( p < 0.05) compared to O20. O40 rats had lower liver weight ( p < 0.05) compared to O20. However, O40 rats had higher orexin ( p < 0.05) levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 ( p < 0.05), with no difference in 5' AMP-activated protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  4. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    PubMed

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P < 0.0001) and suffered significant alterations in plasma lipid profile, area under the curve after oral glucose overload (P < 0.0001), liver histology and functionality, and antioxidant status. The AIT protocol reduced the severity of alterations related to glucose and lipid metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.

  5. Serum adipokine profile and fatty acid composition of adipose tissues are affected by conjugated linoleic acid and saturated fat diets in obese Zucker rats.

    PubMed

    Martins, Susana V; Lopes, Paula A; Alfaia, Cristina M; Rodrigues, Pedro O; Alves, Susana P; Pinto, Rui M A; Castro, Matilde F; Bessa, Rui J B; Prates, José A M

    2010-03-01

    Conjugated linoleic acid (CLA) has been reported as having body fat lowering properties and the ability to modulate the inflammatory system in several models. In the present study, the effects of CLA added to saturated fat diets, from vegetable and animal origins, on the serum adipokine profile of obese Zucker rats were assessed. In addition, the fatty acid composition of epididymal and retroperitoneal adipose tissues was determined and a principal component analysis (PCA) was used to assess possible relationships between fatty acids and serum metabolites. Atherogenic diets (2 % cholesterol) were formulated with palm oil and ovine fat and supplemented or not with 1 % of a mixture (1:1) of cis-9, trans-11 and trans-10, cis-12-CLA isomers. CLA-fed animals exhibited lower daily feed intake, final body and liver weights, and hepatic lipids content. Total and LDL-cholesterol levels were increased in CLA-supplemented groups. CLA also promoted higher adiponectin and lower plasminogen activator inhibitor-1 (PAI-1) serum concentrations. In contrast to palm oil diets, ovine fat increased insulin resistance and serum levels of leptin, TNF-alpha and IL-1beta. Epididymal and retroperitoneal adipose tissues had similar deposition of individual fatty acids. The PCA analysis showed that the trans-10, cis-12-CLA isomer was highly associated with adiponectin and PAI-1 levels. Summing up, CLA added to vegetable saturated enriched diets, relative to those from animal origin, seems to improve the serum profile of adipokines and inflammatory markers in obese Zucker rats due to a more favourable fatty acid composition.

  6. Effects of habitual exercise on the eHsp72-induced release of inflammatory cytokines by macrophages from obese Zucker rats.

    PubMed

    Garcia, J J; Martin-Cordero, L; Hinchado, M D; Bote, M E; Ortega, E

    2013-06-01

    Regular exercise is a good non-pharmacological treatment of metabolic syndrome in that it improves obesity, diabetes, and inflammation. The 72 kDa extracellular heat shock protein (eHsp72) is released during exercise, thus stimulating the inflammatory responses. The aim of the present work was to evaluate the effect of regular exercise on the eHsp72-induced release of IL-1β, IL-6, and TNFα by macrophages from genetically obese Zucker rats (fa/fa) (ObZ), using lean Zucker (LZ) rats (Fa/fa) to provide reference values. ObZ presented a higher plasma concentration of eHsp72 than LZ, and exercise increased that concentration. In response to eHsp72, the macrophages from ObZ released less IL-1β and TNFα, but more IL-6, than macrophages from LZ. While eHsp72 stimulated the release of IL-1β, TNFα, and IL-6 in the macrophages from healthy LZ (with respect to the constitutive release), it inhibited the release of IL-1β and IL-6 in macrophages from ObZ. The habitual exercise improved the release of inflammatory cytokines by macrophages from ObZ in response to eHsp72 (it increased IL-1β and TNFα, and decreased IL-6), tending to values closer to those determined in healthy LZ. A deregulated macrophage inflammatory and stress response induced by eHsp72 underlies MS, and this is improved by habitual exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Engineering brown fat into skeletal muscle using ultrasound-targeted microbubble destruction gene delivery in obese Zucker rats: Proof of concept design.

    PubMed

    Bastarrachea, Raul A; Chen, Jiaxi; Kent, Jack W; Nava-Gonzalez, Edna J; Rodriguez-Ayala, Ernesto; Daadi, Marcel M; Jorge, Barbara; Laviada-Molina, Hugo; Comuzzie, Anthony G; Chen, Shuyuan; Grayburn, Paul A

    2017-09-01

    Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD

  8. Peroxisomal palmitoyl-CoA oxidation in the Zucker rat.

    PubMed Central

    Brady, P S; Hoppel, C L

    1983-01-01

    The effects of 3 or 6 days of starvation on hepatic peroxisomal palmitoyl-CoA oxidation were examined in adult lean and obese Zucker rats. When expressed either per mg of DNA or per total liver, obese rats had almost 2-fold higher oxidation rates than the lean rats. Within 6 days of starvation rates fell by 50% among both phenotypes. When data were expressed per 100 g body wt., lean and obese rats had similar rates, falling from a mean of 0.57 to 0.28 mumol/min per 100 g body wt. within 6 days of starvation. Peroxisomal oxidative changes paralleled mitochondrial beta-oxidative changes. PMID:6882399

  9. Influence of exercise on NA- and Hsp72-induced release of IFNγ by the peritoneal suspension of macrophages and lymphocytes from genetically obese Zucker rats.

    PubMed

    Martín-Cordero, L; García, J J; Hinchado, M D; Bote, E; Ortega, E

    2013-03-01

    Regular physical exercise is recognized as a nonpharmacological therapeutic strategy in the treatment of metabolic syndrome, and has been proposed for improving obesity, diabetic status, insulin resistance, and immune response. The aim of the present study was to evaluate the effect of a regular exercise program (treadmill running, 5 days/week for 14 weeks at 35 cm/s for 35 min in the last month) on the release of the pro-inflammatory cytokine interferon gamma (IFNγ) by peritoneal cells (macrophages and lymphocytes) from obese Zucker rats (fa/fa) in response to noradrenaline (NA) and heat shock proteins of 72 kDa (Hsp72), and the possible adaptation due to training for a bout acute exercise (a single session of 25-35 min at 35 cm/s). In healthy (lean Fa/fa) and obese animals, peritoneal cells released greater concentrations of IFNγ in response to Hsp72 and lower concentrations in response to NA. The regular exercise training protocol, evaluated in the obese animals, produced a clear change in the regulation of the release of IFNγ. Peritoneal immune cells from trained animals released more IFNγ in response to NA, but there was a reduction in the release of IFNγ in response to Hsp72. In the obese animals, regular exercise caused a change in the inhibitory effect of NA (which now becomes stimulatory) and the stimulatory effect of Hsp72e (which now becomes inhibitory) in relation to the release of IFNγ. This reflects that Hsp72, induced by the prior release of NA following exercise-induced stress, plays a role in the homeostatic balance of release of IFNγ by peritoneal immune cells in obese animals during exercise.

  10. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Abadia-Molina, Francisco; Saez-Lara, Maria Jose; Campaña-Martin, Laura; Muñoz-Quezada, Sergio; Romero, Fernando; Gil, Angel; Fontana, Luis

    2014-01-01

    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa) rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa) rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa) rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa) rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa) rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Lepr(fa/fa) rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa) rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.

  11. Regulation of palmitoyl-CoA chain elongation by clofibric acid in the liver of Zucker fa/fa rats.

    PubMed

    Toyama, Tomoaki; Kudo, Naomi; Mitsumoto, Atsushi; Kawashima, Yoichi

    2005-05-01

    The regulation of palmitoyl-CoA chain elongation (PCE) by clofibric acid [2-(4-chlorophenoxy)-2-methylpropionic acid] was investigated in comparison with stearoyl-CoA desaturase (SCD) in the liver of obese Zucker fa/fa rats. The proportion of oleic acid in the hepatic lipids of Zucker obese rats is 2.7 times higher than that of lean littermates. The activities of PCE and SCD in the liver of Zucker obese rats were markedly higher than in lean rats, and the hepatic uptake of 2-deoxyglucose (2-DG) was also higher in Zucker obese rats compared with lean rats. The increased activities of SCD and PCE in Zucker obese rats were due to the enhanced expression of mRNA of both SCD1 and rat FA elongase 2 (rELO2), but not SCD2 or rELO1. The proportion of oleic acid in the liver was significantly increased by the administration of clofibric acid to Zucker obese rats, and the hepatic PCE activity and rELO2 mRNA expression, but not the SCD activity or SCD1 mRNA expression, were increased in response to clofibric acid treatment. By contrast, the activities of both PCE and SCD and the mRNA expression of SCD1 and rELO2 in the liver were increased by the treatment of Zucker lean rats with clofibric acid. Multiple regression analysis, which was performed to determine the relationships involving PCE activity, SCD activity, and the proportion of oleic acid, revealed that the three parameters were significantly correlated and that the standardized partial regression coefficient of PCE was higher than that of SCD. These results indicate that oleic acid is synthesized by the concerted action of PCE and SCD and that PCE plays a crucial role in the formation of oleic acid when Zucker fa/fa rats are given clofibric acid.

  12. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats

    PubMed Central

    Rideout, Todd C.; Carrier, Bradley; Wen, Shin; Raslawsky, Amy; Browne, Richard W.; Harding, Scott V.

    2015-01-01

    To investigate the cholesterol-lowering effectiveness of a phytosterol/α-lipoic acid (PS/αLA) therapy, thirty-two male Zucker rats were randomly assigned to 1 of 4 diets for 30 days: (i) high fat diet (HF, 40% energy from fat); (ii) HF diet supplemented with 3% phytosterols; (iii) HF diet supplemented with 0.25% αLA; or (iv) HF diet supplemented with PS (3%) and αLA (0.25%, PS/αLA). Compared with the HF diet, combination PS/αLA proved more effective in reducing non-HDL cholesterol (−55%) than either the PS (−24%) or the αLA (−25%) therapies alone. PS supplementation did not affect LDL particle number, however, αLA supplementation reduced LDL particle number when supplemented alone (−47%) or in combination with PS (−54%). Compared with the HF-fed animals, evidence of increased HDL-particle number was evident in all treatment groups to a similar extent (21–22%). PS-mediated interruption of intestinal cholesterol absorption was evident by increased fecal cholesterol loss (52%) and compensatory increase in HMG-CoA reductase mRNA (1.6 fold of HF), however, αLA supplementation did not affect fecal cholesterol loss. Hepatic mRNA and protein expression patterns suggested that αLA modulated multiple aspects of cholesterol homeostasis including reduced synthesis (HMG-CoA reductase mRNA, 0.7 fold of HF), reduced bile acid synthesis (CYP7a1 expression, 0.17 of HF), and increased cholesterol clearance (reduced PCSK9 mRNA, 0.5 fold of HF; increased LDLr protein, 2 fold of HF). Taken together, this data suggests that PS and αLA work through unique and complementary mechanisms to provide a superior and more comprehensive cholesterol lowering response than either therapy alone. PMID:25664679

  13. Acute effect of the dual angiotensin-converting enzyme and neutral endopeptidase 24-11 inhibitor mixanpril on insulin sensitivity in obese Zucker rat

    PubMed Central

    Arbin, V; Claperon, N; Fournié-Zaluski, M -C; Roques, B P; Peyroux, J

    2001-01-01

    The aim of this study was to determine whether acute dual angiotensin-converting enzyme (ACE)/neutral endopeptidase 24-11 (NEP) inhibition could improve whole body insulin-mediated glucose disposal (IMGD) more than ACE inhibition alone and whether this effect was mediated by the kinin-nitric oxide (NO) pathway activation.We therefore compared in anaesthetized obese (fa/fa) Zucker rats (ZOs) the effects of captopril (2 mg kg−1, i.v.+2 mg kg−1 h−1), retrothiorphan (25 mg kg−1, i.v. +25 mg  kg−1 h−1), a selective NEP inhibitor, and mixanpril (25 mg kg−1, i.v.+25 mg kg−1 h−1), a dual ACE/NEP inhibitor, on IMGD using hyperinsulinaemic euglycaemic clamp technique. The role of the kinin-NO pathway in the effects of mixanpril was tested using a bradykinin B2 receptor antagonist (Hoe-140, 300 μg kg−1) and a NO-synthase inhibitor (Nω-nitro-L-arginine methyl ester, L-NAME, 10 mg kg−1 i.v. +10 mg kg−1 h−1) as pretreatments.Insulin sensitivity index (ISI) was lower in ZO controls than in lean littermates. Increases in ISI were observed in captopril- and retrothiorphan-treated ZOs. In mixanpril-treated ZOs, ISI was further increased, compared to captopril- and retrothiorphan-treated ZOs.In ZOs, Hoe-140 and L-NAME alone did not significantly alter and slightly reduced the ISI respectively. Hoe-140 and L-NAME markedly inhibited the ISI improvement induced by mixanpril.These results show that in obese insulin-resistant Zucker rats, under acute conditions, NEP or ACE inhibition can improve IMGD and that dual ACE/NEP inhibition improves IMGD more effectively than does either single inhibition. This effect is linked to an increased activation of the kinin-NO pathway. PMID:11399666

  14. Ciprofibrate, clofibric acid and respective glycinate derivatives. Effects of a four-week treatment on male lean and obese Zucker rats.

    PubMed

    Lupp, Amelie; Karge, Elke; Deufel, Thomas; Oelschlägers, Herbert; Fleck, Christian

    2008-01-01

    Fibrates are widely prescribed in hyperlpidemic patients to prevent atherosclerosis. Their therapeutic use, however, can be associated with adverse effects like gastrointestinal disorders, myalgia, myositis and hepatotoxicity. In rodents large doses can even cause hepatocellular carcinoma. Additionally, interactions with the biotransformation of other compounds at the cytochrome P450 (CYP) system have been observed. Thus, the discovery of new substances or derivatives with less side effects is of great interest. In the present study the influence of a four-week daily oral administration of 2 mg/kg body weight ciprofibrate (CAS 52214-84-3) or of 100 mg/kg body weight clofibric acid (CAS 882-09-7) was compared to that of the respective doses of their newly synthesized glycine conjugates in adult male lean and obese Zucker rats. Although obese rats displayed distinctly higher serum lipid concentrations, after fibrate treatment values were significantly lowered in lean animals only. Livers of obese rats were significantly enlarged, histologically showing a fine-droplet like fatty degeneration and an increase in glycogen content, but no signs of inflammation. After fibrate administration histologically a hypertrophy, an eosinophilia, a reduced glycogen content and also hepatocyteapoptosis were observed. Livers of obese rats displayed higher CYP1A1 andCYP2E1 expression, but lower immunostaining for CYP2B1 and CYP3A2. No differences between the two groups of rats were seen with respect to CYP4A1 expression. Due to fibrate treatment especially CYP2E1 and CYP4A1, but also CYP1A1, 2B1 and 3A2 were induced. Resulting CYP mediated monooxygenase activities were also elevated in most cases. In general, effects of clofibric acid and clofibric acid glycinate (CAS 4896-55-3) were less distinct than those of ciprofibrate and its glycinate (CAS 640772-36-7). With no parameterinvestigated major differences were seen between the parent fibrates and their glycine conjugates. Thus, the

  15. Alpha-Lipoic Acid Reduces LDL-Particle Number and PCSK9 Concentrations in High-Fat Fed Obese Zucker Rats

    PubMed Central

    Carrier, Bradley; Wen, Shin; Zigouras, Sophia; Browne, Richard W.; Li, Zhuyun; Patel, Mulchand S.; Williamson, David L.; Rideout, Todd C.

    2014-01-01

    We characterized the hypolipidemic effects of alpha-lipoic acid (LA, R-form) and examined the associated molecular mechanisms in a high fat fed Zucker rat model. Rats (n = 8) were assigned to a high fat (HF) diet or the HF diet with 0.25% LA (HF-LA) for 30 days and pair fed to remove confounding effects associated with the anorectic properties of LA. Compared with the HF controls, the HF-LA group was protected against diet-induced obesity (102.5±3.1 vs. 121.5±3.6,% change BW) and hypercholesterolemia with a reduction in total-C (−21%), non-HDL-C (−25%), LDL-C (−16%), and total LDL particle number (−46%) and an increase in total HDL particles (∼22%). This cholesterol-lowering response was associated with a reduction in plasma PCSK9 concentration (−70%) and an increase in hepatic LDLr receptor protein abundance (2 fold of HF). Compared with the HF-fed animals, livers of LA-supplemented animals were protected against TG accumulation (−46%), likely through multiple mechanisms including: a suppressed lipogenic response (down-regulation of hepatic acetyl-CoA carboxylase and fatty acid synthase expression); enhanced hepatic fat oxidation (increased carnitine palmitoyltransferase Iα expression); and enhanced VLDL export (increased hepatic diacylglycerol acyltransferase and microsomal triglyceride transfer protein expression and elevated plasma VLDL particle number). Study results also support an enhanced fatty acid uptake (2.8 fold increase in total lipase activity) and oxidation (increased CPT1β protein abundance) in muscle tissue in LA-supplemented animals compared with the HF group. In summary, in the absence of a change in caloric intake, LA was effective in protecting against hypercholesterolemia and hepatic fat accumulation under conditions of strong genetic and dietary predisposition toward obesity and dyslipidemia. PMID:24595397

  16. Deposition of dietary fatty acids in young Zucker rats fed a cafeteria diet.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1992-10-01

    The content and accretion of fatty acids in 30, 45 and 60-day-old Zucker lean Fa/? and obese fa/fa rats fed either reference chow or a cafeteria diet has been studied, together with their actual fatty acid intake during each period. Diet had little overall effect on the pattern of deposition of fatty acids, but quantitatively the deposition of fat was much higher in cafeteria-fed rats. The fat-rich cafeteria diet allowed the direct incorporation of most fatty acids into the rat lipids, whilst chow feeding activated lipogenesis and the deposition of a shorter chain and more saturated pattern of fatty acids. Genetic, obesity induced a significant expansion of net lipogenesis when compared with lean controls. Cafeteria-fed obese rats accrued a high proportion of fatty acids, which was close to that ingested, but nevertheless showed a net de novo synthesis of fatty acids. It is postulated that the combined effects of genetic obesity and a fat-rich diet result in high rates of fat accretion with limited net lipogenesis. Lean Zucker rats show a progressive impairment of their delta 5-desaturase system, a situation also observed in obese rats fed a reference diet. In Zucker obese rats, cafeteria feeding resulted in an alteration of the conversion of C18:2 into C20:3. The cafeteria diet fully compensated for these drawbacks by supplying very high amounts of polyunsaturated fatty acids.

  17. Effect of a soluble cocoa fiber-enriched diet in Zucker fatty rats.

    PubMed

    Sánchez, David; Moulay, Leila; Muguerza, Begoña; Quiñones, Mar; Miguel, Marta; Aleixandre, Amaya

    2010-06-01

    The effects of a soluble cocoa fiber (SCF) were studied in Zucker fatty rats. Two groups of Zucker fatty rats were fed the following diets: standard diet and 5% SCF-enriched diet. A group of Zucker lean rats fed the standard diet was used for results comparison with obese Zucker animals. Solid and liquid intakes, body weight, plasma glucose, lipid profile, and systolic (SBP) and diastolic (DBP) blood pressure were recorded weekly. At the end of the experimental period insulin was determined, and fat apparent digestibility (FAD) and insulin resistance were calculated. The Zucker fatty rats fed 5% SCF-enriched diet showed less weight gain and food intake than those fed the standard diet. The group fed the fiber-enriched diet showed lower values of the total cholesterol/high-density lipoprotein cholesterol ratio and triglyceride levels than the standard group. FAD was also lower in the fiber group. Both SBP and DBP were decreased. In addition, SCF reduced plasma glucose and insulin, and as a consequence the insulin resistance was also decreased. Our data demonstrate that SCF resulted in an improvement of the studied risk factors associated with cardiometabolic disorders.

  18. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats.

    PubMed

    Drotningsvik, Aslaug; Mjøs, Svein A; Pampanin, Daniela M; Slizyte, Rasa; Carvajal, Ana; Remman, Tore; Høgøy, Ingmar; Gudbrandsen, Oddrun A

    2016-10-01

    The world's fisheries and aquaculture industries produce vast amounts of protein-containing by-products that can be enzymatically hydrolysed to smaller peptides and possibly be used as additives to functional foods and nutraceuticals targeted for patients with obesity-related metabolic disorders. To investigate the effects of fish protein hydrolysates on markers of metabolic disorders, obese Zucker fa/fa rats consumed diets with 75 % of protein from casein/whey (CAS) and 25 % from herring (HER) or salmon (SAL) protein hydrolysate from rest raw material, or 100 % protein from CAS for 4 weeks. The fatty acid compositions were similar in the experimental diets, and none of them contained any long-chain n-3 PUFA. Ratios of lysine:arginine and methionine:glycine were lower in HER and SAL diets when compared with CAS, and taurine was detected only in fish protein hydrolysate diets. Motifs with reported hypocholesterolemic or antidiabetic activities were identified in both fish protein hydrolysates. Rats fed HER diet had lower serum HDL-cholesterol and LDL-cholesterol, and higher serum TAG, MUFA and n-3:n-6 PUFA ratio compared with CAS-fed rats. SAL rats gained more weight and had better postprandial glucose regulation compared with CAS rats. Serum lipids and fatty acids were only marginally affected by SAL, but adipose tissue contained less total SFA and more total n-3 PUFA when compared with CAS. To conclude, diets containing hydrolysed rest raw material from herring or salmon proteins may affect growth, lipid metabolism, postprandial glucose regulation and fatty acid composition in serum and adipose tissue in obese Zucker rats.

  19. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    PubMed

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  20. Gene expression and adiposity are modified by soy protein in male Zucker diabetic fatty rats.

    PubMed

    Banz, William J; Davis, Jeremy; Peterson, Richard; Iqbal, Muhammad J

    2004-12-01

    It has earlier been demonstrated that soy protein diets ameliorate the diabetic phenotype in obese Zucker rats. In this study, we further investigated physiological changes related to adiposity in male Zucker diabetic fatty rats consuming soy-based diets and compared these diets with the insulin-sensitizing drug, rosiglitazone. Transcript abundance of known genes was assessed in the livers to identify potential molecular connections between soy diets and adiposity. Male Zucker diabetic fatty rats were assigned to casein (C) protein, low-isoflavone soy (LIS) protein, high-isoflavone soy (HIS) protein, or C + rosiglitazone (CR) diets. Compared with the C diet, the LIS diet decreased plasma lipids and increased body weight, but did not change liver weight or carcass adiposity. HIS decreased plasma lipids, liver weight, and body weight. CR decreased plasma lipids and increased carcass adiposity and body weight with no effect on liver weight. In LIS livers, 15 genes involved in signaling and lipid metabolism were up-regulated 2-fold or higher. In HIS livers, seven genes had a 2-fold or higher change in abundance. However, in CR livers, none of the genes was significantly changed compared with the C diet. There appears to be a distinct change in gene expression associated with soy diets as compared with C-based diets and rosiglitazone treatment.

  1. Leptin receptor-deficient obese Zucker rats reduce their food intake in response to a systemic supply of calories from glucose.

    PubMed

    Gilbert, Marc; Magnan, Christophe; Turban, Sophie; André, Jocelyne; Guerre-Millo, Michèle

    2003-02-01

    It has been established that leptin exerts a negative control on food intake, allowing one to maintain stable caloric intake over time. The aim of the present study was to investigate whether leptin regulates food intake when a supply of calories is provided by the systemic route. Experiments were carried out in leptin receptor-deficient obese fa/fa rats and lean Fa/fa controls. In both groups, 48 h of glucose infusion reduced food intake in proportion to caloric supply, resulting in virtually no change in total caloric intake as compared to before the infusion. This hypophagic response was reproduced without adding systemic calories, but by increasing glucose and insulin concentrations specifically in the brain through carotid artery infusion. Concomitant intracerebroventricular administration of 5-(tetradecyloxy)-2-furoic acid, an acetyl CoA carboxylase inhibitor that precludes malonyl-CoA synthesis, abolished the restriction of feeding in carotid-infused lean and obese rats. These data indicate that a supply of calories via glucose infusion induces a hypophagic response independent of leptin signaling in the rat, and support the hypothesis that a rise in central malonyl-CoA, triggered by increased glucose and insulin concentrations, participates in this adaptation. This process could contribute to the limiting of hyperphagia, primarily when leptin signaling is altered, as in the obese state.

  2. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  3. Genetic profiling of two phenotypically distinct outbred rats derived from a colony of the Zucker fatty rats maintained at Tokyo Medical University

    PubMed Central

    Nakanishi, Satoshi; Kuramoto, Takashi; Kashiwazaki, Naomi; Yokoi, Norihide

    2016-01-01

    The Zucker fatty (ZF) rat is an outbred rat and a well-known model of obesity without diabetes, harboring a missense mutation (fatty, abbreviated as fa) in the leptin receptor gene (Lepr). Slc:Zucker (Slc:ZF) outbred rats exhibit obesity while Hos:ZFDM-Leprfa (Hos:ZFDM) outbred rats exhibit obesity and type 2 diabetes. Both outbred rats have been derived from an outbred ZF rat colony maintained at Tokyo Medical University. So far, genetic profiles of these outbred rats remain unknown. Here, we applied a simple genotyping method using Ampdirect reagents and FTA cards (Amp-FTA) in combination with simple sequence length polymorphisms (SSLP) markers to determine genetic profiles of Slc:ZF and Hos:ZFDM rats. Among 27 SSLP marker loci, 24 loci (89%) were fixed for specific allele at each locus in Slc:ZF rats and 26 loci (96%) were fixed in Hos:ZFDM rats, respectively. This indicates the low genetic heterogeneity in both colonies of outbred rats. Nine loci (33%) showed different alleles between the two outbred rats, suggesting considerably different genetic profiles between the two outbred rats in spite of the same origin. Additional analysis using 72 SSLP markers further supported these results and clarified the profiles in detail. This study revealed that genetic profiles of the Slc:ZF and Hos:ZFDM outbred rats are different for about 30% of the SSLP marker loci, which is the underlying basis for the phenotypic difference between the two outbred rats. PMID:27795491

  4. Effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise on markers of bone metabolism, microarchitecture and turnover in obese Zucker rats.

    PubMed

    Nebot, Elena; Aparicio, Virginia A; Coll-Risco, Irene; Camiletti-Moirón, Daniel; Schneider, Johannes; Kapravelou, Garyfallia; Heimel, Patrick; Martínez, Rosario; Andrade, Ana; Slezak, Paul; Redl, Heinz; Porres, Jesús M; López-Jurado, María; Pietschmann, Peter; Aranda, Pilar

    2016-11-01

    Weight loss is a public health concern in obesity-related diseases such as metabolic syndrome, and the protein level of the diets seem to be crucial for the development and maintenance of bone. The nature of exercise and whether exercise in combination with moderately high-protein dietary interventions could protect against potential bone mass deficits remains unclear. To investigate the effects of a moderately high-protein diet and interval aerobic training combined with strength-endurance exercise (IASE) protocol on bone status, and to assess potential interaction effects (i.e. diet*IASE). Male Zucker fatty rats were randomized distributed into 4 groups (n=8): normoprotein+sedentary; normoprotein+exercise; moderately high-protein+sedentary, and moderately high-protein+exercise. Training groups conducted an IASE program, 5days/week for 2months. Markers of bone metabolism were measured in plasma. Parameters of bone mass and 3D outcomes for trabecular and cortical bone microarchitecture were assessed by micro-computed tomography. Femur length, plasma osteocalcin, sclerostin, osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, insulin, leptin, PTH, uric acid and urinary phosphorus levels were lower in the moderately high-protein compared to the normoprotein groups (all, p<0.05), whereas plasma alkaline phosphatase, aspartate aminotransferase, alanine transaminase, and urinary uric acid concentrations, and cortical total volume (TV) and bone volume (BV) were higher in the moderately high-protein (all, p<0.01). Final body weight and alkaline phosphatase levels were lower in the exercise compared to the sedentary (both, p<0.05), whereas femur length and weight, aminoterminal propeptides of type I procollagen and C-terminal telopeptides of type I collagen concentrations, and cortical TV and BV were higher in the exercise compared to the sedentary groups (all, p<0.05). The combination of interventions may be effective to enhance trabecular bone

  5. Effects of a-high- and low-diadzein diet on liver steatosis and serum adipokines in female obese Zucker rats

    Rates of obesity worldwide are increasing. Obesity is associated with adipokine dysregulation and insulin resistance, which are factors that increase the risk of developing chronic diseases. As such, the risk for non-alcoholic fatty liver disease (NAFLD) markedly increases in the presence of obesity...

  6. A diet containing a high- versus low-daidzein level does not protect against liver steatosis in the obese Zucker rat model

    The prevalence of obesity is increasing worldwide. Obesity increases the risk for non-alcoholic fatty liver disease through adipokine dysregulation and inflammation. Previously, we reported a high-isoflavone soy protein isolate (HISPI) diet was associated with significantly heavier body weights and ...

  7. Rice endosperm protein slows progression of fatty liver and diabetic nephropathy in Zucker diabetic fatty rats.

    PubMed

    Kubota, Masatoshi; Watanabe, Reiko; Yamaguchi, Miki; Hosojima, Michihiro; Saito, Akihiko; Fujii, Mikio; Fujimura, Shinobu; Kadowaki, Motoni

    2016-10-01

    We previously reported that rice endosperm protein (REP) has renoprotective effects in Goto-Kakizaki rats, a non-obese diabetic model. However, whether these effects occur in obese diabetes remains unclear. This study aimed to clarify the effects of REP on obese diabetes, especially on fatty liver and diabetic nephropathy, using the obese diabetic model Zucker diabetic fatty (ZDF) rats. In total, 7-week-old male ZDF rats were fed diets containing 20 % REP or casein (C) for 8 weeks. Changes in fasting blood glucose levels and urinary markers were monitored during the experimental period. Hepatic lipids and metabolites were measured and renal glomeruli were observed morphologically. HbA1c levels were significantly lower in rats fed REP, compared with C (P<0·05). Compared with C in the liver, REP prevented lipid accumulation (total lipid, TAG and total cholesterol, P<0·01). Liver metabolome analysis indicated that levels of metabolites associated with glycolysis, the pentose phosphate pathway and carnitine metabolism were significantly greater in the REP group than in the C group (P<0·05), suggesting activation of both glucose catabolism and fatty acid oxidation. The metabolite increases promoted by REP may contribute to suppression of liver lipid accumulation. Urinary excretion of albumin and N-acetyl-β-d-glucosaminidase was significantly reduced in rats fed REP for 8 weeks (P<0·01). In addition, there was a distinct suppression of mesangial matrix expansion and glomerular hypertrophy in response to REP (P<0·01). Thus, REP had preventive effects on obese diabetes, fatty liver and diabetic nephropathy.

  8. Impaired Ca2+ handling in penile arteries from prediabetic Zucker rats: involvement of Rho kinase.

    PubMed

    Villalba, Nuria; Contreras, Cristina; Hernández, Medardo; García-Sacristán, Albino; Prieto, Dolores

    2011-06-01

    Diabetes is associated with an increased vascular tone usually involved in the pathogenesis of diabetic cardiovascular complications such as hypertension, stroke, coronary artery disease, or erectile dysfunction (ED). Enhanced contractility of penile erectile tissue has been associated with augmented activity of the RhoA/Rho kinase (RhoK) pathway in models of diabetes-associated ED. The present study assessed whether abnormal vasoconstriction in penile arteries from prediabetic obese Zucker rats (OZRs) is due to changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) and/or in myofilament Ca(2+) sensitivity. Penile arteries from OZRs and lean Zucker rats (LZRs) were mounted on microvascular myographs for simultaneous measurements of [Ca(2+)](i) and tension. The relationships between [Ca(2+)](i) and contraction for the α(1)-adrenergic vasoconstrictor phenylephrine (PE) were left shifted and steeper in OZRs compared with LZRs, although the magnitude of the contraction was similar in both groups. In contrast, the vasoconstriction induced by the thromboxane A(2) receptor agonist U-46619 was augmented in arteries from OZRs, and this increase was associated with an increase in both the sensitivity and maximum responses to Ca(2+). The RhoK inhibitor Y-27632 (10 μM) reduced the vasoconstriction induced by PE to a greater extent in OZRs than in LZRs, without altering Ca(2+). Y-27632 inhibited with a greater potency the contraction elicited by high KCl in arteries from OZRs compared with LZRs without changing [Ca(2+)](i). RhoK-II expression was augmented in arteries from OZRs. These results suggest receptor-specific changes in the Ca(2+) handling of penile arteries under conditions of metabolic syndrome. Whereas augmented vasoconstriction upon activation of the thromboxane A(2) receptor is coupled to enhanced Ca(2+) entry, a RhoK-mediated enhancement of myofilament Ca(2+) sensitivity is coupled with the α(1)-adrenergic vasoconstriction in penile arteries from OZRs.

  9. Voluntary running exercise prevents β-cell failure in susceptible islets of the Zucker diabetic fatty rat.

    PubMed

    Delghingaro-Augusto, Viviane; Décary, Simon; Peyot, Marie-Line; Latour, Martin G; Lamontagne, Julien; Paradis-Isler, Nicolas; Lacharité-Lemieux, Marianne; Akakpo, Huguette; Birot, Olivier; Nolan, Christopher J; Prentki, Marc; Bergeron, Raynald

    2012-01-15

    Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.

  10. Evaluation of Visceral Adipose Tissue Oxygenation by Blood Oxygen Level-Dependent MRI in Zucker Diabetic Fatty Rats.

    PubMed

    Shi, Hong-Jian; Li, Yan-Feng; Ji, Wen-Jie; Lin, Zhi-Chun; Cai, Wei; Chen, Tao; Yuan, Bin; Niu, Xiu-Long; Li, Han-Ying; Shu, Wen; Li, Yu-Ming; Yuan, Fei; Zhou, Xin; Zhang, Zhuoli

    2018-06-01

    This study aimed to investigate the feasibility of blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to evaluate visceral adipose tissue (VAT) oxygenation in Zucker diabetic fatty (ZDF) rats and its associations with systemic metaflammation. Five-week-old ZDF rats and Zucker lean (ZL) rats were fed a high-fat diet (HFD) for 18 weeks. A baseline BOLD-MRI scan of perirenal adipose tissue was performed after 8 weeks of HFD feeding, and then the rats were randomized to receive pioglitazone or a vehicle for the following 10 weeks. At sacrifice, BOLD-MRI scan, Hypoxyprobe-1 injection, and circulating T helper 17 (Th17), regulatory T (Treg) cells, and monocyte subtype flow cytometry analysis were performed. HFD feeding led to a significant increase in VAT BOLD-MRI R2* signals (20.14 ± 0.23 per second vs. 21.53 ± 0.20 per second; P = 0.012), an indicator for decreased oxygenation. R2* signal was significantly correlated with VAT pimonidazole adduct-positive area, insulin resistance, Th17 and Treg cells, CD43 + and CD43+ + monocyte subtypes, and VAT macrophage infiltration. Pioglitazone treatment improved the insulin resistance and was associated with a delayed progression of VAT oxygenation. This work demonstrated the feasibility of BOLD-MRI for detecting the VAT oxygenation status in ZDF rats, and the BOLD-MRI signals were associated with insulin resistance and systemic metaflammation in ZDF rats during the development of obesity. © 2018 The Obesity Society.

  11. Impaired Laparotomy Wound Healing in Obese Rats

    PubMed Central

    Xing, Liyu; Culbertson, Eric J.; Wen, Yuan; Robson, Martin C.

    2015-01-01

    Background Obesity increases the risk of laparotomy dehiscence and incisional hernia. The aim of this study was to measure the biological effect of obesity on laparotomy wound healing and the formation of incisional hernias. Methods Normal-weight Sprague–Dawley (SD) and obese Zucker rats were used in an established laparotomy wound healing and incisional ventral hernia model. Mechanical testing was performed on abdominal wall strips collected from laparotomy wounds. Hernia size was measured by digital imaging. Picrosirius staining for collagen isoforms was observed with polarized microscopy. Abdominal wall fibroblasts were cultured to measure collagen matrix remodeling and proliferation. Results Laparotomy wound healing was significantly impaired in obese rats. Mechanical strength was lower than in normal-weight rats. Yield load was reduced in the obese group at all time points. Picrosirius red staining showed increased immature type III collagen content and disorganized type I collagen fibers within laparotomy wounds of obese rats. Wound size was significantly larger in the obese group. Collagen matrix remodeling was impaired with fibroblasts from obese rats, but there was no difference in fibroblast proliferation between the obese and normal-weight groups. Conclusions We observed for the first time that laparotomy wound healing is impaired in obese rats. The recovery of laparotomy wound strength is delayed due to abnormal collagen maturation and remodeling, possibly due to a defect in fibroblast function. Strategies to improve outcomes for laparotomy wound healing in obese patients should include correcting the wound healing defect, possibly with growth factor or cell therapy. PMID:21347822

  12. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  13. Oral Administration of Interferon Tau Enhances Oxidation of Energy Substrates and Reduces Adiposity in Zucker Diabetic Fatty Rats

    PubMed Central

    Tekwe, Carmen D.; Lei, Jian; Yao, Kang; Rezaei, Reza; Li, Xilong; Dahanayaka, Sudath; Carroll, Raymond J.; Meininger, Cynthia J.; Bazer, Fuller W.; Wu, Guoyao

    2013-01-01

    Male Zucker diabetic fatty (ZDF) rats were used to study effects of oral administration of interferon tau (IFNT) in reducing obesity. Eighteen ZDF rats (28 days of age) were assigned randomly to receive 0, 4 or 8 μg IFNT/kg body weight (BW) per day (n=6/group) for 8 weeks. Water consumption was measured every two days. Food intake and BW were recorded weekly. Energy expenditure in 4-, 6-, 8-, and 10-week-old rats was determined using indirect calorimetry. Starting at 7 weeks of age, urinary glucose and ketone bodies were tested daily. Rates of glucose and oleate oxidation in liver, brown adipose tissue, and abdominal adipose tissue, leucine catabolism in skeletal muscle, and lipolysis in white and brown adipose tissues were greater for rats treated with 8 μg IFNT/kg BW/day in comparison with control rats. Treatment with 8 μg IFNT/kg BW/day increased heat production, reduced BW gain and adiposity, ameliorated fatty liver syndrome, delayed the onset of diabetes, and decreased concentrations of glucose, free fatty acids, triacylglycerol, cholesterol, and branched-chain amino acids in plasma, compared to control rats. Oral administration of 8 μg IFNT/kg BW/day ameliorated oxidative stress in skeletal muscle, liver and adipose tissue, as indicated by decreased ratios of oxidized glutathione to reduced glutathione and increased concentrations of the antioxidant tetrahydrobiopterin. These results indicate that IFNT stimulates oxidation of energy substrates and reduces obesity in ZDF rats and may have broad important implications for preventing and treating obesity-related diseases in mammals. PMID:23804503

  14. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats.

    PubMed

    Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D

    2012-11-12

    Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Three groups of Zucker Diabetic Fatty (ZDF) rats were fed diets containing either 5% non-viscous cellulose (control), low viscosity HPMC (LV-HPMC) or high viscosity HPMC (HV- HPMC) for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle fatty acid oxidation by HPMC. Consumption of the

  15. Endothelin antagonism improves hepatic insulin sensitivity associated with insulin signaling in Zucker fatty rats.

    PubMed

    Berthiaume, Nathalie; Carlson, Christian J; Rondinone, Cristina M; Zinker, Bradley A

    2005-11-01

    In the present study, we investigated the effects of long-term treatment with the endothelin (ET) antagonist atrasentan, an ET(A)-selective antagonist, on whole body glucose metabolism and insulin signaling in a commonly used model of insulin resistance, the Zucker fatty rat. Zucker lean and fatty rats were maintained for 6 weeks on either control or atrasentan-treated water. Euglycemic-hyperinsulinemic clamps (4 mU/kg per minute) were performed at the end of the 6-week treatment on a subset of rats (n=10/treatment). In another subset (n=5/treatment), an insulin tolerance test was performed; liver and muscle tissues were harvested 10 minutes following the challenge for further analysis. Results of the clamps demonstrated that long-term atrasentan treatment significantly increased whole body glucose metabolism in fatty rats compared with vehicle control subjects. Insulin-induced insulin receptor substrate 1 tyrosine and protein kinase B serine phosphorylation were significantly reduced in the liver and muscle of fatty animals compared with their lean littermates. This reduction was overcome with atrasentan treatment in the liver but not in the muscle. There was no difference between lean and fatty animals, however, in insulin receptor substrate 1 and protein kinase B protein expression in the liver and muscle and no effect by atrasentan. In contrast, expression of the regulatory subunit of PI-3 kinase (p85alpha) was significantly increased in the liver but not in the muscle of fatty animals compared with their lean littermates and this was normalized to levels of lean animals with atrasentan treatment. These findings indicate that long-standing ET antagonism improves whole body glucose metabolism in Zucker fatty rats through improvements in insulin signaling in the liver. These results indicate that therapeutic ET antagonism may assist in correcting the insulin-resistant state.

  16. Azilsartan improves glycemic status and reduces kidney damage in zucker diabetic fatty rats.

    PubMed

    Hye Khan, Md Abdul; Neckář, Jan; Haines, Jasmine; Imig, John D

    2014-08-01

    Azilsartan medoxomil (AZL-M), an angiotensin II receptor blocker, demonstrates antihypertensive and organ protective effects in hypertension. We investigated the efficacy of AZL-M to ameliorate metabolic syndrome and kidney damage associated with type 2 diabetes using Zucker diabetic fatty (ZDF) rats. ZDF rats were treated with vehicle or AZL-M for 8 weeks. Zucker diabetic lean (ZDL) rats were used as controls. Urine and plasma samples were collected for biochemical analysis, and kidney tissues were used for histopathological and immunohistopathological examination at the end of the 8-week protocol. ZDF rats were diabetic with hyperglycemia and impaired glucose tolerance, and AZL-M ameliorated the diabetic phenotype. ZDF rats were hypertensive compared with ZDL rats (181±6 vs. 129±7mm Hg), and AZL-M decreased blood pressure in ZDF rats (116±7mm Hg). In ZDF rats, there was marked renal damage with elevated proteinuria, albuminuria, nephrinuria, 2-4-fold higher tubular cast formation, and glomerular injury compared with ZDL rats. AZL-M treatment reduced renal damage in ZDF rats. ZDF rats demonstrated renal inflammation and oxidative stress with elevated urinary monocyte chemoattractant protein 1 excretion, renal infiltration of macrophages, and elevated kidney malondialdehyde levels. AZL-M reduced oxidative stress and inflammation in ZDF rats. Overall, we demonstrate that AZL-M attenuates kidney damage in type 2 diabetes. We further demonstrate that anti-inflammatory and antioxidative activities of AZL-M contribute to its kidney protective action. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-{alpha}

    SciT

    Hsun-Wei Huang, Tom; Peng Gang; Qian Li, George

    Salacia oblonga (SO) root is an Ayurvedic medicine with anti-diabetic and anti-obese properties. Peroxisome proliferator-activated receptor (PPAR)-{alpha}, a nuclear receptor, plays an important role in maintaining the homeostasis of lipid metabolism. Here, we demonstrate that chronic oral administration of the water extract from the root of SO to Zucker diabetic fatty (ZDF) rats, a genetic model of type 2 diabetes and obesity, lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. By contrast, the extract hadmore » no effect on plasma triglyceride and TC levels in fasted ZDF rats. After olive oil administration to ZDF the extract also inhibited the increase in plasma triglyceride levels. These results suggest that SO extract improves postprandial hyperlipidemia and hepatic steatosis in ZDF rats. Additionally, SO treatment enhanced hepatic expression of PPAR-{alpha} mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SO extract and its main component mangiferin activated PPAR-{alpha} luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages; these effects were completely suppressed by a selective PPAR-{alpha} antagonist MK-886. The findings from both in vivo and in vitro suggest that SO extract functions as a PPAR-{alpha} activator, providing a potential mechanism for improvement of postprandial hyperlipidemia and hepatic steatosis in diabetes and obesity.« less

  18. Insulin-sensitizing effect of rosiglitazone (BRL-49653) by regulation of glucose transporters in muscle and fat of Zucker rats.

    PubMed

    Kramer, D; Shapiro, R; Adler, A; Bush, E; Rondinone, C M

    2001-11-01

    Thiazolidinediones (TZDs), a class of antidiabetic agents, are specific agonists of peroxisome proliferator activator receptor (PPARgamma). However, their mechanisms of action, and the in vivo target tissues that mediate insulin sensitization are not well understood. The aim of this study was to investigate the role of glucose transporters (GLUT-1 and GLUT-4) in the TZD insulin-sensitizer action. The effects of rosiglitazone treatment were studied using Zucker (fa/fa) rats after 7 days of oral dosing (3.6 mg/kg/d). Rosiglitazone lowered (approximate 80%) basal plasma insulin levels in obese rats and substantially corrected (approximately 50%) insulin resistance based upon results from hyperinsulinemic euglycemic clamp studies. GLUT-4 protein levels were reduced (approximately 75%) in adipose tissue of obese rats and treatment with rosiglitazone normalized them. Interestingly, GLUT-1 protein content was increased in adipose tissue ( thick approximate 150%) and skeletal muscle (approximately 50%) of obese rats and treatment with rosiglitazone increased it even more by 5.5-fold in fat and by 2.5-fold in muscle. Consistent with these results, basal (GLUT-1-mediated) transport rate of 3-O-methyl-D-glucose into isolated epitrochlearis muscle was elevated in response to rosiglitazone. Incubation of fully differentiated 3T3-L1 adipocytes with the drug for 7 days increased the levels of GLUT-1 protein, but did not affect GLUT-4 levels. In conclusion, rosiglitazone may improve insulin resistance in vivo by normalizing GLUT-4 protein content in adipose tissue and increasing GLUT-1 in skeletal muscle and fat. While the drug has a direct effect on GLUT-1 protein expression in vitro without a direct effect on GLUT-4 suggests that direct and indirect effects of rosiglitazone on glucose transporters may have an important role in improving insulin resistance in vivo. Copyright 2001 by W.B. Saunders Company

  19. Behavioural, morphological and electrophysiological assessment of the effects of type 2 diabetes mellitus on large and small nerve fibres in Zucker diabetic fatty, Zucker lean and Wistar rats.

    PubMed

    Garcia-Perez, E; Schönberger, T; Sumalla, M; Stierstorfer, B; Solà, R; Doods, H; Serra, J; Gorodetskaya, N

    2018-04-20

    Peripheral neuropathy is a common complication in type 2 diabetes mellitus (T2DM). The most common presentation is in the form of a distal axonal sensory-motor polyneuropathy that involves large and small nerve fibres in variable proportion. Zucker Diabetic Fatty (ZDF), Zucker Lean (ZL) and Wistar Han (WH) rats were used to assess the behavioural, morphological and electrophysiological effects that T2DM have on peripheral large and small nerve fibres of 6- to 40-week-old rats. ZDF rats presented mechanical hypersensitivity that initially worsened in parallel to the progression of diabetes and eventually reverted at later stages of the disease. The reversal from hypersensitivity to hyposensitivity paralleled a reduction in the number of intraepithelial skin nerve terminals and in the nerve fibre lengths. However, no increased levels of degeneration of dorsal root ganglion neurons were observed. Nerve conduction studies showed a reduction in sensory and motor nerve conduction velocity (CV) in hyperglycaemic ZDF rats. Microneurography showed significant alterations in several parameters of activity-dependent slowing (ADS) of mechano-insensitive C-nociceptors in ZDF rats. Surprisingly, some of these changes were also observed in ZL rats. Moreover, we found spontaneous activity in all three strains implying that C-nociceptors become hyperexcitable and spontaneously active not only in ageing hyperglycaemic ZDF rats but also in age-matched and apparently normoglycaemic ZL and WH rats fed with the same diet. ZDF rats presented a diabetic neuropathy involving large and small nerve fibres; additionally, ZL and WH rats also showed early small abnormalities in C-fibres, clearly detected by microneurography SIGNIFICANCE: This study provides a functional description of large and small nerve fibre function in a diabetic model that recapitulates many of the findings observed in patients suffering from type 2 diabetes mellitus. © 2018 European Pain Federation - EFIC®.

  20. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats.

    PubMed

    Tan, Yi; Kim, Jane; Cheng, Jing; Ong, Madeleine; Lao, Wei-Guo; Jin, Xing-Liang; Lin, Yi-Guang; Xiao, Linda; Zhu, Xue-Qiong; Qu, Xian-Qin

    2017-06-07

    To investigate protective effects and molecular mechanisms of green tea polyphenols (GTP) on non-alcoholic fatty liver disease (NAFLD) in Zucker fatty (ZF) rats. Male ZF rats were fed a high-fat diet (HFD) for 2 wk then treated with GTP (200 mg/kg) or saline (5 mL/kg) for 8 wk, with Zucker lean rat as their control. At the end of experiment, serum and liver tissue were collected for measurement of metabolic parameters, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), inflammatory cytokines and hepatic triglyceride and liver histology. Immunoblotting was used to detect phosphorylation of AMP-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1c (SREBP1c). Genetically obese ZF rats on a HFD presented with metabolic features of hepatic pathological changes comparable to human with NAFLD. GTP intervention decreased weight gain (10.1%, P = 0.052) and significantly lowered visceral fat (31.0%, P < 0.01). Compared with ZF-controls, GTP treatment significantly reduced fasting serum insulin, glucose and lipids levels. Reduction in serum ALT and AST levels (both P < 0.01) were observed in GTP-treated ZF rats. GTP treatment also attenuated the elevated TNFα and IL-6 in the circulation. The increased hepatic TG accumulation and cytoplasmic lipid droplet were attenuated by GTP treatment, associated with significantly increased expression of AMPK-Thr172 ( P < 0.05) and phosphorylated ACC and SREBP1c (both P < 0.05), indicating diminished hepatic lipogenesis and triglycerides out flux from liver in GTP treated rats. The protective effects of GTP against HFD-induced NAFLD in genetically obese ZF rats are positively correlated to reduction in hepatic lipogenesis through upregulating the AMPK pathway.

  1. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    PubMed Central

    Raza, Haider; John, Annie; Howarth, Frank C.

    2012-01-01

    The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old) rat heart compared to age matched Zucker lean (ZL) controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats). An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention. PMID:23203193

  2. Potential utility of combination therapy with nateglinide and telmisartan for metabolic derangements in Zucker Fatty rats.

    PubMed

    Kajioka, T; Miura, K; Kitahara, Y; Yamagishi, S

    2007-12-01

    The metabolic syndrome is strongly associated with insulin resistance and has been recognized as a cluster of risk factors for cardiovascular disease. Insulin resistance and/or impaired early-phase insulin secretion are major determinants of postprandial hyperglycemia. In this study, we investigated the potential utility of combination therapy with telmisartan, an angiotensin II receptor blocker and nateglinide, a rapid-onset/short-duration insulinotropic agent, for the treatment of postprandial hyperglycemia and metabolic derangements in Zucker Fatty (ZF) rats. ZF rats fed twice daily were given vehicle, 50 mg/kg of nateglinide, 5 mg/kg of telmisartan, or both for 6 weeks. Combination therapy with nateglinide and telmisartan for 2 weeks ameliorated postprandial hyperglycemia in ZF rats fed twice daily. Furthermore, 6-week treatment with nateglinide and telmisartan not only decreased fasting plasma insulin, triglycerides, and free fatty acid levels, but also improved the responses of blood glucose to insulin and subsequently reduced the decremental glucose areas under the curve in the ZF rats. Combination therapy also restored the decrease of plasma adiponectin levels in the ZF rats. Monotherapy with nateglinide or telmisartan alone didnot significantly improve these metabolic parameters. These observations demonstrate that combination therapy with nateglinide and telmisartan may improve the metabolic derangements by ameliorating early phase of insulin secretion as well as insulin resistance in ZF rats fed twice daily. Our present findings suggest that the combination therapy with nateglinide and telmisartan could be a promising therapeutic strategy for the treatment of the metabolic syndrome.

  3. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats.

    PubMed

    Jiao, Jian; Bae, Eun Ju; Bandyopadhyay, Gautam; Oliver, Jason; Marathe, Chaitra; Chen, Michael; Hsu, Jer-Yuan; Chen, Yu; Tian, Hui; Olefsky, Jerrold M; Saberi, Maziyar

    2013-04-01

    Gastrointestinal bypass surgeries that result in rerouting and subsequent exclusion of nutrients from the duodenum appear to rapidly alleviate hyperglycemia and hyperinsulinemia independent of weight loss. While the mechanism(s) responsible for normalization of glucose homeostasis remains to be fully elucidated, this rapid normalization coupled with the well-known effects of vagal inputs into glucose homeostasis suggests a neurohormonally mediated mechanism. Our results show that duodenal bypass surgery on obese, insulin-resistant Zucker fa/fa rats restored insulin sensitivity in both liver and peripheral tissues independent of body weight. Restoration of normoglycemia was attributable to an enhancement in key insulin-signaling molecules, including insulin receptor substrate-2, and substrate metabolism through a multifaceted mechanism involving activation of AMP-activated protein kinase and downregulation of key regulatory genes involved in both lipid and glucose metabolism. Importantly, while central nervous system-derived vagal nerves were not essential for restoration of insulin sensitivity, rapid normalization in hepatic gluconeogenic capacity and basal hepatic glucose production required intact vagal innervation. Lastly, duodenal bypass surgery selectively altered the tissue concentration of intestinally derived glucoregulatory hormone peptides in a segment-specific manner. The present data highlight and support the significance of vagal inputs and intestinal hormone peptides toward normalization of glucose and lipid homeostasis after duodenal bypass surgery.

  4. High temperature-ultra performance liquid chromatography-mass spectrometry for the metabonomic analysis of Zucker rat urine.

    PubMed

    Gika, Helen G; Theodoridis, Georgios; Extance, Jon; Edge, Anthony M; Wilson, Ian D

    2008-08-15

    The applicability and potential of using elevated temperatures and sub 2-microm porous particles in chromatography for metabonomics/metabolomics was investigated using, for the first time, solvent temperatures higher than the boiling point of water (up to 180 degrees C) and thermal gradients to reduce the use of organic solvents. Ultra performance liquid chromatography, combined with mass spectrometry, was investigated for the global metabolite profiling of the plasma and urine of normal and Zucker (fa/fa) obese rats (a well established disease animal model). "Isobaric" high temperature chromatography, where the temperature and flow rate follow a gradient program, was developed and evaluated against a conventional organic solvent gradient. LC-MS data were first examined by established chromatographic criteria in order to evaluate the chromatographic performance and next were treated by special peak picking algorithms to allow the application of multivariate statistics. These studies showed that, for urine (but not plasma), chromatography at elevated temperatures provided better results than conventional reversed-phase LC with higher peak capacity and better peak asymmetry. From a systems biology point of view, better group clustering and separation was obtained with a larger number of variables of high importance when using high temperature-ultra performance liquid chromatography (HT-UPLC) compared to conventional solvent gradients.

  5. Thyroid hormone modulates food intake and glycemia via ghrelin secretion in Zucker fatty rats.

    PubMed

    Patel, K; Joharapurkar, A; Dhanesha, N; Patel, V; Kshirsagar, S; Raval, P; Raval, S; Jain, M R

    2014-10-01

    Hyperthyroidism is known to increase food intake and central administration of thyroid hormone shows acute orexigenic effects in rodents. We investigated whether T3 influences appetite and glucose homeostasis by modulating circulating ghrelin, an important orexigenic hormone, in Zucker fatty rats. The acute anorectic effects of T3 and ghrelin mimetic MK-0677 were studied in rats trained for fasting induced food intake. The serum concentration of T3, ghrelin, glucose, triglycerides, and liver glycogen were estimated. The involvement of sympathetic nervous system was evaluated by conducting similar experiments in vagotomized rats. T3 increased food intake and glucose in rats over 4 h, with increase in serum T3 and decrease in liver glycogen. T3 treatment was associated with increase in serum ghrelin. An additive effect on appetite and glucose was observed when T3 (oral) was administered with central (intracerebroventricular) administration of a ghrelin mimetic, MK-0677. Ghrelin antagonist, compound 8a, antagonized the hyperglycemic and hyperphagic effects of T3. In vagotomized rats, T3 did not show increase in appetite as well as glucose. Serum ghrelin levels were unchanged in these animals after T3 treatment. However, T3 showed increase in serum triglyceride levels indicating its peripheral lipolytic effect, in vagotomized as well as sham treated animals. To conclude, acute orexigenic and hyperglycemic effects of T3 are associated with ghrelin secretion and activity. This effect seems to be mediated via vagus nerves, and is independent of glucoregulatory hormones. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Development of insulin resistance and endothelin-1 levels in the Zucker fatty rat.

    PubMed

    Berthiaume, Nathalie; Mika, Amanda K; Zinker, Bradley A

    2003-07-01

    In order to determine the effects of increasing insulin resistance on endothelin-1 (ET-1) levels, Zucker lean and fatty rats were studied at basal and during a complete nutrient meal tolerance test (MTT) at 7, 12, and 15 weeks of age. The fatty rats were mildly hyperglycemic, severely hyperinsulinemic and glucose-intolerant at all ages versus lean animals and this progressed with age within groups, as previously published. Basal ET-1 levels, at 7 weeks, were significantly increased in fatty versus lean rats (3.2+/-0.5 v 2.0+/-0.3 pg/mL, respectively; P<.05); however, we did not observe any significant basal difference at 12 or 15 weeks. At 7 weeks, ET-1 levels between fatty and lean rats were not different during the MTT (15 minutes: 2.9+/-0.4 v 2.7+/-0.7; 120 minutes: 6.5+/-0.8 v 6.6+/-0.5 pg/mL, fatty v lean, respectively). At 12 weeks, though there was no difference in basal levels, fatty rats had higher ET-1 levels during the MTT compared to lean animals (15 minutes: 6.9+/-1.4 v 1.8+/-0.4; 120 minutes: 9.4+/-1.7 v 3.2+/-0.5 pg/mL, respectively; P<.01). At 15 weeks, ET-1 levels during the MTT receded to levels similar to those observed at 7 weeks, which were significantly higher in fatty versus lean rats 15 minutes following the challenge (3.4+/-0.4 v 2.4+/-0.2 pg/mL, respectively; P<.05). In conclusion, ET-1 levels in the Zucker fatty rat: (1) were increased in the early stages of the progression of insulin resistance at 7 weeks, but were unchanged under basal conditions with age thereafter, and (2) were increased under nutrient challenge conditions with advanced insulin resistance up to 12 weeks, and were still significantly but to a lesser degree increased at 15 weeks of age. The explanation for these results and their relationship to the observed insulin resistance is unclear and will require further investigation.

  7. Brown Norway and Zucker Lean Rats Demonstrate Circadian Variation in Ventilation and Sleep Apnea

    PubMed Central

    Fink, Anne M.; Topchiy, Irina; Ragozzino, Michael; Amodeo, Dionisio A.; Waxman, Jonathan A.; Radulovacki, Miodrag G.; Carley, David W.

    2014-01-01

    Study Objectives: Circadian rhythms influence many biological systems, but there is limited information about circadian and diurnal variation in sleep related breathing disorder. We examined circadian and diurnal patterns in sleep apnea and ventilatory patterns in two rat strains, one with high sleep apnea propensity (Brown Norway [BN]) and the other with low sleep apnea propensity (Zucker Lean [ZL]). Design/Setting: Chronically instrumented rats were randomized to breathe room air (control) or 100% oxygen (hyperoxia), and we performed 20-h polysomnography beginning at Zeitgeber time 4 (ZT 4; ZT 0 = lights on, ZT12 = lights off). We examined the effect of strain and inspired gas (twoway analysis of variance) and analyzed circadian and diurnal variability. Measurements and Results: Strain and inspired gas-dependent differences in apnea index (AI; apneas/h) were particularly prominent during the light phase. AI in BN rats (control, 16.9 ± 0.9; hyperoxia, 34.0 ± 5.8) was greater than in ZL rats (control, 8.5 ± 1.0; hyperoxia, 15.4 ± 1.1, [strain effect, P < 0.001; gas effect, P = 0.001]). Hyperoxia reduced respiratory frequency in both strains, and all respiratory pattern variables demonstrated circadian variability. BN rats exposed to hyperoxia demonstrated the largest circadian fluctuation in AI (amplitude = 17.9 ± 3.7 apneas/h [strain effect, P = 0.01; gas effect, P < 0.001; interaction, P = 0.02]; acrophase = 13.9 ± 0.7 h; r2 = 0.8 ± 1.4). Conclusions: Inherited, environmental, and circadian factors all are important elements of underlying sleep related breathing disorder. Our method to examine sleep related breathing disorder phenotypes in rats may have implications for understanding vulnerability for sleep related breathing disorder in humans. Citation: Fink AM; Topchiy I; Ragozzino M; Amodeo DA; Waxman JA; Radulovacki MG; Carley DW. Brown Norway and Zucker Lean rats demonstrate circadian variation in ventilation and sleep apnea. SLEEP 2014

  8. IVGTT-based simple assessment of glucose tolerance in the Zucker fatty rat: Validation against minimal models.

    PubMed

    Morettini, Micaela; Faelli, Emanuela; Perasso, Luisa; Fioretti, Sandro; Burattini, Laura; Ruggeri, Piero; Di Nardo, Francesco

    2017-01-01

    For the assessment of glucose tolerance from IVGTT data in Zucker rat, minimal model methodology is reliable but time- and money-consuming. This study aimed to validate for the first time in Zucker rat, simple surrogate indexes of insulin sensitivity and secretion against the glucose-minimal-model insulin sensitivity index (SI) and against first- (Φ1) and second-phase (Φ2) β-cell responsiveness indexes provided by C-peptide minimal model. Validation of the surrogate insulin sensitivity index (ISI) and of two sets of coupled insulin-based indexes for insulin secretion, differing from the cut-off point between phases (FPIR3-SPIR3, t = 3 min and FPIR5-SPIR5, t = 5 min), was carried out in a population of ten Zucker fatty rats (ZFR) and ten Zucker lean rats (ZLR). Considering the whole rat population (ZLR+ZFR), ISI showed a significant strong correlation with SI (Spearman's correlation coefficient, r = 0.88; P<0.001). Both FPIR3 and FPIR5 showed a significant (P<0.001) strong correlation with Φ1 (r = 0.76 and r = 0.75, respectively). Both SPIR3 and SPIR5 showed a significant (P<0.001) strong correlation with Φ2 (r = 0.85 and r = 0.83, respectively). ISI is able to detect (P<0.001) the well-recognized reduction in insulin sensitivity in ZFRs, compared to ZLRs. The insulin-based indexes of insulin secretion are able to detect in ZFRs (P<0.001) the compensatory increase of first- and second-phase secretion, associated to the insulin-resistant state. The ability of the surrogate indexes in describing glucose tolerance in the ZFRs was confirmed by the Disposition Index analysis. The model-based validation performed in the present study supports the utilization of low-cost, insulin-based indexes for the assessment of glucose tolerance in Zucker rat, reliable animal model of human metabolic syndrome.

  9. Energy utilization of a low carbohydrate diet fed genetically obese rats and mice.

    PubMed

    Thenen, S W; Mayer, J

    1977-02-01

    Genetically obese Zucker rats, ob/ob mice and non-obese littermates were fed low carbohydrate (2%, 48%, and 50% of energy as carbohydrate, protein, and fat, respectively) and control (60%, 19%, and 21%, as carobhydrate, protein, and fat) diets. The oxidation of the energy components of these diets was measured by adding D-[U-14C]glucose, L-[U-14C]glutamic acid, and glyceryl tri-[1-14C]oleate to test meals given intragastrically and collecting respiratory CO2 for 4 hours. The animals responded to the low carbohydrate diet by oxidizing less glucose and more glutamic acid, but these amounts were proportional to dietary carbohydrate and protein composition, In contrast, the animals oxidized both higher amounts and percentages of glyceryl trioleate when fed the low carbohydrate diet. Obese Zucker rats oxidized less fat than non-obese rats when fed both diets, while obese mice oxidized fat to the same extent as non-obese mice. Feeding the low carbohydrate diet significantly increased body weight in the obese mice, but not in obese rats and non-obese mice and rats. The effect of obesity and the low carbohydrate diet on food intake, serum glucose and lipid values and CO2 production are also reported.

  10. Supplemental fructose attenuates postprandial glycemia in Zucker fatty fa/fa rats.

    PubMed

    Wolf, Bryan W; Humphrey, Phillip M; Hadley, Craig W; Maharry, Kati S; Garleb, Keith A; Firkins, Jeffrey L

    2002-06-01

    Experiments were conducted to evaluate the effects of supplemental fructose on postprandial glycemia. After overnight food deprivation, Zucker fatty fa/fa rats were given a meal glucose tolerance test. Plasma glucose response was determined for 180 min postprandially. At a dose of 0.16 g/kg body, fructose reduced (P < 0.05) the incremental area under the curve (AUC) by 34% when supplemented to a glucose challenge and by 32% when supplemented to a maltodextrin (a rapidly digested starch) challenge. Similarly, sucrose reduced (P = 0.0575) the incremental AUC for plasma glucose when rats were challenged with maltodextrin. Second-meal glycemic response was not affected by fructose supplementation to the first meal, and fructose supplementation to the second meal reduced (P < 0.05) postprandial glycemia when fructose had been supplemented to the first meal. In a dose-response study (0.1, 0.2, and 0.5 g/kg body), supplemental fructose reduced (P < 0.01) the peak rise in plasma glucose (linear and quadratic effects). In the final experiment, a low dose of fructose (0.075 g/kg body) reduced (P < 0.05) the incremental AUC by 18%. These data support the hypothesis that small amounts of oral fructose or sucrose may be useful in lowering the postprandial blood glucose response.

  11. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats

    PubMed Central

    Acevedo, Luz M.; Raya, Ana I.; Martínez-Moreno, Julio M.

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats. PMID:28253314

  12. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.

    PubMed

    Acevedo, Luz M; Raya, Ana I; Martínez-Moreno, Julio M; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.

  13. Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain☆

    PubMed Central

    Cohen-Kutner, Moshe; Khomsky, Lena; Trus, Michael; Ben-Yehuda, Hila; Lenhard, James M.; Liang, Yin; Martin, Tonya; Atlas, Daphne

    2014-01-01

    Diabetes is a high risk factor for dementia. High glucose may be a risk factor for dementia even among persons without diabetes, and in transgenic animals it has been shown to cause a potentiation of indices that are pre-symptomatic of Alzheimer's disease. To further elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes, we monitored the activation of mitogen-activated kinsase (MAPKs), c-jun NH2-terminal kinase (JNK), p38 MAP kinases (p38MAPK), and extracellular activating kinsae1/2 (ERK1/2) and the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brain of male leptin-receptor-deficient Zucker diabetic fatty (ZDF) rats and human neuroblastoma SH-SY5Y cells. Daily i.p. injection of CB3 to ZDF rats inhibited the phosphorylation of JNK and p38MAPK, and prevented the expression of thioredoxin-interacting-protein (TXNIP/TBP-2) in ZDF rat brain. Although plasma glucose/insulin remained high, CB3 also increased the phosphorylation of AMP-ribose activating kinase (AMPK) and inhibited p70S6K kinase in the brain. Both CB3 and CB4 reversed apoptosis induced by inhibiting thioredoxin reductase as monitored by decreasing caspase 3 cleavage and PARP dissociation in SH-SY5Y cells. The decrease in JNK and p38MAPK activity in the absence of a change in plasma glucose implies a decrease in oxidative or neuroinflammatory stress in the ZDF rat brain. CB3 not only attenuated MAPK phosphorylation and activated AMPK in the brain, but it also diminished apoptotic markers, most likely acting via the MAPK–AMPK–mTOR pathway. These results were correlated with CB3 and CB4 inhibiting inflammation progression and protection from oxidative stress induced apoptosis in human neuronal cells. We suggest that by attenuating neuro-inflammatory processes in the brain Trx1 mimetic peptides could become beneficial for preventing neurological

  14. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export.

    PubMed

    White, Phillip J; Lapworth, Amanda L; An, Jie; Wang, Liping; McGarrah, Robert W; Stevens, Robert D; Ilkayeva, Olga; George, Tabitha; Muehlbauer, Michael J; Bain, James R; Trimmer, Jeff K; Brosnan, M Julia; Rolph, Timothy P; Newgard, Christopher B

    2016-07-01

    A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. Our data are consistent with a model wherein elevated circulating BCAA contribute to development of

  15. Genetic predisposition to obesity affects behavioural traits including food reward and anxiety-like behaviour in rats.

    PubMed

    Vogel, Heike; Kraemer, Maria; Rabasa, Cristina; Askevik, Kaisa; Adan, Roger A H; Dickson, Suzanne L

    2017-06-15

    Here we sought to define behavioural traits linked to anxiety, reward, and exploration in different strains of rats commonly used in obesity research. We hypothesized that genetic variance may contribute not only to their metabolic phenotype (that is well documented) but also to the expression of these behavioural traits. Rat strains that differ in their susceptibility to develop an obese phenotype (Sprague-Dawley, Obese Prone, Obese Resistant, and Zucker rats) were exposed to a number of behavioural tests starting at the age of 8 weeks. We found a similar phenotype in the obesity susceptible models, Obese Prone and Zucker rats, with a lower locomotor activity, exploratory activity, and higher level of anxiety-like behaviour in comparison to the leaner Obese Resistant strain. We did not find evidence that rat strains with a genetic predisposition to obesity differed in their ability to experience reward from chocolate (in a condition place preference task). However, Zucker rats show higher motivated behaviour for sucrose compared to Obese Resistant rats when the effort required to obtain palatable food is relatively low. Together our data demonstrate that rat strains that differ in their genetic predisposition to develop obesity also differ in their performance in behavioural tests linked to anxiety, exploration, and reward and that these differences are independent of body weight. We conclude that genetic variations which determine body weight and the aforementioned behaviours co-exist but that future studies are required to identify whether (and which) common genes are involved. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats.

    PubMed

    Kapravelou, Garyfallia; Martínez, Rosario; Nebot, Elena; López-Jurado, María; Aranda, Pilar; Arrebola, Francisco; Cantarero, Samuel; Galisteo, Milagros; Porres, Jesus M

    2017-07-19

    Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean ( Vigna radiata ), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65-85% VO₂ max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  17. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  18. Changes in alanine turnover rate due to nutritional and genetic obesity in the rat.

    PubMed

    Yebras, M; Salvadó, J; Arola, L; Remesar, X; Segués, T

    1994-08-01

    The changes in alanine turnover were determined in Zucker rats, which were either genetically obese (fa/fa) or rendered obese by dietary treatment (cafeteria fed). The whole body rate of alanine turnover was higher in genetically obese rats than in rats in which obesity was induced by diet (cafeteria). This is possibly due to variations in the rate of the amino acid incorporation into proteins, since the rate of whole body alanine degradation is the same for both groups. Thus, the different pattern followed by alanine turnover rate in these types of obese animals reflects the differences in the nitrogen economy of these animals, pointing to a higher alanine utilization in the genetically obese animals and a conservative management of alanine in the cafeteria-fed animals.

  19. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    NASA Astrophysics Data System (ADS)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  20. Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication.

    PubMed

    Wider, Joseph; Undyala, Vishnu V R; Whittaker, Peter; Woods, James; Chen, Xuequn; Przyklenk, Karin

    2018-03-09

    Remote ischemic preconditioning (RIPC), the phenomenon whereby brief ischemic episodes in distant tissues or organs render the heart resistant to infarction, has been exhaustively demonstrated in preclinical models. Moreover, emerging evidence suggests that exosomes play a requisite role in conveying the cardioprotective signal from remote tissue to the myocardium. However, in cohorts displaying clinically common comorbidities-in particular, type-2 diabetes-the infarct-sparing effect of RIPC may be confounded for as-yet unknown reasons. To investigate this issue, we used an integrated in vivo and in vitro approach to establish whether: (1) the efficacy of RIPC is maintained in the Zucker fatty rat model of type-2 diabetes, (2) the humoral transfer of cardioprotective triggers initiated by RIPC are transported via exosomes, and (3) diabetes is associated with alterations in exosome-mediated communication. We report that a standard RIPC stimulus (four 5-min episodes of hindlimb ischemia) reduced infarct size in normoglycemic Zucker lean rats, but failed to confer protection in diabetic Zucker fatty animals. Moreover, we provide novel evidence, via transfer of serum and serum fractions obtained following RIPC and applied to HL-1 cardiomyocytes subjected to hypoxia-reoxygenation, that diabetes was accompanied by impaired humoral communication of cardioprotective signals. Specifically, our data revealed that serum and exosome-rich serum fractions collected from normoglycemic rats attenuated hypoxia-reoxygenation-induced HL-1 cell death, while, in contrast, exosome-rich samples from Zucker fatty rats did not evoke protection in the HL-1 cell model. Finally, and unexpectedly, we found that exosome-depleted serum from Zucker fatty rats was cytotoxic and exacerbated hypoxia-reoxygenation-induced cardiomyocyte death.

  1. Nebivolol ameliorated kidney damage in Zucker diabetic fatty rats by regulation of oxidative stress/NO pathway: comparison with captopril.

    PubMed

    Wang, Yan; An, Wenjing; Zhang, Fei; Niu, Mengzhen; Liu, Yu; Shi, Ruizan

    2018-06-23

    The aim was to evaluate the effects and mechanisms of nebivolol on renal damage in Zucker diabetic fatty (ZDF) rats, in comparison with those of atenolol and captopril. Animals were divided into: control lean Zucker rats, ZDF rats, ZDF rats orally treated with nebivolol (10 mg/kg), atenolol (100 mg/kg) or captopril (40 mg/kg) for 6 months. Systolic blood pressure (SBP), blood glucose, kidney structure and function, plasma and kidney levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA), and oxidant status were evaluated. Kidney expressions of AMP-activated protein kinase (AMPK), NADPH oxidase (NOX) isoforms 2 and 4 and subunit p22 phox , nitric oxide synthase (NOS) isoforms, eNOS uncoupling, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 were tested. All drugs induced a similar control of SBP. Nebivolol did not affect the increased plasma glucose. Unlike atenolol, nebivolol prevented the decrease in plasma insulin, and, like captopril, it reduced plasma lipid contents. Nebivolol ameliorated, to a greater extent than captopril, damages to renal structure and function, which were associated with an improvement in interlobular artery dysfunction. Nebivolol elevated kidney phosphorylation of AMPK, attenuated NOX4 and p22 phox expression and oxidative stress marker levels. Nebivolol increased plasma and renal NO, enhanced expressions of eNOS, p-eNOS and nNOS, and suppressed eNOS uncoupling and iNOS expression. High ADMA in plasma and kidney were decreased by nebivolol through increasing DDAH2 and decreasing PRMT1. Long-term treatment of nebivolol ameliorated diabetic nephropathy, at least in part, via regulation of renal oxidative stress/NO pathway. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Effects of estradiol, estrogen receptor subtype-selective agonists and genistein on glucose metabolism in leptin resistant female Zucker diabetic fatty (ZDF) rats.

    PubMed

    Weigt, Carmen; Hertrampf, Torsten; Flenker, Ulrich; Hülsemann, Frank; Kurnaz, Pinar; Fritzemeier, Karl Heinrich; Diel, Patrick

    2015-11-01

    The leptin resistant Zucker diabetic fatty (ZDF) rats are hyperphagic and become obese, but whereas the males develop type 2 diabetes mellitus (T2DM), the females remain euglycaemic. As estrogen deficiency is known to increase the risk of developing T2DM, we evaluated the role of ER subtypes alpha and beta in the development of glucose tolerance in leptin resistant ovariectomized (OVX) ZDF rats. At least six rats per group were treated with either vehicle (OVX), 17β-estradiol (E2), ER subtype-selective agonists (Alpha and Beta), or genistein (Gen) for 17 weeks. At the end of the treatment period a glucose tolerance assay was performed and the metabolic flux of (13)C-glucose for the E2 group was investigated. OVX ZDF rats treated with E2, Alpha, Beta, and Gen tolerated the glucose significantly better than untreated controls. E2 treatment increased absorbance/flux of (13)C-glucose to metabolic relevant tissues such liver, adipose tissue, gastrocnemius, and soleus muscle. Moreover, whereas Alpha treatment markedly increased mRNA expression of GLUT4 in gastrocnemius muscle, Beta treatment resulted in the largest fiber sizes of the soleus muscle. Treatment with Gen increased both the mRNA expression of GLUT 4 and the fiber sizes in the skeletal muscle. In addition, E2 and Alpha treatment decreased food intake and body weight gain. In summary, estrogen-improved glucose absorption is mediated via different molecular mechanisms: while activation of ER alpha seems to stimulate muscular GLUT4 functionality, activation of ER beta results in a hypertrophy of muscle fibers. In addition, selective activation of ER alpha decreased food intake and body weight gain. Our data further indicate that ER subtype-selective agonists and genistein improve systemic glucose tolerance also in the absence of a functional leptin signaling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Protein source in a high-protein diet modulates reductions in insulin resistance and hepatic steatosis in fa/fa Zucker rats.

    PubMed

    Wojcik, Jennifer L; Devassy, Jessay G; Wu, Yinghong; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2016-01-01

    High-protein diets are being promoted to reduce insulin resistance and hepatic steatosis in metabolic syndrome. Therefore, the effect of protein source in high-protein diets on reducing insulin resistance and hepatic steatosis was examined. Fa/fa Zucker rats were provided normal-protein (15% of energy) casein, high-protein (35% of energy) casein, high-protein soy, or high-protein mixed diets with animal and plant proteins. The high-protein mixed diet reduced area under the curve for insulin during glucose tolerance testing, fasting serum insulin and free fatty acid concentrations, homeostatic model assessment index, insulin to glucose ratio, and pancreatic islet cell area. The high-protein mixed and the high-protein soy diets reduced hepatic lipid concentrations, liver to body weight ratio, and hepatic steatosis rating. These improvements were observed despite no differences in body weight, feed intake, or adiposity among high-protein diet groups. The high-protein casein diet had minimal benefits. A high-protein mixed diet was the most effective for modulating reductions in insulin resistance and hepatic steatosis independent of weight loss, indicating that the source of protein within a high-protein diet is critical for the management of these metabolic syndrome parameters. © 2015 The Obesity Society.

  4. Tissue-specific selection of stable reference genes for real-time PCR normalization in an obese rat model.

    PubMed

    Cabiati, Manuela; Raucci, Serena; Caselli, Chiara; Guzzardi, Maria Angela; D'Amico, Andrea; Prescimone, Tommaso; Giannessi, Daniela; Del Ry, Silvia

    2012-06-01

    Obesity is a complex pathology with interacting and confounding causes due to the environment, hormonal signaling patterns, and genetic predisposition. At present, the Zucker rat is an eligible genetic model for research on obesity and metabolic syndrome, allowing scrutiny of gene expression profiles. Real-time PCR is the benchmark method for measuring mRNA expressions, but the accuracy and reproducibility of its data greatly depend on appropriate normalization strategies. In the Zucker rat model, no specific reference genes have been identified in myocardium, kidney, and lung, the main organs involved in this syndrome. The aim of this study was to select among ten candidates (Actb, Gapdh, Polr2a, Ywhag, Rpl13a, Sdha, Ppia, Tbp, Hprt1 and Tfrc) a set of reference genes that can be used for the normalization of mRNA expression data obtained by real-time PCR in obese and lean Zucker rats both at fasting and during acute hyperglycemia. The most stable genes in the heart were Sdha, Tbp, and Hprt1; in kidney, Tbp, Actb, and Gapdh were chosen, while Actb, Ywhag, and Sdha were selected as the most stably expressed set for pulmonary tissue. The normalization strategy was used to analyze mRNA expression of tumor necrosis factor α, the main inflammatory mediator in obesity, whose variations were more significant when normalized with the appropriately selected reference genes. The findings obtained in this study underline the importance of having three stably expressed reference gene sets for use in the cardiac, renal, and pulmonary tissues of an experimental model of obese and hyperglycemic Zucker rats.

  5. Long Term Osmotic Mini Pump Treatment with Alpha-MSH Improves Myocardial Function in Zucker Diabetic Fatty Rats.

    PubMed

    Szokol, Miklos; Priksz, Daniel; Bombicz, Mariann; Varga, Balazs; Kovacs, Arpad; Fulop, Gabor Aron; Csipo, Tamas; Posa, Aniko; Toth, Attila; Papp, Zoltan; Szilvassy, Zoltan; Juhasz, Bela

    2017-10-12

    The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.

  6. Resistant Starch but Not Enzymatically Modified Waxy Maize Delays Development of Diabetes in Zucker Diabetic Fatty Rats.

    PubMed

    Hedemann, Mette Skou; Hermansen, Kjeld; Pedersen, Sven; Bach Knudsen, Knud Erik

    2017-05-01

    Background: The incidence of type 2 diabetes (T2D) is increasing worldwide, and nutritional management of circulating glucose may be a strategic tool in the prevention of T2D. Objective: We studied whether enzymatically modified waxy maize with an increased degree of branching delayed the onset of diabetes in male Zucker diabetic fatty (ZDF) rats. Methods: Forty-eight male ZDF rats, aged 5 wk, were divided into 4 groups and fed experimental diets for 9 wk that contained 52.95% starch: gelatinized corn starch (S), glucidex (GLU), resistant starch (RS), or enzymatically modified starch (EMS). Blood glucose after feed deprivation was assessed every second week; blood samples taken at run-in and at the end of the experiment were analyzed for glycated hemoglobin (HbA1c) and plasma glucose, insulin, and lipids. During weeks 2 and 8, urine was collected for metabolomic analysis. Results: Based on blood glucose concentrations in feed-deprived rats, none of the groups developed diabetes. However, in week 9, plasma glucose after feed deprivation was significantly lower in rats fed the S and RS diets (13.5 mmol/L) than in rats fed the GLU and EMS diets (17.0-18.9 mmol/L), and rats fed RS had lower HbA1c (4.9%) than rats fed the S, GLU, and EMS (5.6-6.1%) diets. The homeostasis model assessment of insulin resistance was significantly lower in rats fed RS than in rats fed the other diets (185 compared with 311-360), indicating that rats fed the S, GLU, and EMS diets were diabetic, and a 100% higher urine excretion during week 8 in rats fed the GLU and EMS diets than that of rats fed S and RS showed that they were diabetic. Urinary nontargeted metabolomics revealed that the diabetic state of rats fed S, GLU, and EMS diets influenced microbial metabolism, as well as amino acid, lipid, and vitamin metabolism. Conclusions: EMS did not delay the onset of diabetes in ZDF rats, whereas rats fed RS showed no signs of diabetes. © 2017 American Society for Nutrition.

  7. In Zucker Diabetic Fatty rats, subclinical diabetic neuropathy increases in vivo lidocaine block duration but not in vitro neurotoxicity

    PubMed Central

    Lirk, Philipp; Flatz, Magdalena; Haller, Ingrid; Hausott, Barbara; Blumenthal, Stephan; Stevens, Markus F.; Suzuki, Suzuko; Klimaschewski, Lars; Gerner, Peter

    2012-01-01

    Background and Objectives Application of local anesthetics may lead to nerve damage. Increasing evidence suggests that risk of neurotoxicity is higher in patients with diabetic peripheral neuropathy. Additionally, block duration may be prolonged in neuropathy. We sought to investigate neurotoxicity in vitro and block duration in vivo in a genetic animal model of diabetes mellitus type II. Methods In the first experiments, neurons harvested from control Zucker Diabetic Fatty (ZDF) rats were exposed to acute (24 hours) or chronic (72 hours) hyperglycemia, followed by incubation with lidocaine 40 mM (approximately 1%). In a second experiment, neurons harvested from control ZDF rats, or diabetic ZDF rats, were incubated with lidocaine, with or without SB203580, an inhibitor of the p38 Mitogen-Activated Protein Kinase. Finally, we performed sciatic nerve block (lidocaine 2%, 0.2 mL) in control or diabetic ZDF rats, and measured motor and nociceptive block duration. Results In vitro, neither acute nor chronic hyperglycemia altered neurotoxic properties of lidocaine. In vitro, incubation of neurons with lidocaine resulted in a slightly decreased survival ratio when neurons were harvested from diabetic (57 ± 19) as compared to control (64 ± 9 %) rats. The addition of SB203580 partly reversed this enhanced neurotoxic effect and raised survival to 71 ± 12 in diabetic and 66 ± 9 % in control rats, respectively. In vivo, even though no difference was detected at baseline testing, motor block was significantly prolonged in diabetic as compared to control rats (137 ± 16 min versus 86 ± 17 min). Conclusions In vitro, local anesthetic neurotoxicity was more pronounced on neurons from diabetic animals, but the survival difference was small. In vivo, subclinical neuropathy leads to substantial prolongation of block duration. We conclude that early diabetic neuropathy increases block duration, while the observed increase in toxicity was small. PMID:23011115

  8. In Vivo Cannabidiol Treatment Improves Endothelium-Dependent Vasorelaxation in Mesenteric Arteries of Zucker Diabetic Fatty Rats

    PubMed Central

    Wheal, Amanda J.; Jadoon, Khalid; Randall, Michael D.; O’Sullivan, Saoirse E.

    2017-01-01

    Background and purpose: We have shown that in vitro treatment with cannabidiol (CBD, 2 h) enhances endothelial function in arteries from Zucker diabetic fatty (ZDF) rats, partly due to a cyclooxygenase (COX)-mediated mechanism. The aim of the present study was to determine whether treatment with CBD in vivo would also enhance endothelial function. Experimental approach: Male ZDF rats, or ZDF Lean rats, were treated for 7 days (daily i.p. injection) with either 10mg/kg CBD or vehicle (n = 6 per group). Sections of mesenteric resistance arteries, femoral arteries and thoracic aortae were mounted on a wire myograph, and cumulative concentration-response curves to endothelium-dependent (acetylcholine, ACh, 1 nM–100 μM) or endothelium-independent (sodium nitroprusside, SNP, 1 nM–100 μM) agents were constructed. Multiplex analysis was used to measure serum metabolic and cardiovascular biomarkers. Key results: Vasorelaxation to ACh was significantly enhanced in mesenteric arteries from CBD-treated ZDF rats, but not ZDF Lean rats. The enhanced vasorelaxation in ZDF mesenteric arteries was no longer observed after COX inhibition using indomethacin or nitric oxide (NO) inhibition using L-NAME. Increased levels of serum c-peptide, insulin and intracellular adhesion molecule-1 observed in the ZDF compared to ZDF Lean rats were no longer significant after 7 days CBD treatment. Conclusion and implications: Short-term in vivo treatment with CBD improves ex vivo endothelium-dependent vasorelaxation in mesenteric arteries from ZDF rats due to COX- or NO-mediated mechanisms, and leads to improvements in serum biomarkers. PMID:28572770

  9. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats.

    PubMed

    Gil-Cardoso, K; Ginés, I; Pinent, M; Ardévol, A; Terra, X; Blay, M

    2017-01-01

    The gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.

  10. Circulating adiponectin concentrations are increased by dietary resistant starch and correlate with serum 25-hydroxycholecalciferol concentrations and kidney function in Zucker diabetic fatty rats.

    PubMed

    Koh, Gar Yee; Derscheid, Rachel; Fuller, Kelly N Z; Valentine, Rudy J; Leow, Shu En; Reed, Leah; Wisecup, Emily; Schalinske, Kevin L; Rowling, Matthew J

    2016-04-01

    We previously reported that dietary resistant starch (RS) type 2 prevented proteinuria and promoted vitamin D balance in type 2 diabetic (T2D) rats. Here, our primary objective was to identify potential mechanisms that could explain our earlier observations. We hypothesized that RS could promote adiponectin secretion and regulate the renin-angiotensin system activity in the kidney. Lean Zucker rats (n = 5) were fed control diet; Zucker diabetic fatty rats (n = 5/group) were fed either an AIN-93G control diet (DC) or AIN-93G diet containing either 10% RS or 20% RS (HRS) for 6 weeks. Resistant starch had no impact on blood glucose concentrations and hemoglobin A1c percentage, yet circulating adiponectin was 77% higher in HRS-fed rats, compared to DC rats. Adiponectin concentrations strongly correlated with serum 25-hydroxycholecalciferol (r = 0.815; P < .001) and urinary creatinine concentrations (r = 0.818; P < .001) and inversely correlated with proteinuria (r = -0.583; P = .02). Serum angiotensin II concentrations were 44% lower, and expression of the angiotensin II receptor, type 1, was attenuated in RS-fed rats. Moreover, we observed a 14-fold increase in messenger RNA expression of nephrin, which is required for functioning of the renal filtration barrier, in HRS rats. The HRS, but not 10% RS diet, increased circulating 25-hydroxycholecalciferol concentrations and attenuated urinary loss of vitamin D metabolites in Zucker diabetic fatty rats. Taken together, we provide evidence that vitamin D balance in the presence of hyperglycemia is strongly associated with serum adiponectin levels and reduced renal renin-angiotensin system signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Resistance training inhibits the elevation of skeletal muscle derived-BDNF level concomitant with improvement of muscle strength in zucker diabetic rat

    PubMed Central

    Kim, Hee-Jae; So, Byunghun; Son, Jun Seok; Song, Han Sol; Oh, Seung Lyul; Seong, Je Kyung; Lee, Hoyoung; Song, Wook

    2015-01-01

    [Purpose] In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats. [Methods] Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week). [Results] After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle. [Conclusion] Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. PMID:27274460

  12. Chronic hyperinsulinemia contributes to insulin resistance under dietary restriction in association with altered lipid metabolism in Zucker diabetic fatty rats.

    PubMed

    Morita, Ippei; Tanimoto, Keiichi; Akiyama, Nobuteru; Naya, Noriyuki; Fujieda, Kumiko; Iwasaki, Takanori; Yukioka, Hideo

    2017-04-01

    Hyperinsulinemia is widely thought to be a compensatory response to insulin resistance, whereas its potentially causal role in the progression of insulin resistance remains to be established. Here, we aimed to examine whether hyperinsulinemia could affect the progression of insulin resistance in Zucker fatty diabetic (ZDF) rats. Male ZDF rats at 8 wk of age were fed a diet ad libitum (AL) or dietary restriction (DR) of either 15 or 30% from AL feeding over 6 wk. Insulin sensitivity was determined by hyperinsulinemic euglycemic clamp. ZDF rats in the AL group progressively developed hyperglycemia and hyperinsulinemia by 10 wk of age, and then plasma insulin rapidly declined to nearly normal levels by 12 wk of age. Compared with AL group, DR groups showed delayed onset of hyperglycemia and persistent hyperinsulinemia, leading to weight gain and raised plasma triglycerides and free fatty acids by 14 wk of age. Notably, insulin sensitivity was significantly reduced in the DR group rather than the AL group and inversely correlated with plasma levels of insulin and triglyceride but not glucose. Moreover, enhanced lipid deposition and upregulation of genes involved in lipogenesis were detected in liver, skeletal muscle, and adipose tissues of the DR group rather than the AL group. Alternatively, continuous hyperinsulinemia induced by insulin pellet implantation produced a decrease in insulin sensitivity in ZDF rats. These results suggest that chronic hyperinsulinemia may lead to the progression of insulin resistance under DR conditions in association with altered lipid metabolism in peripheral tissues in ZDF rats. Copyright © 2017 the American Physiological Society.

  13. ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats

    PubMed Central

    Wang, Wang; Xiang, Hong; Xu, Huiying; Liang, Lina; Sui, Hua; Zhan, Libin; Lu, Xiaoguang

    2017-01-01

    Numerous researches supported that microbiota can influence behavior and modulate cognitive function through “microbiota-gut-brain” axis. Our previous study has demonstrated that ZiBuPiYin recipe (ZBPYR) possesses excellent pharmacological effects against diabetes-associated cognitive decline. To elucidate the role of ZBPYR in regulating the balance of gut microbiota to improve psychological-stress-induced diabetes-associated cognitive decline (PSDACD), we compared blood glucose, behavioral and cognitive functions and diversity of the bacterial community among experimental groups. The Zucker diabetic fatty (ZDF) rats with PSDACD exhibited behavioral and cognitive anomalies showing as increased anxiety- and depression-like behaviors and decreased learning and memory abilities. High-throughput sequencing of the bacterial 16S rRNA gene revealed that Roseburia and Coprococcus were decreased in ZDF rats with PSDACD compared with control group. Notably, these changes were reversed by ZBPYR treatment. Our findings indicate that ZBPYR might prevent PSDACD by maintaining the compositions of gut microbiota, which could be developed as a new therapy for T2D with PSDACD. PMID:28099913

  14. ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats.

    PubMed

    Gu, Chunyan; Zhou, Wen; Wang, Wang; Xiang, Hong; Xu, Huiying; Liang, Lina; Sui, Hua; Zhan, Libin; Lu, Xiaoguang

    2017-04-25

    Numerous researches supported that microbiota can influence behavior and modulate cognitive function through "microbiota-gut-brain" axis. Our previous study has demonstrated that ZiBuPiYin recipe (ZBPYR) possesses excellent pharmacological effects against diabetes-associated cognitive decline. To elucidate the role of ZBPYR in regulating the balance of gut microbiota to improve psychological-stress-induced diabetes-associated cognitive decline (PSDACD), we compared blood glucose, behavioral and cognitive functions and diversity of the bacterial community among experimental groups. The Zucker diabetic fatty (ZDF) rats with PSDACD exhibited behavioral and cognitive anomalies showing as increased anxiety- and depression-like behaviors and decreased learning and memory abilities. High-throughput sequencing of the bacterial 16S rRNA gene revealed that Roseburia and Coprococcus were decreased in ZDF rats with PSDACD compared with control group. Notably, these changes were reversed by ZBPYR treatment. Our findings indicate that ZBPYR might prevent PSDACD by maintaining the compositions of gut microbiota, which could be developed as a new therapy for T2D with PSDACD.

  15. Methodological evaluation of indirect calorimetry data in lean and obese rats.

    PubMed

    Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M

    1993-11-01

    1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits

  16. Effect of Roux-en-Y gastric bypass and diet-induced weight loss on diabetic kidney disease in the Zucker diabetic fatty rat.

    PubMed

    Neff, Karl J; Elliott, Jessie A; Corteville, Caroline; Abegg, Kathrin; Boza, Camilo; Lutz, Thomas A; Docherty, Neil G; le Roux, Carel W

    2017-01-01

    Reductions in urinary protein excretion after Roux-en-Y gastric bypass (RYGB) surgery in patients with diabetic kidney disease have been reported in multiple studies. To determine the weight loss dependence of the effect of RYGB on urinary protein excretion by comparing renal outcomes in Zucker diabetic fatty rats undergoing either gastric bypass surgery or a sham operation with or without weight matching. University laboratories. Zucker diabetic fatty rats underwent surgery at 18 weeks of age. A subgroup of sham operated rats were weight matched to RYGB operated rats by restricting food intake. Urinary protein excretion was assessed at baseline and at postoperative weeks 4 and 12. Renal histology and macrophage-associated inflammation were assessed at postoperative week 12. Progressive urinary protein excretion was attenuated by both RYGB and diet-induced weight loss, albeit to a lesser extent by the latter. Both weight loss interventions produced equivalent reductions in glomerulomegaly, glomerulosclerosis, and evidence of renal macrophage infiltration. Weight loss per se improves renal structure and attenuates renal inflammatory responses in an experimental animal model of diabetic kidney disease. Better glycemic control post-RYGB may in part explain the greater reductions in urinary protein excretion after gastric bypass surgery. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  17. Effects of glucomannan/spirulina-surimi on liver oxidation and inflammation in Zucker rats fed atherogenic diets.

    PubMed

    Vázquez-Velasco, Miguel; González-Torres, Laura; López-Gasco, Patricia; Bastida, Sara; Benedí, Juana; González-Muñoz, María José; Sánchez-Muniz, Francisco J

    2015-12-01

    Cholesterolemia is associated with pro-oxidative and proinflammatory effects. Glucomannan- or glucomannan plus spirulina-enriched surimis were included in cholesterol-enriched high-saturated diets to test the effects on lipemia; antioxidant status (glutathione status, and antioxidant enzymatic levels, expressions and activities); and inflammation biomarkers (endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α)) in Zucker fa/fa rats. Groups of eight rats each received diet containing squid-surimi (C), squid-surimi cholesterol-enriched diet (HC), glucomannan-squid-surimi cholesterol-enriched diet (HG), or glucomannan-spirulina-squid-surimi cholesterol-enriched diet (HGS) over a period of 7 weeks. HC diet induced severe hyperlipemia, hepatomegalia, increased inflammation markers, and impaired antioxidant status significantly (at least p < 0.05) vs. C diet. HG diet decreased lipemia and liver size and normalized antioxidant status to C group levels, but increased TNF-α with respect to HC diet (p < 0.05). In general terms, 3 g/kg of spirulina in diet maintained the positive results observed in the HG diet but, in addition, increased inflammation index [eNOS/(eNOS + iNOS)] and decreased plasma TNF-α (both p < 0.05). In conclusion, glucomannan plus a small amount of spirulina blocks negative effects promoted by hypercholesterolemic diets. Although more studies are needed, present results suggest the utility of including glucomannan and/or spirulina as functional ingredients into fish derivates to be consumed by people on metabolic syndrome risk.

  18. Ibipinabant attenuates β-cell loss in male Zucker diabetic fatty rats independently of its effects on body weight.

    PubMed

    Rohrbach, K; Thomas, M A; Glick, S; Fung, E N; Wang, V; Watson, L; Gregory, P; Antel, J; Pelleymounter, M A

    2012-06-01

    To test the antidiabetic efficacy of ibipinabant, this new cannabinoid receptor 1 (CB1) antagonist was compared with food-restriction-induced weight loss, rosiglitazone (4 mg/kg) and rimonabant (3 and 10 mg/kg), using parameters of glycaemic control in male Zucker diabetic fatty (ZDF) rats. Body weight, food and water intake, fasted and non-fasted glucose and insulin, glucose tolerance and glycosylated haemoglobin (HbA1c) were all assessed over the course of the 9-week study. Pancreatic insulin content and islet area were also evaluated. At the end of the study, vehicle-treated ZDF rats were severely hyperglycaemic and showed signs of β-cell decline, including dramatic reductions in unfasted insulin levels. Ibipinanbant (10 mg/kg) reduced the following relative to vehicle controls: fasting glucose (-61%), glucose excursion area under the curve (AUC) in an oral glucose tolerance test (OGTT, -44%) and HbA1c (-50%). Furthermore, non-fasting insulin, islet area and islet insulin content were all increased (71, 40 and 76%, respectively) relative to vehicle controls by the end of the study. All of these effects were similar to those of rimonabant and rosiglitazone, where ibipinabant was slightly more effective than rimonabant at the lowest dose and somewhat less effective than rosiglitazone at all doses. These antidiabetic effects appear independent of weight loss because none of the parameters above were consistently improved by the comparable weight loss induced by food restriction. Ibipinabant may have weight loss-independent antidiabetic effects and may have the potential to attenuate β-cell loss in a model of progressive β-cell dysfunction. © 2012 Blackwell Publishing Ltd.

  19. Altered susceptibility of an obese rat model to 13-week subchronic toxicity induced by 3-monochloropropane-1,2-diol.

    PubMed

    Toyoda, Takeshi; Cho, Young-Man; Akagi, Jun-Ichi; Mizuta, Yasuko; Matsushita, Kohei; Nishikawa, Akiyoshi; Imaida, Katsumi; Ogawa, Kumiko

    2017-01-01

    3-Monochloropropane-1,2-diol (3-MCPD) is a heat-induced food contaminant that has been shown to be a nongenotoxic renal carcinogen. Although the toxicity of 3-MCPD has been widely investigated for decades, there is a further concern that 3-MCPD might exert more potent toxicity in high-risk population with underlying diseases such as hyperlipidemia associated with obesity. In the present study, we performed a 13-week subchronic toxicity study for 3-MCPD using an obesity rat model to investigate the differences in susceptibility between obese and normal individuals. Male F344 and obese Zucker (lean and fatty) rats were administered 0, 9, 28.5, 90, 285, or 900 ppm 3-MCPD in drinking water for 13 weeks. 3-MCPD treatment decreased body weight gain, increased relative kidney weights, induced anemia, and induced epithelial cell necrosis in epididymal ducts in all 3 strains. The degrees of epididymal damage were higher in F344 and lean rats than in fatty rats, while renal toxicity was most potent in F344 rats and comparable in lean and fatty rats. In contrast, the hematology data indicated that anemia was worse in fatty rats than in F344 and lean rats, and a significant decrease in hematopoietic cells in the bone marrow was observed only in fatty rats. The no-observed-adverse-effect level was estimated to be 28.5 ppm in all 3 strains for 3-MCPD. These results suggested that obese Zucker rats may be more susceptible to 3-MCPD-dependent toxicity in the hematopoietic tissues than their lean counterparts.

  20. Treadmill exercise prevents diabetes-induced increases in lipid peroxidation and decreases in Cu,Zn-superoxide dismutase levels in the hippocampus of Zucker diabetic fatty rats.

    PubMed

    Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung

    2015-01-01

    In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.

  1. Matrix Metalloproteinase-9 Expression Is Enhanced in Renal Parietal Epithelial Cells of Zucker Diabetic Fatty Rats and Is Induced by Albumin in In Vitro Primary Parietal Cell Culture

    PubMed Central

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  2. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Effect of combination treatment of S–amlodipine with peroxisome proliferator-activated receptor agonists on metabolic and cardiovascular parameters in Zucker fa/fa rats

    PubMed Central

    2014-01-01

    Background Type 2 diabetes is a complex metabolic disorder characterized by hyperglycemia, impaired glucose tolerance and insulin resistance associated with dyslipidemia and hypertension. The available drugs are not sufficiently efficacious in reducing cardiovascular risk and restoring normal glucose metabolism associated with type 2 diabetes as a mono- or a combination therapy. The present study examined the combined effects of an antihypertensive (S-Amlodipine) and an insulin-sensitizing agent, peroxisome proliferator-activated receptor (PPAR) agonists (Pioglitazone and Ragaglitazar), on cardiovascular risk factors in aged diabetic and insulin-resistant Zucker fa/fa rats. Methods Following combination treatment for 14 days, blood pressure (BP), serum glucose, total cholesterol and triglycerides were measured. Aortic ring study was conducted to determine the effect of combination treatments on phenylephrine-induced vasoconstriction and acetylcholine (Ach)-induced vasorelaxation. Results In combination, S-Amlodipine and Pioglitazone significantly reduced blood glucose (115.1 ± 6.6 vs. 81.7 ± 4.2), BP (184.4 ± 5.0 vs. 155.1 ± 5.0), serum triglycerides (362.5 ± 47.5 vs. 211.1 ± 23.7) and glucose intolerance when compared with vehicle treated Zucker fa/fa rats. Similar results were observed with the combination of S-Amlodipine and Ragaglitazar (Triglycerides, 362.5 ± 47.5 vs. 252.34 ± 27.86; BP, 184.4 ± 5.0 vs. 159.0 ± 8.0) except for serum glucose. ACh-induced vasorelaxation in aortic rings was also superior with both of the combinations compared to individual treatment. Furthermore, there was less body weight gain and food intake with S-Amlodipine and Pioglitazone combination in Zucker fa/fa rats. S-Amlodipine itself caused significant reduction in glucose (115.1 ± 6.6 vs. 89.7 ± 2.7) and BP (184.4 ± 5.0 vs. 156.1 ± 4.0) with improvement in insulin sensitivity observed through oral glucose

  4. Regular exercise prevents the development of hyperglucocorticoidemia via adaptations in the brain and adrenal glands in male Zucker diabetic fatty rats.

    PubMed

    Campbell, Jonathan E; Király, Michael A; Atkinson, Daniel J; D'souza, Anna M; Vranic, Mladen; Riddell, Michael C

    2010-07-01

    We determined the effects of voluntary wheel running on the hypothalamic-pituitary-adrenal (HPA) axis, and the peripheral determinants of glucocorticoids action, in male Zucker diabetic fatty (ZDF) rats. Six-week-old euglycemic ZDF rats were divided into Basal, Sedentary, and Exercise groups (n = 8-9 per group). Basal animals were immediately killed, whereas Sedentary and Exercising rats were monitored for 10 wk. Basal (i.e., approximately 0900 AM in the resting state) glucocorticoid levels increased 2.3-fold by week 3 in Sedentary rats where they remained elevated for the duration of the study. After an initial elevation in basal glucocorticoid levels at week 1, Exercise rats maintained low glucocorticoid levels from week 3 through week 10. Hyperglycemia was evident in Sedentary animals by week 7, whereas Exercising animals maintained euglycemia throughout. At the time of death, the Sedentary group had approximately 40% lower glucocorticoid receptor (GR) content in the hippocampus, compared with the Basal and Exercise groups (P < 0.05), suggesting that the former group had impaired negative feedback regulation of the HPA axis. Both Sedentary and Exercise groups had elevated ACTH compared with Basal rats, indicating that central drive of the axis was similar between groups. However, Sedentary, but not Exercise, animals had elevated adrenal ACTH receptor and steroidogenic acute regulatory protein content compared with the Basal animals, suggesting that regular exercise protects against elevations in glucocorticoids by a downregulation of adrenal sensitivity to ACTH. GR and 11beta-hydroxysteroid dehydrogenase type 1 content in skeletal muscle and liver were similar between groups, however, GR content in adipose tissue was elevated in the Sedentary groups compared with the Basal and Exercise (P < 0.05) groups. Thus, the gradual elevations in glucocorticoid levels associated with the development of insulin resistance in male ZDF rats can be prevented with regular

  5. Metabolomics Study of Type 2 Diabetes Mellitus and the AntiDiabetic Effect of Berberine in Zucker Diabetic Fatty Rats Using Uplc-ESI-Hdms.

    PubMed

    Dong, Yu; Chen, Yi-Tao; Yang, Yuan-Xiao; Zhou, Xiao-Jie; Dai, Shi-Jie; Tong, Jun-Feng; Shou, Dan; Li, Changyu

    2016-05-01

    The present study aimed to evaluate the pathogenesis of type 2 diabetes mellitus (T2DM) and the anti-diabetic effect of berberine in Zucker diabetic fatty (ZDF) rats. A urinary metabolomics analysis was performed with ultra-performance liquid chromatography/electrospray ionization synapt high-definition mass spectrometry. Pattern recognition approaches were integrated to discover differentiating metabolites. We identified 29 ions (13 in negative mode and 16 in positive mode) as 'differentiating metabolites' with this metabolomic approach. A functional pathway analysis revealed that the alterations were mainly associated with glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions and sphingolipid metabolism. These results indicated that the dysfunctions of glycometabolism and lipometabolism are involved in the pathological process of T2DM. Berberine could decrease the serum levels of glycosylated hemoglobin, total cholesterol and triglyceride and increase the secretion of insulin. The urinary metabolomics analysis showed that berberine could reduce the concentrations of citric acid, tetrahydrocortisol, ribothymidine and sphinganine to a near-normal state. These results suggested that the anti-diabetic effect of berberine occurred mainly via its regulation of glycometabolism and lipometabolism and activation of adenosine 5'-monophosphate-activated protein kinase. Our work not only provides a better understanding of the anti-diabetic effect of berberine in ZDF rats but also supplies a useful database for further study in humans and for investigating the pharmacological actions of drugs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Glucomannan- and glucomannan plus spirulina-enriched pork affect liver fatty acid profile, LDL receptor expression and antioxidant status in Zucker fa/fa rats fed atherogenic diets

    PubMed Central

    González-Torres, Laura; Matos, Cátia; Vázquez-Velasco, Miguel; Santos-López, Jorge A.; Sánchez-Martínez, Iria; García–Fernández, Camino; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J.

    2017-01-01

    ABSTRACT We evaluated the effects of glucomannan or glucomannan plus spirulina-restructured pork (RP) on liver fatty acid profile, desaturase/elongase enzyme activities and oxidative status of Zucker fa/fa rats for seven weeks. Control (C), glucomannan (G) and glucomannan/spirulina (GS)-RP; HC (cholesterol-enriched control), HG and HGS (cholesterol-enriched glucomannan and glucomannan/spirulina-RP) experimental diets were tested. Increased metabolic syndrome markers were found in C, G and GS rats. Cholesterol feeding increased liver size, fat, and cholesterol and reduced antioxidant enzyme levels and expressions. Cholesterolemia was lower in HG and HGS than in HC. GS vs. G showed higher stearic but lower oleic levels. SFA and PUFA decreased while MUFA increased by cholesterol feeding. The arachidonic/linoleic and docosahexaenoic/alpha-linolenic ratios were lower in HC, HG, and HGS vs. C, G, and GS, respectively, suggesting a delta-6-elongase-desaturase system inhibition. Moreover, cholesterol feeding, mainly in HGS, decreased low-density-lipoprotein receptor expression and the delta-5-desaturase activity and increased the delta-9-desaturase activity. In conclusion, the liver production of highly unsaturated fatty acids was limited to decrease their oxidation in presence of hypercholesterolaemia. Glucomannan or glucomannan/spirulina-RP has added new attributes to their functional properties in meat, partially arresting the negative effects induced by high-fat-high-cholesterol feeding on the liver fatty acid and antioxidant statuses. PMID:28325998

  7. Defective calcium inactivation causes long QT in obese insulin-resistant rat.

    PubMed

    Lin, Yen-Chang; Huang, Jianying; Kan, Hong; Castranova, Vincent; Frisbee, Jefferson C; Yu, Han-Gang

    2012-02-15

    The majority of diabetic patients who are overweight or obese die of heart disease. We suspect that the obesity-induced insulin resistance may lead to abnormal cardiac electrophysiology. We tested this hypothesis by studying an obese insulin-resistant rat model, the obese Zucker rat (OZR). Compared with the age-matched control, lean Zucker rat (LZR), OZR of 16-17 wk old exhibited an increase in QTc interval, action potential duration, and cell capacitance. Furthermore, the L-type calcium current (I(CaL)) in OZR exhibited defective inactivation and lost the complete inactivation back to the closed state, leading to increased Ca(2+) influx. The current density of I(CaL) was reduced in OZR, whereas the threshold activation and the current-voltage relationship of I(CaL) were not significantly altered. L-type Ba(2+) current (I(BaL)) in OZR also exhibited defective inactivation, and steady-state inactivation was not significantly altered. However, the current-voltage relationship and activation threshold of I(BaL) in OZR exhibited a depolarized shift compared with LZR. The total and membrane protein expression levels of Cav1.2 [pore-forming subunit of L-type calcium channels (LTCC)], but not the insulin receptors, were decreased in OZR. The insulin receptor was found to be associated with the Cav1.2, which was weakened in OZR. The total protein expression of calmodulin was reduced, but that of Cavβ2 subunit was not altered in OZR. Together, these results suggested that the 16- to 17-wk-old OZR has 1) developed cardiac hypertrophy, 2) exhibited altered electrophysiology manifested by the prolonged QTc interval, 3) increased duration of action potential in isolated ventricular myocytes, 4) defective inactivation of I(CaL) and I(BaL), 5) weakened the association of LTCC with the insulin receptor, and 6) decreased protein expression of Cav1.2 and calmodulin. These results also provided mechanistic insights into a remodeled cardiac electrophysiology under the condition of

  8. Obesity-related pulmonary arterial hypertension in rats correlates with increased circulating inflammatory cytokines and lipids and with oxidant damage in the arterial wall but not with hypoxia

    PubMed Central

    Irwin, David C.; Garat, Chrystelle V.; Crossno, Joseph T.; MacLean, Paul S.; Sullivan, Timothy M.; Erickson, Paul F.; Jackman, Matthew R.; Harral, Julie W.; Reusch, Jane E. B.

    2014-01-01

    Abstract Obesity is causally linked to a number of comorbidities, including cardiovascular disease, diabetes, renal dysfunction, and cancer. Obesity has also been linked to pulmonary disorders, including pulmonary arterial hypertension (PAH). It was long believed that obesity-related PAH was the result of hypoventilation and hypoxia due to the increased mechanical load of excess body fat. However, in recent years it has been proposed that the metabolic and inflammatory disturbances of obesity may also play a role in the development of PAH. To determine whether PAH develops in obese rats in the absence of hypoxia, we assessed pulmonary hemodynamics and pulmonary artery (PA) structure in the diet-resistant/diet-induced obesity (DR/DIO) and Zucker lean/fatty rat models. We found that high-fat feeding (DR/DIO) or overfeeding (Zucker) elicited PA remodeling, neomuscularization of distal arterioles, and elevated PA pressure, accompanied by right ventricular (RV) hypertrophy. PA thickening and distal neomuscularization were also observed in DIO rats on a low-fat diet. No evidence of hypoventilation or chronic hypoxia was detected in either model, nor was there a correlation between blood glucose or insulin levels and PAH. However, circulating inflammatory cytokine levels were increased with high-fat feeding or calorie overload, and hyperlipidemia and oxidant damage in the PA wall correlated with PAH in the DR/DIO model. We conclude that hyperlipidemia and peripheral inflammation correlate with the development of PAH in obese subjects. Obesity-related inflammation may predispose to PAH even in the absence of hypoxia. PMID:25610600

  9. Plekhs1 and Prdx3 are candidate genes responsible for mild hyperglycemia associated with obesity in a new animal model of F344-fa-nidd6 rat.

    PubMed

    Kotoh, Jun; Sasaki, Daiki; Matsumoto, Kozo; Maeda, Akihiko

    2016-12-01

    Type 2 diabetes is a polygenic disease and characterized by hyperglycemia and insulin resistance, and it is strongly associated with obesity. However, the mechanism by which obesity contributes to onset of type 2 diabetes is not well understood. We generated rat strains with a hyperglycemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr -/- ) locus derived from the Zucker Fatty rat. Phenotypes for plasma glucose, and insulin levels were measured, and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blot analyses, respectively. Compared with the obese control strain F344-fa (Lepr -/- ), plasma glucose levels of the obese F344-fa-nidd6 (Lepr -/- and Nidd6/of) significantly increased, and plasma insulin levels significantly decreased. These phenotypes were not observed in the lean strains, suggesting that the Nidd6/of locus harbors a diabetogenic gene associated with obesity. We measured the expression of 41 genes in the Nidd6/of QTL region of each strain and found that the mRNA expression levels of the two genes significantly differed between the obese strains. The two genes, pleckstrin homology domain-containing, family S member 1 (Plechs1) and peroxiredoxin III (Prdx3), were differentially expressed only in the obese rats, suggesting that these two genes are involved in the mild elevation of blood glucose levels and insulin resistance in obesity.

  10. Polyphenol-Rich Bilberry Ameliorates Total Cholesterol and LDL-Cholesterol when Implemented in the Diet of Zucker Diabetic Fatty Rats

    PubMed Central

    Brader, Lea; Overgaard, Ann; Christensen, Lars P.; Jeppesen, Per B.; Hermansen, Kjeld

    2013-01-01

    BACKGROUND: Bilberries and blackcurrants are nutrient sources rich in bioactive components, including dietary fibers, polyphenols, and anthocyanins, which possess potent cardiovascular protective properties. Few studies investigating the cardio-protective effects of natural components have focused on whole bilberries or blackcurrants. OBJECTIVE: The aim of this trial was to investigate whether a diet enriched with bilberries or blackcurrants has beneficial effects on glucose metabolism, lipid profile, blood pressure, and expression of genes related to glucose and lipid metabolism. METHODS: Male Zucker Diabetic Fatty (ZDF) rats (n = 48) were randomly assigned to either a control, bilberry-enriched, blackcurrant-enriched, or fiber-enriched diet for 8 weeks ad libitum. Real-time quantitative PCR analysis was performed on liver, adipose, and muscle tissue. Berry polyphenol content was determined by HPLC and LC-MS analysis. RESULTS: Bilberry enrichment reduced total (-21%, p = 0.0132) and LDL-cholesterol (-60%, p = 0.0229) levels, but increased HDL-cholesterol to a lesser extent than in controls. This may partly be due to the altered hepatic liver X receptor-α expression (-24%, p < 0.001). Neither bilberries nor blackcurrants influenced glucose metabolism or blood pressure. Nevertheless, transcriptional analysis implied a better conservation of hepatic and adipocyte insulin sensitivity by bilberry enrichment. Anthocyanins constituted 91% and 87% of total polyphenol content in bilberries and blackcurrants, respectively. However, total anthocyanin content (3441 mg/100 g) was 4-fold higher in bilberries than in blackcurrants (871 mg/100 g). CONCLUSIONS: Bilberry consumption ameliorated total and LDL-cholesterol levels, but not HDL-cholesterol levels in ZDF rats. Neither bilberry nor blackcurrant enrichment delayed the development of diabetes or hypertension. Thus, in rats, bilberries may be valuable as a dietary preventive agent against hypercholesterolemia, probably by

  11. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  12. Effects of the Soluble Fiber Complex PolyGlycopleX® on Glucose Homeostasis and Body Weight in Young Zucker Diabetic Rats

    PubMed Central

    Grover, Gary James; Koetzner, Lee; Wicks, Joan; Gahler, Roland J.; Lyon, Michael R.; Reimer, Raylene A.; Wood, Simon

    2011-01-01

    Dietary fiber can reduce insulin resistance, body weight, and hyperlipidemia depending on fiber type, water solubility, and viscosity. PolyGlycopleX® (PGX®) is a natural, novel water soluble, non-starch polysaccharide complex that with water forms a highly viscous gel compared to other naturally occurring dietary fiber. We determined the effect of dietary PGX® vs. cellulose and inulin on the early development of insulin resistance, body weight, hyperlipidemia, and glycemia-induced tissue damage in young Zucker diabetic rats (ZDFs) in fasted and non-fasted states. ZDFs (5 weeks old) were fed a diet containing 5% (wgt/wgt) cellulose, inulin, or PGX® for 8 weeks. Body weight, lipids, insulin, and glucose levels were determined throughout the study and homeostasis model assessment (HOMA) was used to measure insulin sensitivity throughout the study in fasted animals. At study termination, insulin sensitivity (oral glucose tolerance test, OGTT) and kidney, liver, and pancreatic histopathology were determined. Body weight and food intake were significantly reduced by PGX® vs. inulin and cellulose. Serum insulin in fasted and non-fasted states was significantly reduced by PGX® as was non-fasted blood glucose. Insulin resistance, measured as a HOMA score, was significantly reduced by PGX® in weeks 5 through 8 as well as terminal OGTT scores in fed and fasted states. Serum total cholesterol was also significantly reduced by PGX®. PGX® significantly reduced histological kidney and hepatic damage in addition to reduced hepatic steatosis and cholestasis. A greater mass of pancreatic β-cells was found in the PGX® group. PGX® therefore may be a useful dietary additive in the control of the development of the early development of the metabolic syndrome. PMID:21922008

  13. Defective glycogenesis contributes toward the inability to suppress hepatic glucose production in response to hyperglycemia and hyperinsulinemia in zucker diabetic fatty rats.

    PubMed

    Torres, Tracy P; Fujimoto, Yuka; Donahue, E P; Printz, Richard L; Houseknecht, Karen L; Treadway, Judith L; Shiota, Masakazu

    2011-09-01

    Examine whether normalizing net hepatic glycogenesis restores endogenous glucose production and hepatic glucose phosphorylation in response to diabetic levels of plasma glucose and insulin in Zucker diabetic fatty rats (ZDF). Hepatic glucose and intermediate fluxes (µmol · kg(-1) · min(-1)) were measured with and without a glycogen phosphorylase inhibitor (GPI) using [2-(3)H]glucose, [3-(3)H]glucose, and [U-(14)C]alanine in 20 h-fasted conscious ZDF and their lean littermates (ZCL) under clamp conditions designed to maintain diabetic levels of plasma glucose and insulin. With infusion of GPI into ZDF (ZDF-GPI+G), compared with vehicle infused ZDF (ZDF-V), high glycogen phosphorylase a activity was decreased and low synthase I activity was increased to that of ZCL. Low net glycogenesis from plasma glucose rose to 75% of ZCL levels (4 ± 1 in ZDF-V, 18 ± 1 in ZDF-GPI+G, and 24 ± 2 in ZCL) and phosphoenolpyruvate 260% (4 ± 2 in ZDF-V, 16 ± 1 in ZDF+GPI-G, and 6 ± 2 in ZCL). High endogenous glucose production was suppressed with GPI infusion but not to that of ZCL (46 ± 4 in ZDF-V, 18 ± 4 in ZDF-GPI+G, and -8 ± 3 in ZCL). This was accompanied by reduction of the higher glucose-6-phosphatase flux (75 ± 4 in ZDF-V, 41 ± 4 in ZDF-GPI+G, and 86 ± 12 in ZCL) and no change in low glucose phosphorylation or total gluconeogenesis. In the presence of hyperglycemic-hyperinsulinemia in ZDF, reduced glycogenic flux partially contributes to a lack of suppression of hepatic glucose production by failing to redirect glucose-6-phosphate flux from production of glucose to glycogen but is not responsible for a lower rate of glucose phosphorylation.

  14. Peroxisome proliferator-activated receptor subtype-specific regulation of hepatic and peripheral gene expression in the Zucker diabetic fatty rat.

    PubMed

    Dana, S L; Hoener, P A; Bilakovics, J M; Crombie, D L; Ogilvie, K M; Kauffman, R F; Mukherjee, R; Paterniti, J R

    2001-08-01

    Fibrates and thiazolidinediones are used clinically to treat hypertriglyceridemia and hyperglycemia, respectively. Fibrates bind to the peroxisome proliferator-activated receptor (PPAR)-alpha, and thiazolidinediones are ligands of PPAR-gamma. These intracellular receptors form heterodimers with retinoid X receptor to modulate gene transcription. To elucidate the target genes regulated by these compounds, we treated Zucker diabetic fatty rats (ZDF) for 15 days with a PPAR-alpha-specific compound, fenofibrate, a PPAR-gamma-specific ligand, rosiglitazone, and a PPAR-alpha/-gamma coagonist, GW2331, and measured the levels of several messenger RNAs (mRNAs) in liver by real-time polymerase chain reaction. All 3 compounds decreased serum glucose and triglyceride levels. Fenofibrate and GW2331 induced expression of acyl-coenzyme A (CoA) oxidase and enoyl-CoA hydratase and reduced apolipoprotein C-III and phosphoenolpyruvate carboxykinase mRNAs. Rosiglitazone modestly increased apolipoprotein C-III mRNA and had no effect on expression of the other 2 genes in the liver but increased the expression of glucose transporter 4 and phosphoenolpyruvate carboxykinase in adipose tissue. We identified a novel target in liver, mitogen-activated phosphokinase phosphatase 1, whose down-regulation by PPAR-alpha agonists may improve insulin sensitivity in that tissue by prolonging insulin responses. The results of these studies suggest that activation of PPAR-alpha as well as PPAR-gamma in therapy for type 2 diabetes will enhance glucose and triglyceride control by combining actions in hepatic and peripheral tissues. Copyright 2001 by W.B. Saunders Company

  15. Effects of the Soluble Fiber Complex PolyGlycopleX on Glucose Homeostasis and Body Weight in Young Zucker Diabetic Rats.

    PubMed

    Grover, Gary James; Koetzner, Lee; Wicks, Joan; Gahler, Roland J; Lyon, Michael R; Reimer, Raylene A; Wood, Simon

    2011-01-01

    Dietary fiber can reduce insulin resistance, body weight, and hyperlipidemia depending on fiber type, water solubility, and viscosity. PolyGlycopleX(®) (PGX(®)) is a natural, novel water soluble, non-starch polysaccharide complex that with water forms a highly viscous gel compared to other naturally occurring dietary fiber. We determined the effect of dietary PGX(®) vs. cellulose and inulin on the early development of insulin resistance, body weight, hyperlipidemia, and glycemia-induced tissue damage in young Zucker diabetic rats (ZDFs) in fasted and non-fasted states. ZDFs (5 weeks old) were fed a diet containing 5% (wgt/wgt) cellulose, inulin, or PGX(®) for 8 weeks. Body weight, lipids, insulin, and glucose levels were determined throughout the study and homeostasis model assessment (HOMA) was used to measure insulin sensitivity throughout the study in fasted animals. At study termination, insulin sensitivity (oral glucose tolerance test, OGTT) and kidney, liver, and pancreatic histopathology were determined. Body weight and food intake were significantly reduced by PGX(®) vs. inulin and cellulose. Serum insulin in fasted and non-fasted states was significantly reduced by PGX(®) as was non-fasted blood glucose. Insulin resistance, measured as a HOMA score, was significantly reduced by PGX(®) in weeks 5 through 8 as well as terminal OGTT scores in fed and fasted states. Serum total cholesterol was also significantly reduced by PGX(®). PGX(®) significantly reduced histological kidney and hepatic damage in addition to reduced hepatic steatosis and cholestasis. A greater mass of pancreatic β-cells was found in the PGX(®) group. PGX(®) therefore may be a useful dietary additive in the control of the development of the early development of the metabolic syndrome.

  16. Obese ZDF rats fermented resistant starch with effects on gut microbiota but no reduction in abdominal fat.

    PubMed

    Goldsmith, Felicia; Guice, Justin; Page, Ryan; Welsh, David A; Taylor, Christopher M; Blanchard, Eugene E; Luo, Meng; Raggio, Anne M; Stout, Rhett W; Carvajal-Aldaz, Diana; Gaither, Amanda; Pelkman, Christine; Ye, Jianping; Martin, Roy J; Geaghan, James; Durham, Holiday A; Coulon, Diana; Keenan, Michael J

    2017-01-01

    To determine if whole-grain (WG) flour with resistant starch (RS) will produce greater fermentation than isolated RS in obese Zucker Diabetic Fatty (ZDF) rats, and whether greater fermentation results in different microbiota, reduced abdominal fat, and increased insulin sensitivity. This study utilized four groups fed diets made with either isolated digestible control starch, WG control flour (6.9% RS), isolated RS-rich corn starch (25% RS), or WG corn flour (25% RS). ZDF rats fermented RS and RS-rich WG flour to greatest extent among groups. High-RS groups had increased serum glucagon-like peptide 1 (GLP-1) active. Feeding isolated RS showed greater Bacteroidetes to Firmicutes phyla among groups, and rats consuming low RS diets possessed more bacteria in Lactobacillus genus. However, no differences in abdominal fat were observed, but rats with isolated RS had greatest insulin sensitivity among groups. Data demonstrated ZDF rats (i) possess a microbiota that fermented RS, and (ii) WG high-RS fermented better than purified RS. However, fermentation and microbiota changes did not translate into reduced abdominal fat. The defective leptin receptor may limit ZDF rats from responding to increased GLP-1 and different microbiota for reducing abdominal fat, but did not prevent improved insulin sensitivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats

    PubMed Central

    Katakam, Prasad V G; Snipes, James A; Steed, Mesia M; Busija, David W

    2012-01-01

    Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH4) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH4 supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH4 by GTP-CH induced by insulin promoted NOS uncoupling. PMID:22234336

  18. Impaired Expression of Neuronal Nitric Oxide Synthase in the Gracile Nucleus Is Involved in Neuropathic Changes in Zucker Diabetic Fatty Rats with and without 2,5-Hexanedione Intoxication

    PubMed Central

    Ma, Sheng-Xing; Peterson, Richard G.; Magee, Edward M.; Lee, Paul; Lee, Wai-Nang Paul; Li, Xi-Yan

    2015-01-01

    These studies examined the influence of 2,5-hexanedione (2,5-HD) intoxication on expression of neuronal nitric oxide synthase (nNOS) in the brainstem nuclei in Zucker Diabetic Fatty (ZDF) vs. lean control (LC) rats. Functional neuropathic changes were also investigated following axonal damage and impaired axonal transport induced by the treatment. Animals were intoxicated by i.p. injection of 2,5-HD plus unilateral administration of 2,5-HD over the sciatic nerve. The mechanical thresholds and withdrawal latencies to heat and cold stimuli on the foot were measured at baseline and after intoxication. The medulla sections were examined by nNOS immunohistochemistry and NADPH-diaphorase histochemistry at the end of the treatments. The mechanical thresholds and withdrawal latencies were significantly decreased while nNOS immunostained neurons and NADPH-diaphorase positive cells were selectively reduced in the gracile nucleus at baseline in ZDF vs. LC rats. NADPH-diaphorase reactivity and nNOS positive neurons were increased in the ipsilateral gracile nucleus in LC rats following 2,5-HD intoxication, but its up-regulation was attenuated in ZDF rats. These results suggest that diabetic and chemical intoxication-induced nNOS expression is selectively reduced in the gracile nucleus in ZDF rats. Impaired axonal damage-induced nNOS expression in the gracile nucleus is involved in neuropathic pathophysiology in type II diabetic rats. PMID:26519861

  19. Transcriptional alterations of ET-1 axis and DNA damage in lung tissue of a rat obesity model.

    PubMed

    Del Ry, Silvia; Cabiati, Manuela; Salvadori, Costanza; Guiducci, Letizia; Caselli, Chiara; Prescimone, Tommaso; Facioni, Maria Sole; Azzarà, Alessia; Chiaramonte, Anna; Mazzoni, Stefano; Bruschi, Fabrizio; Giannessi, Daniela; Scarpato, Roberto

    2015-03-01

    Obesity has been implicated in the development of many cancers. This can lead to genome damage, especially in the form of double-strand break, the presence of which is now easily detected through nuclear phosphorylation of histone H2AX (γ-H2AX) focus assay. Recently, the endothelin (ET) axis has also been shown to have a role in the growth and progression of several tumors, including lung cancer. The aim of this study was to evaluate the ET-1 system transcriptional alterations and γ-H2AX in lung tissue of Zucker rats subdivided into obese (O, n=22) and controls (CO, n=18) rats: under either fasting conditions (CO(fc)-O(fc)) or acute hyperglycemia (CO(AH)-O(AH)). Significantly higher prepro-ET-1 (p=0.05) and ET-converting enzyme (ECE)-2 mRNA expression was observed in O with respect to CO. A significant positive association was observed between prepro-ET-1 and ET-A in the whole rat population (p=0.009) or in the obese group alone (p=0.007). The levels of γ-H2AX in O and in O(AH) rats were significantly higher (p=0.019) than in the corresponding CO and CO(AH) rats (p=0.038). The study shows an inappropriate secretion of ET-1 in O animals with a parallel DNA damage in their lungs, providing novel mechanisms by which ET receptor antagonist may exert organ protection.

  20. New animal models reveal that coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8) are candidate genes for the onset of type 2 diabetes associated with obesity in rats.

    PubMed

    Sasaki, Daiki; Kotoh, Jun; Watadani, Risa; Matsumoto, Kozo

    2015-12-01

    Obesity is a major risk factor for the onset of type 2 diabetes; however, little is known about the gene(s) involved. Therefore, we developed new animal models of obesity to search for diabetogenic genes associated with obesity. We generated double congenic rat strains with a hyperglycaemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr-/-) locus derived from the Zucker Fatty rat; phenotypic analysis for plasma glucose and insulin levels and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blotting analyses, respectively. The double congenic strain F344-fa-nidd2 (Lepr-/- and Nidd2/of) exhibited significantly higher glucose levels and significantly lower hypoglycaemic response to insulin than the obese control strain F344-fa (Lepr-/-). These phenotypes were clearly observed in the obese strains but not in the lean strains. These results indicate that the Nidd2/of locus harbours a diabetogenic gene associated with obesity. We measured the expression of 60 genes in the Nidd2/of QTL region between the strains and found that the mRNA expression levels of five genes were significantly different between the strains under the condition of obesity. However, three of the five genes were differentially expressed in both obese and lean rats, indicating that these genes are not specific for the condition of obesity. Conversely, the other two genes, coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8), were differentially expressed only in the obese rats, suggesting that these two genes are candidates for the onset of type 2 diabetes associated with obesity in rats.

  1. Dipeptidylpeptidase-IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats

    PubMed Central

    Tarantola, E.; Bertone, V.; Milanesi, G.; Capelli, E.; Ferrigno, A.; Neri, D.; Vairetti, M.; Barni, S.; Freitas, I.

    2012-01-01

    Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns

  2. Dipeptidylpeptidase--IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats.

    PubMed

    Tarantola, E; Bertone, V; Milanesi, G; Capelli, E; Ferrigno, A; Neri, D; Vairetti, M; Barni, S; Freitas, I

    2012-10-08

    Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns

  3. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of zucker diabetic fatty rats.

    PubMed

    Jain, Sushil K; Croad, Jennifer L; Velusamy, Thirunavukkarasu; Rains, Justin L; Bull, Rebeca

    2010-09-01

    Chromium and cysteine supplementation can improve glucose metabolism in animal studies. This study examined the hypothesis that a cysteinate complex of chromium is significantly beneficial than either of them in lowering blood glucose and vascular inflammation markers in Zucker diabetic fatty (ZDF) rats. Starting at the age of 6 wk, ZDF rats were supplemented orally (daily gavages for 8 more weeks) with saline-placebo (D) or chromium (400 microg Cr/Kg body weight) as chromium dinicocysteinate (CDNC), chromium dinicotinate (CDN) or chromium picolinate (CP) or equimolar L-cysteine (LC, img/Kg body weight), and fed Purina 5008 diet for 8 wk. ZDF rats of 6 wk age before any supplementations and onset of diabetes were considered as baseline. D rats showed elevated levels of fasting blood glucose, HbA(1), CRP, MCP-1, ICAM-1 and oxidative stress (lipid peroxidation) and lower adiponectin and vitamin C, when compared with baseline rats. In comparison to D group, CDNC group had significantly lower blood glucose, HbA(1), CRP, MCP-1, ICAM-1 and lipid peroxidation and increased vitamin C and adiponectin levels. CDN, CP or LC showed significantly less or no effect on these biomarkers. Only CDNC lowered blood creatinine levels in comparison to D. While CDN and CP had no effect, activation of NFkappaB, Akt and glucose transporter-2 levels were decreased, insulin receptor substrate 1 (IRS-1) activation increased in livers of CDNC-rats. CDNC effect on glycemia, NFkappaB, Akt and IRS-1 in liver was significantly greater compared with LC. Blood chromium levels did not differ between Cr-groups. Exogenous vitamin C supplementation significantly inhibited MCP-1 secretion in U937 monocytes cultured in high-glucose-medium. CDNC is a potent hypoglycemic compound with anti-inflammatory activity apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 and increased IRS-1 activation in livers of type 2 diabetic rats.

  4. Evidence of glycemia-lowering effect by a Cynara scolymus L. extract in normal and obese rats.

    PubMed

    Fantini, Noemi; Colombo, Giancarlo; Giori, Andrea; Riva, Antonella; Morazzoni, Paolo; Bombardelli, Ezio; Carai, Mauro A M

    2011-03-01

    Several recent preliminary clinical studies have suggested that artichoke (Cynara scolymus L., Asteraceae family) preparations may be capable of lowering post-prandial glycemia. The present study was designed to test this hypothesis in laboratory rats. To this aim, non-selected Wistar and genetically obese Zucker rats were treated acutely with a purified extract of Cynara scolymus flowering heads (500-1500 mg/kg by gavage) immediately prior to 1 h access to a fixed amount of food. Glycemia was recorded 60, 120 and 360 min after food presentation. Treatment with Cynara scolymus flowering head extract resulted in a significant decrease of post-prandial glycemia in both rat strains. The lack of any fiber content in this Cynara scolymus flowering head extract excludes the involvement of dietary fibers in glycemia reduction. The results obtained constitute the first evidence of a hypoglycemic effect of an artichoke preparation in laboratory rodents and confirm previous observations made in humans. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats.

    PubMed

    Schilder, Rudolf J; Kimball, Scot R; Marden, James H; Jefferson, Leonard S

    2011-05-01

    Do animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin-myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion. The response depended on weight per se, as externally attached loads had the same effect as an equal change in actual body weight. Examining the association between Tnnt3 alternative splicing and ATP consumption rate, we found that the Tnnt3 splice form profile had a significant association with nocturnal energy expenditure, independently of effects of weight. For a subset of the Tnnt3 splice forms, obese Zucker rats failed to make the same adjustments; that is, they did not show the same relationship between body weight and the relative abundance of five Tnnt3 β splice forms (i.e. Tnnt3 β2-β5 and β8), four of which showed significant effects on nocturnal energy expenditure in Sprague-Dawley rats. Heavier obese Zucker rats displayed certain splice form relative abundances (e.g. Tnnt3 β3) characteristic of much lighter, lean animals, resulting in a mismatch between body weight and muscle molecular composition. Consequently, we suggest that body weight-inappropriate skeletal muscle Tnnt3 expression in obesity is a candidate mechanism for muscle weakness and reduced mobility. Weight-dependent quantitative variation in Tnnt3 alternative splicing appears to be an evolutionarily conserved feature of

  6. Leptin gene promoter DNA methylation in WNIN obese mutant rats

    PubMed Central

    2014-01-01

    Background Obesity has become an epidemic in worldwide population. Leptin gene defect could be one of the causes for obesity. Two mutant obese rats WNIN/Ob and WNIN/GROb, isolated at National Centre for Laboratory Animal Sciences (NCLAS), Hyderabad, India, were found to be leptin resistant. The present study aims to understand the regulatory mechanisms underlying the resistance by promoter DNA methylation of leptin gene in these mutant obese rats. Methods Male obese mutant homozygous, carrier and heterozygous rats of WNIN/Ob and WNIN/GROb strain of 6 months old were studied to check the leptin gene expression (RT-PCR) and promoter DNA methylation (MassARRAY Compact system, SEQUENOM) of leptin gene by invivo and insilico approach. Results Homozygous WNIN/Ob and WNIN/GROb showed significantly higher leptin gene expression compared to carrier and lean counterparts. Leptin gene promoter DNA sequence region was analyzed ranging from transcription start site (TSS) to-550 bp length and found four CpGs in this sequence among them only three CpG loci (-309, -481, -502) were methylated in these WNIN mutant rat phenotypes. Conclusion The increased percentage of methylation in WNIN mutant lean and carrier phenotypes is positively correlated with transcription levels. Thus genetic variation may have effect on methylation percentages and subsequently on the regulation of leptin gene expression which may lead to obesity in these obese mutant rat strains. PMID:24495350

  7. Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells.

    PubMed

    Burlet, Elodie; Jain, Sushil K

    2017-05-01

    Blood and tissue levels of manganese (Mn) are lower in type 2 diabetic and atherosclerosis patients compared with healthy subjects. Adiponectin has anti-diabetic and anti-atherogenic properties. Impairment in Disulfide bond A-like protein (DsbA-L) is associated with low adiponectin levels and diabetes. This study investigates the hypothesis that the beneficial effects of Mn supplementation are mediated by adiponectin and DsbA-L. At 6 weeks of age, Male Zucker diabetic fatty rats (ZDF) were randomly divided into two groups: diabetic controls and Mn-supplemented diabetic rats. Each rat was supplemented with Mn (D+Mn, 16 mg/kg BW) or water (placebo, D+P) daily for 7 weeks by oral gavage. For cell culture studies, Human Umbilical Vein Endothelial Cells (HUVEC) or 3T3L1 adipocytes were pretreated with Mn (0-10 µM MnCl 2 ) for 24 h, followed by high glucose (HG, 25 mM) or normal glucose (5 mM) exposure for another 24 h. Mn supplementation resulted in higher adiponectin (p = 0.01), and lower ICAM-1 (p = 0.04) and lower creatinine (p = 0.04) blood levels compared to those in control ZDF rats. Mn-supplemented rats also caused reduced oxidative stress (ROS) and NADPH oxidase, and higher DsbA-L expression in the liver (p = 0.03) of ZDF rats compared to those in livers of control rats; however, Fe levels in liver were lower but not significant (p = 0.08). Similarly, treatment with high glucose (25 mM) caused a decrease in DsbA-L, which was prevented by Mn supplementation in HUVEC and adipocytes. Mechanistic studies with DsbA-L siRNA showed that the beneficial effects of Mn supplementation on ROS, NOX4, and ICAM-1 expression were abolished in DsbA-L knock-down HUVEC. These studies demonstrate that DsbA-L-linked adiponectin mediates the beneficial effects observed with Mn supplementation and provides evidence for a novel mechanism by which Mn supplementation can increase adiponectin and reduce the biomarkers of endothelial dysfunction in diabetes.

  8. Effects of a diabetes-specific enteral nutrition on nutritional and immune status of diabetic, obese, and endotoxemic rats: interest of a graded arginine supply.

    PubMed

    Breuillard, Charlotte; Darquy, Sylviane; Curis, Emmanuel; Neveux, Nathalie; Garnier, Jean-Pierre; Cynober, Luc; De Bandt, Jean-Pascal

    2012-08-01

    Obese and type 2 diabetic patients present metabolic disturbance-related alterations in nonspecific immunity, to which the decrease in their plasma arginine contributes. Although diabetes-specific formulas have been developed, they have never been tested in the context of an acute infectious situation as can be seen in intensive care unit patients. Our aim was to investigate the effects of a diabetes-specific diet enriched or not with arginine in a model of infectious stress in a diabetes and obesity situation. As a large intake of arginine may be deleterious, this amino acid was given in graded fashion. Randomized, controlled experimental study. University research laboratory. Zucker diabetic fatty rats. Gastrostomized Zucker diabetic fatty rats were submitted to intraperitoneal lipopolysaccharide administration and fed for 7 days with either a diabetes-specific enteral nutrition without (G group, n=7) or with graded arginine supply (1-5 g/kg/day) (GA group, n=7) or a standard enteral nutrition (HP group, n=10). Survival rate was better in G and GA groups than in the HP group. On day 7, plasma insulin to glucose ratio tended to be lower in the same G and GA groups. Macrophage tumor necrosis factor-α (G: 5.0±1.1 ng/2×10⁶ cells·hr⁻¹; GA: 3.7±0.8 ng/2×10⁶ cells·hr⁻¹; and HP: 1.7±0.6 ng/2×10⁶ cells·hr⁻¹; p<.05 G vs. HP) and nitric oxide (G: 4.5±1.1 ng/2×10⁶ cells·hr⁻¹; GA: 5.1±1.0 ng/2×10⁶ cells·hr⁻¹; and HP: 1.0±0.5 nmol/2×10⁶ cells·hr⁻¹; p<.05 G and GA vs. HP) productions were higher in the G and GA groups compared to the HP group. Macrophages from the G and GA groups exhibited increased arginine consumption. In diabetic obese and endotoxemic rats, a diabetes-specific formula leads to a lower mortality, a decreased insulin resistance, and an improvement in peritoneal macrophage function. Arginine supplementation has no additional effect. These data support the use of such disease-specific diets in critically ill

  9. Mechanisms of lower maintenance dose of tacrolimus in obese patients.

    PubMed

    Sawamoto, Kazuki; Huong, Tran T; Sugimoto, Natsumi; Mizutani, Yuka; Sai, Yoshimichi; Miyamoto, Ken-ichi

    2014-01-01

    A retrospective analysis suggested that blood tacrolimus concentrations were consistent among patients with a body mass index (BMI) that was lean (<18.5), normal (≥ 18.5 and <25) or overweight/obese (≥ 25). The average maintenance dose of tacrolimus in patients with BMI ≥ 25 was significantly lower compared with that in patients with a BMI of less than 25. Lean and obese Zucker rats fed a normal diet were given tacrolimus intravenously or orally. The blood concentrations of tacrolimus in obese rats were significantly higher than those in lean rats after administration via both routes. The moment analysis has suggested that CLtot and Vdss of tacrolimus were not significantly different between lean and obese rats. The bioavailability was higher in obese rats, compared with that in lean rats. The protein expression of Cyp3a2 in the liver was significantly decreased in obese rats, compared with lean rats, while P-gp in the small intestine was also significantly decreased in obese rats. These results suggested that the steady-state trough concentration of tacrolimus in obese patients was well maintained by a relatively low dose compared with that in normal and lean patients, presumably due to increased bioavailability.

  10. The Effect of Exercise Training on Skeletal Muscle Glucose Transorter Isoform GLUT4 Concentration in the Obese Zucker Rat

    DTIC Science & Technology

    1991-05-01

    They also estimated that in the post- absorptive state, approximately 25% of glucose use took place in insulin-dependent peripheral tissues (75 to...Measure concentration with refractometer . APPENDIX E RED BLOOD CELL REJUVENATION 94 95 RED BLOOD CELL REJUVENATION Use time expired red blood cells from...a 3 ’P4tr P,~ , Ok 𔄂di) ej,. J/4CS As rc.< O~ 1. AGENCY USE ONLY (Le.ve blnk 2. REPORT DATE TTESI ADGDRATE CV 4. TITLE AND SUBTITLE S. FUNDING

  11. Dual implantation of a radio-telemeter and vascular access port allows repeated hemodynamic and pharmacological measures in conscious lean and obese rats.

    PubMed

    Bussey, C T; Leeuw, A E de; Cook, R F; Ashley, Z; Schofield, J; Lamberts, R R

    2014-07-01

    Expansion of physiological knowledge increasingly requires examination of processes in the normal, conscious state. The current study describes a novel approach combining surgical implantation of radio-telemeters with vascular access ports (VAPs) to allow repeated hemodynamic and pharmacological measures in conscious rats. Dual implantation was conducted on 16-week-old male lean and obese Zucker rats. Continued viability one month after surgery was observed in 67% of lean and 44% of obese animals, giving an overall 54% completion rate. Over the five-week measurement period, reliable and reproducible basal mean arterial pressure and heart rate measures were observed. VAP patency and receptor-independent vascular reactivity were confirmed by consistent hemodynamic responses to sodium nitroprusside (6.25 µg/kg). Acutely, minimal hemodynamic responses to repeated bolus administration of 0.2 mL saline indicated no significant effect of increased blood volume or administration stress, making repeated acute measures viable. Similarly, repeated administration of the β-adrenoceptor agonist dobutamine (30 µg/kg) at 10 min intervals resulted in reproducible hemodynamic changes in both lean and obese animals. Therefore, our study demonstrates that this new approach is viable for the acute and chronic assessment of hemodynamic and pharmacological responses in both lean and obese conscious rats. This technique reduces the demand for animal numbers and allows hemodynamic measures with minimal disruption to animals' welfare, while providing reliable and reproducible results over several weeks. In conclusion, dual implantation of a radio-telemeter and VAP introduces a valuable technique for undertaking comprehensive studies involving repeated pharmacological tests in conscious animals to address important physiological questions. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Feeding butter with elevated content of trans-10, cis-12 conjugated linoleic acid to obese-prone rats impairs glucose and insulin tolerance.

    PubMed

    Hamilton, Melissa; Hopkins, Loren E; AlZahal, Ousama; MacDonald, Tara L; Cervone, Daniel T; Wright, David C; McBride, Brian W; Dyck, David J

    2015-09-28

    We recently demonstrated that feeding a natural CLAt10,c12-enriched butter to lean female rats resulted in small, but significant increases in fasting glucose and insulin concentrations, and impaired insulin tolerance. Our goal was to extend these findings by utilizing the diabetes-prone female fatty Zucker rat. Rats were fed custom diets containing 45 % kcal of fat derived from control and CLAt10,c12-enriched butter for 8 weeks. CLA t10,c12-enriched butter was prepared from milk collected from cows fed a high fermentable carbohydrate diet to create subacute rumen acidosis (SARA); control (non-SARA) butter was collected from cows fed a low grain diet. Female fatty Zucker rats (10 weeks old) were randomly assigned to one of four diet treatments: i) low fat (10 % kcal), ii) 45 % kcal lard, iii) 45 % kcal SARA butter, or iv) 45 % kcal non-SARA butter. A low fat fed lean Zucker group was used as a control group. After 8 weeks, i) glucose and insulin tolerance tests, ii) insulin signaling in muscle, adipose and liver, and iii) metabolic caging measurements were performed. Glucose and insulin tolerance were significantly impaired in all fatty Zucker groups, but to the greatest extent in the LARD and SARA conditions. Insulin signaling (AKT phosphorylation) was impaired in muscle, visceral (perigonadal) adipose tissue and liver in fatty Zucker rats, but was generally similar across dietary groups. Physical activity, oxygen consumption, food intake and weight gain were also similar amongst the various fatty Zucker groups. Increasing the consumption of a food naturally enriched with CLAt10,c12 significantly worsens glucose and insulin tolerance in a diabetes-prone rodent model. This outcome is not explained by changes in tissue insulin signaling, physical activity, energy expenditure, food intake or body mass.

  13. Distinct Endothelial Cell Responses in the Heart and Kidney Microvasculature Characterize the Progression of Heart Failure With Preserved Ejection Fraction in the Obese ZSF1 Rat With Cardiorenal Metabolic Syndrome.

    PubMed

    van Dijk, Christian G M; Oosterhuis, Nynke R; Xu, Yan Juan; Brandt, Maarten; Paulus, Walter J; van Heerebeek, Loek; Duncker, Dirk J; Verhaar, Marianne C; Fontoura, Dulce; Lourenço, André P; Leite-Moreira, Adelino F; Falcão-Pires, Inês; Joles, Jaap A; Cheng, Caroline

    2016-04-01

    The combination of cardiac and renal disease driven by metabolic risk factors, referred to as cardiorenal metabolic syndrome (CRMS), is increasingly recognized as a critical pathological entity. The contribution of (micro)vascular injury to CRMS is considered to be substantial. However, mechanistic studies are hampered by lack of in vivo models that mimic the natural onset of the disease. Here, we evaluated the coronary and renal microvasculature during CRMS development in obese diabetic Zucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) rats. Echocardiographic, urine, and blood evaluations were conducted in 3 groups (Wistar-Kyoto, lean ZSF1, and obese ZSF1) at 20 and 25 weeks of age. Immunohistological evaluation of renal and cardiac tissues was conducted at both time points. At 20 and 25 weeks, obese ZSF1 rats showed higher body weight, significant left ventricular hypertrophy, and impaired diastolic function compared with all other groups. Indices of systolic function did not differ between groups. Obese ZSF1 rats developed hyperproliferative vascular foci in the subendocardium, which lacked microvascular organization and were predilection sites of inflammation and fibrosis. In the kidney, obese ZSF1 animals showed regression of the peritubular and glomerular microvasculature, accompanied by tubulointerstitial damage, glomerulosclerosis, and proteinuria. The obese ZSF1 rat strain is a suitable in vivo model for CRMS, sharing characteristics with the human syndrome during the earliest onset of disease. In these rats, CRMS induces microvascular fibrotic responses in heart and kidneys, associated with functional impairment of both organs. © 2016 American Heart Association, Inc.

  14. Transgenic animal model for studying the mechanism of obesity-associated stress urinary incontinence.

    PubMed

    Wang, Lin; Lin, Guiting; Lee, Yung-Chin; Reed-Maldonado, Amanda B; Sanford, Melissa T; Wang, Guifang; Li, Huixi; Banie, Lia; Xin, Zhengcheng; Lue, Tom F

    2017-02-01

    To study and compare the function and structure of the urethral sphincter in female Zucker lean (ZL) and Zucker fatty (ZF) rats and to assess the viability of ZF fats as a model for female obesity-associated stress urinary incontinence (SUI). Two study arms were created: a ZL arm including 16-week-old female ZL rats (ZUC-Lepr fa 186; n = 12) and a ZF arm including 16-week-old female ZF rats (ZUC-Lepr fa 185; n = 12). I.p. insulin tolerance testing was carried out before functional study. Metabolic cages, conscious cystometry and leak point pressure (LPP) assessments were conducted. Urethral tissues were harvested for immunofluorescence staining to check intramyocellular lipid (IMCL) and sphincter muscle (smooth muscle and striated muscle) composition. The ZF rats had insulin resistance, a greater voiding frequency and lower LPP compared with ZL rats (P < 0.05), with more IMCL deposition localized in the urethral striated muscle fibres of the ZF rats (P < 0.05). The thickness of the striated muscle layer and the ratio of striated muscle to smooth muscle were lower in ZF than in ZL rats. Obesity impairs urethral sphincter function via IMCL deposition and leads to atrophy and distortion of urethral striated muscle. The ZF rats could be a consistent and reliable animal model in which to study obesity-associated SUI. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  15. Immune function, mitogenicity, and angiogenic growth factor concentrations in lean and obese rodent sera: implications in obesity-related prostate tumor biology.

    PubMed

    Mydlo, J H; Gerstein, M I; Harris, C F; Braverman, A S

    2003-01-01

    Some studies suggest that several tumors have a greater incidence in those patients with a high fat diet, such as colon, breast, and prostate. However, we wanted to determine the effects of obesity alone, independent of diet, on the progression of prostate tumor growth. Using a genetic model of obese and lean Zucker rats, we wanted to demonstrate any sera differences in the concentration of basic fibroblast growth factor (FGF-2) and vascular endothelial cell growth factor (VEGF), two important factors involved in the growth and progression of prostate cancer. We also wanted to investigate if there were any differences in immune function between the two sera, which could also account for uninhibited tumor growth, as well as differences in mitogenic stimulation. Female Zucker rat obese and lean sera were analyzed using ELISA assays for FGF-2, VEGF, and macrophage inflammatory protein-1 alpha (MIP-1a), as a measure of macrophage function. In addition, the sera of lean and obese sera were plated on wells growing LNCaP prostate cancer cells to determine differences in mitogenicity. We found a greater concentration of FGF-2 in the sera from obese Zucker rats compared to lean Zucker rats: 6.32+/-0.56 vs 3.48+/-0.34 pg/ml, respectively, P<0.05). We also demonstrated a greater concentration of VEGF in obese rat sera compared to lean sera: 54.4+/-4.1 vs 38.0+/-2.9 pg/mL, respectively, P<0.05). We detected a trend in mitogenic stimulation among LNCaP cells along the higher concentrations of the dose-response curve (0.72+/-0.06 vs 0.51+/-0.5). However, this was not statistically significant. In addition, we did not find a significant difference in MIP-1a macrophage activity levels between sera. To conclude, we speculate that the greater concentrations of VEGF and FGF-2 in the sera of obese rodents vs lean rodents may account for some of the differences seen in obesity-related tumor growth seen in the human condition. However, the lack of any sera differences of immune function

  16. Hyperphagia and obesity in OLETF rats lacking CCK-1 receptors

    PubMed Central

    Moran, Timothy H; Bi, Sheng

    2006-01-01

    The brain–gut peptide cholecystokinin (CCK) inhibits food intake following peripheral or site directed central administration. Peripheral exogenous CCK inhibits food intake by reducing the size and duration of a meal. Antagonist studies have demonstrated that the actions of the exogenous peptide mimic those of endogenous CCK. Antagonist administration results in increased meal size and meal duration. The feeding inhibitory actions of CCK are mediated through interactions with CCK-1 receptors. The recent identification of the Otsuka–Long–Evans–Tokushima Fatty (OLETF) rat as a spontaneous CCK-1 receptor knockout model has allowed a more comprehensive evaluation of the feeding actions of CCK. OLETF rats become obese and develop non-insulin dependent diabetes mellitus (NIDDM). Consistent with the absence of CCK-1 receptors, OLETF rats do not respond to exogenous CCK. OLETF rats are hyperphagic and their increased food intake is characterized by a large increase in meal size with a decrease in meal frequency that is not sufficient to compensate for the meal size increase. Deficits in meal size control are evident in OLETF rats as young as 2 days of age. OLETF obesity is secondary to the increased food intake. Pair feeding to amounts consumed by intact control rats normalizes body weight, body fat and elevated insulin and glucose levels. Hypothalamic arcuate nucleus peptide mRNA expression in OLETF rats is appropriate to their obesity and is normalized by pair feeding. In contrast, pair fed and young pre-obese OLETF rats have greatly elevated dorsomedial hypothalamic (DMH) neuropeptide Y (NPY) mRNA expression. Elevated DMH NPY in OLETF rats appears to be a consequence of the absence of CCK-1 receptors. In intact rats NPY and CCK-1 receptors colocalize to neurons within the compact subregion of the DMH and local CCK administration reduces food intake and decreases DMH NPY mRNA expression. We have proposed that the absence of DMH CCK-1 receptors significantly

  17. Analysis of energy expenditure in diet-induced obese rats

    PubMed Central

    Assaad, Houssein; Yao, Kang; Tekwe, Carmen D.; Feng, Shuo; Bazer, Fuller W.; Zhou, Lan; Carroll, Raymond J.; Meininger, Cynthia J.; Wu, Guoyao

    2014-01-01

    Development of obesity in animals is affected by energy intake, dietary composition, and metabolism. Useful models for studying this metabolic problem are Sprague-Dawley rats fed low-fat (LF) or high-fat (HF) diets beginning at 28 days of age. Through experimental design, their dietary intakes of energy, protein, vitamins, and minerals per kg body weight (BW) do not differ in order to eliminate confounding factors in data interpretation. The 24-h energy expenditure of rats is measured using indirect calorimetry. A regression model is constructed to accurately predict BW gain based on diet, initial BW gain, and the principal component scores of respiratory quotient and heat production. Time-course data on metabolism (including energy expenditure) are analyzed using a mixed effect model that fits both fixed and random effects. Cluster analysis is employed to classify rats as normal-weight or obese. HF-fed rats are heavier than LF-fed rats, but rates of their heat production per kg non-fat mass do not differ. We conclude that metabolic conversion of dietary lipids into body fat primarily contributes to obesity in HF-fed rats. PMID:24896330

  18. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    PubMed

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  19. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats.

    PubMed

    Gaspar, Renato Simões; Benevides, Renata Ohana Alves; Fontelles, João Lucas de Lima; Vale, Caroline Castro; França, Lucas Martins; Barros, Paulo de Tarso Silva; Paes, Antonio Marcus de Andrade

    2016-05-01

    Obesity and metabolic syndrome are the common causes of reproductive and fertility disorders in women. In particular, polycystic ovary syndrome, which is clinically characterized by hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology, has been increasingly associated with metabolic disorders. However, given the broad interplay between metabolic and reproductive functions, this remains a field of intense research. In this study, we investigated the effect of monosodium l-glutamate (MSG)-induced obesity on reproductive biology of female rats. Newborn female rats were subcutaneously injected with MSG (4g/kg/day) or equiosmolar saline (CTR) each 2 days up to postnatal day (pnd) 10. On pnd 60, estrous cycle was evaluated using vaginal smears twice a day for 15 days, which showed MSG rats to be oligocyclic. Thereafter, animals were killed on estrous phase for blood and tissue collection. MSG rats had increased body mass, accumulation of retroperitoneal and visceral fat pads, and visceral adipocyte hypertrophy compared with CTR rats. MSG rats were also dyslipidemic and hyperinsulinemic but were normoglycemic and normoandrogenic. Ovarian morphology analysis showed that MSG rats had a two-fold decrease in oocyte count but a six-fold increase on ovarian follicular cysts, along with a higher number of total primordial and atretic follicles. Moreover, MSG rats had a four-fold increase in anti-Müllerian hormone immunohistochemical staining on antral follicles. Taken together, data presented here characterize MSG obesity as a unique model to study the metabolic pathways underlying reproductive disorders in the absence of overactivated hypothalamic-pituitary-gonadal axis. © 2016 Society for Endocrinology.

  20. Roux-en Y gastric bypass is superior to duodeno-jejunal bypass in improving glycaemic control in Zucker diabetic fatty rats.

    PubMed

    Seyfried, Florian; Bueter, Marco; Spliethoff, Kerstin; Miras, Alexander D; Abegg, Kathrin; Lutz, Thomas A; le Roux, Carel W

    2014-11-01

    Whilst weight loss results in many beneficial metabolic consequences, the immediate improvement in glycaemia after Roux-en-Y Gastric bypass (RYGB) remains intriguing. Duodenal jejunal bypass (DJB) induces similar glycaemic effects, while not affecting calorie intake or weight loss. We studied diabetic ZDF(fa/fa) rats to compare the effects of DJB and RYGB operations on glycaemia. Male ZDF(fa/fa) rats, aged 12 weeks underwent RYGB, DJB or sham operations. Unoperated ZDF(fa/fa) and ZDF(fa/+w)ere used as controls. Body weight, food intake, fasting glucose, insulin and gut hormones were measured at baseline and on postoperative days 2, 10 and 35. An oral glucose tolerance test (OGTT) was performed on days 12 and 26. DJB had similar food intake and body weight to sham-operated and unoperated control ZDF(fa/fa) rats (p = NS), but had lower fasting glucose (p < 0.05). RYGB had lower food intake, body weight and fasting glucose compared to all groups (p < 0.001). DJB prevented the progressive decline in fasting insulin observed in the sham-operated or unoperated ZDF(fa/fa) rats, while RYGB with normalized glycaemia reduced the physiological requirement for raised fasting insulin. Bypassing the proximal small bowel with the DJB has mild to moderate body weight independent effects on glucose homeostasis and preservation of fasting insulin levels in the medium term. These effects might be further amplified by the additional anatomical and physiological changes after RYGB.

  1. Arginine-supplemented enteral nutrition in critically ill diabetic and obese rats: a dose-ranging study evaluating nutritional status and macrophage function.

    PubMed

    Bonhomme, Sandra; Belabed, Linda; Blanc, Marie-Céline; Neveux, Nathalie; Cynober, Luc; Darquy, Sylviane

    2013-01-01

    Critically ill diabetic and obese patients are at high risk of complications. Arginine availability is lowered in diabetes and in stress situations, yet arginine is necessary for immune response, mainly by its action through nitric oxide (NO). These facts argue for arginine-supplemented diets in critically ill patients. However, studies have raised concerns about possible adverse effects of such diets in intensive-care patients. We therefore analyzed the metabolic and immunologic effects of an arginine-enriched diet in stressed diabetic-obese rats. Zucker Diabetic Fatty rats (fa/fa) were made endotoxemic by an intraperitoneal injection of lipopolysaccharide and then fed 4-d enteral nutrition enriched with arginine (ARG group) or a non-essential amino acid mix (NEAA group). The two groups each were subdivided into three subgroups: the ARG subgroups received 0.5 g (ARG0.5), 2 g (ARG2), and 5 g (ARG5) of arginine per kilogram daily, and the NEAA groups were made isonitrogenous with the corresponding ARG subgroups (NEAA0.5, NEAA2, and NEAA5). Plasma and urinary biomarkers were measured. Cytokine and NO production levels and inducible NO synthase and arginase protein levels were determined from peritoneal macrophages. The survival rate was lower in the ARG5 and NEAA5 subgroups than in all the other subgroups. The nitrogen balance was higher in the ARG5 group than in the NEAA5 group. Plasma triacylglycerol levels were lower in the ARG2 group than in the NEAA2 group. Interleukin-6, tumor necrosis factor-α, and NO production in the macrophages decreased and arginase-1 was upregulated in the ARG-treated rats. In this model, mortality was increased by the nitrogen burden rather than by arginine per se. Arginine improved nitrogen balance and had an anti-inflammatory action on macrophages by regulating NO production, probably through arginase-1 expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Modeling Diet-Induced Obesity with Obesity-Prone Rats: Implications for Studies in Females

    PubMed Central

    Giles, Erin D.; Jackman, Matthew R.; MacLean, Paul S.

    2016-01-01

    Obesity is a worldwide epidemic, and the comorbidities associated with obesity are numerous. Over the last two decades, we and others have employed an outbred rat model to study the development and persistence of obesity, as well as the metabolic complications that accompany excess weight. In this review, we summarize the strengths and limitations of this model and how it has been applied to further our understanding of human physiology in the context of weight loss and weight regain. We also discuss how the approach has been adapted over time for studies in females and female-specific physiological conditions, such as menopause and breast cancer. As excess weight and the accompanying metabolic complications have become common place in our society, we expect that this model will continue to provide a valuable translational tool to establish physiologically relevant connections to the basic science studies of obesity and body weight regulation. PMID:27933296

  3. Obesity-resistant S5B rats showed great cocaine conditioned place preference than the obesity-prone OM rats

    SciT

    Thanos, P.K.; Wang, G.; Thanos, P.K..

    Dopamine (DA) and the DA D2 receptor (D2R) are involved in the rewarding and conditioned responses to food and drug rewards. Osborne-Mendel (OM) rats are genetically prone and S5B/P rats are genetically resistant to obesity when fed a high-fat diet. We hypothesized that the differential sensitivity of these two rat strains to natural rewards may also be reflected in sensitivity to drugs of abuse. Therefore, we tested whether OM and S5B/P rats showed a differential preference to cocaine using conditioned place preference (CPP). To also evaluate whether there is specific involvement of the D2R in this differential conditioning sensitivity, wemore » then tested whether the D2R agonist bromocriptine (BC) would differentially affect the effects of cocaine in the two strains. OM and S5B/P rats were conditioned with cocaine (5 or 10 mg/kg) in one chamber and saline in another for 8 days. Rats were then tested for cocaine preference. The effects of BC (0.5, 1, 5, 10, 20 mg/kg) on cocaine preference were then assessed in subsequent test sessions. OM rats did not show a significant preference for the cocaine-paired chamber on test day. Only the S5B/P rats showed cocaine CPP. Later treatment with only the highest dose of BC resulted in reduced cocaine CPP in S5B/P rats when treated with 5 mg/kg cocaine and in OM rats treated with 10 mg/kg cocaine. Our results indicated that obesity-resistant S5B rats showed greater cocaine CPP than the obesity-prone OM rats. These findings do not support a theory of common vulnerability for reinforcer preferences (food and cocaine). However, they show that BC reduced cocaine conditioning effects supporting at least a partial regulatory role of D2R in conditioned responses to drugs.« less

  4. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats.

    PubMed

    Rupprecht, Laura E; Smith, Tracy T; Donny, Eric C; Sved, Alan F

    2017-07-01

    Obesity and tobacco smoking represent the largest challenges to public health, but the causal relationship between nicotine and obesity is poorly understood. Nicotine suppresses body weight gain, a factor impacting smoking initiation and the failure to quit, particularly among obese smokers. The impact of nicotine on body weight regulation in obesity-prone and obesity-resistant populations consuming densely caloric diets is unknown. In the current experiment, body weight gain of adult male rats maintained on a high energy diet (31.8% kcal from fat) distributed into obesity-prone (OP), obesity-resistant (OR) and an intermediate group, which was placed on standard rodent chow (Chow). These rats were surgically implanted with intravenous catheters and allowed to self-administer nicotine (0 or 60μg/kg/infusion, a standard self-administration dose) in 1-h sessions for 20 consecutive days. Self-administered nicotine significantly suppressed body weight gain but not food intake in OP and Chow rats. Self-administered nicotine had no effect on body weight gain in OR rats. These data suggest that: 1) OR rats are also resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may reduce levels of obesity in a subset of smokers prone to obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Genetic Relatedness of WNIN and WNIN/Ob with Major Rat Strains in Biomedical Research.

    PubMed

    Battula, Kiran Kumar; Nappanveettil, Giridharan; Nakanishi, Satoshi; Kuramoto, Takashi; Friedman, Jeffry M; Kalashikam, Rajender Rao

    2015-06-01

    WNIN (Wistar/NIN) is an inbred rat strain maintained at National Institute of Nutrition (NIN) for more than 90 years, and WNIN/Ob is an obese mutant originated from it. To determine their genetic relatedness with major rat strains in biomedical research, they were genotyped at various marker loci. The recently identified markers for albino and hooded mutations which clustered all the known albino rats into a single lineage also included WNIN and WNIN/Ob rats. Genotyping using microsatellite DNA markers and phylogenetic analysis with 49 different rat strains suggested that WNIN shares a common ancestor with many Wistar originated strains. Fst estimates and Fischer's exact test suggest that WNIN rats differed significantly from all other strains tested. WNIN/Ob though shows hyper-leptinemia, like Zucker fatty rat, did not share the Zucker fatty rat mutation. The above analyses suggest WNIN as a highly differentiated rat strain and WNIN/Ob a novel obese mutant evolved from it.

  6. Eszopiclone and Dexmedetomidine Depress Ventilation in Obese Rats with Features of Metabolic Syndrome

    PubMed Central

    Filbey, William A.; Sanford, David T.; Baghdoyan, Helen A.; Koch, Lauren G.; Britton, Steven L.; Lydic, Ralph

    2014-01-01

    Study Objectives: Obesity alters the therapeutic window of sedative/hypnotic drugs and increases the probability of respiratory complications. The current experiments used an established rodent model of obesity to test the hypothesis that the sedative/hypnotic drugs eszopiclone and dexmedetomidine alter ventilation differentially in obese rats compared with lean/fit rats. Design: This study used a within-groups/between-groups experimental design. Setting: University of Michigan. Participants: Experiments were conducted using lean/fit rats (n = 21) and obese rats (n = 21) that have features of metabolic syndrome. Interventions: Breathing was measured with whole-body plethysmography after systemic administration of vehicle (control), the nonbenzodiazepine, benzodiazepine site agonist eszopiclone, or the alpha-2 adrenergic receptor agonist dexmedetomidine. Measurements and Results: Data were analyzed using two-way analysis of variance and appropriate post hoc comparisons. At baseline, the obese/metabolic syndrome rats had increased respiratory rates (21.6%), lower tidal volumes/body weight (-24.1%), and no differences in minute ventilation compared to lean/fit rats. In the obese rats, respiratory rate was decreased by dexmedetomidine (-29%), but not eszopiclone. In the lean and the obese rats, eszopiclone decreased tidal volume (-12%). Both sedative/hypnotic drugs caused a greater decrease in minute ventilation in the obese (-26.3%) than lean (-18%) rats. Inspiratory flow rate (VT / TI) of the obese rats was decreased by dexmedetomidine (-10.6%) and eszopiclone (-18%). Duty cycle (TI / TTOT) in both rat lines was decreased by dexmedetomidine (-16.5%) but not by eszopiclone. Conclusions: Dexmedetomidine, in contrast to eszopiclone, decreased minute ventilation in the obese/metabolic syndrome rats by depressing both duty cycle and inspiratory flow rate. The results show for the first time that the obese phenotype differentially modulates the respiratory effects of

  7. Differential Secretion of Satiety Hormones With Progression of Obesity in JCR: LA-corpulent Rats

    PubMed Central

    Parnell, Jill A.; Reimer, Raylene A.

    2013-01-01

    Objective To characterize the gastrointestinal tract at the onset and in well-established obesity. Methods and Procedures Lean (+/?) and obese (cp/cp) male JCR:LA-cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well-established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide-1 (GLP-1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity. PMID:18239578

  8. Diet-induced obesity alters memory consolidation in female rats.

    PubMed

    Zanini, P; Arbo, B D; Niches, G; Czarnabay, D; Benetti, F; Ribeiro, M F; Cecconello, A L

    2017-10-15

    Obesity is a multifactorial disease characterized by the abnormal or excessive fat accumulation, which is caused by an energy imbalance between consumed and expended calories. Obesity leads to an inflammatory response that may result in peripheral and central metabolic changes, including insulin and leptin resistance. Insulin and leptin resistance have been associated with metabolic and cognitive dysfunctions. Obesity and some neurodegenerative diseases that lead to dementia affect mainly women. However, the effects of diet-induced obesity on memory consolidation in female rats are poorly understood. Therefore, the aim of this study was to evaluate the effect of a hypercaloric diet on the object recognition memory of female rats and on possible related metabolic changes. The animals submitted to the hypercaloric diet presented a higher food intake in grams and in calories, resulting in increased weight gain and liposomatic index in comparison with the animals exposed to the control diet. These animals presented a memory deficit in the object recognition test and increased serum levels of glucose and leptin. However, no significant differences were found in the serum levels of insulin, TNF-α and IL-1β, in the index of insulin resistance (HOMA), in the hippocampal levels of insulin, TNF-α and IL-1β, as well as on Akt expression or activation in the hippocampus. Our findings indicate that adult female rats submitted to a hypercaloric diet present memory consolidation impairment, which could be associated with diet-induced weight gain and leptin resistance, even without the development of insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Obesity alters the ovarian glucidic homeostasis disrupting the reproductive outcome of female rats.

    PubMed

    Bazzano, María Victoria; Paz, Dante Agustín; Elia, Evelin Mariel

    2017-04-01

    Obesity constitutes a health problem of increasing worldwide prevalence related to many reproductive problems such as infertility, ovulation dysfunction, preterm delivery, fetal growth disorders, etc. The mechanisms linking obesity to these pathologies are not fully understood. Cafeteria diet (CAF) is the animal model used for the study of obesity that more closely reflects western diet habits. Previously we described that CAF induces obesity associated to hyperglycemia, reduced ovarian reserve, presence of follicular cysts and ovulatory impairments. The aim of the present study was to contribute in the understanding of the physiological mechanisms altered as consequence of obesity. For that purpose, female Wistar rats were fed ad libitum with a standard diet (control group) or CAF (Obese group). We found that CAF fed-rats developed obesity, glucose intolerance and insulin resistance. Ovaries from obese rats showed decreased glucose uptake and became insulin resistant, showing decreased ovarian expression of glucotransporter type 4 and insulin receptor gene expression respect to controls. These animals showed an increased follicular nitric oxyde synthase expression that may be responsible for the ovulatory disruptions and for inflammation, a common feature in obesity. Obese rats resulted subfertile and their pups were macrosomic. We conclude that obesity alters the systemic and the ovarian glucidic homeostasis impairing the reproductive outcome. Since macrosomia is a risk factor for metabolic and obstetric disorders in adult life, we suggest that obesity is impacting not only on health and reproduction but it is also impacting on health and reproduction of the offspring. Published by Elsevier Inc.

  10. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.

    PubMed

    Harishankar, N; Vajreswari, A; Giridharan, N V

    2011-09-01

    WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to

  11. Lingual CD36 and nutritional status differentially regulate fat preference in obesity-prone and obesity-resistant rats

    PubMed Central

    Braymer, H. Douglas; Zachary, Hannah; Schreiber, Allyson L.; Primeaux, Stefany D.

    2017-01-01

    Lingual fatty acid receptors (i.e. CD36) mediate the orosensory perception of fat/fatty acids and may contribute to the susceptibility to develop obesity. The current study tested the hypothesis that fat/fatty acid preference in obesity-prone (OP, Osborne-Mendel) and obesity-resistant (OR, S5B/Pl) rats is mediated by nutritional status and lingual CD36. To determine if nutritional status affected linoleic acid (LA) preference in OP and OR rats, rats were either fasted overnight or fed a high fat diet (60% kcal from fat). In OR rats, fasting increased the preference for higher concentrations of LA (1.0%), while consumption of a high fat diet decreased LA preference. In OP rats, fasting increased the preference for lower concentrations of LA (0.25%), however high fat diet consumption did not alter LA preference. To determine if lingual CD36 mediated the effects of an overnight fast on LA preference, the expression of lingual CD36 mRNA was assessed and the effect of lingual application of CD36 siRNA on LA preference was determined. Fasting increased lingual CD36 mRNA expression in OR rats, but failed to alter lingual CD36 mRNA in OP rats. Following an overnight fast, application of lingual CD36 siRNA led to a decrease in LA preference in OR, but not OP rats. Lingual application of CD36 siRNA was also used to determine if lingual CD36 mediated the intake and preference for a high fat diet in OP and OR rats. CD36 siRNA decreased the preference and intake of high fat diet in OR rats, but not OP rats. The results from this study suggest that the dysregulation of lingual CD36 in OP rats is a potential factor leading to increased fat intake and fat preference and an enhanced susceptibility to develop obesity. PMID:28302572

  12. Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome.

    PubMed

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel; Lykkegaard, Kirsten; Tang-Christensen, Mads; Hansen, Harald S; Levin, Barry E; Larsen, Philip Just; Knudsen, Lotte Bjerre; Fosgerau, Keld; Vrang, Niels

    2010-09-01

    The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia, hyperinsulinemia, and dyslipidemia, and showed a worsening of glucose tolerance over time. In line with the hyperlipidemic profile, a severe hepatic fat infiltration was observed in DIO rats at 6 months of age. The effects of liraglutide and sibutramine were tested in 6-month-old DIO rats. Both compounds effectively reduced food intake and body weight in DIO rats. Liraglutide furthermore improved glucose tolerance when compared with sibutramine. Our data highlights the usefulness of a polygenetic animal model for screening of compounds affecting food intake, body weight, and glucose homeostasis. Furthermore, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents.

  13. Swim training and the genetic expression of adipokines in monosodium glutamate-treated obese rats.

    PubMed

    Svidnicki, Paulo Vinicius; Leite, Nayara Carvalho; Vicari, Marcelo Ricardo; Almeida, Mara Cristina de; Artoni, Roberto Ferreira; Favero, Giovani Marino; Grassiolli, Sabrina; Nogaroto, Viviane

    2015-06-01

    The aim of this study was to evaluate the genetic expression of adipokines in the adipocytes of monosodium glutamate (MSG)-treated obese rats submitted to physical activity. Obesity was induced by neonatal MSG administration. Exercised rats (MSG and control) were subjected to swim training for 30 min for 10 weeks, whereas their respective controls remained sedentary. Total RNA was obtained from sections of the mesenteric adipose tissue of the rats. mRNA levels of adiponectin (Adipoq), tumor necrosis factor alpha (Tnf), peroxisome proliferator-activated receptor alpha (Ppara), and peroxisome proliferator-activated receptor gamma (Pparg) adipokines were quantified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). In the exercise-trained control group, the expression of Adipoq increased compared to the sedentary control, which was not observed in the MSG-obese rats. Increased levels of Tnf in MSG-obese rats were not reversed by the swim training. The expression of Ppara was higher in sedentary MSG-obese rats compared to the sedentary control. Swimming increased this adipokine expression in the exercise-trained control rats compared to the sedentary ones. mRNA levels of Pparg were higher in the sedentary MSG-rats compared to the sedentary control; however, the exercise did not influenced its expression in the groups analyzed. In conclusion, regular physical activity was not capable to correct the expression of proinflammatory adipokines in MSG-obese rat adipocytes.

  14. Swimming intervention mitigates HFD-induced obesity of rats through PGC-1α-irisin pathway.

    PubMed

    Yang, X-Q; Yuan, H; Li, J; Fan, J-J; Jia, S-H; Kou, X-J; Chen, N

    2016-05-01

    Irisin, a newly discovered myokine, can drive the browning of white adipocytes to control body weight or mitigate obesity progression through regulating energy metabolism. However, the underlying mechanisms or specific signal pathways of exercise-induced irisin on the management of obesity are still unclear. Totally 30 rats were subjected to high fat diet (HFD) feeding for 8 weeks to establish the rat model with obesity successfully. HFD-induced obese model rats were provided with 8 weeks swimming intervention at moderate intensity for exploring the treatment of obesity through exercise intervention. In addition, another 15 rats were subjected to HFD feeding coupled with total 16 weeks swimming intervention at a moderate intensity from the beginning of the experiment, which was used for exploring the prevention of obesity through exercise intervention. Blood and gastrocnemius samples were harvested from obese rats after swimming intervention to explore its specific signal pathways through ELISA analysis and Western blotting. HFD feeding of rats for 8 weeks could lead to the obesity due to the disorders of lipid metabolism. Totally 8 weeks swimming intervention at moderate intensity for rats with obesity could obviously alleviate the progression of obesity and 16 weeks swimming intervention from the beginning of the experiment could significantly inhibit the development of obesity. Meanwhile, swimming intervention could result in an increased phosphorylation of AMPK and up-regulation of irisin and PGC-1α as the biomarkers of energy metabolism. Exercise intervention can activate PGC-1α-dependent irisin to induce the browning of white adipocytes, thus inhibiting or alleviating the occurrence and development of obesity.

  15. High and Low Activity Rats: Elevated intrinsic physical activity drives resistance to diet induced obesity in non-bred rats

    PubMed Central

    Perez-Leighton, Claudio E.; Boland, Kelsey; Billington, Charles; Kotz, Catherine M.

    2012-01-01

    Humans and rodents show large variability in their individual sensitivity to diet-induced obesity, which has been associated with differences in intrinsic spontaneous physical activity (SPA). Evidence from genetic and out-bred rat obesity models shows that higher activity of the orexin peptides results in higher intrinsic SPA and protection against diet-induced obesity. Based on this, we hypothesized that naturally occurring variation in SPA and orexin signaling activity is sufficient to drive differences in sensitivity to diet-induced obesity. We analyzed orexin activity and sensitivity to diet-induced obesity in non-manipulated male Sprague Dawley rats selected for high and low intrinsic SPA. Our results defined a new model of differential DIO sensitivity, the high-activity and low activity-rats, and suggest that naturally occurring variations in intrinsic SPA cause differences in energy expenditure that are mediated by orexin signaling and alter DIO sensitivity. PMID:23404834

  16. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    PubMed

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  17. Anti-Obesity Effects of Aster spathulifolius Extract in High-Fat Diet-Induced Obese Rats.

    PubMed

    Kim, Sa-Jic; Bang, Chae-Young; Guo, Yuan-Ri; Choung, Se-Young

    2016-04-01

    The aim of this study was to investigate the anti-obesity and antihyperlipidemic efficacy and molecular mechanisms of Aster spathulifolius Maxim extract (ASE) in rats with high-fat diet (HFD)-induced obesity. Rats were separately fed a normal diet or a HFD for 8 weeks, then they were treated with ASE (62.5, 125, or 250 mg/kg) for another 4.5 weeks. The ASE supplementation significantly lowered body weight gain, visceral fat pad weights, serum lipid levels, as well as hepatic lipid levels in HFD-induced obese rats. Histological analysis showed that the ASE-treated group showed lowered numbers of lipid droplets and smaller size of adipocytes compared to the HFD group. To understand the mechanism of action of ASE, the expression of genes and proteins involved in obesity were measured in liver and skeletal muscle. The expression of fatty acid oxidation and thermogenesis-related genes (e.g., PPAR-α, ACO, CPT1, UCP2, and UCP3) of HFD-induced obese rats were increased by ASE treatment. On the other hand, ASE treatment resulted in decreased expression of fat intake-related gene ACC2 and lipogenesis-related genes (e.g., SREBP-1c, ACC1, FAS, SCD1, GPATR, AGPAT, and DGAT). Furthermore, ASE treatment increased the level of phosphorylated AMPKα in obese rats. Similarly, the level of phosphorylated ACC, a target protein of AMPKα in ASE groups, was increased by ASE treatment compared with the HFD group. These results suggest that ASE attenuated visceral fat accumulation and improved hyperlipidemia in HFD-induced obese rats by increasing lipid metabolism through the regulation of AMPK activity and the expression of genes and proteins involved in lipolysis and lipogenesis.

  18. Treatment with low-dose resveratrol reverses cardiac impairment in obese prone but not in obese resistant rats.

    PubMed

    Louis, Xavier L; Thandapilly, Sijo J; MohanKumar, Suresh K; Yu, Liping; Taylor, Carla G; Zahradka, Peter; Netticadan, Thomas

    2012-09-01

    We hypothesized that a low-dose resveratrol will reverse cardiovascular abnormalities in rats fed a high-fat (HF) diet. Obese prone (OP) and obese resistant (OR) rats were fed an HF diet for 17 weeks; Sprague-Dawley rats fed laboratory chow served as control animals. During the last 5 weeks of study, treatment group received resveratrol daily by oral gavage at a dosage of 2.5 mg/kg body weight. Assessments included echocardiography, blood pressure, adiposity, glycemia, insulinemia, lipidemia, and inflammatory and oxidative stress markers. Body weight and adiposity were significantly higher in OP rats when compared to OR rats. Echocardiographic measurements showed prolonged isovolumic relaxation time in HF-fed OP and OR rats. Treatment with resveratrol significantly improved diastolic function in OP but not in OR rats without affecting adiposity. OP and OR rats had increased blood pressure which remained unchanged with treatment. OP rats had elevated fasting serum glucose and insulin, whereas OR rats had increased serum glucose and normal insulin concentrations. Resveratrol treatment significantly reduced serum glucose while increasing serum insulin in both OP and OR rats. Inflammatory and oxidative stress markers, serum triglycerides and low-density lipoprotein were higher in OP rats, which were significantly reduced with treatment. In conclusion, HF induced cardiac dysfunction in both OP and OR rats. Treatment reversed abnormalities in diastolic heart function associated with HF feeding in OP rats, but not in OR rats. The beneficial effects of resveratrol may be mediated through regression of hyperglycemia, oxidative stress and inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    PubMed

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat.

    PubMed

    Gheni, Ghupurjan; Yokoi, Norihide; Beppu, Masayuki; Yamaguchi, Takuro; Hidaka, Shihomi; Kawabata, Ayako; Hoshino, Yoshikazu; Hoshino, Masayuki; Seino, Susumu

    2015-01-01

    We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.

  1. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating.

    PubMed

    Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana

    2017-03-01

    We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats.

    PubMed

    Lee, Yoon Hee; Jin, Bora; Lee, Sung Hyun; Song, MiKyung; Bae, HyeonHui; Min, Byung Jae; Park, Juyeon; Lee, Donghun; Kim, Hocheol

    2016-10-25

    It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD), high-fat diet (HFD), high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat), high-fat diet with 0.2% HT048 ( w / w ; HFD + 0.2% HT048), and high-fat diet with 0.6% HT048 ( w / w ; HFD + 0.6% HT048). It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  3. 18-Methoxycoronaridine: a potential new treatment for obesity in rats?

    PubMed Central

    Rubbinaccio, Heather Y.; Maisonneuve, Isabelle M.; Glick, Stanley D.

    2013-01-01

    Rationale Excessive eating often leads to obesity. Although a variety of neurotransmitters and brain regions are involved in modulating food intake, a role of accumbal dopamine is thought to be critical for several aspects of this behavior. Since 18-methoxycoronaridine (18-MC), a selective antagonist of α3β4 nicotinic receptors, was previously shown to alter dopamine release in the nucleus accumbens in response to chronic injections of cocaine and morphine, this drug could be a promising therapy for abnormal eating behavior. Objectives Assess the effect of 18-MC on the consumption of sucrose (15%) vs. water in a self-administration paradigm and on the intake of freely available palatable fluids (i.e., 5% sucrose, 0.1% saccharin, and 0.6% saline solutions) as well as on water intake. Determine whether repeated administration of 18-MC (20 mg/kg i.p.) affects weight gain, food intake, and fat deposition in rats drinking 30% sucrose solution. Results Acute administration of 18-MC (10–40 mg/kg i.p.) reduced operant responding for sucrose and decreased ad libitum ingestion of sucrose, saccharin, and saline. The highest dose of 18-MC also reduced consumption of water when palatable fluids were not available. In rats having unlimited access to sucrose (30%), chronic treatment with 18-MC (20 mg/kg i.p.) prevented sucrose-induced increases in body weight, decreased fat deposition, and reduced consumption of sucrose while not altering food intake. Conclusions These data suggest that antagonism of α3β4 nicotinic receptors may be involved in the regulation of intake of palatable substances regardless of its caloric value and may participate in maintaining obesity. PMID:18751969

  4. L-cysteine supplementation upregulates glutathione (GSH) and vitamin D binding protein (VDBP) in hepatocytes cultured in high glucose and in vivo in liver, and increases blood levels of GSH, VDBP, and 25-hydroxy-vitamin D in Zucker diabetic fatty rats.

    PubMed

    Jain, Sushil K; Kanikarla-Marie, Preeti; Warden, Cassandra; Micinski, David

    2016-05-01

    Vitamin D binding protein (VDBP) status has an effect on and can potentially improve the status of 25(OH) vitamin D and increase the metabolic actions of 25(OH) vitamin D under physiological and pathological conditions. Diabetes is associated with lower levels of glutathione (GSH) and 25(OH) vitamin D. This study examined the hypothesis that upregulation of GSH will also upregulate blood levels of VDBP and 25(OH) vitamin D in type 2 diabetic rats. L-cysteine (LC) supplementation was used to upregulate GSH status in a FL83B hepatocyte cell culture model and in vivo using Zucker diabetic fatty (ZDF) rats. Results show that LC supplementation upregulates both protein and mRNA expression of VDBP and vitamin D receptor (VDR) and GSH status in hepatocytes exposed to high glucose, and that GSH deficiency, induced by glutamate cysteine ligase knockdown, resulted in the downregulation of GSH, VDBP, and VDR and an increase in oxidative stress levels in hepatocytes. In vivo, LC supplementation increased GSH and protein and mRNA expression of VDBP and vitamin D 25-hydroxylase (CYP2R1) in the liver, and simultaneously resulted in elevated blood levels of LC and GSH, as well as increases in VDBP and 25(OH) vitamin D levels, and decreased inflammatory biomarkers in ZDF rats compared with those in placebo-supplemented ZDF rats consuming a similar diet. LC supplementation may provide a novel approach by which to raise blood levels of VDBP and 25(OH) vitamin D in type 2 diabetes. © 2016 The Authors. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. IL-10/STAT3 is reduced in childhood obesity with hypertriglyceridemia and is related to triglyceride level in diet-induced obese rats.

    PubMed

    Liu, Yuesheng; Xu, Dong; Yin, Chunyan; Wang, Sisi; Wang, Min; Xiao, Yanfeng

    2018-06-13

    The prevalence of childhood obesity and obesity-related metabolic disorder such as dyslipidemia has sharply increased in the past few decades. Chronic low-grade inflammation is associated with the development of comorbidities and poor prognosis in obesity. This study aims to evaluate interleukin-10 (IL-10) in childhood obesity with hypertriglyceridemia. We evaluated IL-10 and signal transducer and activator of transcription 3 (STAT3) mRNA expression in adipose tissue (AT) as well as serum IL-10 in 62 children of 3 groups and in high-fat diet (HFD) induced obese rat. Expression of IL-10 and STAT3 protein in AT of diet-induced obese rats were examined over feed period. Adipose IL-10 and STAT3 mRNA expression and serum IL-10 reduced in obese children with hypertriglyceridemia and in HFD obese rats. The protein expression of IL-10 and STAT3 decreased in AT of obese rats compared with the control rats at end time. Expression of IL-10 mRNA was negatively correlated to TG and LDL-C levels, and positively correlated to HDL-C, adiponectin and serum IL-10 levels. IL-10 expression and its downstream JAK-STAT pathway are down-regulated in obese children with hypertriglyceridemia and in HFD obese rats.

  6. Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.

    PubMed

    Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock

    2017-09-10

    Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.

  7. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  8. Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.

    PubMed

    Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y

    2015-01-01

    Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. Lingual CD36 and nutritional status differentially regulate fat preference in obesity-prone and obesity-resistant rats.

    PubMed

    Douglas Braymer, H; Zachary, Hannah; Schreiber, Allyson L; Primeaux, Stefany D

    2017-05-15

    Lingual fatty acid receptors (i.e. CD36) mediate the orosensory perception of fat/fatty acids and may contribute to the susceptibility to develop obesity. The current study tested the hypothesis that fat/fatty acid preference in obesity-prone (OP, Osborne-Mendel) and obesity-resistant (OR, S5B/Pl) rats is mediated by nutritional status and lingual CD36. To determine if nutritional status affected linoleic acid (LA) preference in OP and OR rats, rats were either fasted overnight or fed a high fat diet (60% kcal from fat). In OR rats, fasting increased the preference for higher concentrations of LA (1.0%), while consumption of a high fat diet decreased LA preference. In OP rats, fasting increased the preference for lower concentrations of LA (0.25%), however high fat diet consumption did not alter LA preference. To determine if lingual CD36 mediated the effects of an overnight fast on LA preference, the expression of lingual CD36 mRNA was assessed and the effect of lingual application of CD36 siRNA on LA preference was determined. Fasting increased lingual CD36 mRNA expression in OR rats, but failed to alter lingual CD36 mRNA in OP rats. Following an overnight fast, application of lingual CD36 siRNA led to a decrease in LA preference in OR, but not OP rats. Lingual application of CD36 siRNA was also used to determine if lingual CD36 mediated the intake and preference for a high fat diet in OP and OR rats. CD36 siRNA decreased the preference and intake of high fat diet in OR rats, but not OP rats. The results from this study suggest that the dysregulation of lingual CD36 in OP rats is a potential factor leading to increased fat intake and fat preference and an enhanced susceptibility to develop obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet.

    PubMed

    Kim, Joo-Yeon; Lee, Mak-Soon; Jung, Sunyoon; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Seo, Sangjin; Oh, Soojung; Kim, Yangha

    2014-01-01

    This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. THE RATS WERE RANDOMLY SEPARATED INTO THREE GROUPS: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue.

  11. Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats.

    PubMed

    Cluny, Nina L; Eller, Lindsay K; Keenan, Catherine M; Reimer, Raylene A; Sharkey, Keith A

    2015-04-01

    Oligofructose (OFS) is a prebiotic that reduces energy intake and fat mass via changes in gut satiety hormones and microbiota. The effects of OFS may vary depending on predisposition to obesity. The aim of this study was to examine the effect of OFS in diet-induced obese (DIO) and diet-resistant (DR) rats. Adult, male DIO, and DR rats were randomized to: high-fat/high-sucrose (HFS) diet or HFS diet + 10% OFS for 6 weeks. Body composition, food intake, gut microbiota, plasma gut hormones, and cannabinoid CB(1) receptor expression in the nodose ganglia were measured. OFS reduced body weight, energy intake, and fat mass in both phenotypes (P < 0.05). Select gut microbiota differed in DIO versus DR rats (P < 0.05), the differences being eliminated by OFS. OFS did not modify plasma ghrelin or CB(1) expression in nodose ganglia, but plasma levels of GIP were reduced and PYY were elevated (P < 0.05) by OFS. OFS was able to reduce body weight and adiposity in both prone and resistant obese phenotypes. OFS-induced changes in gut microbiota profiles in DIO and DR rats, along with changes in gut hormone levels, likely contribute to the sustained lower body weights. © 2015 The Obesity Society.

  12. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats

    PubMed Central

    Shalaby, Mostafa Abbas; Saifan, Hamed Yahya

    2014-01-01

    Aims: The present study was designed to assess some pharmacological effects of cinnamon (CAE) and ginger (GAE) aqueous extracts in obese diabetic rats, and to elucidate the potential mechanisms. Materials and Methods: Forty-two Sprague-Dawley rats were randomized into 6 equal groups. Group 1 was a negative control and the other groups were rendered obese by feeding rats on high-fat diet for 4 weeks. The obese rats were subcutaneously injected with alloxan for 5*days to induce diabetes. Group 2 was a positive control, and Groups 3, 4, 5 and 6 were orally given CAE in doses 200 and 400 mg/kg and GAE in the same doses, respectively for 6 weeks. Blood samples were collected for serum biochemical analyses. Kidneys were dissected out to assay activity of tissue antioxidant enzymes: Superoxide dismutase, glutathione peroxidase and catalase. Results: CAE and GAE significantly reduced body weight and body fat mass; normalized serum levels of liver enzymes; improved lipid profile; decreased blood glucose and leptin and increased insulin serum levels in obese diabetic rats. Both extracts also increased activity of kidney antioxidant enzymes. Conclusion: CAE and GAE exhibit anti-obesity, hepatoprotective, hypolipidemic, antidiabetic and anti-oxidant effects in obese diabetic rats. These results confirm the previous reports on both extracts. The potential mechanisms underlying these effects are fully discussed and clarified. Our results affirm the traditional use of cinnamon and ginger for treating patients suffering from obesity and diabetes. The obese diabetic rat model used in this study is a novel animal model used in pharmacology researches. PMID:26401364

  13. Botulinum neurotoxin effects on masseter muscle fibre in WNIN obese rats-Scanning electron microscope analysis.

    PubMed

    Nemani, Shivaram; Putchha, Uday K; Periketi, Madhusudhanachary; Pothana, Sailaja; Nappanveettil, Giridharan; Nemani, Harishankar

    2016-09-01

    WNIN/Ob obese mutant rats are unique in comparison to similar rodent models of obesity established in the West. The present study is aimed to evaluate the masticatory function and histological changes in masseter muscle fibres treated with botulinum toxin type A (BoNT/A) in WNIN/Ob rats. Twelve WNIN/Ob obese rats and 12 lean rats at 35 days of age were taken and divided into four groups (6 rats in each group): Group-I (WNIN/Ob) and Group-II (lean) rats were injected with BoNT/A (1 unit) into right side of masseter muscle. For control left masseter of both phenotypes was injected with saline. Group-III (WNIN/Ob) and Group-IV (lean) rats were without any treatment. Growth and food intake was monitored daily for 45 days. Rats were euthanized and gross necropsy was carried out to check any abnormalities. Masseter muscles were dissected and mean muscle mass was recorded. Small portion of muscle was stored in 10% formalin for hematoxylin-eosin (H&E) staining and remaining tissue stored in gluteraldehyde for scanning electron microscopy (SEM). There is a significant decrease in the body weights and food intake of BoNT/A treated obese rats. The H&E staining of the masseter muscle in both groups showed normal morphology and orientation. The SEM analysis showed that, fibre size in BoNT/A treated masseter muscle of obese rats increased more than the saline treated side and in control rats. The increase in the muscle fibre size and transition of muscle fibre subtypes may be due to the reduced masticatory function of the masseter muscle. SCANNING 38:396-402, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  14. Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction.

    PubMed

    Bender, Shawn B; DeMarco, Vincent G; Padilla, Jaume; Jenkins, Nathan T; Habibi, Javad; Garro, Mona; Pulakat, Lakshmi; Aroor, Annayya R; Jaffe, Iris Z; Sowers, James R

    2015-05-01

    Patients with obesity and diabetes mellitus exhibit a high prevalence of cardiac diastolic dysfunction (DD), an independent predictor of cardiovascular events for which no evidence-based treatment exists. In light of renin-angiotensin-aldosterone system activation in obesity and the cardioprotective action of mineralocorticoid receptor (MR) antagonists in systolic heart failure, we examined the hypothesis that MR blockade with a blood pressure-independent low-dose spironolactone (LSp) would treat obesity-associated DD in the Zucker obese (ZO) rat. Treatment of ZO rats exhibiting established DD with LSp normalized cardiac diastolic function, assessed by echocardiography. This was associated with reduced cardiac fibrosis, but not reduced hypertrophy, and restoration of endothelium-dependent vasodilation of isolated coronary arterioles via a nitric oxide-independent mechanism. Further mechanistic studies revealed that LSp reduced cardiac oxidative stress and improved endothelial insulin signaling, with no change in arteriolar stiffness. Infusion of Sprague-Dawley rats with the MR agonist aldosterone reproduced the DD noted in ZO rats. In addition, improved cardiac function in ZO-LSp rats was associated with attenuated systemic and adipose inflammation and an anti-inflammatory shift in cardiac immune cell mRNAs. Specifically, LSp increased cardiac markers of alternatively activated macrophages and regulatory T cells. ZO-LSp rats had unchanged blood pressure, serum potassium, systemic insulin sensitivity, or obesity-associated kidney injury, assessed by proteinuria. Taken together, these data demonstrate that MR antagonism effectively treats established obesity-related DD via blood pressure-independent mechanisms. These findings help identify a particular population with DD that might benefit from MR antagonist therapy, specifically patients with obesity and insulin resistance. © 2015 American Heart Association, Inc.

  15. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism.

    PubMed

    Werth, Stephan; Müller-Fielitz, Helge; Raasch, Walter

    2017-12-01

    Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kg bw ) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely. © 2017 Society for Endocrinology.

  16. Argan oil reduces, in rats, the high fat diet-induced metabolic effects of obesity.

    PubMed

    Sour, S; Belarbi, M; Sari, N; Benammar, C H; Baghdad, C H; Visioli, F

    2015-04-01

    Obesity is a multi-factorial disorder which is of worldwide concern. In addition to calorie control, some specific dietary components might help resolving some of the complication of obesity, by providing antioxidant and anti-inflammatory activities. We investigated the effect of argan oil supplementation on plasma lipid profile and oxidant-antioxidant status of rats with high-fat diet (HFD)-induced obesity compared with rats fed a normal diet (ND). We used an animal model of high fat diet-induced obesity to study the metabolic effects of argan oil and we measured several markers lipid and redox statuses. Consumption of a high-fat diet led to an increase in serum total cholesterol (TC), LDL-cholesterol (LDL-C), and triacylglycerols (TAG) concentrations; however, argan oil blunted the increases of TC, LDL-C and TG, glucose, and insulin. Plasma total antioxidant capacity, erythrocyte catalase and superoxide dismutase activities were lower, whereas plasma hydroperoxide, thiobarbituric acid-reacting substances, and susceptibility of LDL to copper-induced oxidation were higher in obese rats compared with normal rats. Administration of argan oil ameliorated all these indices of redox status. Proper diet and lifestyle should be foremost implemented to reduce the lipoprotein metabolism and oxidant/antioxidant status alterations brought about by obesity. In addition, argan oil reduces the metabolic effects of obesity and its use might be promoted within the context of a balanced diet. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    PubMed

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly.

  18. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats

    PubMed Central

    Ma, Bo; Zhang, Qi; Wang, Guang-ji; A, Ji-ye; Wu, Di; Liu, Ying; Cao, Bei; Liu, Lin-sheng; Hu, Ying-ying; Wang, Yong-lu; Zheng, Ya-ya

    2011-01-01

    Aim: To explore the alteration of endogenous metabolites and identify potential biomarkers using metabolomic profiling with gas chromatography coupled a time-of-flight mass analyzer (GC/TOF-MS) in a rat model of estrogen-deficiency-induced obesity. Methods: Twelve female Sprague-Dawley rats six month of age were either sham-operated or ovariectomized (OVX). Rat blood was collected, and serum was analyzed for biomarkers using standard colorimetric methods with commercial assay kits and a metabolomic approach with GC/TOF-MS. The data were analyzed using multivariate statistical techniques. Results: A high body weight and body mass index inversely correlated with serum estradiol (E2) in the OVX rats compared to the sham rats. Estrogen deficiency also significantly increased serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Utilizing GC/TOF-MS-based metabolomic analysis and the partial least-squares discriminant analysis, the OVX samples were discriminated from the shams. Elevated levels of cholesterol, glycerol, glucose, arachidonic acid, glutamic acid, glycine, and cystine and reduced alanine levels were observed. Serum glucose metabolism, energy metabolism, lipid metabolism, and amino acid metabolism were involved in estrogen-deficiency-induced obesity in OVX rats. Conclusion: The series of potential biomarkers identified in the present study provided fingerprints of rat metabolomic changes during obesity and an overview of multiple metabolic pathways during the progression of obesity involving glucose metabolism, lipid metabolism, and amino acid metabolism. PMID:21293480

  19. Study of the regulation by nutrients of the expression of genes involved in lipogenesis and obesity in humans and animals.

    PubMed

    Delzenne, N; Ferré, P; Beylot, M; Daubioul, C; Declercq, B; Diraison, F; Dugail, I; Foufelle, F; Foretz, M; Mace, K; Reimer, R; Palmer, G; Rutter, G; Tavare, J; Van Loo, J; Vidal, H

    2001-08-01

    Dietary digestible carbohydrates are able to modulate lipogenesis, by modifying the expression of genes coding for key lipogenic enzymes, like fatty acid synthase. The overall objective of the Nutrigene project (FAIR-CT97-3011) was to study the efficiency of various carbohydrates to modulate the lipogenic capacity and relevant gene expression in rat and human species (control and obese subjects) and to understand the underlying molecular mechanisms involved in the regulation of lipogenic genes by carbohydrates. Key cellular mediators (namely SREBP-1c and 2, AMP activated protein kinase, cholesterol content) of the regulation of lipogenic gene expression by glucose and/or insulin were identified and constitute new putative targets in the development of plurimetabolic syndrome associated with obesity. In humans, hepatic lipogenesis and triglyceride synthesis, assessed in vivo by the use of stable isotopes, was promoted by a high-carbohydrate diet in non obese subjects, and in non alcoholic steatotic patients, but was not modified in the adipose tissue of obese subjects. Non digestible/fermentable carbohydrates, such as fructans, were shown to decrease hepatic lipogenesis in non obese rats, and to lessen hepatic steatosis and body weight in obese Zucker rats. If confirmed in obese humans, this would allow the development of functional food able to counteract the metabolic disturbances linked to obesity.

  20. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats.

    PubMed

    Belobrajdic, Damien P; King, Roger A; Christophersen, Claus T; Bird, Anthony R

    2012-10-25

    Animal studies show that diets containing resistant starch (RS) at levels not achievable in the human diet result in lower body weight and/or adiposity in rodents. We aimed to determine whether RS dose-dependently reduces adiposity in obesity-prone (OP) and obesity-resistant (OR) rats. Male Sprague-Dawley rats (n=120) were fed a moderate-fat, high-energy diet for 4 wk. Rats that gained the most weight (40%) were classified as obesity-prone (OP) and obesity-resistant (OR) rats were the 40% that gained the least weight. OP and OR rats were randomly allocated to one of six groups (n=8 for each phenotype). One group was killed for baseline measurements, the other five groups were allocated to AIN-93 based diets that contained 0, 4, 8, 12 and 16% RS (as high amylose maize starch) for 4 wk. These diets were matched for total carbohydrate content. At 0, 4 and 7 wk from the start of the study insulin sensitivity was calculated by homeostasis model assessment of insulin resistance (HOMA-IR) and adiposity was determined by dual-energy X-ray absorptiometry (DXA). At 8 wk, rats were euthanized and fat pad weights, intestinal digesta short chain fatty acid (SCFA) pools and plasma gut hormone levels were determined. Obesity prone rats gained less weight with 4, 12 and 16% RS compared to 0% RS, but the effect in OR animals was significant only at 16% RS. Irrespective of phenotype, diets containing ≥8% RS reduced adiposity compared to 0% RS. Energy intake decreased by 9.8 kJ/d for every 4% increase in RS. All diets containing RS increased total SCFA pools in the caecum and lowered plasma GIP concentrations compared to the 0% RS, whereas plasma GLP-1 and PYY were increased when the diet contained at least 8% RS. Insulin sensitivity was not affected by RS. RS in amounts that could be potentially consumed by humans were effective in reducing adiposity and weight gain in OP and OR rats, due in part to a reduction in energy intake, and changes in gut hormones and large bowel

  1. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    PubMed

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  2. The Cooccurrence of Obesity, Osteoporosis, and Sarcopenia in the Ovariectomized Rat: A Study for Modeling Osteosarcopenic Obesity in Rodents.

    PubMed

    Ezzat-Zadeh, Zahra; Kim, Jeong-Su; Chase, P Bryant; Arjmandi, Bahram H

    2017-01-01

    Obesity, osteoporosis, and sarcopenia may individually occur due to age-related gradual alterations in body composition. This study investigates the cooccurrence of these age-related diseases in female animals with low levels of ovarian hormone in the absence of complex multifactorial process of chronological aging. Thirty-six 5- and 10-month-old female rats were chosen to model pre- and postmenopausal women, respectively. Rats were divided into three treatment groups in each age category-sham, ovariectomized (ovx), and ovx + E 2 (17 β -estradiol, 10  μ g/kg)-and were pair-fed. Volunteer wheel running activity, body composition, bone microstructure, serum C-telopeptides of type I collagen, bone specific alkaline phosphatase, E 2 , and gastrocnemius and soleus muscles were analyzed. The cooccurrence of osteoporosis, sarcopenia, and obesity was observed in the older ovx rats associated with a significant ( p < 0.05) increased fat mass (30%), bone loss (9.6%), decreased normalized muscle mass-to-body-weight ratio (10.5%), and a significant decrease in physical activity (57%). The ratio of tibial bone mineral density to combined muscle mass was significantly decreased in both ovx age categories. Ovariectomized rat could be used as an experimental model to examine the effect of loss of ovarian hormones, while controlling for energy intake and expenditure, to conduct obesity and body composition translational research in females without the confounding effect of genetic background.

  3. Very low-carbohydrate versus isocaloric high-carbohydrate diet in dietary obese rats.

    PubMed

    Axen, Kathleen V; Axen, Kenneth

    2006-08-01

    The effects of a very low-carbohydrate (VLC), high-fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high-carbohydrate (HC), low-fat (LF) regimen in dietary obese rats. Male Sprague-Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post-load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC-HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one-half (HC) were pair-fed an HC-LF diet (Weeks 9 to 14 at 60% carbohydrate). Energy intakes of pair-fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. When energy intake was matched, the VLC-HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC-LF diet.

  4. Hepatic oxylipin profiles in obese rats: Effect of antioxidant supplementation

    Obesity induces biochemical changes in lipid metabolism. The extent to which enzymatic and non-enzymatic lipid (per)oxidation products, oxylipins, are altered by obesity is of great interest. Conflicting data exist regarding oxidative damage to lipids in obesity. We investigated the extent to which ...

  5. Childhood-Adolescent Obesity in the Cardiorenal Syndrome: Lessons from Animal Models

    PubMed Central

    Hayden, Melvin R.; Sowers, James R.

    2011-01-01

    Background/Aims Childhood-adolescent overweight and obesity have grown to pandemic proportions during the past decade. The onset of obesity in younger adults will likely be manifested as earlier onset of myocardial and renal end-organ disease in younger adults. For the first time, it is estimated that the current generation may not live to be as old as their parents. Thus, it is important to develop animal models of childhood obesity to understand fundamental pathological organ changes. Methods In this regard, we utilize transmission electron microscopy evaluation to evaluate early remodeling changes of two adolescent rodent obesity models: the Zucker obese (fa/fa) rat and the db/db mouse models of obesity. We have concentrated on the initial ultrastructural remodeling (obese adipose tissue, skeletal muscle, and islet remodeling) and the associated changes in target end organs (including the myocardium and kidney) in young rodent models of obesity and insulin resistance, collectively manifesting as the cardiorenal metabolic syndrome (CRS). Results Briefly, tissues revealed the following ultrastructural remodeling abnormalities: inflammation, hypertrophy, and early fibrosis in adipose tissue; loss of mitochondria in skeletal muscles, hyperplasia, fibrosis, and depletion of insulin-secretory granules in pancreatic islets; increased intramyocardial lipid accumulation, fibrosis, and mitochondrial deposition in the myocardium, and obesity-related glomerulopathy and tubulopathy in the kidney. Conclusion Based on the current knowledge and ultrastructural observations of organ pathology, we propose mechanisms whereby obesity appears to be the driving force behind the development of the CRS. PMID:22294984

  6. Green tea polyphenols reduce body weight in rats by modulating obesity-related genes.

    PubMed

    Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin

    2012-01-01

    Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.

  7. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes

    PubMed Central

    Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin

    2012-01-01

    Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats. PMID:22715380

  8. Cannabis exposure associated with weight reduction and β-cell protection in an obese rat model.

    PubMed

    Levendal, R-A; Schumann, D; Donath, M; Frost, C L

    2012-05-15

    The aim of this study was to investigate the effect of an organic cannabis extract on β-cell secretory function in an in vivo diet-induced obese rat model and determine the associated molecular changes within pancreatic tissue. Diet-induced obese Wistar rats and rats fed on standard pellets were subcutaneously injected with an organic cannabis extract or the vehicle over a 28-day period. The effect of diet and treatment was evaluated using the intraperitoneal glucose tolerance tests (IPGTTs) and qPCR analysis on rat pancreata harvested upon termination of the experiment. The cafeteria diet induced an average weight difference of 32g and an overall increase in body weight in the experimental groups occurred at a significantly slower rate than the control groups, irrespective of diet. Area under the curve for glucose (AUC(g)) in the obese group was significantly lower compared to the lean group (p<0.001), with cannabis treatment significantly reducing the AUC(g) in the lean group (p<0.05), and remained unchanged in the obese group, relative to the obese control group. qPCR analysis showed that the cafeteria diet induced down-regulation of the following genes in the obese control group, relative to lean controls: UCP2, c-MYC and FLIP. Cannabis treatment in the obese group resulted in up-regulation of CB1, GLUT2, UCP2 and PKB, relative to the obese control group, while c-MYC levels were down-regulated, relative to the lean control group. Treatment did not significantly change gene expression in the lean group. These results suggest that the cannabis extract protects pancreatic islets against the negative effects of obesity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    PubMed

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  10. Diesel Exhaust Particle-Induced Airway Responses are Augmented in Obese Rats

    PubMed Central

    Moon, Kuk-Young; Park, Moo-Kyun; Leikauf, George D.; Park, Choon-Sik; Jang, An-Soo

    2015-01-01

    Air pollutants and obesity are important factors that contribute to asthma. The aim of this study was to assess the airway responsiveness and inflammation in Otsuka-Long Evans Tokushima Fatty (OLETF) obese rats and Long Evans Tokushima-Otsuka (LETO) nonobese rats exposed to diesel exhaust particles (DEPs). Otsuka Long Evans Tokushima fatty rats and LETO rats were exposed intranasally to DEP and then challenged with aerosolized DEP on days 6 to 8. Body plethysmography, bronchoalveolar lavage (BAL), and histology were performed. Enhanced pause (Penh) was measured as an indicator of airway resistance on day 9 and samples were collected on day 10. After exposure to DEP, the OLETF group exhibited a greater increase in Penh compared to that in the LETO group. Moreover, the BAL fluid in mice showed an increase in the total and differential cell counts in the DEP-exposed OLETF group compared to that in the DEP-exposed LETO group. Histological assessment of lung tissue from each group revealed that the DEP-exposed OLETF group tended to have increased inflammatory cell infiltrations in the prebronchial area. Increased peroxisome proliferator-activated receptor γ, coactivator 1β messenger RNA was observed in the lungs of obese rats compared to that in nonobese rats following DEP exposure. These data indicate that the DEP-exposed OLETF group had increased airway responses and inflammation compared to the DEP-exposed LETO group, indicating that diesel particulates and obesity may be co-contributors to asthma. PMID:24536021

  11. Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction.

    PubMed

    Si, Lislivia Yiang-Nee; Ali, Siti Aishah Mohd; Latip, Jalifah; Fauzi, Norsyahida Mohd; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-12-15

    Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI. Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks. Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle. These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of Diet on Preference and Intake of Sucrose in Obese Prone and Resistant Rats

    PubMed Central

    Duca, Frank A.; Swartz, Timothy D.; Covasa, Mihai

    2014-01-01

    Increased orosensory stimulation from palatable diets and decreased feedback from gut signals have been proposed as contributing factors to obesity development. Whether altered taste functions associated with obesity are common traits or acquired deficits to environmental factors, such as a high-energy (HE)-diet, however, is not clear. To address this, we examined preference and sensitivity of increasing concentrations of sucrose solutions in rats prone (OP) and resistant (OR) to obesity during chow and HE feeding and measured lingual gene expression of the sweet taste receptor T1R3. When chow-fed, OP rats exhibited reduced preference and acceptance of dilute sucrose solutions, sham-fed less sucrose compared to OR rats, and had reduced lingual T1R3 gene expression. HE-feeding abrogated differences in sucrose preference and intake and lingual T1R3 expression between phenotypes. Despite similar sucrose intakes however, OP rats consumed significantly more total calories during 48-h two-bottle testing compared to OR rats. The results demonstrate that OP rats have an innate deficit for sweet taste detection, as illustrated by a reduction in sensitivity to sweets and reduced T1R3 gene expression; however their hyperphagia and subsequent obesity during HE-feeding is most likely not due to altered consumption of sweets. PMID:25329959

  13. Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats.

    PubMed

    Zheng, Fenping; Kim, Yonwook J; Chao, Pei-Ting; Bi, Sheng

    2013-06-01

    We sought to determine a role for NPY overexpression in the dorsomedial hypothalamus (DMH) in obesity etiology using the rat model of adeno-associated virus (AAV)-mediated expression of NPY (AAVNPY) in the DMH. Rats received bilateral DMH injections of AAVNPY or control vector and were fed on regular chow. Five-week postviral injection, half the rats from each group were switched to access to a high-fat diet for another 11 weeks. We examined variables including body weight, food intake, energy efficiency, meal patterns, glucose tolerance, fat mass, plasma insulin, plasma leptin, and hypothalamic gene expression. Rats with DMH NPY overexpression had increased food intake and body weight and lowered metabolic efficiency. The hyperphagia was mediated through increased meal size during the dark. Although these rats had normal blood glucose, their plasma insulin levels were increased in both basal and glucose challenge conditions. While high-fat diet induced hyperphagia, obesity, and hyperinsulinemia, these effects were amplified in rats with DMH NPY overexpression. Arcuate Npy, agouti-related protein and proopiomelanocortin expression was appropriately regulated in response to positive energy balance. These results indicate that DMH NPY overexpression can cause hyperphagia and obesity and DMH NPY may have actions in glucose homeostasis. Copyright © 2013 The Obesity Society.

  14. Carbenoxolone Treatment Ameliorated Metabolic Syndrome in WNIN/Ob Obese Rats, but Induced Severe Fat Loss and Glucose Intolerance in Lean Rats

    PubMed Central

    Prasad Sakamuri, Siva Sankara Vara; Sukapaka, Mahesh; Prathipati, Vijay Kumar; Nemani, Harishankar; Putcha, Uday Kumar; Pothana, Shailaja; Koppala, Swarupa Rani; Ponday, Lakshmi Raj Kumar; Acharya, Vani; Veetill, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2012-01-01

    Background 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. Methodology/Principal Findings Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. Conclusions/Significance We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions. PMID:23284633

  15. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health

    EPA Science Inventory

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improv...

  16. Alterations of local cerebral glucose utilization in lean and obese fa/fa rats after acute adrenalectomy.

    PubMed

    Doyle, P; Rohner-Jeanrenaud, F; Jeanrenaud, B

    1994-08-29

    An animal model often used to investigate the aetiology of obesity is the genetically obese fa/fa rat. It has many abnormalities, including hyperphagia, hyper-insulinemia, insulin resistance, low cerebral glucose utilization and an overactive hypothalamo-pituitary adrenal (HPA) axis with resulting hypercorticism. Due to the latter consideration, the aim of this work was to study the impact of acute adrenalectomy (ADX) on the local cerebral glucose utilization (LCGU) of lean and obese fa/fa rats. ADX resulted in discrete increases in LCGU of regions common to both lean and obese rats. These common regions were found to belong to be related to the limbic system. Within this system, the LCGU of the brain of obese rats was either normalized to lean sham operated values or increased by ADX to a similar degree in both groups on a percentage basis. It was concluded that the LCGU of both lean and obese animals appears to be negatively regulated, albeit to different extents, by glucocorticoids. Such negative regulation is particularly salient within the limbic system of the lean rat and even more so in the fa/fa rat. It is suggested that the long-term hypercorticism of obese fa/fa rats due to abnormal regulation of the HPA axis may result in a decreased LCGU in limbic and related regions of the brain of fa/fa rats and contribute to the expression of the obese phenotype.

  17. Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet

    PubMed Central

    Kim, Joo-Yeon; Lee, Mak-Soon; Jung, Sunyoon; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Seo, Sangjin; Oh, Soojung; Kim, Yangha

    2014-01-01

    Purpose This study determined the effects of oleoresin capsicum (OC) and nanoemulsion OC (NOC) on obesity in obese rats fed a high-fat diet. Methods The rats were randomly separated into three groups: a high-fat (HF) diet group, HF + OC diet group, and HF + NOC diet group. All groups were fed the diet and water ad libitum for 14 weeks. Results NOC reduced the body weight and adipose tissue mass, whereas OC did not. OC and NOC reduced mRNA levels of adipogenic genes, including peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1c, and fatty acid-binding protein in white adipose tissue. The mRNA levels of genes related to β-oxidation or thermogenesis including PPAR-α, palmitoyltransferase-1α, and uncoupling protein-2 were increased by the OC and NOC relative to the HF group. Both OC and NOC clearly stimulated AMP-activated protein kinase (AMPK) activity. In particular, PPAR-α, palmitoyltransferase-1α, uncoupling protein-2 expression, and AMPK activity were significantly increased in the NOC group compared to in the OC group. NOC decreased glycerol-3-phosphate dehydrogenase activity whereas OC did not. Conclusion From these results, NOC could be suggested as a potential anti-obesity agent in obese rats fed a HF diet. The effects of the NOC on obesity were associated with changes of multiple gene expression, activation of AMPK, and inhibition of glycerol-3-phosphate dehydrogenase in white adipose tissue. PMID:24403834

  18. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats.

    PubMed

    Thiennimitr, Parameth; Yasom, Sakawdaurn; Tunapong, Wannipa; Chunchai, Titikorn; Wanchai, Keerati; Pongchaidecha, Anchalee; Lungkaphin, Anusorn; Sirilun, Sasithorn; Chaiyasut, Chaiyavat; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2018-03-20

    The beneficial effects of pro-, pre-, and synbiotics on obesity with insulin resistance have been reported previously. However, the strain-specific effect of probiotics and the combination with various types of prebiotic fiber yield controversial outcomes and limit clinical applications. Our previous study demonstrated that the probiotic Lactobacillus paracasei (L. paracasei) HII01, prebiotic xylooligosaccharide (XOS), and synbiotics share similar efficacy in attenuating cardiac mitochondrial dysfunction in obese-insulin resistant rats. Nonetheless, the roles of HII01 and XOS on gut dysbiosis and gut inflammation under obese-insulin resistant conditions have not yet, to our knowledge, been investigated. Our hypothesis was that pro-, pre-, and synbiotics improve the metabolic parameters in obese-insulin resistant rats by reducing gut dysbiosis and gut inflammation. Male Wistar rats were fed with either a normal or high-fat diet that contained 19.77% and 59.28% energy from fat, respectively, for 12 wk. Then, the high-fat diet rats were fed daily with a 10 8 colony forming unit of the probiotic HII01, 10% prebiotic XOS, and synbiotics for 12 wk. The metabolic parameters, serum lipopolysaccharide levels, fecal Firmicutes/Bacteroidetes ratios, levels of Enterobacteriaceae, Bifidobacteria, and gut proinflammatory cytokine gene expression were quantified. The consumption of probiotic L. paracasei HII01, prebiotic XOS, and synbiotics for 12 wk led to a decrease in metabolic endotoxemia, gut dysbiosis (a reduction in the Firmicutes/Bacteroidetes ratio and Enterobacteriaceae), and gut inflammation in obese-insulin resistant rats. Pro-, pre-, and synbiotics reduced gut dysbiosis and gut inflammation, which lead to improvements in metabolic dysfunction in obese-insulin resistant rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    PubMed

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  20. Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning

    In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...

  1. Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Sárközy, Márta; Szűcs, Gergő; Fekete, Veronika; Pipicz, Márton; Éder, Katalin; Gáspár, Renáta; Sója, Andrea; Pipis, Judit; Ferdinandy, Péter; Csonka, Csaba; Csont, Tamás

    2016-08-05

    There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis

  2. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats.

    PubMed

    Vollbrecht, Peter J; Nobile, Cameron W; Chadderdon, Aaron M; Jutkiewicz, Emily M; Ferrario, Carrie R

    2015-12-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel "junk-food" diet on the development of obesity and metabolic dysfunction, 2) over-consumption of "junk-food" in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, "junk-food" diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats

    PubMed Central

    Vollbrecht, Peter J.; Nobile, Cameron W.; Chadderdon, Aaron M.; Jutkiewicz, Emily M.; Ferrario, Carrie R.

    2015-01-01

    Obesity is a significant problem in the United States, with roughly one third of adults having a body mass index (BMI) over thirty. Recent evidence from human studies suggests that pre-existing differences in the function of mesolimbic circuits that mediate motivational processes may promote obesity and hamper weight loss. However, few preclinical studies have examined pre-existing neurobehavioral differences related to the function of mesolimbic systems in models of individual susceptibility to obesity. Here, we used selectively bred obesity-prone and obesity-resistant rats to examine 1) the effect of a novel “junk-food” diet on the development of obesity and metabolic dysfunction, 2) over-consumption of “junk-food” in a free access procedure, 3) motivation for food using instrumental procedures, and 4) cocaine-induced locomotor activity as an index of general mesolimbic function. As expected, eating a sugary, fatty, “junk-food” diet exacerbated weight gain and increased fasted insulin levels only in obesity-prone rats. In addition, obesity-prone rats continued to over-consume junk-food during discrete access testing, even when this same food was freely available in the home cage. Furthermore, when asked to press a lever to obtain food in an instrumental task, rates of responding were enhanced in obesity-prone versus obesity-resistant rats. Finally, obesity-prone rats showed a stronger locomotor response to 15 mg/kg cocaine compared to obesity-resistant rats prior to any diet manipulation. This enhanced sensitivity to this dose of cocaine is indicative of basal differences in the function of mesolimbic circuits in obesity-prone rats. We speculate that pre-existing differences in motivational systems may contribute to over-consumption and enhanced motivation in susceptible individuals. PMID:26423787

  4. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats

    PubMed Central

    Lubaczeuski, C.; Balbo, S.L.; Ribeiro, R.A.; Vettorazzi, J.F.; Santos-Silva, J.C.; Carneiro, E.M.; Bonfleur, M.L.

    2015-01-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats. PMID:25714886

  5. Vagotomy ameliorates islet morphofunction and body metabolic homeostasis in MSG-obese rats.

    PubMed

    Lubaczeuski, C; Balbo, S L; Ribeiro, R A; Vettorazzi, J F; Santos-Silva, J C; Carneiro, E M; Bonfleur, M L

    2015-05-01

    The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca(2+) mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca(2+) mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.

  6. [Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].

    PubMed

    Huang, Wei; Liu, Rui; Guo, Wei; Wei, Na; Qiang, Ou; Li, Xian; Ou, Yan; Tang, Chengwei

    2012-11-01

    To investigate whether high-fat diet induced obesity was associated with variation of glucose absorption in small intestinal mucosa of rats. 46 male SD rats were randomly divided into high-fat diet group (n = 31) and control group (n = 15), fed with high-fat diet and normal diet for 24 weeks, respectively. After 24 weeks, the rats were divided into obese (n = 16) and obesity-resistant group (n = 10) according to their body weight. Rats' body weight, abdominal fat weight, plasma glucose level, maltase, sucrase activity in small intestinal mucosa were measured. SGLT-1 expression in intestinal mucosa was detected by immunohistochemistry, RT-PCR and Western blot. Mean body weight, abdominal fat weight, fast plasma glucose levels, maltase activities and SGLT-1 protein expression in intestinal mucosa of obese rats were significantly higher than those in the control and obesity-resistant rats (P < 0.05). Sucrase activities in intestinal mucosa showed no statistical difference among the three groups (P > 0.05). The SGLT-1 mRNA expression in obese group was increased by 12.5% and 23% when compare with the control and obesity-resistant group, respectively. But the difference was not statistical significant (P > 0.05). High-fat diet induced obesity was associated with the increased intestinal maltase activity and expression of SGLT-1 in rats, the key molecule in glucose absorption.

  7. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    PubMed

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  8. A New Spontaneously Diabetic Non-obese Torii Rat Strain With Severe Ocular Complications

    PubMed Central

    Masuyama, Taku; Shoda, Toshiyuki; Takahashi, Tadakazu; Katsuda, Yoshiaki; Komeda, Kajuro; Kuroki, Masatoshi; Kakehashi, Akihiro; Kanazaw, Yasunori

    2000-01-01

    A new spontaneously diabetic strain of the Sprague-Dawley rat was established in 1997 and named the SDT (Spontaneously Diabetic Torii) rat. In this research, we investigated the characteristics of the disease condition in the SDT rats. The time of onset of glucosuria was different between male and female SDT rats; glucosuria appeared at approximately 20 weeks of age in male rats and at approximately 45 weeks of age in female rats. A cumulative incidence of diabetes of 100% was noted by 40 weeks of age in male rats, while it was only 33.3% even by 65 weeks of age in female rats. The survival rate up to 65 weeks of age was 92.9% in male rats and 97.4% in female rats. Glucose intolerance was observed in male rats from 16 weeks of age. The clinical characteristics of the male SDT rats were (1) hyperglycemia and hypoinsulinemia (from 25 weeks of age); (2) long-term survival without insulin treatment; (3) hypertriglyceridemia (by 35 weeks of age); however, no obesity was noted in any of the male rats. The histopathological characteristics of the male rats with diabetes mellitus (DM) were (1) fibrosis of the pancreatic islets (by 25 weeks of age); (2) cataract (by 40 weeks of age); (3) tractional retinal detachment with fibrous proliferation (by 70 weeks of age) and (4) massive hemorrhaging in the anterior chamber (by 77 weeks of age). These clinical and histopathological characteristics of the disease in SDT rats resemble those of human Type 2 diabetes with insulin hyposecretion. In conclusion, SDT rat is considered to be a potentially useful model for studies of diabetic retinopathy encountered in humans. PMID:11469401

  9. Sex differences in brain cholinergic activity in MSG-obese rats submitted to exercise.

    PubMed

    Sagae, Sara Cristina; Grassiolli, Sabrina; Raineki, Charlis; Balbo, Sandra Lucinei; Marques da Silva, Ana Carla

    2011-11-01

    Obesity is an epidemic disease most commonly caused by a combination of increased energy intake and lack of physical activity. The cholinergic system has been shown to be involved in the regulation of food intake and energy expenditure. Moreover, physical exercise promotes a reduction of fat pads and body mass by increasing energy expenditure, but also influences the cholinergic system. The aim of this study is to evaluate the interaction between physical exercise (swimming) and central cholinergic activity in rats treated with monosodium glutamate (MSG, a model for obesity) during infancy. Our results show that MSG treatment is able to induce obesity in male and female rats. Specifically, MSG-treated rats presented a reduced body mass and nasoanal length, and increased perigonadal and retroperitoneal fat pads in relation to the body mass. Physical exercise was able to reduce body mass in both male and female rats, but did not change the fat pads in MSG-treated rats. Increased food intake was only seen in MSG-treated females submitted to exercise. Cholinergic activity was increased in the cortex of MSG-treated females and physical exercise was able to reduce this activity. Thalamic cholinergic activity was higher in sedentary MSG-treated females and exercised MSG-treated males. Hypothalamic cholinergic activity was higher in male and female MSG-treated rats, and was not reduced by exercise in the 2 sexes. Taken together, these results show that MSG treatment and physical exercise have different effects in the cholinergic activity of males and females.

  10. Different natriuretic responses in obese and lean rats in response to nitric oxide reduction.

    PubMed

    Ambrozewicz, Marta A; Khraibi, Ali A; Simsek-Duran, Fatma; DeBose, Sophia C; Baydoun, Hind A; Dobrian, Anca D

    2011-08-01

    Nitric oxide (NO) is an important regulator of renal sodium transport and participates in the control of natriuresis and diuresis. In obesity, the nitric oxide bioavailability was reportedly reduced, which may contribute to the maintenance of hypertension. The aim of this study was to determine the effect of NO depletion on renal sodium handling in a model of diet-induced obesity hypertension. Obese hypertensive (obesity-prone (OP)) and lean normotensive (obesity-resistant (OR)) Sprague-Dawley rats were treated with 1.2 mg/kg/day N(G)-nitro-L-arginine-methyl ester (L-NAME) for 4 weeks to inhibit NO synthesis. Acute pressure natriuresis and diuresis were measured in response to an increase in perfusion pressure. NHE3 and Na(+), K(+)-ATPase protein expression were measured by Western blot and NHE3 activity was determined as the rate of pH change in brush border membrane vesicles. NHE3 membrane localization was determined by confocal microscopy. L-NAME did not significantly attenuate the natriuretic and diuretic responses to increases in renal perfusion pressure (RPP) in OP rats while inducing a significant reduction in OR rats. Following chronic NO inhibition, NHE3 protein expression and activity and Na(+), K(+)-ATPase protein expression were significantly increased in the OR but not in the OP group. Immunofluorescence studies indicated that the increase in NHE3 activity could be, at least in part, due to NHE3 membrane trafficking. Obese hypertensive rats have a weaker natriuretic response in response to NO inhibition compared to lean rats and the mechanism involves different regulation of the apical sodium exchanger NHE3 expression, activity, and trafficking.

  11. The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats.

    PubMed

    Marín-Royo, Gema; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; Gallardo, Isabel; Montero, Olimpio; Bartolomé, Mª Visitación; Román, José Alberto San; Salaices, Mercedes; Nieto, María Luisa; Cachofeiro, Victoria

    To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O 2 ), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Biochemical and histological impact of Vernonia amygdalina supplemented diet in obese rats

    PubMed Central

    Atangwho, Item J.; Edet, Emmanuel E.; Uti, Daniel E.; Obi, Augustine U.; Asmawi, Mohd. Z.; Ahmad, Mariam

    2012-01-01

    This study was carried out to evaluate the anti-obesity effect of Vernonia amygdalina Del. (VA) supplemented diet. VA leaf powder was fed at 5% and 15% to diet-induced obese rats for 4 weeks and its effect compared with orlistat (5.14 mg/kg p.o.), an anti-obesity drug. Food intake, body and organ weights, total body fat, some lipid components and amino transaminase activities in serum, hepatocytes and brain; as well as serum glucose, were measured during or at end of the study. Result showed respective decrease of 12.78% and 38.51% in body weight gain, of VA fed rats against 17.45% of orlistat at end of study (P < 0.05); but with no effect on food intake. Total body fat was lowered by 28.04% and 30.02% vs. obese control rats (CDC) (P < 0.05). Furthermore, serum triacylglycerol (TG), serum and brain total cholesterol (TCHOL), were down regulated at 15% VA supplementation (P < 0.05). Serum glucose which increased in obese rats by 46.26% (P < 0.05) vs. NC, indicating intolerance, was restored by VA (38.75% and 34.65%) and orlistat (31.80%) vs. CDC (P < 0.05). VA diet also exerted hepato-protection, via lowering serum alanine amino transaminase (ALT) (41.35% and 27.13%) and aspartate amino transaminase (AST) (17.09% and 43.21%) activities (P < 0.05). Orlistat had no effect on these enzymes. Histology of adipose tissue corroborated the changes on total body fat. We concluded that, diet supplemented with VA can attenuate dietary obesity as well as ameliorates the potential risks of hepato-toxicity and glucose intolerance associated with obesity. PMID:23961200

  13. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    SciT

    Liu, Penghao; Xie, Qihai; Wei, Tong

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less

  14. Increased risk of cataract development in WNIN-obese rats due to accumulation of intralenticular sorbitol.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Balakrishna, Nagalla; Validandi, Vakdevi; Pullakhandam, Raghu; Reddy, Geereddy Bhanuprakash

    2013-05-01

    Epidemiological studies have reported an association between obesity and increased incidence of ocular complications including cataract, yet the underlying biochemical and molecular mechanisms remained unclear. Previously we had demonstrated accumulation of sorbitol in the lens of obese rats (WNIN/Ob) and more so in a related strain with impaired glucose tolerance (WNIN/GR-Ob). However, only a few (15-20%) WNIN/Ob and WNIN/GR-Ob rats develop cataracts spontaneously with age. To gain further insights, we investigated the susceptibility of eye lens proteins of these obese rat strains to heat- and UV-induced aggregation in vitro, lens opacification upon glucose-mediated sorbitol accumulation ex vivo, and onset and progression of cataract was followed by galactose feeding and streptozotocin (STZ) injection. The results indicated increased susceptibility toward heat- or UV-induced aggregation of lens proteins in obese animals compared to their littermate lean controls. Further, in organ culture studies glucose-induced sorbitol accumulation was found to be higher and thus the lens opacification was faster in obese animals compared to their lean littermates. Also, the onset and progression of galactose- or STZ-induced cataractogenesis was faster in obese animals compared to lean control. These results together with our previous observations suggest that obesity status could lead to hyperaccumulation of sorbitol in eye lens, predisposing them to cataract, primarily by increasing their susceptibility to environmental and/or physiological factors. Further, intralenticular sorbitol accumulation beyond a threshold level could lead to cataract in WNIN/Ob and WNIN/GR-Ob rats. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  15. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock.

    PubMed

    Matheson, Paul J; Hurt, Ryan T; Franklin, Glen A; McClain, Craig J; Garrison, R Neal

    2009-10-01

    Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.

  16. Dependence of Cardiac Systolic Function on Elevated Fatty Acid Availability in Obese, Insulin-Resistant Rats.

    PubMed

    Smith, Wayne; Norton, Gavin R; Woodiwiss, Angela J; Lochner, Amanda; du Toit, Eugene F

    2016-07-01

    Clinical data advocating an adverse effect of obesity on left ventricular (LV) systolic function independent of comorbidities is controversial. We hypothesized that in obesity with prediabetic insulin resistance, circulating fatty acids (FAs) become a valuable fuel source in the maintenance of normal systolic function. Male Wistar rats were fed a high caloric diet for 32 weeks to induce obesity. Myocardial LV systolic function was assessed using echocardiography and isolated heart preparations. Aortic output was reduced in obese rat hearts over a range of filling pressures (for example: 15 cmH2O, obese: 32.6 ± 1.2 ml/min vs control: 46.2 ± 0.9 ml/min, P < .05) when perfused with glucose alone. Similarly, the slope of the LV end-systolic pressure-volume relationship decreased, and there was a right shift in the LV end-systolic stress-strain relationship as determined in Langendorff perfused, isovolumic rat heart preparations in the presence of isoproterenol (10(-8)M) (LV systolic stress-strain relationship and a reduced load-independent intrinsic systolic myocardial function, obese: 791 ± 62 g/cm(2) vs control: 1186 ± 74 g/cm(2), P < .01). The addition of insulin to the perfusion buffer improved aortic output, whereas the addition of FAs completely normalized aortic output. LV function was maintained in obese animals in vivo during an inotropic challenge. Elevated circulating FA levels may be important to maintain myocardial systolic function in the initial stages of obesity and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Resistance of male Sprague-Dawley rats to sucrose-induced obesity: effects of 18-methoxycoronaridine

    PubMed Central

    Taraschenko, Olga D.; Maisonneuve, Isabelle M.; Glick, Stanley D.

    2015-01-01

    Evidence suggests that the development of obesity in males and females might be mediated by distinct mechanisms, warranting different treatment approaches. In previous studies from this laboratory, a high sucrose diet induced excessive weight gain in female Sprague-Dawley rats and administration of a selective antagonist of α3β4 nicotinic receptors, 18-methoxycoronaridine (18-MC), prevented this form of obesity. In the present study similar parameters were studied in male rats by using an identical experimental protocol. The effects of repeated administration of 18-MC on body weight gain, deposition of fat, consummatory behavior and biochemical markers of obesity in male rats were also assessed. In contrast to females, males consuming ad libitum quantities of sucrose solution (30%) in combination with normal chow did not become obese; they did not gain excessive weight nor show excessive fat deposition. Repeated administration of 18-MC (20 mg/kg, i.p.) attenuated weight gain in both sucrose-consuming and control animals without altering food or fluid intake. The present results indicate that males and females are differentially responsive to high carbohydrate-diet obesity. Such gender disparities could be secondary to sex-specific alterations in cholinergic mechanisms of feeding and body weight regulation. PMID:20951714

  18. Metabolic profiling of muscle contraction in lean compared with obese rodents.

    PubMed

    Thyfault, John P; Cree, Melanie G; Tapscott, Edward B; Bell, Jill A; Koves, Timothy R; Ilkayeva, Olga; Wolfe, Robert R; Dohm, G Lynis; Muoio, Deborah M

    2010-09-01

    Interest in the pathophysiological relevance of intramuscular triacylglycerol (IMTG) accumulation has grown from numerous studies reporting that abnormally high glycerolipid levels in tissues of obese and diabetic subjects correlate negatively with glucose tolerance. Here, we used a hindlimb perfusion model to examine the impact of obesity and elevated IMTG levels on contraction-induced changes in skeletal muscle fuel metabolism. Comprehensive lipid profiling was performed on gastrocnemius muscles harvested from lean and obese Zucker rats immediately and 25 min after 15 min of one-legged electrically stimulated contraction compared with the contralateral control (rested) limbs. Predictably, IMTG content was grossly elevated in control muscles from obese rats compared with their lean counterparts. In muscles of obese (but not lean) rats, contraction resulted in marked hydrolysis of IMTG, which was then restored to near resting levels during 25 min of recovery. Despite dramatic phenotypical differences in contraction-induced IMTG turnover, muscle levels of diacylglycerol (DAG) and long-chain acyl-CoAs (LCACoA) were surprisingly similar between groups. Tissue profiles of acylcarnitine metabolites suggested that the surfeit of IMTG in obese rats fueled higher rates of fat oxidation relative to the lean group. Muscles of the obese rats had reduced lactate levels immediately following contraction and higher glycogen resynthesis during recovery, consistent with a lipid-associated glucose-sparing effect. Together, these findings suggest that contraction-induced mobilization of local lipid reserves in obese muscles promotes beta-oxidation, while discouraging glucose utilization. Further studies are necessary to determine whether persistent oxidation of IMTG-derived fatty acids contributes to systemic glucose intolerance in other physiological settings.

  19. Hyperinsulinemia and ectopic fat deposition develop in the face of hyperadiponectinemia in young obese rats

    The role of reduced adiponenctin signaling in childhood obesity is unclear. Weanling male Sprague-Dawley rats were overfed a high fat diet via total enteral nutrition. Excessive caloric intake led to increased weight and fat mass; dyslipidemia; ectopic fat deposition; and hyperinsulinemia (P less th...

  20. Caloric restriction or telmisartan control dyslipidemia and nephropathy in obese diabetic Zücker rats

    PubMed Central

    2014-01-01

    Background The obese Zücker diabetic fatty male rat (ZDF:Gmi™-fa) is an animal model of type II diabetes associated with obesity and related metabolic disturbances like dyslipidaemia and diabetic nephropathy. In addition, diabetic dyslipidaemia has been linked to vascular and glomerular damage too. Dietary fat restriction is a current strategy to tackle obesity and, telmisartan, as a renoprotective agent, may mediate cholesterol efflux by activating PPARγ. To test the hypothesis that both therapeutical alternatives may influence dyslipidaemia and nephropathy in the ZDF rat, we studied their effect on development of diabetes. Methods Male Zücker Diabetic Fatty (ZDF) rats received a low-calorie diet, vehicle or telmisartan for 9 weeks. Blood samples were obtained for analyses of lipids and lipoproteins, LDL-oxidisability, HDL structural and functional properties. Urinalysis was carried out to estimate albumin loss. At the end of the experimental period, rats were sacrificed, liver extracted and APOA1 mRNA quantified. Results Results indicated that low-calorie diet and telmisartan can slower the onset of overt hyperglycaemia and renal damage assessed as albuminuria. Both interventions decreased the oxidative susceptibility of LDL and hepatic APOA1 mRNA expression but only dietary restriction lowered hyperlipidaemia. Conclusion Either a dietary or pharmacologic interventions with telmisartan have important beneficial effects in terms of LDL oxidative susceptibility and progression of albuminuria in obesity related type II diabetes. PMID:24468233

  1. The PPARα/γ dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats

    PubMed Central

    Li, Ping-Ping; Shan, Song; Chen, Yue-Teng; Ning, Zhi-Qiang; Sun, Su-Juan; Liu, Quan; Lu, Xian-Ping; Xie, Ming-Zhi; Shen, Zhu-Fang

    2006-01-01

    The aim of this study was to investigate the capacity of chiglitazar to improve insulin resistance and dyslipidemia in monosodium L-glutamate (MSG) obese rats and to determine whether its lipid-lowering effect is mediated through its activation of PPARα. Chiglitazar is a PPARα/γ dual agonist. The compound improved impaired insulin and glucose tolerance; decreased plasma insulin level and increased the insulin sensitivity index and decreased HOMA index. Euglycemic hyperinsulinemic clamp studies showed chiglitazar increased the glucose infusion rate in MSG obese rats. Chiglitazar inhibited alanine gluconeogenesis, lowered the hepatic glycogen level in MSG obese rats. Like rosiglitazone, chiglitazar promoted the differentiation of adipocytes and decreased the maximal diameter of adipocytes. In addition, chiglitazar decreased the fibrosis and lipid accumulation in the islets and increased the size of islets. Chiglitazar reduced plasma triglyceride, total cholesterol (TCHO), nonesterified fatty acids (NEFA) and low density lipoprotein-cholesterol levels; lowered hepatic triglyceride and TCHO contents; decreased muscular NEFA level. Unlike rosiglitazone, chiglitazar showed significant increase of mRNA expression of PPARα, CPT1, BIFEZ, ACO and CYP4A10 in the liver of MSG obese rats. These data suggest that PPARα/γ coagonist, such as chiglitazar, affect lipid homeostasis with different mechanisms from rosiglitazone, chiglitazar may have better effects on lipid homeostasis in diabetic patients than selective PPARγ agonists. PMID:16751799

  2. Anti-obesity effect of Gymnema sylvestre extract on high fat diet-induced obesity in Wistar rats.

    PubMed

    Kumar, V; Bhandari, U; Tripathi, C D; Khanna, G

    2013-12-01

    Gymnema sylvestre R. BR. (Asclepiadaceae) has been used frequently in traditional Indian folk medicine for the treatment of diabetes. Study was performed in high fat diet (HFD)-induced obesity in murine model. Obesity was induced by oral feeding of HFD for 28 days. The anti obesity effect of water soluble fraction of Gymnema sylvestre extract (120 mg/kg, p.o. for 21 days) in HFD fed rats was evaluated by the measurement of body weight gain, food intake, hemodynamic changes (systolic, diastolic, mean blood pressure and heart rate), serum lipid profiles (triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol), leptin, insulin, glucose, apolipoproteins A1 and B, lactate dehydrogenase (LDH) and antioxidant enzymes such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S transferase (GST), superoxide dismutase (SOD) and catalase (CAT) levels in liver tissues. Organs and visceral fat pad weight were measured. Histopathological studies were also carried out. Water soluble fraction of G. sylvestre ethanolic extract and rimonabant significantly reduced serum lipids, leptin, insulin, glucose, apolipoprotein B and LDH levels while it significantly increased the HDL-cholesterol, apolipoprotein A1 and antioxidant enzymes levels in liver tissue as compared to the HFD fed rats. Histopathological studies of tissues showed no pathological changes. The results of this study show that water soluble fraction of G. sylvestre extract possess antiobesity effect. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 in livers of Zucker diabetic fatty rats

    PubMed Central

    Jain, Sushil K.; Croad, Jennifer L.; Velusamy, Thirunavukkarasu; Rains, Justin L.; Bull, Rebeca

    2011-01-01

    Aim Chromium and cysteine supplementation can improve glucose metabolism in animal studies. This study examined the hypothesis that a cysteinate complex of chromium is significantly beneficial than either of them in lowering blood glucose and vascular inflammation markers in ZDF rats. Methods Starting at the age of 6 wks, ZDF rats were supplemented orally (daily gavages for 8 more wks) with saline-placebo (D) or chromium (400µg Cr/KgBW) as chromium-dinicocysteinate (CDNC), chromium-dinicotinate (CDN), or chromium-picolinate (CP) or equimolar L-cysteine (LC, img/Kg BW), and fed Purina 5008 diet for 8 wks. ZDF rats of 6 wks age before any supplementations and onset of diabetes were considered as baseline (BL). Results D rats showed elevated levels of fasting blood glucose, HbA1, CRP, MCP-1, ICAM-1 and oxidative stress (LP) and lower adiponectin and vitamin C, when compared to BL rats. In comparison to D group, CDNC group had significantly lower blood glucose, HbA1, CRP, MCP-1, ICAM-1 and LP and increased vitamin C and adiponectin levels. CDN, CP or LC showed significantly less or no effect on these biomarkers. Only CDNC lowered blood creatinine levels in comparison to D. While CDN and CP had no effect, activation of NFkB, Akt and GLUT-2 levels were decreased, IRS-1 activation increased in livers of CDNC-rats. CDNC effect on glycemia, NFkB, Akt and IRS-1 in liver was significantly greater compared with LC. Blood chromium levels did not differ between Cr-groups. Exogenous vitamin C supplementation significantly inhibited MCP-1 secretion in U937 monocytes cultured in high-glucose-medium. Conclusions CDNC is a potent hypoglycemic compound with anti-inflammatory activity apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 and increased IRS-1 activation in livers of type 2 diabetic rats. PMID:20306473

  4. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats

    PubMed Central

    Giridharan, Nappan Veettil

    2012-01-01

    Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these

  5. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.

  6. Effects of baked and raw salmon fillet on lipids and n-3 PUFAs in serum and tissues in Zucker fa/fa rats​​​​​​​​​​​​​​​​​​​​.

    PubMed

    Vikøren, Linn A; Drotningsvik, Aslaug; Bergseth, Marthe T; Mjøs, Svein A; Mola, Nazanin; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2017-01-01

    Knowledge of the health impact of consuming heat-treated versus raw fish fillet is limited. To investigate effects of baked or raw salmon fillet intake on lipids and n-3 PUFAs in serum and tissues, obese Zucker fa/fa rats were fed diets containing 25% of protein from baked or raw salmon fillet and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Salmon diets had similar composition of amino and fatty acids. Growth and energy intake were similar in all groups. Amounts of lipids and n-3 PUFAs in serum, liver and skeletal muscle were similar between rats fed baked or raw salmon fillet. When compared to the control group, rats fed baked salmon had lower serum total and LDL cholesterol and higher serum triacylglycerol levels. Both raw and baked salmon groups had lower HDL cholesterol level when compared to control rats. In conclusion, baking as a preparation method does not alter protein and fat qualities of salmon fillets, and intake of baked and raw salmon fillets gave similar effects on lipids and n-3 PUFAs in serum and tissues from rats.

  7. Effects of baked and raw salmon fillet on lipids and n-3 PUFAs in serum and tissues in Zucker fa/fa rats​​​​​​​​​​​​​​​​​​​​

    PubMed Central

    Vikøren, Linn A.; Drotningsvik, Aslaug; Bergseth, Marthe T.; Mjøs, Svein A.; Mola, Nazanin; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A.

    2017-01-01

    ABSTRACT Knowledge of the health impact of consuming heat-treated versus raw fish fillet is limited. To investigate effects of baked or raw salmon fillet intake on lipids and n-3 PUFAs in serum and tissues, obese Zucker fa/fa rats were fed diets containing 25% of protein from baked or raw salmon fillet and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Salmon diets had similar composition of amino and fatty acids. Growth and energy intake were similar in all groups. Amounts of lipids and n-3 PUFAs in serum, liver and skeletal muscle were similar between rats fed baked or raw salmon fillet. When compared to the control group, rats fed baked salmon had lower serum total and LDL cholesterol and higher serum triacylglycerol levels. Both raw and baked salmon groups had lower HDL cholesterol level when compared to control rats. In conclusion, baking as a preparation method does not alter protein and fat qualities of salmon fillets, and intake of baked and raw salmon fillets gave similar effects on lipids and n-3 PUFAs in serum and tissues from rats. PMID:28659746

  8. Combination effect naringin and pravastatin in lipid profile and glucose in obese rats.

    PubMed

    Raffoul-Orozco, Abdel K; Ávila-González, Ana E; Rodríguez-Razón, Christian M; García-Cobian, Teresa A; Pérez-Guerrero, Edsaul E; García-Iglesias, Trinidad; Rubio-Arellano, Edy David

    2018-01-15

    The purpose of this study was to compare the effect of naringin 100mg/kg in combination with pravastatin 10mg/kg by gavage for 6weeks compared with monotherapy over lipid profiles, glucose levels and weight in murine model of obesity. The study design was planned with 5 groups of 6 male Wistar Albina rats: Group 1: control with balanced food and vehicle (C-); Group 2: control with Obesity and vehicle (C+); Group 3: Obesity+naringin (N); Group 4: Obesity+pravastatin (P); Group 5: Obesity+pravastatin+naringin (NP). Obesity was developed with a food model. The naringin groups showed a decrease in weight gain and low glucose values compared to the control group (weight NP:311.4 vs C+:348.6; glucose NP: 173.12 vs C+:235.56) (p<0.05); the group with naringin+pravastatin combination showed the total cholesterol (TC), LDL and triglycerides (TGs) to normal levels (TC NP:51.6 vs C+:83.4; LDL NP:9.32 vs C+:32.32; TGs NP:39.4 vs C+:89.4) (p<0.05); but was not statistically significant compared with monotherapy. The combination of naringin and pravastatin did not appear to be better than monotherapy on lipids, but its use could generate euglycemic and antiobesogenic effects, in addition to diminishing the adverse hepatic effects of pravastatin in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats.

    PubMed

    Santos, Mery; Rodríguez-González, Guadalupe L; Ibáñez, Carlos; Vega, Claudia C; Nathanielsz, Peter W; Zambrano, Elena

    2015-02-01

    Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity. Maternal obesity has well documented effects on offspring reproduction. Few studies address ability of offspring exercise to reduce adverse outcomes. We observed increased oxidative stress and impaired sperm function in rat offspring of obese mothers. We hypothesized that regular offspring exercise reverses adverse effects of maternal obesity on offspring sperm quality and fertility. Female Wistar rats ate chow (C) or high-energy, obesogenic diet (MO) from weaning through lactation, bred at postnatal day (PND) 120, and ate their pregnancy diet until weaning. All offspring ate C diet from weaning. Five male offspring (different litters) ran on a wheel for 15 min, 5 times/week from PND 330 to 450 and were euthanized at PND 450. Average distance run per session was lower in MO offspring who had higher body weight, adiposity index, and gonadal fat and showed increases in testicular oxidative stress biomarkers. Sperm from MO offspring had reduced antioxidant enzyme activity, lower sperm quality, and fertility. Exercise in MO offspring decreased testicular oxidative stress, increased sperm antioxidant activity and sperm quality, and improved fertility. Exercise intervention has beneficial effects on adiposity index, gonadal fat, oxidative stress markers, sperm quality, and fertility. Thus regular physical exercise in male MO offspring recuperates key male reproductive functions even at advanced age: it's never too late. Copyright © 2015 the American Physiological Society.

  10. Swim training restores glucagon-like peptide-1 insulinotropic action in pancreatic islets from monosodium glutamate-obese rats.

    PubMed

    Svidnicki, P V; de Carvalho Leite, N; Venturelli, A C; Camargo, R L; Vicari, M R; de Almeida, M C; Artoni, R F; Nogaroto, V; Grassiolli, S

    2013-09-01

    Glucagon-like peptide-1 (GLP-1) is an important modulator of insulin secretion by endocrine pancreas. In the present study, we investigated the effect of swim training on GLP-1 insulinotropic action in pancreatic islets from monosodium glutamate (MSG)-obese rats. Obesity was induced by neonatal MSG administration. MSG-obese and control (CON) exercised rats swam for 30 min (3 times week(-1) ) for 10 weeks. Pancreatic islets were isolated by colagenase technique and incubated with low (5.6 mM) or high (16.7 mM) glucose concentrations in the presence or absence of GLP-1 (10 nM). In addition, GLP-1 gene expression in ileum was quantified in fasting and glucose conditions. Exercise reduced obesity and hyperinsulinemia in MSG-obese rats. Swim training also inhibited glucose-induced insulin secretion in islets from both groups. Islets from MSG-obese rats maintained GLP-1 insulinotropic response in low glucose concentration. In contrast, in the presence of high glucose concentration, GLP-1 insulinotropic action was absent in islets from MSG-obese rats. Islets from MSG-exercised rats showed reduced GLP-1 insulinotropic action in the presence of low glucose. However, in high glucose concentration swim training restored GLP-1 insulinotropic response in islets from MSG-obese rats. In all groups, glucose intake increased GLP-1 immunoreactivity and gene expression in ileum cells in relation to fasting conditions. Swim training reduced these parameters only in ileum cells from CON-exercised rats. Neither MSG treatment nor exercise affected GLP-1 expression in the ileum. Exercise avoids insulin hypersecretion restoring GLP-1's insulinotropic action in pancreatic islets from MSG-obese rats. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Diet-Induced Obesity and Diet-Resistant rats: differences in the rewarding and anorectic effects of D-amphetamine

    PubMed Central

    Valenza, Marta; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Rationale Obesity is a leading public health problem worldwide. Multiple lines of evidence associate deficits in the brain reward circuit with obesity. Objective Whether alterations in brain reward sensitivity precede or are a consequence of obesity is unknown. This study aimed to investigate both innate and obesity-induced differences in the sensitivity to the effects of an indirect dopaminergic agonist. Methods Rats genetically prone to diet-induced obesity (DIO) and their counterpart diet-resistant (DR) were fed a chow diet and their response to D-amphetamine on intracranial self-stimulation and food intake were assessed. The same variables were then evaluated after exposing the rats to a high-fat diet, after DIO rats selectively developed obesity. Finally, gene expression levels of dopamine receptor 1 and 2 as well as tyrosine hydroxylase were measured in reward-related brain regions. Results In a pre-obesity state, DIO rats showed innate decreased sensitivity to the reward-enhancing and anorectic effects of D-amphetamine, as compared to DR rats. In a diet-induced obese state, the insensitivity to the potentiating effects of D-amphetamine on ICSS threshold persisted and became more marked in DIO rats, while the anorectic effects were comparable between genotypes. Finally, innate and obesity-induced differences in the gene expression of dopamine receptors were observed. Conclusions Our results demonstrate that brain reward deficits antedate the development of obesity and worsen after obesity is fully developed, suggesting that these alterations represent vulnerability factors for its development. Moreover, our data suggests that the reward-enhancing and anorectic effects of D-amphetamine are dissociable in the context of obesity. PMID:26047964

  12. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    NASA Astrophysics Data System (ADS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  13. Arcuate nucleus of hypothalamus is involved in mediating the satiety effect of electroacupuncture in obese rats.

    PubMed

    Fei Wang; Tian, De Run; Tso, Patrick; Han, Ji Sheng

    2011-12-01

    Obesity is a major health problem in the world. Since effective remedies are rare, researchers are trying to discover new therapies for obesity, and acupuncture is among the most popular alternative approaches. This study investigated the anti-obesity mechanisms of EA, using a rat model of diet-induced obesity. After feeding with a high-fat diet for 9 weeks, a number of rats who gained weight that surpassed the maximal body weight of rats in the chow-fed group were considered obese and employed in the study. A 2 Hz EA treatment at the acupoints ST36/SP6 with the intensity increasing stepwise from 0.5-1-1.5 mA was given once a day for 30 min. Rats treated with EA showed significantly decreased food intake and reduced body weight compared with the rats in DIO and restraint group. EA treatment increased peptide levels of α-MSH and mRNA levels of its precursor POMC in the arcuate nuclear of hypothalamus (ARH) neurons. In addition, the cerebral spinal fluid (CSF) content of α-MSH was elevated by EA application. ARH lesions by monosodium glutamate abolished the inhibition effect of EA on food intake and body weight. A non-acupoint stimulation did not show the benefit effect on food intake inhibition and body weight reduction compared with restraint and ST36/SP6 EA treatment. We concluded that EA treatment at ST36/SP6 acted through ARH to significantly inhibit food intake and body weight gain when fed a high-fat diet and that the stimulation of α-MSH expression and release might be involved in the mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Eucommia leaf extract (ELE) prevents OVX-induced osteoporosis and obesity in rats.

    PubMed

    Zhang, Wenping; Fujikawa, Takahiko; Mizuno, Kaito; Ishida, Torao; Ooi, Kazuya; Hirata, Tetsuya; Wada, Atsunori

    2012-01-01

    The cortex of Eucommia ulmoides Oliver is widely used to treat kidney deficiency in traditional Chinese medicine. Its leaves have recently been reported to have anti-obesity properties in metabolic syndrome-like rat models. Due to a sharp decline in estrogen production, obesity, together with osteoporosis, are common problems in postmenopausal women. In this study, we examined the potential effect of Eucommia leaf extract (ELE) in preventing osteoporosis and obesity induced by ovariectomy (OVX). Forty-six female Wistar rats were divided into six groups: Sham-Cont, OVX-Cont, and four OVX groups administered estradiol and different concentrations of ELE 1.25%, ELE 2.5%, and ELE 5%. Treatments were administered after ovariectomy at six weeks of age and continued for 12 weeks. OVX induced a significant decrease in the bone mineral density (BMD) of the lumbar, femora, and tibiae, together with a marked increase in body mass index (BMI). The administration of 5% ELE led to a significant increase in tibial and femoral BMD, as well as significantly increased bone-strength parameters when compared with OVX-Cont rats. According to the suppressed Dpd and increased osteocalcin concentrations in ELE 5% rats, we suggest that varying proportions of bone formation and bone absorption contributed to the enhanced BMD in the femora and tibiae. In addition, significant decreases in body weight, BMI and fat tissue in 5% ELE rats were also observed. These results suggest that ELE may have curative properties for BMD and BMI in OVX rats, and could provide an alternative therapy for the prevention of both postmenopausal osteoporosis and obesity.

  15. Beneficial effects of Plantago albicans on high-fat diet-induced obesity in rats.

    PubMed

    Samout, Noura; Ettaya, Amani; Bouzenna, Hafsia; Ncib, Sana; Elfeki, Abdelfattah; Hfaiedh, Najla

    2016-12-01

    Obesity is a one of the main global public health problems associated with chronic diseases such as coronary heart disease, diabetes and cancer. As a solution to obesity, we suggest Plantago albicans, which is a medicinal plant with several biological effects. This study assesses the possible anti-obesity protective properties of Plantago albicans in high fat diet-fed rats. 28 male Wistar rats were divided into 4 groups; a group which received normal diet (C), the second group was fed HDF diet (HDF), the third group was given normal diet supplemented with Plantago albicans (P.AL), and the fourth group received HDF supplemented with Plantago albicans (HDF+P.AL) (30mg/kg/day) for 7 weeks. Our results showed an increase in body weight of HDF rats by ∼16% as compared to the control group with an increase in the levels of total cholesterol (TC) as well as LDL-cholesterol, triglycerides (TG) in serum. Also, the concentration of TBARS increased in the liver and heart of HDF-fed rats as compared to the control group. The oral gavage of Plantago albicans extract to obese rats induced a reduction in their body weight, lipid accumulation in liver and heart tissue, compared to the high-fat diet control rats. The obtained results proved that the antioxidant potency of Plantago albicans extracts was correlated with their phenolic and flavonoid contents. The antioxidant capacity of the extract was evaluated by DPPH test (as EC50=250±2.12μg/mL) and FRAP tests (as EC50=27.77±0.14μg/mL). These results confirm the phytochemical and antioxidant impact of Plantago albicans extracts. Plantago albicans content was determined using validated HPLC methodology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Cognitive differences between Sprague-Dawley rats selectively bred for sensitivity or resistance to diet induced obesity.

    PubMed

    Gurung, Sunam; Agbaga, Martin-Paul; Myers, Dean A

    2016-09-15

    Epidemiological studies have shown strong correlations between high fat diets, diet-induced obesity and cognitive impairment, primarily focusing on cognitive defects after the onset of obesity. A remaining question is whether cognitive impairment precedes obesity in individuals metabolically prone to diet-induced obesity. The inbred diet-induced obesity sensitive (DIO) and resistant (DR) strains of Sprague-Dawley rats serve as models for human polygenic obesity. DIO rats become overweight on a standard rat chow and have metabolic symptoms similar to overweight humans. We hypothesized that cognitive impairment pre-exists in adult male DIO rats prior to exposure to high fat diet. Male DIO and DR rats were fed a standard rat chow diet from 4 through 20 weeks of age and subjected to the Morris water maze at 12 weeks of age. At 5 and 20 weeks of age, brains of DIO and DR males were examined for indices of inflammation, lipid peroxidation and neuroproliferation. DIO rats showed significant memory impairment on water maze and increased indices of hippocampal inflammation at 20 weeks of age compared to DR rats. At 5 weeks of age, DIO rats exhibited significantly less neural progenitor cell (NPCs) proliferation in the dentate gyrus and increased hippocampal lipid peroxidation compared to DR rats. Therefore, we conclude that DIO rats exhibit early post-weaning indices of hippocampal inflammation, lipid peroxidation and decreased NPC proliferation, as well as impaired hippocampal dependent memory by early adulthood suggesting that inherent metabolic differences predispose the DIO strain to cognitive deficit prior to exposure to high fat diet and/or obesity. Copyright © 2016. Published by Elsevier B.V.

  17. Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats.

    PubMed

    Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; de Oliveira, Júlio Cezar; Barella, Luiz Felipe; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; Pavanello, Audrei; da Conceição, Ellen Paula Santos; Torrezan, Rosana; Armitage, James; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar; de Freitas Mathias, Paulo Cezar; Vieira, Elaine

    2017-01-01

    Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium L-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F 2 ) (CTLF 2 ), MSG-treated second generation (F 2 ) (MSGF 2 ), which suckled from their CTL and MSG biological dams, respectively, or CTLF 2 -CR, control offspring suckled by MSG dams and MSGF 2 -CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.

  18. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats.

    PubMed

    Wang, Zhong Q; Zhang, Xian H; Russell, James C; Hulver, Matthew; Cefalu, William T

    2006-02-01

    Chromium is one of the few trace minerals for which a specific cellular mechanism of action has not been identified. Recent in vitro studies suggest that chromium supplementation may improve insulin sensitivity by enhancing insulin receptor signaling, but this has not been demonstrated in vivo. We investigated the effect of chromium supplementation on insulin receptor signaling in an insulin-resistant rat model, the JCR:LA-corpulent rat. Male JCR:LA-cp rats (4 mo of age) were randomly assigned to receive chromium picolinate (CrPic) (obese n=6, lean n=5) or vehicle (obese n=5, lean n=5) for 3 mo. The CrPic was provided in the water, and based on calculated water intake, rats randomized to CrPic received 80 microg/(kg.d). At the end of the study, skeletal muscle (vastus lateralis) biopsies were obtained at baseline and at 5, 15, and 30 min postinsulin stimulation to assess insulin signaling. Obese rats treated with CrPic had significantly improved glucose disposal rates and demonstrated a significant increase in insulin-stimulated phosphorylation of insulin receptor substrate (IRS)-1 and phosphatidylinositol (PI)-3 kinase activity in skeletal muscle compared with obese controls. The increase in cellular signaling was not associated with increased protein levels of the IRS proteins, PI-3 kinase or Akt. However, protein tyrosine phosphatase 1B (PTP1B) levels were significantly lower in obese rats administered CrPic than obese controls. When corrected for protein content, PTP1B activity was also significantly lower in obese rats administered CrPic than obese controls. Our data suggest that chromium supplementation of obese, insulin-resistant rats may improve insulin action by enhancing intracellular signaling.

  19. Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5

    PubMed Central

    Mart, Ryan; Bond, Cherie E.

    2014-01-01

    Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5), the precursor for Irisin. Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR) and lean Zucker rat (LZR) with 9 weeks of aerobic training on a motorized treadmill. Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise. Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by obesity and

  20. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity resistant rats

    PubMed Central

    Mavanji, Vijayakumar; Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.

    2012-01-01

    Objective Sleep-restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful-methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight-gain. We hypothesized that sleep disruption by a less-stressful method would increase body weight, and examined effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats. Design and Methods OR and SD rats (n=12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light-phase for 9 d. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS) and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake and body weight were documented. Results Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery-sleep during active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls Conclusions PSD by less-stressful means increases body weight in rats. Also, PSD during rest phase increases active period sleep. PMID:23666828

  1. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.

    PubMed

    Johnson, Paul M; Kenny, Paul J

    2010-05-01

    We found that development of obesity was coupled with emergence of a progressively worsening deficit in neural reward responses. Similar changes in reward homeostasis induced by cocaine or heroin are considered to be crucial in triggering the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2Rs) were downregulated in obese rats, as has been reported in humans addicted to drugs. Moreover, lentivirus-mediated knockdown of striatal D2Rs rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuits and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.

  2. Beneficial effects of immunotherapy with extracts derived from Actinomycetales on rats with spontaneous obesity and diabetes.

    PubMed

    Tarrés, María Cristina; Gayol, María Del Carmen; Picena, Juan Carlos; Alet, Nicolás; Bottasso, Oscar; McIntyre, Graham; Stanford, Cynthia; Stanford, John

    2012-05-01

    To determine whether immunotherapy with heat-killed, selected Actinomycetales species could influence the progression of spontaneous Type 2 diabetes mellitus and obesity in a rat model. Preparations of either Gordonia bronchialis, Tsukamurella inchonensis or a saline placebo were given by three subcutaneous injections, 30 days apart, starting when rats were aged 120 days, just before development of Type 2 diabetes mellitus, and at day 440, when the disease was well established. Bodyweight, blood sugar, cholesterol, triglycerides and insulin levels were measured to determine the effects and at the end of the experiments, animals were subjected to necropsy. The development of Type 2 diabetes mellitus was prevented by both reagents, most effectively by T. inchonensis. In the treatment experiment, the effects of the disease were reduced by both treatments, markedly so by T. inchonensis. In both experiments obesity was reduced in treated animals. The possible mechanisms of action are discussed. Our findings suggest that Type 2 diabetes mellitus in the studied rats is associated with obesity, and that both diabetes and obesity can be prevented or improved by treatment with Actinomycetales immune modulators.

  3. Simultaneous Characterization of Metabolic, Cardiac, Vascular and Renal Phenotypes of Lean and Obese SHHF Rats

    PubMed Central

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P. J.; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF+/? regrouping +/+ and +/cp rats) and obese (SHHFcp/cp, “cp” defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHFcp/cp but not SHHF+/? rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF+/? rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF+/? rats developed concentric left ventricular hypertrophy (LVH) while SHHFcp/cp rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHFcp/cp rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF+/?. In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHFcp/cp rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHFcp/cp rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development. PMID:24831821

  4. Simultaneous characterization of metabolic, cardiac, vascular and renal phenotypes of lean and obese SHHF rats.

    PubMed

    Youcef, Gina; Olivier, Arnaud; L'Huillier, Clément P J; Labat, Carlos; Fay, Renaud; Tabcheh, Lina; Toupance, Simon; Rodriguez-Guéant, Rosa-Maria; Bergerot, Damien; Jaisser, Frédéric; Lacolley, Patrick; Zannad, Faiez; Laurent Vallar; Pizard, Anne

    2014-01-01

    Individuals with metabolic syndrome (MetS) are prone to develop heart failure (HF). However, the deleterious effects of MetS on the continuum of events leading to cardiac remodeling and subsequently to HF are not fully understood. This study characterized simultaneously MetS and cardiac, vascular and renal phenotypes in aging Spontaneously Hypertensive Heart Failure lean (SHHF(+/?) regrouping (+/+) and (+/cp) rats) and obese (SHHF(cp/cp), "cp" defective mutant allele of the leptin receptor gene) rats. We aimed to refine the milestones and their onset during the progression from MetS to HF in this experimental model. We found that SHHF(cp/cp )but not SHHF(+/?) rats developed dyslipidemia, as early as 1.5 months of age. This early alteration in the lipidic profile was detectable concomitantly to impaired renal function (polyuria, proteinuria but no glycosuria) and reduced carotid distensibility as compared to SHHF(+/?) rats. By 3 months of age SHHFcp/cp animals developed severe obesity associated with dislipidemia and hypertension defining the onset of MetS. From 6 months of age, SHHF(+/?) rats developed concentric left ventricular hypertrophy (LVH) while SHHF(cp/cp) rats developed eccentric LVH apparent from progressive dilation of the LV dimensions. By 14 months of age only SHHF(cp/cp) rats showed significantly higher central systolic blood pressure and a reduced ejection fraction resulting in systolic dysfunction as compared to SHHF(+/?). In summary, the metabolic and hemodynamic mechanisms participating in the faster decline of cardiac functions in SHHF(cp/cp) rats are established long before their physiological consequences are detectable. Our results suggest that the molecular mechanisms triggered within the first three months after birth of SHHF(cp/cp) rats should be targeted preferentially by therapeutic interventions in order to mitigate the later HF development.

  5. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats.

    PubMed

    Hajnal, Andras; Kovacs, Peter; Ahmed, Tamer; Meirelles, Katia; Lynch, Christopher J; Cooney, Robert N

    2010-10-01

    Roux-en-Y gastric bypass surgery (GBS) is the most effective treatment for morbid obesity. GBS is a restrictive malabsorptive procedure, but many patients also report altered taste preferences. This study investigated the effects of GBS or a sham operation (SH) on body weight, glucose tolerance, and behavioral and neuronal taste functions in the obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-1 receptors and lean controls (LETO). OLETF-GBS rats lost body weight (-26%) and demonstrated improved glucose tolerance. They also expressed a reduction in 24-h two-bottle preference for sucrose (0.3 and 1.0 M) and decreased 10-s lick responses for sucrose (0.3 through 1.5 M) compared with OLETF-SH or LETO-GBS. A similar effect was noted for other sweet compounds but not for salty, sour, or bitter tastants. In lean rats, GBS did not alter responses to any stimulus tested. Extracellular recordings from 170 taste-responsive neurons of the pontine parabrachial nucleus revealed a rightward shift in concentration responses to oral sucrose in obese compared with lean rats (OLETF-SH vs. LETO-SH): overall increased response magnitudes (above 0.9 M), and maximum responses occurring at higher concentrations (+0.46 M). These effects were reversed by GBS, and neural responses in OLETF-GBS were statistically not different from those in any LETO groups. These findings confirm obesity-related alterations in taste functions and demonstrate the ability of GBS to alleviate these impairments. Furthermore, the beneficial effects of GBS appear to be independent of CCK-1 receptor signaling. An understanding of the underlying mechanisms for reduced preferences for sweet taste could help in developing less invasive treatments for obesity.

  6. Waking and sleeping in the rat made obese through a high-fat hypercaloric diet.

    PubMed

    Luppi, Marco; Cerri, Matteo; Martelli, Davide; Tupone, Domenico; Del Vecchio, Flavia; Di Cristoforo, Alessia; Perez, Emanuele; Zamboni, Giovanni; Amici, Roberto

    2014-01-01

    Sleep restriction leads to metabolism dysregulation and to weight gain, which is apparently the consequence of an excessive caloric intake. On the other hand, obesity is associated with excessive daytime sleepiness in humans and promotes sleep in different rodent models of obesity. Since no consistent data on the wake-sleep (WS) pattern in diet-induced obesity rats are available, in the present study the effects on the WS cycle of the prolonged delivery of a high-fat hypercaloric (HC) diet leading to obesity were studied in Sprague-Dawley rats. The main findings are that animals kept under a HC diet for either four or eight weeks showed an overall decrease of time spent in wakefulness (Wake) and a clear Wake fragmentation when compared to animals kept under a normocaloric diet. The development of obesity was also accompanied with the occurrence of a larger daily amount of REM sleep (REMS). However, the capacity of HC animals to respond to a "Continuous darkness" exposure condition (obtained by extending the Dark period of the Light-Dark cycle to the following Light period) with an increase of Sequential REMS was dampened. The results of the present study indicate that if, on one hand, sleep curtailment promotes an excess of energy accumulation; on the other hand an over-exceeding energy accumulation depresses Wake. Thus, processes underlying energy homeostasis possibly interact with those underlying WS behavior, in order to optimize energy storage. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Rosiglitazone Improves Insulin Sensitivity and Baroreflex Gain in Rats with Diet-Induced Obesity

    PubMed Central

    Zhao, Ding; McCully, Belinda H.

    2012-01-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P < 0.05) and insulin sensitivity (hyperinsulinemic euglycemic clamp; OP, 6.8 ± 0.9 mg/kg · min; OR, 22.2 ± 1.2 mg/kg · min; CON, 17.7 ± 0.8 mg/kg · min; P < 0.05), which were well correlated (r2 = 0.49; P < 0.01). In OP rats, rosiglitazone dose-dependently improved (P < 0.05) insulin sensitivity (12.8 ± 0.6 mg/kg · min at 3 mg/kg; 16.0 ± 1.5 mg/kg · min at 6 mg/kg) and BRG (3.8 ± 0.4 bpm/mm Hg at 3 mg/kg; 5.3 ± 0.7 bpm/mm Hg at 6 mg/kg). However, 6 mg/kg rosiglitazone also increased BRG in OR rats without increasing insulin sensitivity, disrupted the correlation between BRG and insulin sensitivity (r2 = 0.08), and, in OP and OR rats, elevated BRG relative to insulin sensitivity (analysis of covariance; P < 0.05). Moreover, in OP rats, stimulation of the aortic depressor nerve, to activate central baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity. PMID:22815534

  8. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity.

    PubMed

    Heinrich, Garrett; Muturi, Harrison T; Rezaei, Khadijeh; Al-Share, Qusai Y; DeAngelis, Anthony M; Bowman, Thomas A; Ghadieh, Hilda E; Ghanem, Simona S; Zhang, Deqiang; Garofalo, Robert S; Yin, Lei; Najjar, Sonia M

    2017-01-01

    Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker ( fa/fa , ZDF) and Koletsky ( f/f ) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

  9. Obesity

    MedlinePlus

    ... Weight Loss Featured Resource Find an Endocrinologist Search Obesity September 2017 Download PDFs English Espanol Editors Durga ... Resources Mayo Clinic MedlinePlus NIDDK (NIH) What is obesity? Obesity is a chronic (long-term) medical problem ...

  10. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    PubMed

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.

    PubMed

    Afifi, M M; Abbas, Amr M

    2011-06-01

    We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.

  12. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    PubMed

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  14. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats.

    PubMed

    Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A

    2016-02-12

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.

  15. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats

    PubMed Central

    Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.

    2016-01-01

    Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870

  16. Impaired mitochondria and intracellular calcium transients in the salivary glands of obese rats.

    PubMed

    Ittichaicharoen, Jitjiroj; Apaijai, Nattayaporn; Tanajak, Pongpan; Sa-Nguanmoo, Piangkwan; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-04-01

    Long-term consumption of a high-fat diet (HFD) causes not only obese-insulin resistance, but is also associated with mitochondrial dysfunction in several organs. However, the effect of obese-insulin resistance on salivary glands has not been investigated. We hypothesized that obese-insulin resistance induced by HFD impaired salivary gland function by reducing salivation, increasing inflammation, and fibrosis, as well as impairing mitochondrial function and calcium transient signaling. Male Wistar rats (200-220 g) were fed either a ND or an HFD (n = 8/group) for 16 weeks. At the end of week 16, salivary flow rates, metabolic parameters, and plasma oxidative stress were determined. Rats were then sacrificed and submandibular glands were removed to determine inflammation, fibrosis, apoptosis, mitochondrial function and dynamics, and intracellular calcium transient signaling. Long-term consumption of an HFD caused obese-insulin resistance and increased oxidative stress, fibrosis, inflammation, and apoptosis in the salivary glands. In addition, impaired mitochondrial function, as indicated by increased mitochondrial reactive oxygen species, mitochondrial membrane depolarization, and mitochondrial swelling in salivary glands and impaired intracellular calcium regulation, as indicated by a reduced intracellular calcium transient rising rate, decay rates, and amplitude of salivary acinar cells, were observed in HFD-fed rats. However, salivary flow rate and level of aquaporin 5 protein were not different between both groups. Although HFD consumption did not affect salivation, it caused obese-insulin resistance, leading to pathophysiological alteration of salivary glands, including impaired intracellular calcium transients, increased oxidative stress and inflammation, and salivary mitochondrial dysfunction.

  17. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats.

    PubMed

    Bouret, Sebastien G; Gorski, Judith N; Patterson, Christa M; Chen, Stephen; Levin, Barry E; Simerly, Richard B

    2008-02-01

    The arcuate nucleus of the hypothalamus (ARH) is a key component of hypothalamic pathways regulating energy balance, and leptin is required for normal development of ARH projections. Diet-induced obesity (DIO) has a polygenic mode of inheritance, and DIO individuals develop the metabolic syndrome when a moderate amount of fat is added to the diet. Here we demonstrate that rats selectively bred to develop DIO, which are known to be leptin resistant before they become obese, have defective ARH projections that persist into adulthood. Furthermore, the ability of leptin to activate intracellular signaling in ARH neurons in vivo and to promote ARH neurite outgrowth in vitro is significantly reduced in DIO neonates. Thus, animals that are genetically predisposed toward obesity display an abnormal organization of hypothalamic pathways involved in energy homeostasis that may be the result of diminished responsiveness of ARH neurons to the trophic actions of leptin during postnatal development.

  18. Evaluation of anti-obesity activity of duloxetine in comparison with sibutramine along with its anti-depressant activity: an experimental study in obese rats.

    PubMed

    Chudasama, H P; Bhatt, P A

    2009-11-01

    5-HT and noradrenaline are important neurotransmitters that control increase in body mass and are involved in the pathophysiology of obesity and depression. Sibutramine, an established anti-obesity agent, and duloxetine, an anti-depressant agent, are serotonin noradrenaline reuptake inhibitors (SNRIs). The objective of the present study was to compare the anti-obesity effect of duloxetine with sibutramine along with its effect on blood pressure and depression in obese rats. The secondary objective of the study was to determine if a relationship exists between obesity and depression. Obesity was induced by high-fat diet (HFD) in healthy male Sprague-Dawley rats. After 5 weeks of feeding HFD, animals were overweight (17.57%) with high food intake (57.15%) in comparison with normal animals. These obese animals were treated with duloxetine (30 mg x kg(-1), p.o.) and sibutramine (5 mg x kg(-1), p.o.) for 4 weeks. Control animals were treated with duloxetine alone (30 mg x kg(-1), p.o.). Our results depict that duloxetine was as effective as sibutramine in reducing food intake, body mass, and relative adiposity, and increasing rectal temperature with an added advantage of decreasing blood pressure, which sibutramine failed to do. Besides reduction in body mass, unlike sibutramine, duloxetine improved depressive state as evaluated by despair swimming test, tail suspension test, and open field test, speculating its use as an anti-obesity agent in obese-depressive animals. Since obese control animals reflected decreased locomotor activity, a positive relationship can be speculated to exist between obesity and depression. Further studies on various antidepressant models are required to confirm this relationship.

  19. cerebral Markers of the Serotonergic System in Rat Models of Obesity and After Roux-en-Y Gastric Bypass

    PubMed Central

    Ratner, Cecilia; Ettrup, Anders; Bueter, Marco; Haahr, Mette E.; Compan, Valérie; le Roux, Carel W.; Levin, Barry; Hansen, Henrik H.; Knudsen, Gitte M.

    2013-01-01

    Food intake and body weight are regulated by a complex system of neural and hormonal signals, of which the anorexigenic neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) is central. In this study, rat models of obesity and weight loss intervention were compared with regard to several 5-HT markers. Using receptor autoradiography, brain regional-densities of the serotonin transporter (SERT) and the 5-HT2A and 5-HT4 receptors were measured in (i) selectively bred polygenic diet-induced obese (pgDIO) rats, (ii) outbred DIO rats, and (iii) Roux-en-Y gastric bypass (RYGB)-operated rats. pgDIO rats had higher 5-HT4 and 5-HT2A receptor binding and lower SERT binding when compared to polygenic diet-resistant (pgDR) rats. The most pronounced difference between pgDIO and pgDR rats was observed in the nucleus accumbens shell (NAcS), a brain region regulating reward aspects of feeding. No differences were found in the 5-HT markers between DIO rats, chow-fed control rats, and DIO rats experiencing a weight loss. The 5-HT markers were also similar in RYGB and sham-operated rats except for a downregulation of 5-HT2A receptors in the NAcS. The higher receptor and lower SERT binding in pgDIO as compared to pgDR rats corresponds to what is reported in overweight humans and suggests that the dysfunctions of the 5-HT system associated with overeating or propensity to become overweight are polygenically determined. Our results support that the obesity-prone rat model has high translational value and suggests that susceptibility to develop obesity is associated with changed 5-HT tone in the brain that may also regulate hedonic aspects of feeding. PMID:22450706

  20. Obesity Disrupts the Rhythmic Profiles of Maternal and Fetal Progesterone in Rat Pregnancy.

    PubMed

    Crew, Rachael C; Mark, Peter J; Clarke, Michael W; Waddell, Brendan J

    2016-09-01

    Maternal obesity increases the risk of abnormal fetal growth, but the underlying mechanisms remain unclear. Because steroid hormones regulate fetal growth, and both pregnancy and obesity markedly alter circadian biology, we hypothesized that maternal obesity disrupts the normal rhythmic profiles of steroid hormones in rat pregnancy. Obesity was established by cafeteria (CAF) feeding for 8 wk prior to mating and throughout pregnancy. Control (CON) animals had ad libitum access to chow. Daily profiles of plasma corticosterone, 11-dehydrocorticosterone, progesterone, and testosterone were measured at Days 15 and 21 of gestation (term = 23 days) in maternal (both days) and fetal (Day 21) plasma. CAF mothers exhibited increased adiposity relative to CON and showed fetal and placental growth restriction. There was no change, however, in total fetal or placental mass due to slightly larger litter sizes in CAF. Nocturnal declines in progesterone were observed in maternal (39% lower) and fetal (45% lower) plasma in CON animals, but these were absent in CAF animals. CAF mothers were hyperlipidemic at both days of gestation, but this effect was isolated to the dark period at Day 21. CAF maternal testosterone was slightly lower at Day 15 (8%) but increased above CON by Day 21 (16%). Despite elevated maternal testosterone, male fetal testosterone was suppressed by obesity on Day 21. Neither maternal nor fetal glucocorticoid profiles were affected by obesity. In conclusion, obesity disrupts rhythmic profiles of maternal and fetal progesterone, preventing the normal nocturnal decline. Obesity subtly changed testosterone profiles but did not alter maternal and fetal glucocorticoids. © 2016 by the Society for the Study of Reproduction, Inc.

  1. The expression of Apoc3 mRNA is regulated by HNF4α and COUP-TFII, but not acute retinoid treatments, in primary rat hepatocytes and hepatoma cells.

    PubMed

    Howell, Meredith; Li, Rui; Zhang, Rui; Li, Yang; Chen, Wei; Chen, Guoxun

    2014-02-01

    Vitamin A status regulates obesity development, hyperlipidemia, and hepatic lipogenic gene expression in Zucker fatty (ZF) rats. The development of hyperlipidemia in acne patients treated with retinoic acid (RA) has been attributed to the induction of apolipoprotein C-III expression. To understand the role of retinoids in the development of hyperlipidemia in ZF rats, the expression levels of several selected RA-responsive genes in the liver and isolated hepatocytes from Zucker lean (ZL) and ZF rats were compared using real-time PCR. The Rarb and Srebp-1c mRNA levels are higher in the liver and isolated hepatocytes from ZF than ZL rats. The Apoc3 mRNA level is only higher in the isolated hepatocytes from ZF than ZL rats. To determine whether dynamic RA production acutely regulates Apoc3 expression, its mRNA levels in response to retinoid treatments or adenovirus-mediated overexpression of hepatocyte nuclear factor 4 alpha (HNF4α) and chicken ovalbumin upstream-transcription factor II (COUP-TFII) were analyzed. Retinoid treatments for 2-6 h did not induce the expression of Apoc3 mRNA. The overexpression of HNF4α or COUP-TFII induced or inhibited Apoc3 expression, respectively. We conclude that short-term retinoid treatments could not induce Apoc3 mRNA expression, which is regulated by HNF4α and COUP-TFII in hepatocytes.

  2. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats.

    PubMed

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-04-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats

    PubMed Central

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-01-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyteTM encapsulation devices, implanted subcutaneously and rats monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3±10.2 pM that was significantly elevated over control values of 32.4±2.9 pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9±2.3 ng/ml that were significantly increased over control levels of 7.3±1.5 ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with β-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of β-cells and increased islet mass. These data suggest encapsulated transduced cells may offer a potential long term treatment of patients. PMID:21216666

  4. Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats.

    PubMed

    Boqué, Noemi; Campión, Javier; de la Iglesia, Rocío; de la Garza, Ana L; Milagro, Fermín I; San Román, Belén; Bañuelos, Óscar; Martínez, J Alfredo

    2013-03-30

    Polyphenols have been reported to prevent chronic diseases such as cardiovascular diseases, cancers, diabetes and neurodegenerative diseases. The objective of the study was to conduct a screening for potential anti-obesity polyphenolic plant extracts using a diet-induced animal model. Rats were fed a high-fat-sucrose (HFS) diet with or without supplementation of different polyphenolic plant extracts (almond, apple, cinnamon, orange blossom, hamamelis, lime blossom, grape vine, and birch) for 56-64 days. Body weight gain was lower in rats supplemented with apple, cinnamon, hamamelis and birch extracts as compared to HFS non-supplemented group. Moreover, apple and cinnamon extracts prevented the increase in fat mass promoted by the HFS diet. Insulin resistance, estimated by the homostatic model assessment-insulin resistance (HOMA-IR) index, was reduced in rats fed apple, cinnamon, hamamelis and birch extracts. Apple extract also prevented the HFS-induced hyperglycaemia and hyperleptinaemia. Only apple and cinnamon extracts were finally considered as potentially important anti-obesogenic extracts, due to their body fat-lowering effects, while the improvement of obesity-related metabolic complications by apple polyphenols highlights this extract as a promising functional food ingredient for the management of obesity and its metabolic complications. © 2012 Society of Chemical Industry.

  5. Effects of Physical Exercise on the Intestinal Mucosa of Rats Submitted to a Hypothalamic Obesity Condition.

    PubMed

    Gomes, J R; Freitas, J R; Grassiolli, S

    2016-10-01

    The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Transcriptome profiling of visceral adipose tissue in a novel obese rat model, WNIN/Ob & its comparison with other animal models.

    PubMed

    Sakamuri, Siva Sankara Vara Prasad; Putcha, Uday Kumar; Veettil, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2016-09-01

    Adipose tissue dysfunction in obesity is linked to the development of type 2 diabetes and cardiovascular diseases. We studied the differential gene expression in retroperitoneal adipose tissue of a novel obese rat model, WNIN/Ob, to understand the possible underlying transcriptional changes involved in the development of obesity and associatedcomorbidities in this model. Four month old, male WNIN/Ob lean and obese rats were taken, blood was collected and tissues were dissected. Body composition analysis and adipose tissue histology were performed. Global gene expression in retroperitoneal adipose tissue of lean and obese rats was studied by microarray using Affymetrix GeneChips. One thousand and seventeen probe sets were downregulated and 963 probe sets were upregulated (more than two-fold) in adipose tissue of WNIN/Ob obese rats when compared to that of lean rats. Small nucleolar RNA (SnoRNA) made most of the underexpressed probe sets, whereas immune system-related genes werethe most overexpressed in the adipose tissues of obese rats. Genes coding for cytoskeletal proteinswere downregulated, whereas genes related to lipid biosynthesis were elevated in the adipose tissue of obese rats. Majority of the altered genes and pathways in adipose tissue of WNIN/Ob obese rats were similar to the observations in other obese animal models and human obesity. Based on these observations, it is proposed that WNIN/Ob obese rat model may be a good model to study the mechanisms involved in the development of obesity and its comorbidities. Downregulation of SnoRNA appears to be a novel feature in this obese rat model.

  7. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats.

    PubMed

    Samat, Suhana; Kanyan Enchang, Francis; Nor Hussein, Fuzina; Wan Ismail, Wan Iryani

    2017-01-01

    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat.

  8. Four-Week Consumption of Malaysian Honey Reduces Excess Weight Gain and Improves Obesity-Related Parameters in High Fat Diet Induced Obese Rats

    PubMed Central

    Kanyan Enchang, Francis; Nor Hussein, Fuzina

    2017-01-01

    Many studies revealed the potential of honey consumption in controlling obesity. However, no study has been conducted using Malaysian honey. In this study, we investigated the efficacy of two local Malaysian honey types: Gelam and Acacia honey in reducing excess weight gain and other parameters related to obesity. The quality of both honey types was determined through physicochemical analysis and contents of phenolic and flavonoid. Male Sprague-Dawley rats were induced to become obese using high fat diet (HFD) prior to introduction with/without honey or orlistat for four weeks. Significant reductions in excess weight gain and adiposity index were observed in rats fed with Gelam honey compared to HFD rats. Moreover, levels of plasma glucose, triglycerides, and cholesterol, plasma leptin and resistin, liver enzymes, renal function test, and relative organ weight in Gelam and Acacia honey treated groups were reduced significantly when compared to rats fed with HFD only. Similar results were also displayed in rats treated with orlistat, but with hepatotoxicity effects. In conclusion, consumption of honey can be used to control obesity by regulating lipid metabolism and appears to be more effective than orlistat. PMID:28246535

  9. Pre-pubertal diet restriction reduces reactive oxygen species and restores fertility in male WNIN/Obese rat.

    PubMed

    Dinesh Yadav, D M; Muralidhar, M N; Prasad, S M V K; Rajender Rao, K

    2018-03-01

    Obesity is a multifactorial disorder associated with increased body adiposity, chronic oxidative stress which contributes to impaired fertility in males. Diet restriction and anti-oxidant supplementations are known to protect obese subjects from oxidative stress and improves fertility. However, the role of oxidative stress and the age of intervention in restoring male fertility are poorly understood. This study was aimed to assess the effect of diet restriction on fertility with respect to the age of intervention, body composition and oxidative stress using WNIN/Ob obese mutant rat strain. Unlike lean and carrier phenotypes, obese rats are hyperphagic, hyperlipaemic and infertile. Male obese rats aged for 35, 60 and 90 days were fed either ad libitum or diet restricted for 6 weeks. Upon diet restriction mean body weight, total body fat percentage, circulatory lipids and oxidative stress markers were significantly reduced and it follows the order as 35 < 60 < 90 days. Diet-restricted males of the three age groups were allowed to mate with female carrier rats, and fertility was restored only in 35-day group. Diet restriction in male obese WNIN/Ob rats lowered the rate of body weight gain, with reduced oxidative stress overall and fertility restoration in groups intervened at pre-pubertal stages. © 2017 Blackwell Verlag GmbH.

  10. Sensory-specific satiety is intact in rats made obese on a high-fat high-sugar choice diet.

    PubMed

    Myers, Kevin P

    2017-05-01

    Sensory-specific satiety (SSS) is the temporary decreased pleasantness of a recently eaten food, which inhibits further eating. Evidence is currently mixed whether SSS is weaker in obese people, and whether such difference precedes or follows from the obese state. Animal models allow testing whether diet-induced obesity causes SSS impairment. Female rats (n = 24) were randomly assigned to an obesogenic high-fat, high-sugar choice diet or chow-only control. Tests of SSS involved pre-feeding a single palatable, distinctively-flavored food (cheese- or cocoa-flavored) prior to free choice between both foods. Rats were tested for short-term SSS (2 h pre-feeding immediately followed by 2 h choice) and long-term SSS (3 day pre-feeding prior to choice on day 4). In both short- and long-term tests rats exhibited SSS by shifting preference towards the food not recently eaten. SSS was not impaired in obese rats. On the contrary, in the long-term tests they showed stronger SSS than controls. This demonstrates that neither the obese state nor a history of excess energy consumption fundamentally causes impaired SSS in rats. The putative impaired SSS in obese people may instead reflect a specific predisposition, properties of the obesogenic diet, or history of restrictive dieting and bingeing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Characterization of Obese Polycystic Ovary Syndrome Rat Model Suitable for Exercise Intervention

    PubMed Central

    Qiu, Shuwei; Jiang, Zhongli

    2014-01-01

    Objective To develop a new polycystic ovary syndrome (PCOS) rat model suitable for exercise intervention. Method Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24), PCOS rats with ordinary diet (PO, n = 6), and control rats with ordinary diet (CO, n = 6). Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6), sedentary with a continuation of high-fat diet (PF-SF, n = 6), exercise with an ordinary diet (PF-EO, n = 6). Fasting blood glucose (FBG) and insulin (FINS), estrogen (E2), progesterone (P), and testosterone (T) in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0. Results Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1), 2 h postprandial blood glucose (PBG2), FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO. Conclusion By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention. PMID:24905232

  12. The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention.

    PubMed

    Wu, Chuyan; Lin, Feng; Qiu, Shuwei; Jiang, Zhongli

    2014-01-01

    To develop a new polycystic ovary syndrome (PCOS) rat model suitable for exercise intervention. Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24), PCOS rats with ordinary diet (PO, n = 6), and control rats with ordinary diet (CO, n = 6). Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6), sedentary with a continuation of high-fat diet (PF-SF, n = 6), exercise with an ordinary diet (PF-EO, n = 6). Fasting blood glucose (FBG) and insulin (FINS), estrogen (E2), progesterone (P), and testosterone (T) in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0. Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1), 2 h postprandial blood glucose (PBG2), FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO. By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention.

  13. Increased sucrose intake and corresponding c-Fos in amygdala and parabrachial nucleus of dietary obese rats.

    PubMed

    Li, Jinrong; Chen, Ke; Yan, Jianqun; Wang, Qian; Zhao, Xiaolin; Yang, Xuejuan; Yang, Dejun; Zhao, Shiru; Zhu, Guangjing; Sun, Bo

    2012-09-13

    The intake-excitatory effects of caloric foods are mainly due to the palatable taste and the ensuing positive postingestive effects. Dietary obese individuals are inclined to overeat high caloric foods. However, it is still unclear whether the taste or postingestive reinforcement mainly contributes to the excessive intake by obese individuals. In the present study, we measured 10- or 120-min sucrose solution drunk by dietary obese rats and measured c-Fos expression following 120-min tests in the central nucleus of amygdala (CeA), a forebrain nucleus involved in the hedonic reward and craving, and the parabrachial nucleus (PBN), a taste relay area responsive to positive postingestive effects. Dietary obese rats, compared with those fed normal chow, ingested larger amounts of sucrose solution (0.25 M) in the 120-min test, but not in the 10-min test. In addition, significantly more sucrose-induced c-Fos positive cells were found in the CeA, but much less in the external lateral subnucleus of the PBN of dietary obese rats. Our results demonstrate that increased sucrose intake in dietary obese rats is mainly due to the alteration of postingestive effects. The differences in these postingestive effects in obesity may involve greater positive/excitatory signals in which the CeA may play a role, and less negative/inhibitory signals in which the el-PBN may be involved. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats

    PubMed Central

    Müller-Fielitz, Helge; Lau, Margot; Geißler, Cathleen; Werner, Lars; Winkler, Martina; Raasch, Walter

    2015-01-01

    Background and Purpose AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear. Experimental Approach Leptin resistance tests (LRTs) in diet-induced obese or lean rats were conducted to determine whether telmisartan (8 mg·kg−1·day−1, 14 days) enhances leptin sensitivity. Phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) staining was performed in hypothalami to determine leptin transport across the blood–brain barrier. Key Results Telmisartin reduced weight gain, food intake and plasma leptin but blood pressure remained unchanged. The 24 h profiles of plasma leptin after saline injections were similar in controls and telmisartan-treated rats, but after leptin injections were higher in controls and slightly lower in telmisartan-treated animals. After telmisartan, energy intake during LRT was lower in leptin-than in saline-pretreated rats, but remained unchanged in controls, irrespectively of whether rats received saline or leptin. Leptin minimized the gain in body weight during LRT in telmisartan-treated rats as compared with saline-treated animals. pSTAT3 staining was reduced in cafeteria diet-fed rats as compared with chow-fed rats but this was normalized by telmisartan. Telmisartin reduced hypothalamic mRNA levels of the orexigenic peptides melanin-concentrating hormone and prepro-orexin. Conclusions and Implications Rats fed a cafeteria diet develop leptin resistance after 2 weeks. Leptin sensitivity was preserved by telmisartan treatment even in rats fed a cafeteria diet. This pleiotropic effect is not related to the hypotensive action of telmisartan. PMID:25258168

  15. Glucomannan or Glucomannan Plus Spirulina-Enriched Squid-Surimi Diets Reduce Histological Damage to Liver and Heart in Zucker fa/fa Rats Fed a Cholesterol-Enriched and Non-Cholesterol-Enriched Atherogenic Diet.

    PubMed

    Vázquez-Velasco, Miguel; González-Torres, Laura; García-Fernández, Rosa A; Méndez, María Teresa; Bastida, Sara; Benedí, Juana; González-Muñoz, María José; Sánchez-Muniz, Francisco J

    2017-06-01

    Glucomannan-enriched squid surimi improves cholesterolemia and liver antioxidant status. The effect of squid surimi enriched with glucomannan or glucomannan plus spirulina on liver and heart structures and cell damage markers was tested in fa/fa rats fed highly saturated-hyper-energetic diets. Animals were fed 70% AIN-93M rodent diet plus six versions of 30% squid surimi for 7 weeks: control (C), glucomannan (G), and glucomannan plus spirulina (GS). The cholesterol-control (HC), cholesterol-glucomannan (HG), and cholesterol-glucomannan plus spirulina (HGS) groups were given similar diets that were enriched with 2% cholesterol and 0.4% cholic acid. G and GS diets versus C diet significantly inhibited weight gain and lowered plasma alanine aminotransferase and aspartate aminotransferase, liver steatosis, lipogranulomas, and total inflammation and alteration scores. The hypercholesterolemic agent significantly increased the harmful effects of the C diet. Liver weight, the hepatosomatic index, all damage markers, and total histological scoring rose for HC versus C (at least P < .05). The addition of glucomannan (HG vs. HC) improved these biomarkers, and non-additional effects from spirulina were observed except for the total liver alteration score. In conclusion, glucomannan and glucomannan plus spirulina blocked the highly saturated-hyper-energetic diet negative effects both with and without added cholesterol. Results suggest the usefulness of including these functional ingredients in fish products.

  16. Alteration of sweet taste in high-fat diet induced obese rats after 4 weeks treatment with exenatide.

    PubMed

    Zhang, Xiao-juan; Wang, Yu-qing; Long, Yang; Wang, Lei; Li, Yun; Gao, Fa-bao; Tian, Hao-ming

    2013-09-01

    Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats

    PubMed Central

    Zambrano, E; Martínez-Samayoa, P M; Rodríguez-González, G L; Nathanielsz, P W

    2010-01-01

    Obesity involving women of reproductive years is increasing dramatically in both developing and developed nations. Maternal obesity and accompanying high energy obesogenic dietary (MO) intake prior to and throughout pregnancy and lactation program offspring physiological systems predisposing to altered carbohydrate and lipid metabolism. Whether maternal obesity-induced programming outcomes are reversible by altered dietary intake commencing before conception remains an unanswered question of physiological and clinical importance. We induced pre-pregnancy maternal obesity by feeding female rats with a high fat diet from weaning to breeding 90 days later and through pregnancy and lactation. A dietary intervention group (DINT) of MO females was transferred to normal chow 1 month before mating. Controls received normal chow throughout. Male offspring were studied. Offspring birth weights were similar. At postnatal day 21 fat mass, serum triglycerides, leptin and insulin were elevated in MO offspring and were normalized by DINT. At postnatal day 120 serum glucose, insulin and homeostasis model assessment (HOMA) were increased in MO offspring; glucose was restored, and HOMA partially reversed to normal by DINT. At postnatal day 150 fat mass was increased in MO and partially reversed in DINT. At postnatal day 150, fat cell size was increased by MO. DINT partially reversed these differences in fat cell size. We believe this is the first study showing reversibility of adverse metabolic effects of maternal obesity on offspring metabolic phenotype, and that outcomes and reversibility vary by tissue affected. PMID:20351043

  18. Metformin reduces the Walker-256 tumor development in obese-MSG rats via AMPK and FOXO3a.

    PubMed

    de Queiroz, Eveline A I F; Akamine, Eliana H; de Carvalho, Maria Helena C; Sampaio, Sandra C; Fortes, Zuleica B

    2015-01-15

    Studies have associated obesity with a wide variety of cancers. Metformin, an anti-diabetic drug, has recently received attention as a potentially useful therapeutic agent for treating cancer. Therefore, the objective of this study was to analyze the mechanisms involved in the increase in tumor development and the reduction of it by metformin in obesity using an experimental breast tumor model. Newborn male Wistar rats were subcutaneously injected with 400mg/kg monosodium glutamate (MSG) (obese) or saline (control) at 2, 3, 4, 5 and 6 days of age. After 16 weeks, 1 × 10(7) Walker-256 tumor cells were subcutaneously injected in the right flank of the rats and concomitantly the treatment with metformin 300 mg/kg/15 days, via gavage, started. The rats were divided into 4 groups: control tumor (CT), control tumor metformin (CTM), obese-MSG tumor (OT) and obese-MSG tumor metformin (OTM). On the 18th week the tumor development and metformin effect were analyzed. Tumor development was higher in OT rats compared with CT rats. Activation of insulin-IR-ERK1/2 pathway and an anti-apoptotic effect might be the mechanisms involved in the higher development of tumor in obesity. The effect of metformin reducing the tumor development in obese rats might involve increased mRNA expression of pRb and p27, increased activity of AMPK and FOXO3a and decreased expression of p-ERK1/2 (Thr202/Tyr204) in Walker-256 tumor. Our data allow us to suggest that metformin, reducing the stimulatory effect of obesity on tumor development, has a potential role in the management of cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE AND RAT OVARIES

    EPA Science Inventory

    Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse and Rat Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research ...

  20. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    PubMed

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.

  1. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  2. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.

    PubMed

    Amin, Kamal A; Nagy, Mohamed A

    2009-10-16

    Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR

  3. Effect of Roux-en-Y Gastric Bypass Surgery on Bile Acid Metabolism in Normal and Obese Diabetic Rats

    PubMed Central

    Bhutta, Hina Y; Rajpal, Neetu; White, Wendy; Freudenberg, Johannes M.; Liu, Yaping; Way, James; Rajpal, Deepak; Cooper, David C.; Young, Andrew; Tavakkoli, Ali; Chen, Lihong

    2015-01-01

    In addition to classic functions of facilitating hepatobiliary secretion and intestinal absorption of lipophilic nutrients, bile acids (BA) are also endocrine factors and regulate glucose and lipid metabolism. Recent data indicate that antiobesity bariatric procedures e.g. Roux-en-Y gastric bypass surgery (RYGB), which also remit diabetes, increase plasma BAs in humans, leading to the hypothesis that BAs may play a role in diabetes resolution following surgery. To investigate the effect of RYGB on BA physiology and its relationship with glucose homeostasis, we undertook RYGB and SHAM surgery in Zucker diabetic fatty (ZDF) and normoglycemic Sprague Dawley (SD) rats and measured plasma and fecal BA levels, as well as plasma glucose, insulin, Glucagon like peptide 1 (GLP-1) and Peptide YY (PYY), 2 days before and 3, 7, 14 and 28 days after surgery. RYGB decreased body weight and increased plasma GLP-1 in both SD and ZDF rats while decreasing plasma insulin and glucose in ZDF rats starting from the first week. Compared to SHAM groups, both SD-RYGB and ZDF-RYGB groups started to have increases in plasma total BAs in the second week, which might not contribute to early post-surgery metabolic changes. While there was no significant difference in fecal BA excretion between SD-RYGB and SD-SHAM groups, the ZDF-RYGB group had a transient 4.2-fold increase (P<0.001) in 24-hour fecal BA excretion on post-operative day 3 compared to ZDF-SHAM, which paralleled a significant increase in plasma PYY. Ratios of plasma and fecal cholic acid/chenodeoxycholic acid derived BAs were decreased in RYGB groups. In addition, tissue mRNA expression analysis suggested early intestinal BA reabsorption and potentially reduced hepatic cholic acid production in RYGB groups. In summary, we present novel data on RYGB-mediated changes in BA metabolism to further understand the role of BAs in RYGB-induced metabolic effects in humans. PMID:25798945

  4. Chronic consumption of dietary proanthocyanidins modulates peripheral clocks in healthy and obese rats.

    PubMed

    Ribas-Latre, A; Baselga-Escudero, L; Casanova, E; Arola-Arnal, A; Salvadó, M J; Arola, L; Bladé, C

    2015-02-01

    Circadian rhythm plays an important role in maintaining homeostasis, and its disruption increases the risk of developing metabolic syndrome. Circadian rhythm is maintained by a central clock in the hypothalamus that is entrained by light, but circadian clocks are also present in peripheral tissues. These peripheral clocks are trained by other cues, such as diet. The aim of this study was to determine whether proanthocyanidins, the most abundant polyphenols in the human diet, modulate the expression of clock and clock-controlled genes in the liver, gut and mesenteric white adipose tissue (mWAT) in healthy and obese rats. Grape seed proanthocyanidin extracts (GSPEs) were administered for 21 days at 5, 25 or 50 mg GSPE/kg body weight in healthy rats and 25 mg GSPE/kg body weight in rats with diet-induced obesity. In healthy animals, GSPE administration led to the overexpression of core clock genes in a positive dose-dependent manner. Moreover, the acetylated BMAL1 protein ratio increased with the same pattern in the liver and mWAT. With regards to clock-controlled genes, Per2 was also overexpressed, whereas Rev-erbα and RORα were repressed in a negative dose-dependent manner. Diet-induced obesity always resulted in the overexpression of some core clock and clock-related genes, although the particular gene affected was tissue specific. GSPE administration counteracted disturbances in the clock genes in the liver and gut but was less effective in normalizing the clock gene disruption in WAT. In conclusion, proanthocyanidins have the capacity to modulate peripheral molecular clocks in both healthy and obese states. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in Wistar rats.

    PubMed

    Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N

    2017-01-01

    Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.

  6. Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats.

    PubMed

    de Almeida, Douglas L; Fabrício, Gabriel S; Trombini, Amanda B; Pavanello, Audrei; Tófolo, Laize P; da Silva Ribeiro, Tatiane A; de Freitas Mathias, Paulo C; Palma-Rigo, Kesia

    2013-01-01

    Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults. © 2013 S. Karger AG, Basel.

  7. Bardoxolone methyl analogs RTA 405 and dh404 are well tolerated and exhibit efficacy in rodent models of Type 2 diabetes and obesity.

    PubMed

    Chin, Melanie; Lee, Chun-Yue Ivy; Chuang, Jen-Chieh; Bumeister, Ron; Wigley, W Christian; Sonis, Stephen T; Ward, Keith W; Meyer, Colin

    2013-06-15

    Bardoxolone methyl and related triterpenoids are well tolerated and efficacious in numerous animal models potentially relevant to patients with Type 2 diabetes and chronic kidney disease. These agents enhance glucose control and regulate lipid accumulation in rodent models of diabetes and obesity, and improve renal function, reduce inflammation, and prevent structural injury in models of renal disease. However, a recent study in Zucker diabetic fatty (ZDF) rats noted poor tolerability with the bardoxolone methyl analog RTA 405 within 1 mo after treatment initiation, although this study was confounded in part by the use of an impure RTA 405 batch. To investigate these discordant observations, the present studies were conducted to further characterize triterpenoids in rodent models of diabetes and obesity. A follow-up study was conducted in ZDF rats with two related triterpenoids (RTA 405 and dh404) for 1.5 mo. Consistent with previous rodent experience, and in contrast to the more recent ZDF report, ZDF rats administered RTA 405 or dh404 exhibited no adverse clinical signs, had laboratory values similar to controls, and exhibited no evidence of adverse liver or kidney histopathology. Additionally, RTA 405 was well tolerated in streptozotocin-induced Type 1 diabetic rats and high-fat-diet-induced obese mice. The present results are consistent with the overall published body of data obtained with triterpenoids and provide further evidence that these molecules are well tolerated without adverse effects on hepatobiliary or renal function in rodent models of diabetes and obesity.

  8. Effects of Repeated Acute Stress in Obese and Non-Obese Rats

    DTIC Science & Technology

    2008-04-02

    22 . Corticosterone levels at time of sacrifice ......................................................... 11 0 Figure 23. Average daily food...minimize effects caused by order or time of day. Trunk blood was collected from all 40 animals to examine corticosterone levels in response to acute...were no effects of diet within Sprague- Dawleys on corticosterone level in those rats that had been re-exposed to restraint. Summary of Biological

  9. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    SciT

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD{sub 10} dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen ledmore » to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-{alpha}, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 {+-} 14.0 nmol/min/g heart in ND versus 400.2 {+-} 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-{alpha}2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and

  10. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    PubMed Central

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  11. Obesity

    MedlinePlus

    Obesity means having too much body fat. It is different from being overweight, which means weighing too ... what's considered healthy for his or her height. Obesity happens over time when you eat more calories ...

  12. Altered Left Ventricular Ion Channel Transcriptome in a High-Fat-Fed Rat Model of Obesity: Insight into Obesity-Induced Arrhythmogenesis

    PubMed Central

    Yon, Marianne; Pickavance, Lucy; Yanni Gerges, Joseph; Davis, Gershan; Wilding, John; Jian, Kun; Hart, George; Boyett, Mark

    2016-01-01

    Introduction. Obesity is increasingly common and is associated with an increased prevalence of cardiac arrhythmias. The aim of this study was to see whether in obesity there is proarrhythmic gene expression of ventricular ion channels and related molecules. Methods and Results. Rats were fed on a high-fat diet and compared to control rats on a normal diet (n = 8). After 8 weeks, rats on the high-fat diet showed significantly greater weight gain and higher adiposity. Left ventricle samples were removed at 8 weeks and mRNA expression of ion channels and other molecules was measured using qPCR. Obese rats had significant upregulation of Cav1.2, HCN4, Kir2.1, RYR2, NCX1, SERCA2a, and RYR2 mRNA and downregulation of ERG mRNA. In the case of HCN4, it was confirmed that there was a significant increase in protein expression. The potential effects of the mRNA changes on the ventricular action potential and intracellular Ca2+ transient were predicted using computer modelling. Modelling predicted prolongation of the ventricular action potential and an increase in the intracellular Ca2+ transient, both of which would be expected to be arrhythmogenic. Conclusion. High-fat diet causing obesity results in arrhythmogenic cardiac gene expression of ion channels and related molecules. PMID:27747100

  13. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    PubMed

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (p<0.05, t-test). Righting reflex was delayed in offspring from HFD-fed mothers compared to the Chow mothers. The Chow-HI pups showed a loss in ipsilateral brain tissue, while the HFD-HI group had significantly greater loss. No significant difference was detected in brain volume between the HFD-C and Chow-C pups. When analysed on a per litter basis, the size of the injury was significantly correlated with maternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of

  14. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats

    PubMed Central

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-01-01

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid. PMID:28545248

  15. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats.

    PubMed

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-05-23

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

  16. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats.

    PubMed

    Gao, Ya; Wang, Changjiang; Pan, Tianrong; Luo, Li

    2014-02-01

    Visfatin is a recently discovered adipocytokine that contributes to glucose and obesity-related conditions. Until now, its responses to the insulin-sensitizing agent metformin and to exercise are largely unknown. We aim to investigate the impact of metformin treatment and/or swimming exercise on serum visfatin and visfatin levels in subcutaneous adipose tissue (SAT), peri-renal adipose tissue (PAT) and skeletal muscle (SM) of high-fat-induced obesity rats. Sprague-Dawley rats were fed a normal diet or a high-fat diet for 16 weeks to develop obesity model. The high-fat-induced obesity model rats were then randomized to metformin (MET), swimming exercise (SWI), or adjunctive therapy of metformin and swimming exercise (MAS), besides high-fat obesity control group and a normal control group, all with 10 rats per group. Zoometric and glycemic parameters, lipid profile, and serum visfatin levels were assessed at baseline and after 6 weeks of therapy. Visfatin levels in SAT, PAT and SM were determined by Western Blot. Metformin and swimming exercise improved lipid profile, and increased insulin sensitivity and body weight reduction were observed. Both metformin and swimming exercise down-regulated visfatin levels in SAT and PAT, while the adjunctive therapy conferred greater benefits, but no changes of visfatin levels were observed in SM. Our results indicate that visfatin down-regulation in SAT and PAT may be one of the mechanisms by which metformin and swimming exercise inhibit obesity.

  17. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  18. Effects of Ligustrum robustum on gut microbes and obesity in rats

    PubMed Central

    Xie, Zhi-Mei; Zhou, Tao; Liao, Hong-Yu; Ye, Qian; Liu, Shan; Qi, Lu; Huang, Jing; Zuo, Hao-Jiang; Pei, Xiao-Fang

    2015-01-01

    AIM: To investigate the anti-obesity and antibacterial effects of Ligustrum robustum (L. robustum) in vivo and in vitro and its possible mechanisms. METHODS: The effects of L. robustum aqueous extract (LR) on various gut bacteria in vitro were evaluated. The effects of LR on high-fat diet-fed (HFD) rats in vivo were also assessed. Culture methods, quantitative polymerase chain reaction, and terminal-restriction fragment length polymorphism were used to analyze the effects of LR on gut bacteria. Biochemical tests were also performed to detect the changes in obesity-related indicators after LR treatment. RESULTS: LR treatment lowered adipose weight and decreased Lee’s index, blood glucose, total cholesterol, and lipid in the tested groups relative to control (P < 0.05). To determine the reasons for these changes, we assessed the potential bacteriostatic and bactericidal effects of LR on specific bacterial species in vitro. LR affected the richness, diversity, and evenness of gut bacteria, increased fecal Lactobacillus, and decreased Enterococci in HFD rats (P < 0.05). CONCLUSION: L. robustum may be a safe and effective food for weight loss and obesity control, and the effects of L. robustum might be mediated by the regulation of gut bacteria. PMID:26676281

  19. From engineering to editing the rat genome.

    PubMed

    Meek, Stephen; Mashimo, Tomoji; Burdon, Tom

    2017-08-01

    Since its domestication over 100 years ago, the laboratory rat has been the preferred experimental animal in many areas of biomedical research (Lindsey and Baker The laboratory rat. Academic, New York, pp 1-52, 2006). Its physiology, size, genetics, reproductive cycle, cognitive and behavioural characteristics have made it a particularly useful animal model for studying many human disorders and diseases. Indeed, through selective breeding programmes numerous strains have been derived that are now the mainstay of research on hypertension, obesity and neurobiology (Okamoto and Aoki Jpn Circ J 27:282-293, 1963; Zucker and Zucker J Hered 52(6):275-278, 1961). Despite this wealth of genetic and phenotypic diversity, the ability to manipulate and interrogate the genetic basis of existing phenotypes in rat strains and the methodology to generate new rat models has lagged significantly behind the advances made with its close cousin, the laboratory mouse. However, recent technical developments in stem cell biology and genetic engineering have again brought the rat to the forefront of biomedical studies and enabled researchers to exploit the increasingly accessible wealth of genome sequence information. In this review, we will describe how a breakthrough in understanding the molecular basis of self-renewal of the pluripotent founder cells of the mammalian embryo, embryonic stem (ES) cells, enabled the derivation of rat ES cells and their application in transgenesis. We will also describe the remarkable progress that has been made in the development of gene editing enzymes that enable the generation of transgenic rats directly through targeted genetic modifications in the genomes of zygotes. The simplicity, efficiency and cost-effectiveness of the CRISPR/Cas gene editing system, in particular, mean that the ability to engineer the rat genome is no longer a limiting factor. The selection of suitable targets and gene modifications will now become a priority: a challenge where

  20. Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats.

    PubMed

    Zhao, M; Li, Y; Wang, J; Ebihara, K; Rong, X; Hosoda, K; Tomita, T; Nakao, K

    2011-12-01

    Hypertension often coexists with insulin resistance. However, most metabolic effects of the antihypertensive agents have been investigated in nomotensive animals, in which different conclusions may arise. We investigated the metabolic effects of the new angiotensin II type 1 receptor blocker azilsartan using the obese Koletsky rats superimposed on the background of the spontaneously hypertensive rats. Male Koletsky rats were treated with azilsartan (2 mg/kg/day) over 3 weeks. Blood pressure was measured by tail-cuff. Blood biochemical and hormonal parameters were determined by enzymatic or ELISA methods. Gene expression was assessed by RT-PCR. In Koletsky rats, azilsartan treatment lowered blood pressure, basal plasma insulin concentration and the homeostasis model assessment of insulin resistance index, and inhibited over-increase of plasma glucose and insulin concentrations during oral glucose tolerance test. These effects were accompanied by decreases in both food intake and body weight (BW) increase. Although two treatments showed the same effect on BW gain, insulin sensitivity was higher after azilsartan treatment than pair-feeding. Azilsartan neither affected plasma concentrations of triglyceride and free fatty acids, nor increased adipose mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and its target genes such as adiponectin, aP2. In addition, azilsartan downregulated 11β-hydroxysteroid dehydrogenase type 1 expression. These results show the insulin-sensitizing effect of azilsartan in obese Koletsky rats. This effect is independent of decreases in food intake and BW increase or of the activation of adipose PPARγ. Our findings indicate the possible usefulness of azilsartan in the treatment of metabolic syndrome. © 2011 Blackwell Publishing Ltd.

  1. Caloric restriction in lean and obese strains of laboratory rat: effects on body composition, metabolism, growth and overall health.

    PubMed

    Aydin, C; Jarema, K A; Phillips, P M; Gordon, C J

    2015-11-01

    What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were calorically restricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage of fluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats was decreased with CR. Overall health of the CR LE group was significantly improved compared with that of the AL group, whereas health of the CR BN rats was impaired compared with the AL group. Overall, the lean BN and obese LE strains differ markedly in fat utilization and metabolic response to prolonged CR. There appears to be little benefit of CR in the lean strain. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    PubMed

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  3. Alterations in circadian and meal-induced gut peptide levels in lean and obese rats.

    PubMed

    Moghadam, Alexander A; Moran, Timothy H; Dailey, Megan J

    2017-12-01

    Alterations in gut hormone signaling are a likely contributing factor to the metabolic disturbances associated with overweight/obesity as they coordinate the timing of feeding behavior, absorption, and utilization of nutrients. These hormones are released in response to food intake, or follow a circadian or anticipatory pattern of secretion that is independent of nutrient stimulation. The aim of this study was to identify the degree to which high-fat diet-induced obesity would alter the daily rhythm of gut peptide plasma levels (glucagon-like peptide-1 [GLP-1], peptide YY [PYY], insulin or amylin [AMY]) or meal-induced levels in the middle of the light or dark cycle. Male Sprague-Dawley rats were fed a high-fat diet (OBESE) or chow (LEAN), implanted with jugular catheters, and blood samples were taken every 2 h throughout the light/dark cycle while freely feeding or after an Ensure liquid meal. We found that even when OBESE and LEAN animals ate the same kcals and have a similar pattern of food intake, there is a difference in both the levels and rhythm of plasma gut peptides. GLP-1 and PYY are higher during the light cycle in LEAN animals and AMY is higher in the OBESE group throughout the light/dark cycle. There was also a differential response of plasma gut signals after the Ensure meal, even though the composition and amount of intake of the meal were the same in both groups. These changes occur prior to the high-fat diet induced loss of glycemic control and may be a target for early intervention. Impact statement The aim of this study was to test if obesity would alter the daily rhythm of gut peptides or meal-induced levels in the middle of the light or dark cycle. We found that even when animals are eating the same amount (in kcal) of food that the obese animals have altered daily rhythms and meal-induced gut peptide levels. In particular, we are the first to show that obesity induces increases in peptide YY levels during the light cycle and amylin remains

  4. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Obesity Disrupts Rhythmic Clock Gene Expression in Maternal Adipose Tissue during Rat Pregnancy.

    PubMed

    Crew, Rachael C; Mark, Peter J; Waddell, Brendan J

    2018-06-01

    Obesity during pregnancy causes numerous maternal and fetal health complications, but the underlying mechanisms remain unclear. Adipose tissue dysfunction in obesity has previously been linked to disruption of the intrinsic adipose clock gene network that is crucial for normal metabolic function. This adipose clock also undergoes major change as part of the maternal metabolic adaptation to pregnancy, but whether this is affected by maternal obesity is unknown. Consequently, in this study we tested the hypothesis that obesity disturbs rhythmic gene expression in maternal adipose tissue across pregnancy. A rat model of maternal obesity was established by cafeteria (CAF) feeding, and adipose expression of clock genes and associated nuclear receptors ( Ppars and Pgc1α) was measured across days 15-16 and 21-22 of gestation (term = 23 days). CAF feeding suppressed the mesor and/or amplitude of adipose tissue clock genes (most notably Bmal1, Per2, and Rev-erbα) relative to chow-fed controls (CON) across both days of gestation. On day 15, the CAF diet also induced adipose Pparα, Pparδ, and Pgc1α rhythmicity but repressed that of Pparγ, while expression of Pparα, Pparδ, and Pgc1α was reduced at select time points. CAF mothers were hyperleptinemic at both stages of gestation, and at day 21 this effect was time-of-day dependent. Fetal plasma leptin exhibited clear rhythmicity, albeit with low amplitude, but interestingly these levels were unaffected by CAF feeding. Our data show that maternal obesity disrupts rhythmic expression of clock and metabolic genes in maternal adipose tissue and leads to maternal but not fetal hyperleptinemia.

  6. Characterization of beta-cell mass and insulin resistance in diet-induced obese and diet-resistant rats.

    PubMed

    Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels

    2010-02-01

    The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.

  7. Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats.

    PubMed

    Akhtar, Muhammad Tayyab; Bin Mohd Sarib, Mohamad Syakir; Ismail, Intan Safinar; Abas, Faridah; Ismail, Amin; Lajis, Nordin Hj; Shaari, Khozirah

    2016-08-09

    Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (¹H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese-diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.

  8. Exercise, dietary obesity, and growth in the rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.

    1977-01-01

    Experiments were conducted on weanling male rats 35 days old and weighing about 100 g to determine how endurance-type exercise and high-fat diet administered during growth influence body mass and composition. The animals were divided into four weight-matched groups of 25 animals each: group I - high-fat diet, exercised; group II - chow, exercised; group III - high-fat diet, sedentary; and group IV - chow, sedentary. During growth, masses of water, muscle and skin increased as functions of body size; bone as a function of age; and heart, liver, gut, testes, and CNS were affected by combinations of size, age, activity, and diet. Major conclusions are that growth in body size is expressed more precisely with fat-free body mass (FFBM), that late rectilinear growth is probably attributable to fat accretion, and that the observed influences on FFBM of exercise and high-fat diet are obtained only if the regimen is started at or before age 5-7 weeks.

  9. Gender-Associated Impact of Early Leucine Supplementation on Adult Predisposition to Obesity in Rats

    PubMed Central

    López, Nora; Sánchez, Juana; Palou, Andreu; Serra, Francisca

    2018-01-01

    Early nutrition plays an important role in development and may constitute a relevant contributor to the onset of obesity in adulthood. The aim of this study was to evaluate the long-term impact of maternal leucine (Leu) supplementation during lactation on progeny in rats. A chow diet, supplemented with 2% Leu, was supplied during lactation (21 days) and, from weaning onwards, was replaced by a standard chow diet. Then, at adulthood (6 months of age), this was replaced with hypercaloric diets (either with high-fat (HF) or high-carbohydrate (HC) content), for two months, to induce obesity. Female offspring from Leu-supplemented dams showed higher increases in body weight and in body fat (62%) than their respective controls; whereas males were somehow protected (15% less fat than the corresponding controls). This profile in Leu-females was associated with altered neuronal architecture at the paraventricular nucleus (PVN), involving neuropeptide Y (NPY) fibers and impaired expression of neuropeptides and factors of the mTOR signaling pathway in the hypothalamus. Interestingly, leptin and adiponectin expression in adipose tissue at weaning and at the time before the onset of obesity could be defined as early biomarkers of metabolic disturbance, predisposing towards adult obesity under the appropriate environment. PMID:29329236

  10. Anti-obesity effects of gochujang products prepared using rice koji and soybean meju in rats.

    PubMed

    Shin, H W; Jang, E S; Moon, B S; Lee, J J; Lee, D E; Lee, C H; Shin, C S

    2016-02-01

    The Korean traditional hot sauce gochujang has been reported to have biological activities. Different kinds of gochujang products were prepared based on combinations of a fungal rice koji with two kinds of bacterial soybean mejus. Diets that included gochujang products were fed to rats and anti-obesity effects were investigated. Gochujang products reduced body weight gains, epididymal fat weights, and triglyceride levels in the serum and the liver. Effects were exerted by the diet that included the non-fermented gochujang mixture, increased using a fungal rice koji, and further enhanced using a bacterial soybean meju. Dietary effects were apparently induced via inhibition of the lipogenic enzymes fatty acid synthase, malic enzyme, and lipoprotein lipase by gochujang products in epididymal adipose tissues, and inhibition of glucose-6-phosphate dehydrogenase in the liver. High levels of capsaicin and genistein in gochujang products are considered to contribute to anti-obesity effects.

  11. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    PubMed

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    To investigate effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. SD rats were divided into control group (n = 14) and high-fat diet group (n = 36). Obese rats from the high-fat diet group were further divided into 2 groups: the obese group (n = 14) and the octreotide-treated group (n = 16). Rats in the octreotide-treated group were subcutaneously injected with octreotide per 12 h (40 mg/kg BW) for 8 days. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) levels, pancreatic TG and FFA content were measured. Homeostatic model assessment (HOMA) index was calculated. Somatostatin (SST) and the expression of adipose differentiation-related protein (ADFP) in pancrea were measured. Pathological changes of pancreas were examined with light microscopy. Body weight, Lee's index, FPG, fasting serum insulin, TG, TC levels and HOMA index in the obese group were higher than those in the control group (P < 0.05), while the level of HDL-C in the obese group was lower than that in the control group (P < 0.05). Pancreatic TG, FFA contents and expression of ADFP in the obese group were significantly higher than those in the control group (P < 0.05), while pancreatic SST level in the obese group was lower than that in the control group (P < 0.05). Obvious pancreatic intra-lobular fatty infiltration was observed in the obese group. After treatment of octreotide, body weight, HOMA index, as well as other plasma parameters as above showed decrease as compared with those in the obese group (P < 0.05). In addition, pancreatic TG, FFA contents and the expression of ADFP in the octreotide treated group were also significantly decreased compared with those in the obese group (P < 0.05), pancreatic SST level was increased in the octreotide treated group than that in the obese group (P < 0.05), and pancreatic intra-lobular fatty infiltration

  12. Glibenclamide treatment blocks metabolic dysfunctions and improves vagal activity in monosodium glutamate-obese male rats.

    PubMed

    Franco, Claudinéia C S; Prates, Kelly V; Previate, Carina; Moraes, Ana M P; Matiusso, Camila C I; Miranda, Rosiane A; de Oliveira, Júlio C; Tófolo, Laize P; Martins, Isabela P; Barella, Luiz F; Ribeiro, Tatiane A; Malta, Ananda; Pavanello, Audrei; Francisco, Flávio A; Gomes, Rodrigo M; Alves, Vander S; Moreira, Veridiana M; Rigo, Késia P; Almeida, Douglas L; de Sant Anna, Juliane R; Prado, Marialba A A C; Mathias, Paulo C F

    2017-05-01

    Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of β-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.

  13. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats

    PubMed Central

    Thatcher, Brendan S.; Reidelberger, Roger D.; Ogimoto, Kayoko; Wolden-Hanson, Tami; Baskin, Denis G.; Schwartz, Michael W.; Blevins, James E.

    2012-01-01

    Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fak/fak) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs. PMID:22008455

  14. Pyrrolidin-2-one derivatives may reduce body weight in rats with diet-induced obesity.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Kazek, Grzegorz; Mordyl, Barbara; Głuch-Lutwin, Monika; Zaręba, Paula; Kulig, Katarzyna; Sapa, Jacek

    2016-04-05

    Obesity affects an increasing number of individuals in the human population and significant importance is attached to research leading to the discovery of drug which would effectively reduce weight. The search for new drugs with anorectic activity and acting within the adrenergic system has attracted the interest of researchers. This study concerns the experimental effects on body weight of α2-adrenoceptor antagonists from the group of pyrrolidin-2-one derivatives in rats with diet-induced obesity. The intrinsic activity of the test compounds at the α-adrenoreceptors was tested. Obesity in rats was obtained by the use of fatty diet and then the influence of the test compounds on body weight, food and water intakes, lipid and glucose profiles and glycerol and cortisol levels were determinated. The effects of the compounds on locomotor activity, body temperature, blood pressure and heart rate were tested. One of the test compounds (1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one) reduces the animal's body weight and the amount of peritoneal adipose tissue during chronic administration, at the same time it does not cause significant adverse effects on the cardiovascular system. This compound decreases temperature and elevates glycerol levels and does not change the locomotor activity and cortisol level at anti-obese dose. Some derivatives of pyrrolidin-2-one that act as antagonists of the α2-adrenoreceptor may reduce body weight. Reducing body weight for 1-(3-(4-phenylpiperazin-1-yl)propyl)pyrrolidin-2-one can be associated with decrease in food intake, body fat reduction, reduction of blood glucose, and increased thermogenesis and lipolysis. This effect cannot be the result of changes in spontaneous activity or stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome

    PubMed Central

    Ito, S.; Sano, Y.; Nagasawa, K.; Matsuura, N.; Yamada, Y.; Uchinaka, A.; Murohara, T.

    2016-01-01

    Summary Introduction n‐3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z‐Lepr fa/Lepr fa (DS/obese) rats, which are derived from a cross between Dahl salt‐sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. Materials and methods DS/obese rats were administered EPA (300 or 1,000 mg kg−1 d−1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z‐Lepr +/Lepr +, or DS/lean) littermates were studied as controls. Results Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down‐regulation of AMP‐activated protein kinase phosphorylation and the up‐regulation of phosphorylation of the p65 subunit of nuclear factor‐kB in the heart of DS/obese rats. Conclusions Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP‐activated protein kinase activation and inactivation of nuclear factor‐kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome. PMID:27708849

  16. Sibutramine reduces feeding, body fat and improves insulin resistance in dietary-obese male Wistar rats independently of hypothalamic neuropeptide Y

    PubMed Central

    Brown, Michael; Bing, Chen; King, Peter; Pickavance, Lucy; Heal, David; Wilding, John

    2001-01-01

    We studied the effects of the novel noradrenaline and serotonin (5-HT) reuptake inhibitor sibutramine on feeding and body weight in a rat model of dietary obesity, and whether it interacts with hypothalamic neuropeptide Y (NPY) neurones.Chow-fed and dietary-obese (DIO) male Wistar rats were given sibutramine (3 mg kg−1 day−1 p.o.) or deionized water for 21 days.Sibutramine decreased food intake throughout the treatment period in both dietary-obese rats (P<0.0001) and lean rats (P<0.0001). Weight gain was reduced so that final body weight was 10% lower in dietary-obese (P<0.005) and 8% lower in lean (P<0.05) rats versus their untreated controls. Plasma leptin concentration was lower in sibutramine-treated dietary-obese rats (P<0.05), and in treated lean rats (P<0.05). Using the homeostasis model assessment (HOMA) as a measure of insulin resistance, untreated DIO rats were significantly more insulin resistant than controls (P<0.005), and this was corrected by sibutramine treatment (P<0.05). Neither hypothalamic NPY mRNA nor NPY peptide levels in a number of hypothalamic nuclei were significantly altered by sibutramine compared to untreated controls.The hypophagic and anti-obesity effects of sibutramine in dietary-obese Wistar rats appear not to be mediated by inhibition of ARC NPY neurones. PMID:11309262

  17. Mitigating efficacy of piperine in the physiological derangements of high fat diet induced obesity in Sprague Dawley rats.

    PubMed

    BrahmaNaidu, Parim; Nemani, Harishankar; Meriga, Balaji; Mehar, Santosh Kumar; Potana, Sailaja; Ramgopalrao, Sajjalaguddam

    2014-09-25

    An increased risk of obesity has become a common public health concern as it is associated with hypertension, diabetes, osteoarthritis, heart diseases, liver steatosis etc. Pharmacological intervention with natural product-based drugs is considered a healthier alternative to treat obesity. This study was aimed to evaluate anti-obesity effects of piperine on high fat diet (HFD) induced obesity in rats. Piperine was isolated from methanolic extract of Piper nigrum by using column chromatography and confirmed by LC-MS analysis. Male SD rats were fed HFD initially for 15weeks to induce obesity. After induction of obesity, piperine was supplemented in different doses (20, 30 and 40mg/kgb.wt) through HFD for 42days to experimental rats. HFD induced changes in body weight, body composition, fat percentage, adiposity index, blood pressure, plasma levels of glucose, insulin resistance, leptin, adiponectin, plasma and tissue lipid profiles, liver antioxidants were explained. The activities of lipase, amylase and lipid metabolic marker enzymes such as HMG-CoA reductase, carnitine palmitoyl transferase (CPT), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lecithin-cholesterol acyl transferase (LCAT) and lipoprotein lipase (LPL) were assessed in experimental rats. Supplementation of piperine at a dose of 40mg/kgb.wt has significantly (p<0.05) reversed the HFD-induced alterations in experimental rats in a dose dependant manner, the maximum therapeutic effect being noted at a dose of 40mg/kgb.wt. Our study concludes that piperine can be well considered as an effective bioactive molecule to suppress of body weight, improve insulin and leptin sensitivity, ultimately leading to regulate obesity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Mineralocorticoid Receptor Antagonism Prevents Obesity-Induced Cerebral Artery Remodeling and Reduces White Matter Injury in rats.

    PubMed

    Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren

    2018-05-14

    Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Glycolytic and mitochondrial metabolism in pancreatic islets from MSG-treated obese rats subjected to swimming training.

    PubMed

    Leite, Nayara de Carvalho; Ferreira, Thiago Rentz; Rickli, Sarah; Borck, Patricia Cristine; Mathias, Paulo Cezar de Freitas; Emilio, Henriette Rosa de Oliveira; Grassiolli, Sabrina

    2013-01-01

    Obese rats obtained by neonatal monosodium glutamate (MSG) administration present insulin hypersecretion. The metabolic mechanism by which glucose catabolism is coupled to insulin secretion in the pancreatic β-cells from MSG-treated rats is understood. The purpose of this study was to evaluate glucose metabolism in pancreatic islets from MSG-treated rats subjected to swimming training. MSG-treated and control (CON) rats swam for 30 minutes (3 times/week) over a period of 10 weeks. Pancreatic islets were isolated and incubated with glucose in the presence of glycolytic or mitochondrial inhibitors. Swimming training attenuated fat pad accumulation, avoiding changes in the plasma levels of lipids, glucose and insulin in MSG-treated rats. Adipocyte and islet hypertrophy observed in MSG-treated rats were attenuated by exercise. Pancreatic islets from MSG-treated obese rats also showed insulin hypersecretion, greater glucose transporter 2 (GLUT2) expression, increased glycolytic flux and reduced mitochondrial complex III activity. Swimming training attenuated islet hypertrophy and normalised GLUT2 expression, contributing to a reduction in the glucose responsiveness of pancreatic islets from MSG-treated rats without altering glycolytic flux. However, physical training increased the activity of mitochondrial complex III in pancreatic islets from MSG-treated rats without a subsequent increase in glucose-induced insulin secretion. Copyright © 2013 S. Karger AG, Basel.

  20. Multi-hormonal weight loss combinations in diet-induced obese rats: therapeutic potential of cholecystokinin?

    PubMed

    Trevaskis, James L; Turek, Victoria F; Griffin, Peter S; Wittmer, Carrie; Parkes, David G; Roth, Jonathan D

    2010-05-11

    Cholecystokinin (CCK) acutely synergizes with amylin to suppress food intake in lean mice. To extend on these findings, the present studies sought to identify neural correlates for the interaction of amylin and CCK, as well as further understand the therapeutic potential of CCK-based combinations in obesity. First, c-Fos activation was assessed in various brain nuclei after a single intraperitoneal injection of amylin (5microg/kg) and/or CCK (5microg/kg). Amylin and CCK additively increased c-Fos within the area postrema (AP), predominantly in noradrenergic (e.g., dopamine-beta-hydroxylase-containing) cells. Next, amylin (100 or 300microg/kg/d) and/or CCK (100 or 300microg/kg/d) were subcutaneously infused for 7days in diet-induced obese (DIO) rats. Amylin treatment of DIO rats for 7days induced significant body weight loss. CCK, while ineffective alone, significantly enhanced body weight loss when co-administered with the higher dose of amylin. Finally, the addition of CCK (300microg/kg/d) to leptin (125microg/kg/d), and to the combination of amylin (50microg/kg/d) and leptin (125microg/kg/d), was also explored in DIO rats via sustained subcutaneous infusion for 14days. Infusion of amylin/leptin/CCK for 14days exerted significantly greater body weight loss, inhibition of food intake, and reduction in adiposity compared to amylin/leptin treatment alone in DIO rats. However, co-infusion of CCK and leptin was an ineffective weight loss regimen in this model. Whereas CCK agonism alone is ineffective at eliciting or maintaining weight loss, it durably augmented the food intake and body weight-lowering effects of amylin and amylin/leptin in a relevant disease model, and when combined with amylin, cooperatively activated neurons within the caudal brainstem. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    PubMed

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  3. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  4. Voluntary post weaning exercise restores metabolic homeostasis in offspring of obese rats.

    PubMed

    Rajia, S; Chen, H; Morris, M J

    2013-06-01

    Physical exercise reduces obesity, insulin resistance and dyslipidemia. We previously found that maternal obesity alters central appetite circuits and contributes to increased adiposity, glucose intolerance and metabolic disease in offspring. Here we hypothesized that voluntary exercise would ameliorate the adverse metabolic effects of maternal obesity on offspring. Sprague-Dawley females fed chow (C) or high-fat diet HFD (H) were mated. Female offspring from C dams were weaned onto chow (CC); those from H dams recieved chow (HC) or HFD (HH). Half of each group was provided with running wheels (CC(EX), HC(EX), HH(EX); n=10-12). Maternal obesity increased body weight (12%), adiposity, plasma lipids and induced glucose intolerance (HC vs CC; P<0.05). These were exaggerated by postweaning HFD (HH vs HC; P<0.01), showed doubled energy intake, a 37% increase in body weight, insulin resistance and glucose intolerance (HH vs HC; P<0.01). Exercise reduced fat mass, plasma lipids, HOMA and fasting glucose in HC(EX) (vs HC; P<0.05) and HH(EX) (vs HH; P<0.01). Values in HC(EX) were indistinguishable from CC, however in HH(EX) these metabolic parameters remained higher than the sedentary HC and CC rats (P<0.01). mRNA expression of hypothalamic pro-opiomelanocortin, and adipose tumour necrosis factor α and 11β-hydroxysteroid dehydrogenase type 1 were reduced by exercise in HH(EX) (vs HH; P<0.05). While voluntary exercise almost completely reversed the metabolic effects of maternal obesity in chow fed offspring, it did not fully attenuate the increased adiposity, glucose intolerance and insulin resistance in offspring weaned onto HFD. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity

    PubMed Central

    Robinson, Mike JF; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-01-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or ‘wanting’). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened ‘wanting’ was not due to individual differences in the hedonic impact (‘liking’) of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal ‘hot-spots’ that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation. PMID:25761571

  6. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    PubMed

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  7. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    PubMed

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Beetroot and Sodium Nitrate Ameliorate Cardiometabolic Changes in Diet-Induced Obese Hypertensive Rats.

    PubMed

    Bhaswant, Maharshi; Brown, Lindsay; McAinch, Andrew J; Mathai, Michael L

    2017-12-01

    Dietary intake of beetroot by humans reduces blood pressure but whether this is caused by nitrate or betanin is not well-defined; neither are effects on other signs of metabolic syndrome. Rats fed a high-carbohydrate, high-fat diet (H) for 16 weeks developed abdominal obesity, hypertension, altered cardiovascular and liver structure and function, and impaired glucose tolerance compared to rats fed a corn starch diet (C). H rats treated with ∼16 mg/kg/day of nitrate either from beetroot juice (H+B) or sodium nitrate (H+N) for the last 8 weeks reduced systolic blood pressure by ∼25 mmHg, improved cardiac structure and function, plasma lipid profile and plasma markers of liver function, reduced inflammatory cell infiltration in heart and liver and decreased left ventricular fibrosis. In the left ventricle, H rats increased mRNA expression of connective tissue growth factor (CTGF), monocyte chemoattractant protein 1 (MCP-1), matrix metalloproteinase-2 (MMP-2), and adenosine monophosphate-activated protein kinase-alpha (AMPK-α) and decreased mRNA expression of peroxisome proliferator-activated receptor-alpha (PPAR-α); both beetroot and sodium nitrate diet-fed rats decreased CTGF threefold, MCP-1, and MMP-2 twofold, and doubled PPAR-α mRNA expression in left ventricular tissue. The similar functional and molecular responses to beetroot and sodium nitrate indicate that the nitrate content of beetroot reduced inflammation and improved cardiovascular, liver, and metabolic function in rats with metabolic syndrome, rather than betanin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats.

    PubMed

    Chang, Eugene; Kim, Lisa; Park, Se Eun; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo; Park, Cheol-Young

    2015-07-07

    To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes. Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression. In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes cultured in vitro

  10. Ezetimibe improves hepatic steatosis in relation to autophagy in obese and diabetic rats

    PubMed Central

    Chang, Eugene; Kim, Lisa; Park, Se Eun; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki-Won; Park, Sung-Woo; Park, Cheol-Young

    2015-01-01

    AIM: To investigate whether ezetimibe ameliorates hepatic steatosis and induces autophagy in a rat model of obesity and type 2 diabetes. METHODS: Male age-matched lean control LETO and obese and diabetic OLETF rats were administered either PBS or ezetimibe (10 mg/kg per day) via stomach gavage for 20 wk. Changes in weight gain and energy intake were regularly monitored. Blood and liver tissue were harvested after overnight fasting at the end of study. Histological assessment was performed in liver tissue. The concentrations of glucose, insulin, triglycerides (TG), free fatty acids (FFA), and total cholesterol (TC) in blood and TG, FFA, and TG in liver tissue were measured. mRNA and protein abundance involved in autophagy was analyzed in the liver. To investigate the effect of ezetimibe on autophagy and reduction in hepatic fat accumulation, human Huh7 hepatocytes were incubated with ezetimibe (10 μmol/L) together with or without palmitic acid (PA, 0.5 mmol/L, 24 h). Transmission electron microscopy (TEM) was employed to demonstrate effect of ezetimibe on autophagy formation. Autophagic flux was measured with bafilomycin A1, an inhibitor of autophagy and following immunoblotting for autophagy-related protein expression. RESULTS: In the OLETF rats that received ezetimibe (10 mg/kg per day), liver weight were significantly decreased by 20% compared to OLETF control rats without changes in food intake and body weight (P < 0.05). Lipid parameters including TG, FFA, and TC in liver tissue of ezetimibe-administrated OLETF rats were dramatically decreased at least by 30% compared to OLETF controls (P < 0.01). The serum glucose, insulin, HOMA-IR, and lipid profiles were also improved by ezetimibe (P < 0.05). In addition, autophagy-related mRNA expression including ATG5, ATG6, and ATG7 and the protein level of microtubule-associated protein light chain 3 (LC3) were significantly increased in the liver in rats that received ezetimibe (P < 0.05). Likewise, for hepatocytes

  11. Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats.

    PubMed

    Scarpace, Philip J; Matheny, Michael; Strehler, Kevin Y E; Toklu, Hale Zerrin; Kirichenko, Nataliya; Carter, Christy S; Morgan, Drake; Tümer, Nihal

    2016-07-01

    This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Rapamycin Normalizes Serum Leptin by Alleviating Obesity and Reducing Leptin Synthesis in Aged Rats

    PubMed Central

    Matheny, Michael; Strehler, Kevin Y.E.; Toklu, Hale Zerrin; Kirichenko, Nataliya; Carter, Christy S.; Morgan, Drake; Tümer, Nihal

    2016-01-01

    This investigation examines whether a low intermittent dose of rapamycin will avoid the hyperlipidemia and diabetes-like syndrome associated with rapamycin while still decreasing body weight and adiposity in aged obese rats. Furthermore, we examined if the rapamycin-mediated decrease in serum leptin was a reflection of decreased adiposity, diminished leptin synthesis, or both. To these ends, rapamycin (1mg/kg) was administered three times a week to 3 and 24-month old rats. Body weight, food intake, body composition, mTORC1 signaling, markers of metabolism, as well as serum leptin levels and leptin synthesis in adipose tissue were examined and compared to that following a central infusion of rapamycin. Our data suggest that the dosing schedule of rapamycin acts on peripheral targets to inhibit mTORC1 signaling, preferentially reducing adiposity and sparing lean mass in an aged model of obesity resulting in favorable outcomes on blood triglycerides, increasing lean/fat ratio, and normalizing elevated serum leptin with age. The initial mechanism underlying the rapamycin responses appears to have a peripheral action and not central. The peripheral rapamycin responses may communicate an excessive nutrients signal to the hypothalamus that triggers an anorexic response to reduce food consumption. This coupled with potential peripheral mechanism serves to decrease adiposity and synthesis of leptin. PMID:25617379

  13. Comparison of Goto-Kakizaki rats and high fat diet-induced obese rats: Are they reliable models to study Type 2 Diabetes mellitus?

    PubMed Central

    Panveloski-Costa, Ana Carolina; Yokota, Caroline Naomi Fukusawa; Pereira, Joice Naiara Bertaglia; Filho, Jorge Mancini; Torres, Rosangela Pavan; Hirabara, Sandro Massao; Curi, Rui; Alba-Loureiro, Tatiana Carolina

    2017-01-01

    Type 2 Diabetes mellitus (T2DM) is an evident growing disease that affects different cultures throughout the world. T2DM occurs under the influence of three main factors: the genetic background, environmental and behavioral components. Obesity is strongly associated to the development of T2DM in the occident, while in the orient most of the diabetic patients are considered lean. Genetics may be a key factor in the development of T2DM in societies where obesity is not a recurrent public health problem. Herein, two different models of rats were used to understand their differences and reliability as experimental models to study the pathophysiology of T2DM, in two different approaches: the genetic (GK rats) and the environmental (HFD-induced obese rats) influences. GK rats were resistant to weight gain even though food/energy consumption (relative to body weight) was higher in this group. HFD, on the other hand, induced obesity in Wistar rats. White adipose tissue (WAT) expansion in this group was accompanied by immune cells infiltration, inflammation and insulin resistance. GK rats also presented WAT inflammation and insulin resistance; however, no immune cells infiltration was observed in the WAT of this group. Liver of HFD group presented fat accumulation without differences in inflammatory cytokines content, while liver of GK rats didn’t present fat accumulation, but showed an increase of IL-6 and IL-10 content and glycogen. Also, GK rats showed increased plasma GOT and GPT. Soleus muscle of HFD presented normal insulin signaling, contrary to GK rats, which presented higher content of basal phosphorylation of GSK-3β. Our results demonstrated that HFD developed a mild insulin resistance in Wistar rats, but was not sufficient to develop T2DM. In contrast, GK rats presented all the typical hallmarks of T2DM, such as insulin resistance, defective insulin production, fasting hyperglycemia/hyperinsulinemia and lipid plasma alteration. Thus, on the given time point of

  14. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity-resistant rats.

    PubMed

    Mavanji, Vijayakumar; Teske, Jennifer A; Billington, Charles J; Kotz, Catherine M

    2013-07-01

    Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would increase body weight, and the effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats was examined. OR and SD rats (n = 12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light phase for 9 days. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS), and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake, and body weight were documented. Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased the number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery sleep during the active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls PSD by less-stressful means increases body weight in rats. Also, PSD during the rest phase increases active period sleep. Copyright © 2012 The Obesity Society.

  15. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats

    PubMed Central

    Picklo, Matthew J.; Thyfault, John P.

    2016-01-01

    Controversy exists as to whether supplementation with the antioxidants vitamin E and vitamin C blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While diet-induced obesity alters mitochondrial function and induces insulin resistance (IR), no data exist as to whether supplementation with vitamin E and vitamin C modify responses to exercise in pre-existing obesity. We tested the hypothesis that dietary supplementation with vitamin E (0.4 g α-tocopherol acetate/kg) and vitamin C (0.5 g/kg) blocks exercise-induced improvements on IR and mitochondrial content in obese rats maintained on a high-fat (45% fat energy (en)) diet. Diet-induced obese, sedentary rats had a 2-fold higher homeostasis model assessment of insulin resistance and larger insulin area under the curve following glucose tolerances test than rats fed a low-fat (10% fat en) diet. Exercising (12 weeks at 5 times per week in a motorized wheel) of obese rats normalized IR indices, an effect not modified by vitamin E and vitamin C. Vitamin E and vitamin C supplementation with exercise elevated mtDNA content in adipose and skeletal muscle to a greater extent (20%) than exercise alone in a depot-specific manner. On the other hand, vitamin C and vitamin E decreased exercise-induced increases in mitochondrial protein content for complex I (40%) and nicotinamide nucleotide transhydrogenase (35%) in a muscle-dependent manner. These data indicate that vitamin E and vitamin C supplementation in obese rodents does not modify exercise-induced improvements in insulin sensitivity but that changes in mitochondrial biogenesis and mitochondrial protein expression may be modified by antioxidant supplementation. PMID:25761734

  16. Down-regulation of hypothalamic pro-opiomelanocortin (POMC) expression after weaning is associated with hyperphagia-induced obesity in JCR rats overexpressing neuropeptide Y.

    PubMed

    Diané, Abdoulaye; Pierce, W David; Russell, James C; Heth, C Donald; Vine, Donna F; Richard, Denis; Proctor, Spencer D

    2014-03-14

    We hypothesised that hypothalamic feeding-related neuropeptides are differentially expressed in obese-prone and lean-prone rats and trigger overeating-induced obesity. To test this hypothesis, in the present study, we measured energy balance and hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA expressions in male JCR:LA-cp rats. We compared, in independent cohorts, free-feeding obese-prone (Obese-FF) and lean-prone (Lean-FF) rats at pre-weaning (10 d old), weaning (21-25 d old) and early adulthood (8-12 weeks). A group of Obese-pair-feeding (PF) rats pair-fed to the Lean-FF rats was included in the adult cohort. The body weights of 10-d-old Obese-FF and Lean-FF pups were not significantly different. However, when the pups were shifted from dams' milk to solid food (weaning), the obese-prone rats exhibited more energy intake over the days than the lean-prone rats and higher body and fat pad weights and fasting plasma glucose, leptin, insulin and lipid levels. These differences were consistent with higher energy consumption and lower energy expenditure. In the young adult cohort, the differences between the Obese-FF and Lean-FF rats became more pronounced, yielding significant age effects on most of the parameters of the metabolic syndrome, which were reduced in the Obese-PF rats. The obese-prone rats displayed higher NPY expression than the lean-prone rats at pre-weaning and weaning, and the expression levels did not differ by age. In contrast, POMC expression exhibited significant age-by-genotype differences. At pre-weaning, there was no genotype difference in POMC expression, but in the weanling cohort, obese-prone pups exhibited lower POMC expression than the lean-prone rats. This genotype difference became more pronounced at adulthood. Overall, the development of hyperphagia-induced obesity in obese-prone JCR rats is related to POMC expression down-regulation in the presence of established NPY overexpression.

  17. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    PubMed

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  18. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    PubMed

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  19. Proliferative endocrine effects of adipose tissue from obese animals on MCF7 cells are ameliorated by resveratrol supplementation.

    PubMed

    Theriau, Christopher F; Sauvé, O'Llenecia S; Beaudoin, Marie-Soleil; Wright, David C; Connor, Michael K

    2017-01-01

    Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7). Additionally, we determined whether resveratrol (RSV) supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM) prepared from inguinal subcutaneous adipose tissue (scAT) was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.

  20. Physical exercise introduced after weaning enhances pancreatic islet responsiveness to glucose and potentiating agents in adult MSG-obese rats.

    PubMed

    Ribeiro, R A; Bonfleur, M L; Vanzela, E C; Zotti, A I; Scomparin, D X; Boschero, A C; Balbo, S L

    2014-08-01

    Physical exercise represents an alternative way to prevent and/or ameliorate chronic metabolic diseases. Disruption of sympathetic nervous system (SNS) activity contributes to adiposity in obese subjects. Here, we verified the preventive effect of swimming training upon adiposity, adrenal catecholamine storage, and pancreatic islet function in obese monosodium glutamate (MSG)-treated rats. Male neonatal Wistar rats received MSG (4 mg/g body weight) during the first 5 days of life and, at weaning, half of the rats were submitted to swimming training, 30 min/day, 3 days a week, until 90 days of age (exercised rats: MSGex). Half of the rats were used as controls (sedentary group, MSGsd). Exercise training (ET) decreased insulinemia and fat deposition in MSGex, and increased adrenal catecholamine content, compared with MSGsd rats. Insulinemia during the ivGTT was lower in MSGex rats, despite a lack of difference in glycemia. Swimming training enhanced insulin release in islets challenged by 2.8-8.3 mmol/l glucose, whereas, at supraphysiological glucose concentrations (11.1-16.7 mmol/l), MSGex islets secreted less insulin than MSGsd. No differences in insulin secretion were observed following l-arginine (Arg) or K(+) stimuli. In contrast, islets from MSGex rats secreted more insulin when exposed to carbachol (100 μmol/l), forskolin (10 μmol/l), or IBMX (1 mmol/l) at 8.3 mmol/l glucose. Additionally, MSGex islets presented a better epinephrine inhibition upon insulin release. These results demonstrate that ET prevented the onset of obesity in MSG rats, probably by enhancing adrenal catecholamine levels. ET ameliorates islet responsiveness to several compounds, as well as insulin peripheral action. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Preliminary Characterization of a Leptin Receptor Knockout Rat Created by CRISPR/Cas9 System.

    PubMed

    Bao, Dan; Ma, Yuanwu; Zhang, Xu; Guan, Feifei; Chen, Wei; Gao, Kai; Qin, Chuan; Zhang, Lianfeng

    2015-11-05

    Leptin receptor, which is encoded by the diabetes (db) gene and is highly expressed in the choroid plexus, regulatesenergy homeostasis, the balance between food intake and energy expenditure, fertility and bone mass. Here, using CRISPR/Cas9 technology, we created the leptin receptor knockout rat. Homozygous leptin receptor null rats are characterized by obesity, hyperphagia, hyperglycemia, glucose intolerance, hyperinsulinemia and dyslipidemia. Due to long-term poor glycemic control, the leptin receptor knockout rats also develop some diabetic complications such as pancreatic, hepatic and renal lesions. In addition, the leptin receptor knockout rats show a significant decrease in bone volume and bone mineral density of the femur compared with their wild-type littermates. Our model has rescued some deficiency of the existing rodent models, such as the transient hyperglycemia of db/db mice in the C57BL/6J genetic background and the delayed onset of glucose intolerance in the Zucker rats, and it is proven to be a useful animal model for biomedical and pharmacological research on obesity and diabetes.

  2. Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats.

    PubMed

    Vincent, Mylène; Philippe, Erwann; Everard, Amandine; Kassis, Nadim; Rouch, Claude; Denom, Jessica; Takeda, Yorihiko; Uchiyama, Shoji; Delzenne, Nathalie M; Cani, Patrice D; Migrenne, Stéphanie; Magnan, Christophe

    2013-03-01

    Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin-resistance and low-grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet-induced obesity in rats. Wistar rats were fed with control diet (CD) or high-fat diet (HF) and either with or without supplemented ABM for 20 weeks. HF diet-induced body weight gain and increased fat mass compared to CD. In addition HF-fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF-fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet-induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM-treated rats suggesting a decrease in lipid absorption. Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system. Copyright © 2012 The Obesity Society.

  3. Protective Effect of Gymnema sylvestre Ethanol Extract on High Fat Diet-induced Obese Diabetic Wistar Rats

    PubMed Central

    Kumar, V.; Bhandari, Uma; Tripathi, C. D.; Khanna, Geetika

    2014-01-01

    Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg) via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate), serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose), cardiomyocyte apoptosis (cardiac caspase-3, Na+/K+ ATPase activity and DNA fragmentation) organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o.) for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na+/K+ ATPase activity and DNA laddering, visceral fat pad and organ's weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus. PMID:25284929

  4. Protective Effect of Gymnema sylvestre Ethanol Extract on High Fat Diet-induced