Sample records for zurich relative sunspot

  1. High resolution power spectra of daily Zurich sunspot numbers

    NASA Technical Reports Server (NTRS)

    Euler, H. C., Jr.

    1973-01-01

    High resolution power spectra of 77 years of Zurich daily sunspot numbers were computed using various lags and data point intervals. Major harmonic peaks of the approximately 124-month period showed up strongly as well as the 27-day solar rotational period.

  2. A Comparison of Rome Observatory Sunspot Area and Sunspot Number Determinations With International Measures, 1958-1998

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2005-01-01

    Two changes in recording the sunspot record have occurred in recent years. First, in 1976, the longer-than-100-yr daily photographic record of the Royal Greenwich Observatory (RGO), used for determination of numbers and positions of sunspot groups and sunspot areas ended, and second, at the end of 1980, after more than 130 years, Zurich s Swiss Federal Observatory stopped providing daily sunspot numbers. To extend the sunspot record beyond 1976, use of United States Air Force/National Oceanic and Atmospheric Administration (USAF/NOAA) sunspot drawing observations from the Solar Optical Observing Network began in 1977, and the combined record of sunspot activity from RGO/USAF/NOAA was made accessible at http://science.nasa.gov/ssl/PAD/SOLAR/greenwch.htm. Also, in 1981, the task of providing daily sunspot numbers was taken up by the Royal Observatory of Belgium s Solar Influences and Data analysis Center, and the combined Zurich/International sunspot number database was made available at http://sidc.oma.be/index.php3. In this study, Rome Observatory 1958-1998 photographic records of sunspot areas, numbers of groups, and derived sunspot numbers are compared against same-day international values to determine relative behaviors and to evaluate whether any potential changes might have been introduced in the overall sunspot record, due to the aforementioned changes.

  3. Revised Sunspot Numbers and the Effects on Understanding the Sunspot Cycle

    NASA Astrophysics Data System (ADS)

    Hathaway, D. H.

    2014-12-01

    While sunspot numbers provide only limited information about the sunspot cycle, they provide that information for at least twice as many sunspot cycles as any other direct solar observation. In particular, sunspot numbers are available before, during, and immediately after the Maunder Minimum (1645-1715). The instruments and methods used to count sunspots have changed over the last 400+ years. This leads to systematic changes in the sunspot number that can mask, or artificially introduce, characteristics of the sunspot cycle. The most widely used sunspot number is the International (Wolf/Zurich) sunspot number which is now calculated at the Solar Influences Data Center in Brussels, Belgium. These numbers extend back to 1749. The Group sunspot number extends back to the first telescopic observations of the Sun in 1610. There are well-known and significant differences between these two numbers where they overlap. Recent work has helped us to understand the sources of these differences and has led to proposed revisions in the sunspot numbers. Independent studies now support many of these revisions. These revised sunspot numbers suggest changes to our understanding of the sunspot cycle itself and to our understanding of its connection to climate change.

  4. 70 Years of Sunspot Observations at the Kanzelhöhe Observatory: Systematic Study of Parameters Affecting the Derivation of the Relative Sunspot Number

    NASA Astrophysics Data System (ADS)

    Pötzi, Werner; Veronig, Astrid M.; Temmer, Manuela; Baumgartner, Dietmar J.; Freislich, Heinrich; Strutzmann, Heinz

    2016-11-01

    The Kanzelhöhe Observatory (KSO) was founded during World War II by the Deutsche Luftwaffe (German Airforce) as one station of a network of observatories that were set up to provide information on solar activity in order to better assess the actual conditions of the Earth's ionosphere in terms of radio-wave propagation. Solar observations began in 1943 with photographs of the photosphere and drawings of sunspots, plage regions, and faculae, as well as patrol observations of the solar corona. At the beginning, all data were sent to Freiburg (Germany). After WW II, international cooperation was established and the data were sent to Zurich, Paris, Moscow, and Greenwich. Relative sunspot numbers have been derived since 1944. The agreement between relative sunspot numbers derived at KSO and the new International Sunspot Number (ISN) (SILSO World Data Center in International Sunspot Number Monthly Bulletin and online catalogue, 1945 - 2015) lies within {≈} 10 %. However, revisiting the historical data, we also find periods with larger deviations. The reasons for the deviations were twofold: On the one hand, a major instrumental change took place during which the instrument was relocated and modified. On the other hand, a period of frequent replacements of personnel caused significant deviations; this clearly shows the importance of experienced observers. In the long term, the instrumental improvements led to better image quality. Additionally, we find a long-term trend towards better seeing conditions that began in 2000.

  5. Application of Avco data analysis and prediction techniques (ADAPT) to prediction of sunspot activity

    NASA Technical Reports Server (NTRS)

    Hunter, H. E.; Amato, R. A.

    1972-01-01

    The results are presented of the application of Avco Data Analysis and Prediction Techniques (ADAPT) to derivation of new algorithms for the prediction of future sunspot activity. The ADAPT derived algorithms show a factor of 2 to 3 reduction in the expected 2-sigma errors in the estimates of the 81-day running average of the Zurich sunspot numbers. The report presents: (1) the best estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT performance with conventional techniques, and (3) specific approaches to further reduction in the errors of estimated sunspot activity and to recovery of earlier sunspot historical data. The ADAPT programs are used both to derive regression algorithm for prediction of the entire 11-year sunspot cycle from the preceding two cycles and to derive extrapolation algorithms for extrapolating a given sunspot cycle based on any available portion of the cycle.

  6. On the Relation Between Sunspot Area and Sunspot Number

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    Often, the relation between monthly or yearly averages of total sunspot area, A, and sunspot number, R, has been described using the formula A = 16.7 R. Such a simple relation, however, is erroneous. The yearly ratio of A/R has varied between 5.3 in 1964 to 19.7 in 1926, having a mean of 13.1 with a standard deviation of 3.5. For 1875-1976 (corresponding to the Royal Greenwich Observatory timeframe), the yearly ratio of A/R has a mean of 14.1 with a standard deviation of 3.2, and it is found to differ significantly from the mean for 1977-2004 (corresponding to the United States Air Force/National Oceanic and Atmospheric Administration Solar Optical Observing Network timeframe), which equals 9.8 with a standard deviation of 2.1. Scatterplots of yearly values of A versus R are highly correlated for both timeframes and they suggest that a value of R = 100 implies A=1,538 +/- 174 during the first timeframe, but only A=1,076 +/- 123 for the second timeframe. Comparison of the yearly ratios adjusted for same day coverage against yearly ratios using Rome Observatory measures for the interval 1958-1998 indicates that sunspot areas during the second timeframe are inherently too low.

  7. Investigating the Relation between Sunspots and Umbral Dots

    NASA Astrophysics Data System (ADS)

    Yadav, Rahul; Louis, Rohan E.; Mathew, Shibu K.

    2018-03-01

    Umbral dots (UDs) are transient, bright features observed in the umbral region of a sunspot. We study the physical properties of UDs observed in sunspots of different sizes. The aim of our study is to relate the physical properties of UDs with the large-scale properties of sunspots. For this purpose, we analyze high-resolution G-band images of 42 sunspots observed by Hinode/SOT, located close to disk center. The images were corrected for instrumental stray light and restored with the modeled point-spread function. An automated multilevel tracking algorithm was employed to identify the UDs located in selected G-band images. Furthermore, we employed Solar Dynamics Observatory/HMI, limb-darkening-corrected, full-disk continuum images to estimate the sunspot phase and epoch for the selected sunspots. The number of UDs identified in different umbrae exhibits a linear relation to the umbral size. The observed filling factor ranges from 3% to 7% and increases with the mean umbral intensity. Moreover, the filling factor shows a decreasing trend with the umbral size. We also found that the observed mean and maximum intensities of UDs are correlated with the mean umbral intensity. However, we do not find any significant relationship between the mean (and maximum) intensity and effective diameter of UDs and the sunspot area, epoch, and decay rate. We suggest that this lack of relation could be due to either the distinct transition of spatial scales associated with overturning convection in the umbra or the shallow depth associated with UDs, or both.

  8. An Examination of Sunspot Number Rates of Growth and Decay in Relation to the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    On the basis of annual sunspot number averages, sunspot number rates of growth and decay are examined relative to both minimum and maximum amplitudes and the time of their occurrences using cycles 12 through present, the most reliably determined sunspot cycles. Indeed, strong correlations are found for predicting the minimum and maximum amplitudes and the time of their occurrences years in advance. As applied to predicting sunspot minimum for cycle 24, the next cycle, its minimum appears likely to occur in 2006, especially if it is a robust cycle similar in nature to cycles 17-23.

  9. Elizabeth Brown and the Classification of Sunspots in the 19th Century

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2014-06-01

    British amateur astronomers collected solar observation data as members of organizations such as the British Astronomical Association (BAA) and Liverpool Astronomical Society (LAS) in the late 1800s. Amateur astronomer Elizabeth Brown (1830-99) served as Solar Section Director of both groups, and not only aggregated solar observations (including hand-drawn illustrations) from observers from around the globe, but worked closely with solar astronomer Edward Maunder and other professionals in an attempt to garner specific types of observations from BAA members in order to answer a number of astronomical questions of the day. For example, she encouraged the monitoring of the growth and decay of sunspot groups and published a number of her own observations of particular groups, urging observers to note whether faculae were seen before the birth of sunspots in a given region, a topic of controversy at that time. She also developed a system for classifying sunspots and sunspot groups based on their appearance, dividing then into 11 types: normal, compound, pairs, clusters, trains, streams, zigzags, elliptical, vertical, nebulous, and dots. This poster will summarize Brown’s important contributions to solar observing in the late 19th century and situate her classification scheme relative to those of A.L. Cortie (1901), M. Waldmeier (1938; 1947) and the modified Zurich system of McIntosh (1966; 1969; 1989).

  10. Sunspot Time Series - Relations Inferred from the Location of the Longest Spotless Segments

    NASA Astrophysics Data System (ADS)

    Zięba, Stanisław; Nieckarz, Zenon

    2012-06-01

    Spotless days ( i.e., days when no sunspots are observed on the Sun) occur during the interval between the declining phase of the old sunspot cycle and the rising phase of the new sunspot cycle, being greatest in number and of longest continuous length near a new cycle minimum. In this paper, we introduce the concept of the longest spotless segment (LSS) and examine its statistical relation to selected characteristic points in the sunspot time series (STS), such as the occurrences of first spotless day and sunspot maximum. The analysis has revealed statistically significant relations that appear to be of predictive value. For example, for Cycle 24 the last spotless day during its rising phase should be about August 2012 (± 9.1 months), the daily maximum sunspot number should be about 227 (± 50; occurring about January 2014±9.5 months), and the maximum Gaussian smoothed sunspot number should be about 87 (± 25; occurring about July 2014). Using the Gaussian-filtered values, slightly earlier dates of August 2011 and March 2013 are indicated for the last spotless day and sunspot maximum for Cycle 24, respectively.

  11. Temporal relations between magnetic bright points and the solar sunspot cycle

    NASA Astrophysics Data System (ADS)

    Utz, Dominik; Muller, Richard; Van Doorsselaere, Tom

    2017-12-01

    The Sun shows a global magnetic field cycle traditionally best visible in the photosphere as a changing sunspot cycle featuring roughly an 11-year period. In addition we know that our host star also harbours small-scale magnetic fields often seen as strong concentrations of magnetic flux reaching kG field strengths. These features are situated in inter-granular lanes, where they show up bright as so-called magnetic bright points (MBPs). In this short paper we wish to analyse an homogenous, nearly 10-year-long synoptic Hinode image data set recorded from 2006 November up to 2016 February in the G-band to inspect the relationship between the number of MBPs at the solar disc centre and the relative sunspot number. Our findings suggest that the number of MBPs at the solar disc centre is indeed correlated to the relative sunspot number, but with the particular feature of showing two different temporal shifts between the decreasing phase of cycle 23 including the minimum and the increasing phase of cycle 24 including the maximum. While the former is shifted by about 22 months, the latter is only shifted by less than 12 months. Moreover, we introduce and discuss an analytical model to predict the number of MBPs at the solar disc centre purely depending on the evolution of the relative sunspot number as well as the temporal change of the relative sunspot number and two background parameters describing a possibly acting surface dynamo as well as the strength of the magnetic field diffusion. Finally, we are able to confirm the plausibility of the temporal shifts by a simplistic random walk model. The main conclusion to be drawn from this work is that the injection of magnetic flux, coming from active regions as represented by sunspots, happens on faster time scales than the removal of small-scale magnetic flux elements later on.

  12. On the Relation between Atmospheric Ozone and Sunspot Number.

    NASA Astrophysics Data System (ADS)

    Angell, J. K.

    1989-11-01

    Based on data from the Dobson network, between 1960 and 1987 there has been a zero-lag correlation of 0.48 between the 112 unsmoothed seasonal values of sunspot number and global total ozone, significant at the 1% level taking into account the considerable serial correlation in these data. The maximum correlation of 0.54 is found when sunspot number lags total ozone by two seasons, the result mainly of a phase difference early in the record. On the basis of only 2 1/2 solar cycles, the global total ozone has increased by 1.4% for an increase in sunspot number of 100. The correlation between sunspot number and total ozone has been significant at the 5% level in north temperate and tropical zones-the zones with the most representative data. In the north temperate zone, the correlation between sunspot number and total ozone has been much higher in the west-wind phase of the 50 mb equatorial QBO than in the east-wind phase, but in the tropics the correlation has been much higher in the east-wind phase. Umkehr measurements between 1966 and 1987 in the north temperate zone indicate that the correlation between sunspot number and ozone amount has been higher (0.35, almost significant at the 5% level) in the low stratosphere where transport processes dominate than in the high stratosphere where photochemical processes dominate. During 1932-60 there was a significant correlation of 0.35 between sunspot number and Arosa total ozone 14 seasons later, very different from the nearly in-phase relation found after 1960. Considered is the possible impact of long-term change in transport processes in the low stratosphere on the total-ozone record at a single station such as Arosa.Between 1966 and 1985 there has been very good agreement between observed global total ozone, and global total ozone calculated from three 2-D stratospheric models that take into account the solar cycle, the time variation in trace gases, and nuclear tests; both observed and calculated variations are

  13. Comparison of the Variations of Sunspot Number, Number of Sunspot Groups, and Sunspot Area, 1875 -2013

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    Examined are the yearly variations and ratios of sunspot number, the number of sunspot groups, and the total corrected sunspot area for the interval 1875-2013. While yearly sunspot number independently correlates strongly (r = 0.98) with the yearly number of sunspot groups (y = -2 + 11.99x) and the total corrected sunspot area (y = 5 + 0.059x), the strongest correlation (Ry12 = 0.99) is the one based on the bivariate fit of sunspot number against the combined variations of the number of sunspot groups and sunspot area (y = 1 + 5.88x1 + 0.031x2, where y refers to sunspot number, x1 refers to the number of sunspot groups, and x2 refers to the sunspot area). While all cycle minima based on the bivariate fit are concurrent with the observed minimum in sunspot number, cycle maxima are sometimes found to differ. For sunspot cycles 12, 19, 20, and 23, cycle maximum is inferred to have occurred in 1884, 1958, 1970, and 2002, respectively, rather than in 1883, 1957, 1968, and 2000, based on the observed sunspot number. Also, cycle 19's maximum amplitude based on observed sunspot number seems too high in comparison to that found using the bivariate fit. During the 139-year interval 1875-2013, the difference between the observed and predicted sunspot number based on the bivariate fit is <1 standard error of estimate (se) (<6.4) for 111 years, between 1 and <2 se (6.4 to <12.8) for 28 years, and =2 se (=12.8) for only 4 years, these years being 1957 (16.6), 1978 (-15.8), 1980 (23), and 1982 (-16.3). For sunspot cycle 24, the difference between observed and predicted values has been only -0.7 and 3.2 (=0.5 se).

  14. A comparative look at sunspot cycles

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1984-01-01

    On the basis of cycles 8 through 20, spanning about 143 years, observations of sunspot number, smoothed sunspot number, and their temporal properties were used to compute means, standard deviations, ranges, and frequency of occurrence histograms for a number of sunspot cycle parameters. The resultant schematic sunspot cycle was contrasted with the mean sunspot cycle, obtained by averaging smoothed sunspot number as a function of time, tying all cycles (8 through 20) to their minimum occurence date. A relatively good approximation of the time variation of smoothed sunspot number for a given cycle is possible if sunspot cycles are regarded in terms of being either HIGH- or LOW-R(MAX) cycles or LONG- or SHORT-PERIOD cycles, especially the latter. Linear regression analyses were performed comparing late cycle parameters with early cycle parameters and solar cycle number. The early occurring cycle parameters can be used to estimate later occurring cycle parameters with relatively good success, based on cycle 21 as an example. The sunspot cycle record clearly shows that the trend for both R(MIN) and R(MAX) was toward decreasing value between cycles 8 through 14 and toward increasing value between cycles 14 through 20. Linear regression equations were also obtained for several measures of solar activity.

  15. On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    NASA Astrophysics Data System (ADS)

    Santos, Ângela R. G.; Cunha, Margarida S.; Avelino, Pedro P.; Chaplin, William J.; Campante, Tiago L.

    2017-10-01

    The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.

  16. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.

    2011-04-10

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less

  17. Hemispheric Sunspot Unit Area: Comparison with Hemispheric Sunspot Number and Sunspot Area

    NASA Astrophysics Data System (ADS)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.; Xie, J. L.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is found asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.

  18. Sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R.; Rabin, D.

    1985-01-01

    It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies.

  19. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  20. ON THE ROTATION OF SUNSPOTS AND THEIR MAGNETIC POLARITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming

    2016-07-20

    The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory . We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency ofmore » the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr{sup 1}. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr{sup 1}. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.« less

  1. Hemispheric sunspot unit area: comparison with hemispheric sunspot number and sunspot area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. J.; Xiang, N. B.; Qu, Z. N.

    2014-03-01

    The monthly mean northern and southern hemispheric sunspot numbers (SNs) and sunspot areas (SAs) in the time interval of 1945 January to 2012 December are utilized to construct the monthly northern and southern hemispheric sunspot unit areas (SUAs), which are defined as the ratio of hemispheric SA to SN. Hemispheric SUAs are usually found to rise at the beginning and to fall at the ending time of a solar cycle more rapidly, forming a more irregular cycle profile than hemispheric SNs and SAs, although it also presents Schwabe-cycle-like hemispheric SNs and SAs. Sunspot activity (SN, SA, and SUA) is foundmore » asynchronously and is asymmetrically distributed in the northern and southern hemispheres, and hemispheric SNs, SAs, and SUAs are not in phase in the two hemispheres. The similarity of hemispheric SNs and SAs is found to be much more obvious than that of hemispheric SUAs and SNs (or SAs), and also for their north-south asymmetry. A notable feature is found for the behavior of the SUA around the minimum time of cycle 24: the SUA rapidly decreases from the cycle maximum value to the cycle minimum value of sunspot cycles 19-24 within just 22 months.« less

  2. Featured Image: Bright Dots in a Sunspot

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  3. Tests of Sunspot Number Sequences: 4. Discontinuities Around 1946 in Various Sunspot Number and Sunspot-Group-Number Reconstructions

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.

    2016-11-01

    distribution functions together, we obtain the optimum correction for each sunspot dataset that must be applied to pre-discontinuity data to make them consistent with the post-discontinuity data. It is shown that, on average, values for 1932 - 1943 are too low (relative to later values) by about 12.3 % for R_{{ISNv1}} but are too high for R_{{ISNv2}} and R_{BB} by 3.8 % and 5.2 %, respectively. The correction that was applied to generate RC from R ISNv1 reduces this average factor to 0.5 % but does not remove the non-linear variation with the test data, and other errors remain uncorrected. A valuable test of the procedures used is provided by R_{{UEA}}, which is identical to the RGO NG values over the interval employed.

  4. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  5. Sunspot random walk and 22-year variation

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua

    2012-01-01

    We examine two stochastic models for consistency with observed long-term secular trends in sunspot number and a faint, but semi-persistent, 22-yr signal: (1) a null hypothesis, a simple one-parameter random-walk model of sunspot-number cycle-to-cycle change, and, (2) an alternative hypothesis, a two-parameter random-walk model with an imposed 22-yr alternating amplitude. The observed secular trend in sunspots, seen from solar cycle 5 to 23, would not be an unlikely result of the accumulation of multiple random-walk steps. Statistical tests show that a 22-yr signal can be resolved in historical sunspot data; that is, the probability is low that it would be realized from random data. On the other hand, the 22-yr signal has a small amplitude compared to random variation, and so it has a relatively small effect on sunspot predictions. Many published predictions for cycle 24 sunspots fall within the dispersion of previous cycle-to-cycle sunspot differences. The probability is low that the Sun will, with the accumulation of random steps over the next few cycles, walk down to a Dalton-like minimum. Our models support published interpretations of sunspot secular variation and 22-yr variation resulting from cycle-to-cycle accumulation of dynamo-generated magnetic energy.

  6. Sunspot Umbra: Structure and Evolution

    NASA Astrophysics Data System (ADS)

    Vázquez, M.; Murdin, P.

    2000-11-01

    Sunspots show two main structures: a central dark region, the umbra, surrounded by a brighter and filamentary zone, the SUNSPOT PENUMBRA (see figure 1 in the article on SUNSPOT EVOLUTION). Sunspots without penumbra are usually called SUNSPOT PORES. Observed with low spatial resolution, the umbra appears homogeneous. However, even by the nineteenth century astronomers were able to detect fine deta...

  7. Sunspots: Wilson Effect

    NASA Astrophysics Data System (ADS)

    Maltby, P.; Murdin, P.

    2000-11-01

    The Wilson effect refers to the depressed appearance of SUNSPOTS when positioned close to the solar limb. The impression is that sunspots are cavities in the SOLAR PHOTOSPHERE. The reason is that the radiation we observe is coming from deeper layers in the sunspot than in the surrounding photosphere. The detection of this depression by Alexander Wilson dates back to 1769. The phenomenon is exp...

  8. Tests of Sunspot Number Sequences: 3. Effects of Regression Procedures on the Calibration of Historic Sunspot Data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.; Usoskin, I. G.

    2016-11-01

    We use sunspot-group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups [RB] above a variable cut-off threshold of observed total whole spot area (uncorrected for foreshortening) to simulate what a lower-acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number [RA] using a variety of regression techniques. It is found that a very high correlation between RA and RB (r_{AB} > 0.98) does not prevent large errors in the intercalibration (for example sunspot-maximum values can be over 30 % too large even for such levels of r_{AB}). In generating the backbone sunspot number [R_{BB}], Svalgaard and Schatten ( Solar Phys., 2016) force regression fits to pass through the scatter-plot origin, which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot-cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile ("Q-Q") plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least-squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot-group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar-cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

  9. AAVSO Visual Sunspot Observations vs. SDO HMI Sunspot Catalog

    NASA Astrophysics Data System (ADS)

    Howe, R.

    2014-06-01

    (Abstract only) The most important issue with regard to using the SDO HMI data from the National Solar Observatory (NSO, http://www.nso.edu/staff/fwatson/STARA) is that their current model for creating sunspot counts does not split in groups and consequently does not provide a corresponding group count and Wolf number. As it is a different quantity, it cannot be mixed with the data from our sunspot networks. For the AAVSO with about seventy stations contributing each day, adding HMI sunspot data would anyway hardly change the resulting index. Perhaps, the best use of HMI data is for an external validation, by exploiting the fact that HMI provides a series that is rather close to the sunspot number and is acquired completely independently. So, it is unlikely to suffer from the same problems (jumps, biases) at the same time. This validation only works for rather short durations, as the lifetime of space instruments is limited and aging effects are often affecting the data over the mission. In addition, successive instruments have different properties: for example, the NSO model has not managed yet to reconcile the series from MDI and HMI. There is a ~10-15% jump. The first challenge that should be addressed by AAVSO using HMI data is the splitting in groups and deriving group properties. Then, together with the sunspot counts and areas per group, a lot more analyses and diagnostics can be derived (like the selective disappearance of the smallest sunspots?), that can help interpreting trends in the ratio SSN/other solar indices and many other solar effects.

  10. An Examination of Selected Geomagnetic Indices in Relation to the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    Previous studies have shown geomagnetic indices to be useful for providing early estimates for the size of the following sunspot cycle several years in advance. Examined this study are various precursor methods for predicting the minimum and maximum amplitude of the following sunspot cycle, these precursors based on the aa and Ap geomagnetic indices and the number of disturbed days (NDD), days when the daily Ap index equaled or exceeded 25. Also examined is the yearly peak of the daily Ap index (Apmax), the number of days when Ap greater than or equal to 100, cyclic averages of sunspot number R, aa, Ap, NDD, and the number of sudden storm commencements (NSSC), as well the cyclic sums of NDD and NSSC. The analysis yields 90-percent prediction intervals for both the minimum and maximum amplitudes for cycle 24, the next sunspot cycle. In terms of yearly averages, the best regressions give Rmin = 9.8+/-2.9 and Rmax = 153.8+/-24.7, equivalent to Rm = 8.8+/-2.8 and RM = 159+/-5.5, based on the 12-mo moving average (or smoothed monthly mean sunspot number). Hence, cycle 24 is expected to be above average in size, similar to cycles 21 and 22, producing more than 300 sudden storm commencements and more than 560 disturbed days, of which about 25 will be Ap greater than or equal to 100. On the basis of annual averages, the sunspot minimum year for cycle 24 will be either 2006 or 2007.

  11. Predicting the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    The 11-year sunspot cycle was discovered by an amateur astronomer in 1844. Visual and photographic observations of sunspots have been made by both amateurs and professionals over the last 400 years. These observations provide key statistical information about the sunspot cycle that do allow for predictions of future activity. However, sunspots and the sunspot cycle are magnetic in nature. For the last 100 years these magnetic measurements have been acquired and used exclusively by professional astronomers to gain new information about the nature of the solar activity cycle. Recently, magnetic dynamo models have evolved to the stage where they can assimilate past data and provide predictions. With the advent of the Internet and open data policies, amateurs now have equal access to the same data used by professionals and equal opportunities to contribute (but, alas, without pay). This talk will describe some of the more useful prediction techniques and reveal what they say about the intensity of the upcoming sunspot cycle.

  12. Tracking the Magnetic Flux in and Around Sunspots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheeley, N. R. Jr.; Stauffer, J. R.; Thomassie, J. C.

    We have developed a procedure for tracking sunspots observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory and for making curvature-corrected space/time maps of the associated line-of-sight magnetic field and continuum intensity. We apply this procedure to 36 sunspots, each observed continuously for nine days around its central meridian passage time, and find that the proper motions separate into two distinct components depending on their speeds. Fast (∼3–5 km s{sup −1}) motions, comparable to Evershed flows, are produced by weak vertical fluctuations of the horizontal canopy field and recur on a timescale of 12–20 min. Slow (∼0.3–0.5more » km s{sup −1}) motions diverge from a sunspot-centered ring whose location depends on the size of the sunspot, occurring in the mid-penumbra for large sunspots and at the outer edge of the penumbra for small sunspots. The slow ingoing features are contracting spokes of a quasi-vertical field of umbral polarity. These inflows disappear when the sunspot loses its penumbra, and may be related to inward-moving penumbral grain. The slow outgoing features may have either polarity depending on whether they originate from quasi-vertical fields of umbral polarity or from the outer edge of the canopy. When a sunspot decays, the penumbra and canopy disappear, and the moat becomes filled with slow outflows of umbral polarity. We apply our procedure to decaying sunspots, to long-lived sunspots, and to numerical simulations of a long-lived sunspot by Rempel.« less

  13. TEMPORAL STABILITY OF SUNSPOT UMBRAL INTENSITIES: 1986-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Toma, G.; Chapman, G. A.; Cookson, A. M.

    2013-07-10

    We examine the relative intensity of sunspot umbrae during the period from 1986 to 2012 using photometric images from the San Fernando Observatory. We confirm the presence of a relationship between the mean umbral core intensity and the mean sunspot area, as found in previous studies, and do not find a notable change in this relationship between cycles 22 and 23. We looked for a possible time variation in the sunspot umbral contrast during the 27 yr covering cycles 22, 23, and the rise of cycle 24, and we did not find a significant change. These findings do not indicatemore » that sunspots have become less dark during cycles 23 and 24.« less

  14. Investigation of Sunspot Area Varying with Sunspot Number

    NASA Astrophysics Data System (ADS)

    Li, K. J.; Li, F. Y.; Zhang, J.; Feng, W.

    2016-11-01

    The statistical relationship between sunspot area (SA) and sunspot number (SN) is investigated through analysis of their daily observation records from May 1874 to April 2015. For a total of 1607 days, representing 3 % of the total interval considered, either SA or SN had a value of zero while the other parameter did not. These occurrences most likely reflect the report of short-lived spots by a single observatory and subsequent averaging of zero values over multiple stations. The main results obtained are as follows: i) The number of spotless days around the minimum of a solar cycle is statistically negatively correlated with the maximum strength of solar activity of that cycle. ii) The probability distribution of SA generally decreases monotonically with SA, but the distribution of SN generally increases first, then it decreases as a whole. The different probability distribution of SA and SN should strengthen their non-linear relation, and the correction factor [k] in the definition of SN may be one of the factors that cause the non-linearity. iii) The non-linear relation of SA and SN indeed exists statistically, and it is clearer during the maximum epoch of a solar cycle.

  15. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  16. Prediction Methods in Solar Sunspots Cycles

    PubMed Central

    Ng, Kim Kwee

    2016-01-01

    An understanding of the Ohl’s Precursor Method, which is used to predict the upcoming sunspots activity, is presented by employing a simplified movable divided-blocks diagram. Using a new approach, the total number of sunspots in a solar cycle and the maximum averaged monthly sunspots number Rz(max) are both shown to be statistically related to the geomagnetic activity index in the prior solar cycle. The correlation factors are significant and they are respectively found to be 0.91 ± 0.13 and 0.85 ± 0.17. The projected result is consistent with the current observation of solar cycle 24 which appears to have attained at least Rz(max) at 78.7 ± 11.7 in March 2014. Moreover, in a statistical study of the time-delayed solar events, the average time between the peak in the monthly geomagnetic index and the peak in the monthly sunspots numbers in the succeeding ascending phase of the sunspot activity is found to be 57.6 ± 3.1 months. The statistically determined time-delayed interval confirms earlier observational results by others that the Sun’s electromagnetic dipole is moving toward the Sun’s Equator during a solar cycle. PMID:26868269

  17. The cooling time scales of growing sunspots

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi

    1987-01-01

    The evolution of brightness and magnetic fields of growing sunspots is studied. Growing sunspots are found to be brighter (or less dark) than stable sunspots with the same magnetic field strength. From comparison of brightness and magnetic fields of a growing sunspot with those of stable sunspots, a dynamical parameter, the cooling time, of the growing sunspot is obtained. Ten growing sunspots are studied, and cooling times of 0.5 to 9 hr are found. Two models, the inhibition model and the Alfven wave model, give cooling times of about 0.05 hr, based on linear theory. The discrepancy between theory and observation may be due to the fact that the observed sunspots are in the nonlinear regime.

  18. Sunspot prediction using neural networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Baffes, Paul

    1990-01-01

    The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.

  19. Isolated quasi-axisymmetric sunspots

    NASA Astrophysics Data System (ADS)

    Koutchmy, Serge; Le Piouffle, Vincent

    2009-04-01

    We briefly review the question of the origin, during a sunspot cycle, of well isolated sunspots. This includes big sunspots like the one observed in Nov. 2006. An overall axi-symmetric morphology is not perfectly observed when the morphological details of both the umbra and of the penumbra are considered. This is especially the case of umbral dots always present inside the core of a sunspot and also of penumbral filaments with non radial parts. However, the distribution of the surrounding fields, including deep layers, the occurrence of persistent coherent running penumbral waves, the magnetic moat behavior, the bright ring phenomena, etc. seem to justify a revival of the naive former but revised (converging motions are considered) Larmor model of a sunspot (as suggested by Lorrain et al. 2006). To discuss the “emergence” of single isolated sunspots from deep layers we performed a quasi-statistical analysis limited to cycle 23. It is based on MDI data taken in the continuum, using the accompanying magnetograms to check our assertion. Surprisingly, single sunspots are definitely and preferably found to occur at low latitude and during the descending branch of the cycle. To explain our observations we speculate about the behavior of the deeply seated magnetic loop, following the original idea of H. Alfven (with whirl rings which follow the global dipolar field when approaching the surface). It could lead to a closed loop approximately orthogonal to the local radius, similar to “smoke rings” arriving at the surface of the Sun and sometimes also called a plasmoid. The ring will only very weakly feel the destabilizing Coriolis force, when emerging at very low latitudes, which seems consistent with our observations.

  20. The Vector Magnetic Fields and Thermodynamics of Sunspot Light Bridges: The Case for Field-free Disruptions in Sunspots

    NASA Astrophysics Data System (ADS)

    Leka, K. D.

    1997-07-01

    We present observations with the Advanced Stokes Polarimeter of 11 light bridges in sunspots of various ages and sizes, all very close to disk center. Full vector spectropolarimetry and a nonlinear least-squares inversion algorithm allows us to determine not only the vector magnetic field in the bridges and host sunspots but also thermodynamic parameters such as continuum brightness, Doppler shifts, Doppler widths, opacity ratio, and the source function parameters. We can also separate the magnetic and nonmagnetic components of the spectral signal within each resolution element. We find that there is a disruption of the magnetic fields in light bridges, relative both to neighboring umbrae and to normal, undisturbed penumbrae. This change takes the form of lower intrinsic field strength and sparser, more horizontal fields in the bridges relative to umbrae. The magnetic fields in the bridges remain more vertically oriented, however, than those in undisturbed penumbra. There are systematic upflows observed in the bridge plasma relative to the neighboring umbrae, and the evidence points toward a component that is heated and departs from radiative equilibrium. In four cases, we follow a light bridge over several days and find that as the bridges age, they grow wider and brighter, the fields weaken and become sparser, and the heating increases. We also find some evidence that the magnetic field begins to reorganize itself to accommodate the (now) two azimuth centers before there are strong signals of a light bridge in the thermodynamic parameters. This paper presents the first systematic look at sunspot light bridges with full vector polarimetry and thermodynamic determination. The results show that there is an intrusion of field-free, possibly convective material into an otherwise stable, magnetic sunspot. The departure from stability is seen in the magnetic field orientation prior to its appearance in continuum intensity, and the effects of this disruption are evident

  1. SEISMIC DISCRIMINATION OF THERMAL AND MAGNETIC ANOMALIES IN SUNSPOT UMBRAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, C.; Cally, P. S.; Rempel, M.

    2010-08-20

    Efforts to model sunspots based on helioseismic signatures need to discriminate between the effects of (1) a strong magnetic field that introduces time-irreversible, vantage-dependent phase shifts, apparently connected to fast- and slow-mode coupling and wave absorption and (2) a thermal anomaly that includes cool gas extending an indefinite depth beneath the photosphere. Helioseismic observations of sunspots show travel times considerably reduced with respect to equivalent quiet-Sun signatures. Simulations by Moradi and Cally of waves skipping across sunspots with photospheric magnetic fields of order 3 kG show travel times that respond strongly to the magnetic field and relatively weakly to themore » thermal anomaly by itself. We note that waves propagating vertically in a vertical magnetic field are relatively insensitive to the magnetic field, while remaining highly responsive to the attendant thermal anomaly. Travel-time measurements for waves with large skip distances into the centers of axially symmetric sunspots are therefore a crucial resource for discrimination of the thermal anomaly beneath sunspot umbrae from the magnetic anomaly. One-dimensional models of sunspot umbrae based on compressible-radiative-magnetic-convective simulations such as by Rempel et al. can be fashioned to fit observed helioseismic travel-time spectra in the centers of sunspot umbrae. These models are based on cooling of the upper 2-4 Mm of the umbral subphotosphere with no significant anomaly beneath 4.5 Mm. The travel-time reductions characteristic of these models are primarily a consequence of a Wilson depression resulting from a strong downward buoyancy of the cooled umbral medium.« less

  2. Overstability and cooling in sunspots

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1976-01-01

    The role played by overstable Alfven modes in magnetic structures such as sunspots is considered in detail for a column of magnetic field. It is demonstrated explicitly that overstable Alfven waves cool the interior of the magnetic column. It is suggested that these waves account for the cooling in sunspot umbrae, and therefore, in concurrence with Parker, we conclude that a sunspot is a region of enhanced heat transport. The calculations indicate that sunspots have small regions at normal photospheric brightness, and we tentatively suggest that these regions are umbral dots. We also suggest that cooling by overstable Alfven waves may explain the existence of the intense small magnetic flux tubes that constitute the general solar magnetic field.

  3. On the Relationship Between Spotless Days and the Sunspot Cycle: A Supplement

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    This study provides supplemental material to an earlier study concerning the relationship between spotless days and the sunspot cycle. Our previous study, Technical Publication (TP)-2005-213608 determined the timing and size of sunspot minimum and maximum for the new sunspot cycle, relative to the occurrence of the first spotless day during the declining phase of the old sunspot cycle and the last spotless day during the rising portion of the new cycle. Because the number of spotless days (NSD) rapidly increases as the cycle nears sunspot minimum and rapidly decreases thereafter, the size and timing of sunspot minimum and maximum might be more accurately determined using a higher threshold for comparison, rather than using the first and last spotless day occurrences. It is this aspect that is investigated more thoroughly in this TP.

  4. Observations of Rotating Sunspots from TRACE

    NASA Astrophysics Data System (ADS)

    Brown, D. S.; Nightingale, R. W.; Alexander, D.; Schrijver, C. J.; Metcalf, T. R.; Shine, R. A.; Title, A. M.; Wolfson, C. J.

    2003-09-01

    Recent observations from TRACE in the photospheric white-light channel have shown sunspots that rotate up to 200° about their umbral centre over a period of 3 5 days. The corresponding loops in the coronal fan are often seen to twist and can erupt as flares. In an ongoing study, seven cases of rotating sunspots have been identified, two of which can be associated with sigmoid structures appearing in Yohkoh/SXT and six with events seen by GOES. This paper analyzes the rotation rates of the sunspots using TRACE white-light data. Observations from AR 9114 are presented in detail in the main text and a summary of the results for the remaining six sunspots is presented in Appendixes A F. Discussion of the key results, particularly common features, are presented, as well as possible mechanisms for sunspot rotation.

  5. Sunspot dynamics - Gravitational draining - A cooling mechanism

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1981-01-01

    The inward and downward flow of cooled material below sunspots is considered as a possible explanation of the stability, temperature and heat flow characteristics of sunspots. It is suggested that the flow of material inwards towards the center of the sunspot and then downwards towards the center of the sun through magnetic field conduits plays a role in the cooling of sunspots as it does in pores and magnetic knots, although due to the larger size of a sunspot the downflow takes place below the photosphere. In this view, the inflow and cooling of sunspots are sustained by the release of energy by the convecting gas, which then becomes cooler and denser as it returns to the heat source. The lack of a bright ring around sunspots is explained by the entrainment of upward moving heat flux by the downward moving gases. The temperature and density distributions predicted by the present model are shown to be satisfactory agreement with the empirical model of Van't Veer (Tandberg-Hansen, 1966).

  6. Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar

    2017-12-01

    In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.

  7. Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time

    NASA Technical Reports Server (NTRS)

    Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.

    1994-01-01

    The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.

  8. Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time

    NASA Astrophysics Data System (ADS)

    Froehlich, Claus; Pap, Judit M.; Hudson, Hugh S.

    1994-06-01

    The photometric sunspot index (PSI) was developed to study the effects of sunspots on solar irradiance. It is calculated from the sunspot data published in the Solar-Geophysical Data catalog. It has been shown that the former PSI models overestimate the effect of dark sunspots on solar irradiance; furthermore results of direct sunspot photometry indicate that the contrast of spots depends on their area. An improved PSI calculation is presented; it takes into account the area dependence of the contrast and calculates `true' daily means for each observation using the differential rotation of the spots. Moreover, the observations are screened for outliers which improves the homogeneity of the data set substantially, at least for the period after December 1981 when NOAA started to report data from a few instead of one to two stations. A detailed description of the method is provided. The correlation between the newly calculated PSI and total solar irradiance is studied for different phases of the solar cycles 21 and 22 using bi-variate spectral analysis. The results can be used as a `calibration' of PSI in terms of gain, the factor by which PSI has to be multiplied to yield the observed irradiance change. The factor changes with time from about 0.6 in 1980 to 1.1 in 1990. This unexpected result cannot be interpreted by a change of the contrast relative to the quiet Sun (as it is normally defined and determined by direct photometry) but rather as a change of the contrast between the spots and their surrounding as seen in total irradiance (integrated over the solar disk). This may partly be explained by a change in the ratio between the areas of the spots and the surrounding faculae.

  9. A Standard Law for the Equatorward Drift of the Sunspot Zones

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2012-01-01

    The latitudinal location of the sunspot zones in each hemisphere is determined by calculating the centroid position of sunspot areas for each solar rotation from May 1874 to June 2012. When these centroid positions are plotted and analyzed as functions of time from each sunspot cycle maximum there appears to be systematic differences in the positions and equatorward drift rates as a function of sunspot cycle amplitude. If, instead, these centroid positions are plotted and analyzed as functions of time from each sunspot cycle minimum then most of the differences in the positions and equatorward drift rates disappear. The differences that remain disappear entirely if curve fitting is used to determine the starting times (which vary by as much as 8 months from the times of minima). The sunspot zone latitudes and equatorward drift measured relative to this starting time follow a standard path for all cycles with no dependence upon cycle strength or hemispheric dominance. Although Cycle 23 was peculiar in its length and the strength of the polar fields it produced, it too shows no significant variation from this standard. This standard law, and the lack of variation with sunspot cycle characteristics, is consistent with Dynamo Wave mechanisms but not consistent with current Flux Transport Dynamo models for the equatorward drift of the sunspot zones.

  10. Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes

    NASA Astrophysics Data System (ADS)

    Lee, K.; Moon, Y.; Lee, J.; Na, H.; Lee, K.

    2013-12-01

    We investigate the solar flare occurrence rate and daily flare probability in terms of the sunspot classification supplemented with sunspot area and its changes. For this we use the NOAA active region data and GOES solar flare data for 15 years (from January 1996 to December 2010). We consider the most flare-productive 11 sunspot classes in the McIntosh sunspot group classification. Sunspot area and its changes can be a proxy of magnetic flux and its emergence/cancellation, respectively. We classify each sunspot group into two sub-groups by its area: 'Large' and 'Small'. In addition, for each group, we classify it into three sub-groups according to sunspot area changes: 'Decrease', 'Steady', and 'Increase'. As a result, in the case of compact groups, their flare occurrence rates and daily flare probabilities noticeably increase with sunspot group area. We also find that the flare occurrence rates and daily flare probabilities for the 'Increase' sub-groups are noticeably higher than those for the other sub-groups. In case of the (M + X)-class flares in the ';Dkc' group, the flare occurrence rate of the 'Increase' sub-group is three times higher than that of the 'Steady' sub-group. The mean flare occurrence rates and flare probabilities for all sunspot groups increase with the following order: 'Decrease', 'Steady', and 'Increase'. Our results statistically demonstrate that magnetic flux and its emergence enhance the occurrence of major solar flares.

  11. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Krivova, N.; Lean, J.; Wu, C. J.

    2015-12-01

    We describe the expected effects of the new sunspot number time series on proxy model based reconstructions of the total solar irradiance (TSI), which is largely explained by the opposing effects of dark sunspots and bright faculae. Regressions of indices for facular brightening and sunspot darkening with time series of direct TSI observations during the recent 37-year spacecraft TSI measurement era determine the relative contributions from each. Historical TSI reconstructions are enabled by extending these proxy models back in time prior to the start of the measurement record using a variety of solar activity indices including the sunspot number time series alone prior to 1882. Such reconstructions are critical for Earth climate research, which requires knowledge of the incident energy from the Sun to assess climate sensitivity to the natural influence of solar variability. Two prominent TSI reconstructions that utilize the sunspot record starting in 1610 are the NRLTSI and the SATIRE models. We review the indices that each currently uses and estimate the effects the revised sunspot record has on these reconstructions.

  12. Interactions between nested sunspots. 1: The formation and breakup of a delta-type sunspot

    NASA Astrophysics Data System (ADS)

    Gaizauskas, V.; Harvey, K. L.; Proulx, M.

    1994-02-01

    We investigate a nest of sunspots in which three ordinary bipolar pairs of sunspots are aligned collinearly. The usual spreading action of the growing regions brings two spots of leading polarity together (p-p collision) and forces the leading and trailing spots of the two interior regions to overlap into a single penumbra (p-f collision), thus forming a delta-spot. We examine digitally processed images from the Ottawa River Solar Observatory of two related events inside the delta-spot 5 days after the p-f collision begins: the violent disruption of the f-umbra, and the formation in less than a day of an hydrogen-alpha filament. The evolutionary changes in shape, area, relative motions, and brightness that we measure for each spot in the elongated nest are more compatible with Parker's (1979a) hypothesis of a sunspot as a cluster of flux tubes held together by downdrafts than with the notion of a sunspot as a monolithic plug of magnetic flux. From chromospheric developments over the delta-spot, we show that a shearing motion along a polarity inversion is more effective than convergence for creating a chromospheric filament. We invoke the release of an instability, triggered by a sequence of processes lasting 1 day or more, to explain the disruption of the f-umbra in this delta-spot. We show that the sequence is initiated when the colliding p-f umbrae reach a critical separation around 3200 +/- 200 km. We present a descriptive model in which the reconnected magnetic fields block vertical transport of convective heat flux just beneath the photosphere. We observe the formation of an unusual type of penumbra adjacent to the f-polarity portion of this delta-spot just before its disruption. A tangential penumbral band grows out of disordered matter connected to the f-umbra. We present this as evidence for the extrusion of umbral magnetic flux by thermal plumes rising through a loosely bound umbra.

  13. Interactions between nested sunspots. 1: The formation and breakup of a delta-type sunspot

    NASA Technical Reports Server (NTRS)

    Gaizauskas, V.; Harvey, K. L.; Proulx, M.

    1994-01-01

    We investigate a nest of sunspots in which three ordinary bipolar pairs of sunspots are aligned collinearly. The usual spreading action of the growing regions brings two spots of leading polarity together (p-p collision) and forces the leading and trailing spots of the two interior regions to overlap inot a single penumbra (p-f collision), thus forming a delta-spot. We examine digitally processed images from the Ottawa River Solar Observatory of two related events inside the delta-spot 5 days after the p-f collision begins: the violent disruption of the f-umbra, and the formation in less than a day of an hydrogen-alpha filament. The evolutionary changes in shape, area, relative motions, and brightness that we measure for each spot in the elongated nest are more compatible with Parker's (1979a) hypothesis of a sunspot as a cluster of flux tubes held together by downdrafts than with the notion of a sunspot as a monolithic plug of magnetic flux. From chromospheric developments over the delta-spot, we show that a shearing motion along a polarity inversion is more effective than convergence for creating a chromospheric filament. We invoke the release of an instability, triggered by a sequence of processes lasting 1 day or more, to explain the disruption of the f-umbra in this delta-spot. We show that the sequence is initiated when the colliding p-f umbrae reach a critical separation around 3200 +/- 200 km. We present a descriptive model in which the reconnected magnetic fields block vertical transport of convective heat flux just beneath the photosphere. We observe the formation of an unusual type of penumbra adjacent to the f-polarity portion of this delta-spot just before its disruption. A tangential penumbral band grows out of disordered matter connected to the f-umbra. We present this as evidence for the extrusion of umbral magnetic flux by thermal plumes rising through a loosely bound umbra.

  14. Spatial-temporal forecasting the sunspot diagram

    NASA Astrophysics Data System (ADS)

    Covas, Eurico

    2017-09-01

    Aims: We attempt to forecast the Sun's sunspot butterfly diagram in both space (I.e. in latitude) and time, instead of the usual one-dimensional time series forecasts prevalent in the scientific literature. Methods: We use a prediction method based on the non-linear embedding of data series in high dimensions. We use this method to forecast both in latitude (space) and in time, using a full spatial-temporal series of the sunspot diagram from 1874 to 2015. Results: The analysis of the results shows that it is indeed possible to reconstruct the overall shape and amplitude of the spatial-temporal pattern of sunspots, but that the method in its current form does not have real predictive power. We also apply a metric called structural similarity to compare the forecasted and the observed butterfly cycles, showing that this metric can be a useful addition to the usual root mean square error metric when analysing the efficiency of different prediction methods. Conclusions: We conclude that it is in principle possible to reconstruct the full sunspot butterfly diagram for at least one cycle using this approach and that this method and others should be explored since just looking at metrics such as sunspot count number or sunspot total area coverage is too reductive given the spatial-temporal dynamical complexity of the sunspot butterfly diagram. However, more data and/or an improved approach is probably necessary to have true predictive power.

  15. Is sunspot activity a factor in influenza pandemics?

    PubMed

    Qu, Jiangwen

    2016-09-01

    The 2009 AH1N1 pandemic became a global health concern, although fortunately, its worst anticipated effects were not realised. While the origins of such outbreaks remain poorly understood, it is very important to identify the precipitating factors in their emergence so that future pandemics can be detected as quickly as possible. Methords: Descriptive epidemiology was used to analyse the association between influenza pandemics and possible pandemics and relative number of sunspots. Non-conditional logistic regression was performed to analyse the statistical association between sunspot extremes and influenza pandemics to within plus or minus 1 year. Almost all recorded influenza/possible pandemics have occurred in time frames corresponding to sunspot extremes, or +/- 1 year within such extremes. These periods were identified as important risk factors in both possible and confirmed influenza pandemics (odds ratio: 3.87; 95% confidence interval: 1.08 to 13.85). Extremes of sunspot activity to within plus or minus 1 year may precipitate influenza pandemics. Mechanisms of epidemic initiation and early spread are discussed including primary causation by externally derived viral variants (from space via cometary dust). Efforts to construct a comprehensive early warning system for potential influenza and other viral pandemics that include analysis of sunspot activity and stratospheric sampling for viral variants should be supported. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Probing sunspots with two-skip time-distance helioseismology

    NASA Astrophysics Data System (ADS)

    Duvall, Thomas L., Jr.; Cally, Paul S.; Przybylski, Damien; Nagashima, Kaori; Gizon, Laurent

    2018-06-01

    Context. Previous helioseismology of sunspots has been sensitive to both the structural and magnetic aspects of sunspot structure. Aims: We aim to develop a technique that is insensitive to the magnetic component so the two aspects can be more readily separated. Methods: We study waves reflected almost vertically from the underside of a sunspot. Time-distance helioseismology was used to measure travel times for the waves. Ray theory and a detailed sunspot model were used to calculate travel times for comparison. Results: It is shown that these large distance waves are insensitive to the magnetic field in the sunspot. The largest travel time differences for any solar phenomena are observed. Conclusions: With sufficient modeling effort, these should lead to better understanding of sunspot structure.

  17. Flare differentially rotates sunspot on Sun's surface

    PubMed Central

    Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin

    2016-01-01

    Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463

  18. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  19. Cyclic and Long-Term Variation of Sunspot Magnetic Fields

    DTIC Science & Technology

    2014-10-15

    observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot areas and the sunspot field strengths for...cycles 15 – 19. This relationship was used to create a proxy of the peak magnetic field strength based on sunspot areas from the RGO and the USAF/NOAA...Next, we used the sunspot observations from the Royal Greenwich Observatory (RGO) to establish a relationship between the sunspot ar- Solar Origins of

  20. 70 Years of Sunspot Observations at Kanzelhoehe Observatory

    NASA Astrophysics Data System (ADS)

    Pötzi, W.; Veronig, A.; Temmer, M.; Baumgartner, D. J.; Freislich, H.; Strutzmann, H.

    During World War II the German Airforce established a network of observatories, among them the Kanzelhöhe Observatory (KSO), which would provide information on solar activity in order to investigate the conditions of the Earth's ionosphere in terms of radio-wave propagation. Solar observations began already in 1943 with photographs of the photosphere and drawings of sunspots, plage regions and faculae, as well as patrol observations of the solar corona. Since 1944 relative sunspot numbers were derived, these relative numbers agree with the new International Sunspot Number tep[ISN,][]{SIDC,Clette2014} within ≈ 10%. However, revisiting the historical data, we also find periods with larger deviations. There were two main reasons for these deviations. On the one hand major instrumental changes took place and the instrument was relocated to another observation tower. On the other hand there were periods of frequent replacements of personnel. In the long term, the instrumental improvements led to better image quality, and a trend towards better seeing conditions since the year 2000 was found.

  1. Sunspot drawings handwritten character recognition method based on deep learning

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  2. The area and absolute magnetic flux of sunspots over the past 400 years

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Tlatov, A. G.; Nagovitsyna, E. Yu.

    2016-09-01

    A new series of yearly-mean relative sunspot numbers SN 2 that has been extrapolated into the past (to 1610) is presented. The Kislovodsk series with the scale factor b = 1.0094 ± 0.0059 represents a reasonable continuation of the mean-monthly and mean-yearly total sunspot areas of the Greenwich series after 1976. The second maximum of the 24th solar-activity cycle was not anomalously low, and was no lower than 6 of the past 13 cycles. A series A 2 of values for the total sunspot area in 1610-2015 has been constructed, and is complementary to new versions of the series of the relative number of sunspots SN 2 and the number of sunspot groups GN 2. When needed, this series can be reduced to yield a quantity having a clear physical meaning—the spot absolute magnetic flux Φ Σ( t)[Mx] = 2.16 × 1019 A( t) [mvh]. The maximum sunspot area during the Maunder minimum is much higher in the new series compared to the previous version. This at least partially supports the validity of arguments that cast doubt on the anomalously low ampltude of the solar cycles during the Maunder minimum that has been assumed by many researchers earlier.

  3. Association of Plages with Sunspots: A Multi-Wavelength Study Using Kodaikanal Ca ii K and Greenwich Sunspot Area Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in

    Plages are the magnetically active chromospheric structures prominently visible in the Ca ii K line (3933.67 Å). A plage may or may not be associated with a sunspot, which is a magnetic structure visible in the solar photosphere. In this study we explore this aspect of association of plages with sunspots using the newly digitized Kodaikanal Ca ii K plage data and the Greenwich sunspot area data. Instead of using the plage index or fractional plage area and its comparison with the sunspot number, we use, to our knowledge for the first time, the individual plage areas and compare themmore » with the sunspot area time series. Our analysis shows that these two structures, formed in two different layers, are highly correlated with each other on a timescale comparable to the solar cycle. The area and the latitudinal distributions of plages are also similar to those of sunspots. Different area thresholdings on the “butterfly diagram” reveal that plages of area ≥4 arcmin{sup 2} are mostly associated with a sunspot in the photosphere. Apart from this, we found that the cyclic properties change when plages of different sizes are considered separately. These results may help us to better understand the generation and evolution of the magnetic structures in different layers of the solar atmosphere.« less

  4. Helioseismology of a Realistic Magnetoconvective Sunspot Simulation

    NASA Technical Reports Server (NTRS)

    Braun, D. C.; Birch, A. C.; Rempel, M.; Duvall, T. L., Jr.

    2012-01-01

    We compare helioseismic travel-time shifts measured from a realistic magnetoconvective sunspot simulation using both helioseismic holography and time-distance helioseismology, and measured from real sunspots observed with the Helioseismic and Magnetic Imager instrument on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observatory. We find remarkable similarities in the travel-time shifts measured between the methodologies applied and between the simulated and real sunspots. Forward modeling of the travel-time shifts using either Born or ray approximation kernels and the sound-speed perturbations present in the simulation indicates major disagreements with the measured travel-time shifts. These findings do not substantially change with the application of a correction for the reduction of wave amplitudes in the simulated and real sunspots. Overall, our findings demonstrate the need for new methods for inferring the subsurface structure of sunspots through helioseismic inversions.

  5. The effects of sunspots on solar irradiance

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.

    1982-01-01

    It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.

  6. Predictions of Sunspot Cycle 24: A Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Bhatt, N. J.; Jain, R.

    2017-12-01

    The space weather is largely affected due to explosions on the Sun viz. solar flares and CMEs, which, however, in turn depend upon the magnitude of the solar activity i e. number of sunspots and their magnetic configuration. Owing to these space weather effects, predictions of sunspot cycle are important. Precursor techniques, particularly employing geomagnetic indices, are often used in the prediction of the maximum amplitude of a sunspot cycle. Based on the average geomagnetic activity index aa (since 1868 onwards) for the year of the sunspot minimum and the preceding four years, Bhatt et al. (2009) made two predictions for sunspot cycle 24 considering 2008 as the year of sunspot minimum: (i) The annual maximum amplitude would be 92.8±19.6 (1-sigma accuracy) indicating a somewhat weaker cycle 24 as compared to cycles 21-23, and (ii) smoothed monthly mean sunspot number maximum would be in October 2012±4 months (1-sigma accuracy). However, observations reveal that the sunspot minima extended up to 2009, and the maximum amplitude attained is 79, with a monthly mean sunspot number maximum of 102.3 in February 2014. In view of the observations and particularly owing to the extended solar minimum in 2009, we re-examined our prediction model and revised the prediction results. We find that (i) The annual maximum amplitude of cycle 24 = 71.2 ± 19.6 and (ii) A smoothed monthly mean sunspot number maximum in January 2014±4 months. We discuss our failure and success aspects and present improved predictions for the maximum amplitude as well as for the timing, which are now in good agreement with the observations. Also, we present the limitations of our forecasting in the view of long term predictions. We show if year of sunspot minimum activity and magnitude of geomagnetic activity during sunspot minimum are taken correctly then our prediction method appears to be a reliable indicator to forecast the sunspot amplitude of the following solar cycle. References:Bhatt, N

  7. Sunspot Positions and Areas from Observations by Galileo Galilei

    NASA Astrophysics Data System (ADS)

    Vokhmyanin, M. V.; Zolotova, N. V.

    2018-02-01

    Sunspot records in the seventeenth century provide important information on the solar activity before the Maunder minimum, yielding reliable sunspot indices and the solar butterfly diagram. Galilei's letters to Cardinal Francesco Barberini and Marcus Welser contain daily solar observations on 3 - 11 May, 2 June - 8 July, and 19 - 21 August 1612. These historical archives do not provide the time of observation, which results in uncertainty in the sunspot coordinates. To obtain them, we present a method that minimizes the discrepancy between the sunspot latitudes. We provide areas and heliographic coordinates of 82 sunspot groups. In contrast to Sheiner's butterfly diagram, we found only one sunspot group near the Equator. This provides a higher reliability of Galilei's drawings. Large sunspot groups are found to emerge at the same longitude in the northern hemisphere from 3 May to 21 August, which indicates an active longitude.

  8. A SOLAR CYCLE LOST IN 1793-1800: EARLY SUNSPOT OBSERVATIONS RESOLVE THE OLD MYSTERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usoskin, Ilya G.; Mursula, Kalevi; Arlt, Rainer

    2009-08-01

    Because of the lack of reliable sunspot observations, the quality of the sunspot number series is poor in the late 18th century, leading to the abnormally long solar cycle (1784-1799) before the Dalton minimum. Using the newly recovered solar drawings by the 18-19th century observers Staudacher and Hamilton, we construct the solar butterfly diagram, i.e., the latitudinal distribution of sunspots in the 1790s. The sudden, systematic occurrence of sunspots at high solar latitudes in 1793-1796 unambiguously shows that a new cycle started in 1793, which was lost in the traditional Wolf sunspot series. This finally confirms the existence of themore » lost cycle that has been proposed earlier, thus resolving an old mystery. This Letter brings the attention of the scientific community to the need of revising the sunspot series in the 18th century. The presence of a new short, asymmetric cycle implies changes and constraints to sunspot cycle statistics, solar activity predictions, and solar dynamo theories, as well as for solar-terrestrial relations.« less

  9. Towards the automatic detection and analysis of sunspot rotation

    NASA Astrophysics Data System (ADS)

    Brown, Daniel S.; Walker, Andrew P.

    2016-10-01

    Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.

  10. What the Sunspot Record Tells Us About Space Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2004-01-01

    The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modem measures of solar activity including: 10.7-cm radio flux, total irradiance, x-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modem measures of solar activity, and enough to provide important details about long-term variations in solar activity or Space Climate. The sunspot record shows: 1) sunspot cycles have periods of 131 plus or minus 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5 ) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period, 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 1.45 plus or minus 30 in 2010 while the following cycle should have a maximum of about 70 plus or minus 30 in 2023.

  11. The Sunspot Record: 1826-1980

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2014-01-01

    The International Sunspot Number is used as a measure of the level of solar activity in many important studies. This includes studies of the effects of solar activity on climate change and on the generation of radioisotopes used to infer levels of solar activity going back thousands of years. Any systematic errors in the historical record of the sunspot number can profoundly alter the conclusions of these studies. There is substantial evidence that the currently accepted International Sunspot Numbers have been subjected to changes in the way the numbers are calculated and to changes in the weights given to observations of various observers. In this talk I will focus on the time period from 1826 to 1980 which covers principal observers Schwabe, Wolf, Wolfer, Brunner, and Waldmeier. Previous investigations have indicated problems associated with Schwabe's observations (1826 to 1867), the first decades of the Greenwich observations (1874 to about 1910), and the introduction of a different counting method by Waldmeier (1946-1980). I will examine the evidence for these problems and the possible solutions that might be used to provide improved estimates of the sunspot numbers and their errors over this time interval.

  12. Sunspot analysis and prediction

    NASA Technical Reports Server (NTRS)

    Steyer, C. C.

    1971-01-01

    An attempt is made to develop an accurate functional representation, using common trigonometric functions, of all existing sunspot data, both quantitative and qualitative, ancient and modern. It is concluded that the three periods of high sunspot activity (1935 to 1970, 1835 to 1870, and 1755 to 1790) are independent populations. It is also concluded that these populations have long periods of approximately 400, 500, and 610 years, respectively. The difficulties in assuming a periodicity of seven 11-year cycles of approximately 80 years are discussed.

  13. Electric current in a unipolar sunspot with an untwisted field

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Garcia, H. A.

    1990-01-01

    The return flux (RF) sunspot model is applied to a round, unipolar sunspot observed by H. Kawakami (1983). Solving the magnetohydrostatic problem using the gas pressure deficit between the umbral and quiet-sun atmospheres as a source function, a distribution of electric current density in an untwisted, unipolar sunspot as a function of height and radial distance from the sunspot center is observed. Maximum electric current density is about 32 mA/sq m at the bottom of the sunspot.

  14. The sunspot databases of the Debrecen Observatory

    NASA Astrophysics Data System (ADS)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  15. The Strongest Magnetic Field in Sunspots

    NASA Astrophysics Data System (ADS)

    Okamoto, J.; Sakurai, T.

    2017-12-01

    Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.

  16. ON THE RELATIONSHIP BETWEEN SUNSPOT STRUCTURE AND MAGNETIC FIELD CHANGES ASSOCIATED WITH SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn

    Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less

  17. Interference Fringes of Solar Acoustic Waves around Sunspots

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Zhao, Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-01

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  18. Estimating sunspot number

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.; Reichmann, E. J.; Teuber, D. L.

    1984-01-01

    An empirical method is developed to predict certain parameters of future solar activity cycles. Sunspot cycle statistics are examined, and curve fitting and linear regression analysis techniques are utilized.

  19. A Normalized Sunspot-Area Series Starting in 1832: An Update

    NASA Astrophysics Data System (ADS)

    Carrasco, V. M. S.; Vaquero, J. M.; Gallego, M. C.; Sánchez-Bajo, F.

    2016-11-01

    A new normalized sunspot-area series has been reconstructed from the series obtained by the Royal Greenwich Observatory and other contemporary institutions for the period 1874 - 2008 and the area series compiled by De la Rue, Stewart, and Loewy from 1832 to 1868. Since the two sets of series do not overlap in time, we used the new version of sunspot index number (Version 2) published by Sunspot Index and Long-term Solar Observations (SILSO) as a link between them. We also present a spectral analysis of the normalized-area series in search of periodicities beyond the well-known solar cycle of 11 years and a study of the Waldmeier effect in the new version of sunspot number and the sunspot-area series presented in this study. We conclude that while this effect is significant in the new series of sunspot number, it has a weak relationship with the sunspot-area series.

  20. Iwahashi Zenbei's Sunspot Drawings in 1793 in Japan

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Toriumi, Shin; Shibata, Kazunari

    2018-01-01

    Three Japanese sunspot drawings associated with Iwahashi Zenbei (1756 - 1811) are shown here from contemporary manuscripts and woodprint documents with the relevant texts. We reveal the observational date of one of the drawings to be 26 August 1793, and the overall observations lasted for over a year. Moreover, we identify the observational site for the dated drawing as Fushimi in Japan. We then compare Zenbei's observations with the group sunspot number and the raw group count from the Sunspot Index and Long-term Solar Observations (SILSO) to reveal the context of the data, and we conclude that these drawings fill gaps in our understanding that are due to the fragmental sunspot observations around 1793. These drawings are important as a clue to evaluate astronomical knowledge of contemporary Japan in the late eighteenth century and are valuable as a non-European observation, considering that most sunspot observations up to the middle of the nineteenth century are from Europe.

  1. On the Importance of Cycle Minimum in Sunspot Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.

    1996-01-01

    The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.

  2. A preliminary analysis on the dependence of the human diseases on the relative number of sunspot.

    NASA Astrophysics Data System (ADS)

    Ma, Yuehua; Song, Yi

    1996-03-01

    On the basis of the solar-terrestrial relations point of view, the paper investigates the influences of solar activities upon the human race. According to the data of Nanjing Hospital for Infectious Diseases, both the curve of the occurrence of various diseases and the relative number of sunspots with time are drawn, and their related coefficients are calculated. The preliminary results show that the incidences of typhus and scarlet fever keep in step with the 11-year cycle of solar activities, they get the maximum at the same year, while other diseases are not definite.

  3. The KULTURisk Regional Risk Assessment methodology for water-related natural hazards - Part 2: Application to the Zurich case study

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.

    2014-07-01

    The main objective of the paper is the application of the KULTURisk Regional Risk Assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River valley, in Switzerland. Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl River valley including the city of Zurich, which represents a typical case of river flooding in urban area. After characterizing the peculiarities of the specific case study, risk maps have been developed under a 300 years return period scenario (selected as baseline) for six identified relevant targets, exposed to flood risk in the Sihl valley, namely: people, economic activities (including buildings, infrastructures and agriculture), natural and semi-natural systems and cultural heritage. Finally, the total risk index map, which allows to identify and rank areas and hotspots at risk by means of Multi Criteria Decision Analysis tools, has been produced to visualize the spatial pattern of flood risk within the area of study. By means of a tailored participative approach, the total risk maps supplement the consideration of technical experts with the (essential) point of view of the relevant stakeholders for the appraisal of the specific scores and weights related to the receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher relative risks are concentrated in the deeply urbanized area within and around the Zurich city centre and areas that rely just behind to the Sihl River course. Here, forecasted injuries and potential fatalities are mainly due to high population density and high presence of old (vulnerable) people; inundated buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, the majority of them referring to the Zurich main

  4. Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation

    NASA Astrophysics Data System (ADS)

    Yadav, Rahul; Mathew, Shibu K.

    2018-04-01

    Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.

  5. Stories of Change: The University of Zurich, Switzerland

    NASA Astrophysics Data System (ADS)

    Schiedt, Eva Seiler

    The University of Zurich (UZH) is the largest university with the broadest range of courses in Switzerland. The number of students in the Autumn Semester 2008 was 24,788, out of which, 56% students were women. They were studying at the Faculty of Theology (246), the Faculty of Law (3,519), the Faculty of Economy (3,055), the Faculty of Medicine (2,397), the Vetsuisse-Faculty (veterinary medicine, 650), the Faculty of Arts (12,015), and the Faculty of Science (2,906). The staff consists of 463 professors, 2,559 assistants and senior scientists, and 1,696 administrative and technical staff. They work in 160 institutes, seminars, and clinics in and around the city of Zurich, most of them concentrated on three main campuses.

  6. A Statistical Study of Rapid Sunspot Structure Change Associated with Flares

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Zhong; Liu, Chang; Song, Hui; Deng, Na; Tan, Chang-Yi; Wang, Hai-Min

    2007-10-01

    We reported recently some rapid changes of sunspot structure in white-light (WL) associated with major flares. We extend the study to smaller events and present here results of a statistical study of this phenomenon. In total, we investigate 403 events from 1998 May 9 to 2004 July 17, including 40 X-class, 174 M-class, and 189 C-class flares. By monitoring the structure of the flaring active regions using the WL observations from the Transition Region and Coronal Explorer (TRACE), we find that segments in the outer sunspot structure decayed rapidly right after many flares; and that, on the other hand, the central part of sunspots near the flare-associated magnetic neutral line became darkened. These rapid and permanent changes are evidenced in the time profiles of WL mean intensity and are not likely resulted from the flare emissions. Our study further shows that the outer sunspot structure decay as well as the central structure darkening are more likely to be detected in larger solar flares. For X-class flares, over 40% events show distinct sunspot structure change. For M- and C-class flares, this percentage drops to 17% and 10%, respectively. The results of this statistical study support our previously proposed reconnection picture, i.e., the flare-related magnetic fields evolve from a highly inclined to a more vertical configuration.

  7. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES.

    PubMed

    Felipe, T; Braun, D C; Crouch, A D; Birch, A C

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  8. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    PubMed Central

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2018-01-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure. PMID:29670301

  9. HELIOSEISMIC HOLOGRAPHY OF SIMULATED SUNSPOTS: MAGNETIC AND THERMAL CONTRIBUTIONS TO TRAVEL TIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felipe, T.; Braun, D. C.; Crouch, A. D.

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effectmore » of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.« less

  10. On the insignificance of Herschel's sunspot correlation

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.

    2013-08-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is "statistically significant." On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are "insignificant." Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  11. On the insignificance of Herschel's sunspot correlation

    USGS Publications Warehouse

    Love, Jeffrey J.

    2013-01-01

    We examine William Herschel's hypothesis that solar-cycle variation of the Sun's irradiance has a modulating effect on the Earth's climate and that this is, specifically, manifested as an anticorrelation between sunspot number and the market price of wheat. Since Herschel first proposed his hypothesis in 1801, it has been regarded with both interest and skepticism. Recently, reports have been published that either support Herschel's hypothesis or rely on its validity. As a test of Herschel's hypothesis, we seek to reject a null hypothesis of a statistically random correlation between historical sunspot numbers, wheat prices in London and the United States, and wheat farm yields in the United States. We employ binary-correlation, Pearson-correlation, and frequency-domain methods. We test our methods using a historical geomagnetic activity index, well known to be causally correlated with sunspot number. As expected, the measured correlation between sunspot number and geomagnetic activity would be an unlikely realization of random data; the correlation is “statistically significant.” On the other hand, measured correlations between sunspot number and wheat price and wheat yield data would be very likely realizations of random data; these correlations are “insignificant.” Therefore, Herschel's hypothesis must be regarded with skepticism. We compare and contrast our results with those of other researchers. We discuss procedures for evaluating hypotheses that are formulated from historical data.

  12. ANALYSIS OF SUNSPOT AREA OVER TWO SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Toma, G.; Chapman, G. A.; Preminger, D. G.

    2013-06-20

    We examine changes in sunspots and faculae and their effect on total solar irradiance during solar cycles 22 and 23 using photometric images from the San Fernando Observatory. We find important differences in the very large spots between the two cycles, both in their number and time of appearance. In particular, there is a noticeable lack of very large spots in cycle 23 with areas larger than 700 millionths of a solar hemisphere which corresponds to a decrease of about 40% relative to cycle 22. We do not find large differences in the frequencies of small to medium spots betweenmore » the two cycles. There is a decrease in the number of pores and very small spots during the maximum phase of cycle 23 which is largely compensated by an increase during other phases of the solar cycle. The decrease of the very large spots, in spite of the fact that they represent only a few percent of all spots in a cycle, is primarily responsible for the observed changes in total sunspot area and total sunspot deficit during cycle 23 maximum. The cumulative effect of the decrease in the very small spots is an order of magnitude smaller than the decrease caused by the lack of large spots. These data demonstrate that the main difference between cycles 22 and 23 was in the frequency of very large spots and not in the very small spots, as previously concluded. Analysis of the USAF/NOAA and Debrecen sunspot areas confirms these findings.« less

  13. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, B. H.; Norton, A. A.; Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude ofmore » umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.« less

  14. Sunspot Seismology: Testing Surface Effects with Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Birch, A. C.; Hanasoge, S. M.

    2007-05-01

    The discovery that sunspots absorb acoustic waves was first announced twenty years ago at a previous SPD meeting in Honolulu. A considerable effort has been made to understand the physics of the interaction between acoustic waves and sunspots. However, the implications of this two-decade old discovery are still being explored in helioseismology. An ongoing controversy involves the role of surface effects, including absorption, in modeling the subsurface structure of sunspots. Braun and Birch recently suggested that observed frequency variations, at fixed phase speeds, of acoustic travel-time perturbations through sunspots offers evidence for a strong contribution to travel times from structures with vertical scales smaller than about one Mm near the solar surface. We test this suggestion with the numerical simulations of acoustic-wave propagation hrough specified sound-speed perturbations of a background solar model. An important finding is that travel times measured using helioseismic holography from simulations employing sound-speed perturbations typical of recent time-distance inversions do not predict the strong frequency variations observed in with solar data. We are in the process of evaluating whether shallow sound-speed perturbations, such as that proposed by Fan, Braun and Chou to explain the acoustic scattering propertis of sunspots observed with Hankel analysis, can reproduce the frequency variations observed in sunspots. This work is supported by contracts NAS5-02139, NNH05CC76C and NNH04CC05C from NASA, and grant AST-0406225 from the NSF.

  15. Sunspots Resource--From Ancient Cultures to Modern Research

    NASA Astrophysics Data System (ADS)

    Craig, N.

    2000-10-01

    Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.

  16. Latitudinal migration of sunspots based on the ESAI database

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Li, Fu-Yu; Feng, Wen

    2018-01-01

    The latitudinal migration of sunspots toward the equator, which implies there is propagation of the toroidal magnetic flux wave at the base of the solar convection zone, is one of the crucial observational bases for the solar dynamo to generate a magnetic field by shearing of the pre-existing poloidal magnetic field through differential rotation. The Extended time series of Solar Activity Indices (ESAI) elongated the Greenwich observation record of sunspots by several decades in the past. In this study, ESAI’s yearly mean latitude of sunspots in the northern and southern hemispheres during the years 1854 to 1985 is utilized to statistically test whether hemispherical latitudinal migration of sunspots in a solar cycle is linear or nonlinear. It is found that a quadratic function is statistically significantly better at describing hemispherical latitudinal migration of sunspots in a solar cycle than a linear function. In addition, the latitude migration velocity of sunspots in a solar cycle decreases as the cycle progresses, providing a particular constraint for solar dynamo models. Indeed, the butterfly wing pattern with a faster latitudinal migration rate should present stronger solar activity with a shorter cycle period, and it is located at higher latitudinal position, giving evidence to support the Babcock-Leighton dynamo mechanism.

  17. Sunspot Activity Near Cycle Minimum and What it Might Suggest for Cycle 24, the Next Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    In late 2008, 12-month moving averages of sunspot number, number of spotless days, number of groups, area of sunspots, and area per group were reflective of sunspot cycle minimum conditions for cycle 24, these values being of or near record value. The first spotless day occurred in January 2004 and the first new-cycle, high-latitude spot was reported in January 2008, although old-cycle, low-latitude spots have continued to be seen through April 2009, yielding an overlap of old and new cycle spots of at least 16 mo. New-cycle spots first became dominant over old-cycle spots in September 2008. The minimum value of the weighted mean latitude of sunspots occurred in May 2007, measuring 6.6 deg, and the minimum value of the highest-latitude spot followed in June 2007, measuring 11.7 deg. A cycle length of at least 150 mo is inferred for cycle 23, making it the longest cycle of the modern era. Based on both the maximum-minimum and amplitude-period relationships, cycle 24 is expected to be only of average to below-average size, peaking probably in late 2012 to early 2013, unless it proves to be a statistical outlier.

  18. MAGNETIC TOPOLOGY OF A NAKED SUNSPOT: IS IT REALLY NAKED?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sainz Dalda, A.; Vargas Dominguez, S.; Tarbell, T. D.

    The high spatial, temporal, and spectral resolution achieved by Hinode instruments gives much better understanding of the behavior of some elusive solar features, such as pores and naked sunspots. Their fast evolution and, in some cases, their small sizes have made their study difficult. The moving magnetic features (MMFs) have been studied during the last 40 years. They have been always associated with sunspots, especially with the penumbra. However, a recent observation of a naked sunspot (one with no penumbra) has shown MMF activity. The authors of this reported observation expressed their reservations about the explanation given to the bipolarmore » MMF activity as an extension of the penumbral filaments into the moat. How can this type of MMF exist when a penumbra does not? In this Letter, we study the full magnetic and (horizontal) velocity topology of the same naked sunspot, showing how the existence of a magnetic field topology similar to that observed in sunspots can explain these MMFs, even when the intensity map of the naked sunspot does not show a penumbra.« less

  19. NASA's SDO Observes Largest Sunspot of the Solar Cycle

    NASA Image and Video Library

    2017-12-08

    On Oct. 18, 2014, a sunspot rotated over the left side of the sun, and soon grew to be the largest active region seen in the current solar cycle, which began in 2008. Currently, the sunspot is almost 80,000 miles across -- ten Earth's could be laid across its diameter. Sunspots point to relatively cooler areas on the sun with intense and complex magnetic fields poking out through the sun's surface. Such areas can be the source of solar eruptions such as flares or coronal mass ejections. So far, this active region – labeled AR 12192 -- has produced several significant solar flares: an X-class flare on Oct. 19, an M-class flare on Oct. 21, and an X-class flare on Oct. 22, 2014. The largest sunspot on record occurred in 1947 and was almost three times as large as the current one. Active regions are more common at the moment as we are in what's called solar maximum, which is the peak of the sun's activity, occurring approximately every 11 years. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. An infrared polarimetric study of sunspots

    NASA Astrophysics Data System (ADS)

    Hewagama, Tilak

    A polarimetric study of the extremely Zeeman sensitive 12.32 microns neutral magnesium (Mg I) emission line from sunspots is discussed. A single blocked impurity band (BIB) detector in a cryogenic grating postdisperser was used to limit the McMath Fourier transform spectrometer (FTS) bandpass and obtain high signal/noise spectra at 0.005 cm-1 spectral resolution with 4.5 sec spatial resolution. A polarization analyzer preceded the FTS and consisted of an anti-reflection coated CdS 1/4 waveplate and a thin film Ge linear polarizer. A second 1/4 waveplate was mounted at 45 deg to the linear polarizer to eliminate dependence on the polarization properties of the FTS optics and postdisperser grating. The instrument polarization introduced by the McMath telescope is shown to be negligible for the purpose of 12 microns polarimetry, and theoretical arguments are presented to show that the 12 microns observations are not corrupted by magneto-optical effects. Stokes I,Q,U, and V profiles were generated by subtracting successive interferograms. The time resolution of a set of Stokes parameters was 12 minutes. Within the sunspot the Zeeman triplet was fully resolved. Since the line is optically thin, it was possible to derive vector fields by non-linear least squares fits of the Seares formulae to the observed Stokes profiles. The observations of a visually symmetric sunspot (23-28 Oct. 1989) show that the 12 microns emission is completely polarized. This implies that the sunspot magnetic field at the 12 microns altitude is not filamentary in the sense of containing field-free regions nor is there cancellation of field, over any spatial scale, in the beam area. The sunspot field strength varied from 2050 G in the umbra to 650 G at the outer penumbral edge, and the magnetic structure extended well beyond the photometric edge of the sunspot. Vector magnetograms obtained for the same spot by the Haleakala Stokes polarimeter, operating at 6302.5 A, show an umbral field strength

  1. Solar ALMA Observations: Constraining the Chromosphere above Sunspots

    NASA Astrophysics Data System (ADS)

    Loukitcheva, Maria A.; Iwai, Kazumasa; Solanki, Sami K.; White, Stephen M.; Shimojo, Masumi

    2017-11-01

    We present the first high-resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a sunspot at wavelengths of 1.3 and 3 mm, obtained during the solar ALMA Science Verification campaign in 2015, and compare them with the predictions of semi-empirical sunspot umbral/penumbral atmosphere models. For the first time, millimeter observations of sunspots have resolved umbral/penumbral brightness structure at the chromospheric heights, where the emission at these wavelengths is formed. We find that the sunspot umbra exhibits a radically different appearance at 1.3 and 3 mm, whereas the penumbral brightness structure is similar at the two wavelengths. The inner part of the umbra is ˜600 K brighter than the surrounding quiet Sun (QS) at 3 mm and is ˜700 K cooler than the QS at 1.3 mm, being the coolest part of sunspot at this wavelength. On average, the brightness of the penumbra at 3 mm is comparable to the QS brightness, while at 1.3 mm it is ˜1000 K brighter than the QS. Penumbral brightness increases toward the outer boundary in both ALMA bands. Among the tested umbral models, that of Severino et al. provides the best fit to the observational data, including both the ALMA data analyzed in this study and data from earlier works. No penumbral model among those considered here gives a satisfactory fit to the currently available measurements. ALMA observations at multiple millimeter wavelengths can be used for testing existing sunspot models, and serve as an important input to constrain new empirical models.

  2. On long-term periodicities in the sunspot record

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1984-01-01

    Sunspot records are systematically maintained, with the knowledge that an 11 year average period exists since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle eight through the present. On the basis of cycles 8 through 20, various combinations of sine curves were used to approximate the observed R sub MAX values (where R sub MAX is the smoothed sunspot number at cycle maximum). It is found that a three component sinusoidal function, having an 11 cycle and a 2 cycle variation on a 90 cycle periodicity, yields computed R sub MAX values which fit, reasonably well, observed R sub MAX values for the modern sunspot cycles. Extrapolation of the empirical functions forward in time allows for the projection of values of R sub MAX for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5. For cycle 22, the function projects a value of about 107. Linear regressions applied to cycle 22 indicate a long-period cycle (cycle duration 132 months). An extensive bibliography on techniques used to estimate the time dependent behavior of sunspot cycles is provided.

  3. STATISTICAL COMPARISON BETWEEN PORES AND SUNSPOTS BY USING SDO/HMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, I.-H.; Cho, K.-S.; Bong, S.-C.

    2015-09-20

    We carried out an extensive statistical study of the properties of pores and sunspots, and investigated the relationship among their physical parameters such as size, intensity, magnetic field, and the line-of-sight (LOS) velocity in the umbrae. For this, we classified 9881 samples into three groups of pores, transitional sunspots, and mature sunspots. As a result, (1) we find that the total magnetic flux inside the umbra of pores, transitional sunspots, and mature sunspots increases proportionally to the powers of the area and the power indices in the three groups significantly differ from each other. (2) The umbral area distribution ofmore » each group shows a Gaussian distribution and they are clearly separated, displaying three distinct peak values. All of the quantities significantly overlap among the three groups. (3) The umbral intensity shows a rapid decrease with increasing area, and their magnetic field strength shows a rapid increase with decreasing intensity. (4) The LOS velocity in pores is predominantly redshifted and its magnitude decreases with increasing magnetic field strength. The decreasing trend becomes nearly constant with marginal blueshift in the case of mature sunspots. The dispersion of LOS velocities in mature sunspots is significantly suppressed compared to pores. From our results, we conclude that the three groups have different characteristics in their area, intensity, magnetic field, and LOS velocity as well in their relationships.« less

  4. Frequently Occurring Reconnection Jets from Sunspot Light Bridges

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie

    2018-02-01

    Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.

  5. Solar Records: The Wolf Sunspot Index and Umbral/Penumbral Ratio

    DOE Data Explorer

    Hoyt, Douglas V. [National Center for Atmospheric Research, Boulder, CO (United States)

    1985-01-01

    These data from observations of sunspot activity cover the period 1875 through 1981; reconstructions are possible back to 1832. Available sunspot models and the theory of mixing length indicate that the observed changes in the umbral/penumbral (U/P) ratio may be equivalent to changes in the solar constant. The U/P ratio is calculated from measurements of solar activity and has been shown to be in good agreement with the Northern Hemisphere temperature record. The data consist of year, number of sunspot groups, Wolf sunspot number, umbra area, whole area, penumbral area, and umbral/penumbral ratio. The data are in one file (3.3 kB).

  6. A solar eruption driven by rapid sunspot rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Guiping; Chen, Yao; Du, Guohui

    We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. The filament and some overlying arcades were partially rooted in a sunspot. The sunspot rotated at ∼10° hr{sup –1} during a period of 6 hr prior to the eruption. In this period, the filament was found to rise gradually along with the sunspot rotation. Based on the Helioseismic and Magnetic Imager observation, for an area along the polarity inversion line underneath the filament,more » we found gradual pre-eruption decreases of both the mean strength of the photospheric horizontal field (B{sub h} ) and the mean inclination angle between the vector magnetic field and the local radial (or vertical) direction. These observations are consistent with the pre-eruption gradual rising of the filament-associated magnetic structure. In addition, according to the nonlinear force-free field reconstruction of the coronal magnetic field, a pre-eruption magnetic flux rope structure is found to be in alignment with the filament, and a considerable amount of magnetic energy was transported to the corona during the period of sunspot rotation. Our study provides evidence that in this event sunspot rotation plays an important role in twisting, energizing, and destabilizing the coronal filament-flux rope system, and led to the eruption. We also propose that the pre-event evolution of B{sub h} may be used to discern the driving mechanism of eruptions.« less

  7. A New Revision of the Solar Irradiance Climate Data Record Incorporates Recent Research into Proxies of Sunspot Darkening and the Sunspot Number Record

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Lean, J.; Pilewskie, P.; Baranyi, T.; Snow, M. A.; Kopp, G.; Richard, E. C.; Lindholm, C.

    2017-12-01

    An operational climate data record (CDR) of total and spectral solar irradiance became available in November 2015 as part of the National Oceanographic and Atmospheric Administration's National Centers for Environmental Information Climate Data Record Program. The data record, which is updated quarterly, is available from 1610 to the present as yearly-average values and from 1882 to the present as monthly- and daily-averages, with associated time and wavelength-dependent uncertainties. It was developed jointly by the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics and the Naval Research Laboratory, and, together with the source code and supporting documentation, is available at https://www.ncdc.noaa.gov/cdr/. In the Solar Irradiance CDR, total solar irradiance (TSI) and solar spectral irradiance (SSI) are estimated from models that determine the changes from quiet Sun conditions arising from bright faculae and dark sunspots on the solar disk. The models are constructed using linear regression of proxies of solar sunspot and facular features with the approximately decade-long irradiance observations from the SOlar Radiation and Climate Experiment. A new revision of this data record was recently released in an ongoing effort to reduce solar irradiance uncertainties in two ways. First, the sunspot darkening proxy was revised using a new cross calibration of the current sunspot region observations made by the Solar Observing Optical Network with the historical records of the Royal Greenwich Observatory. This implementation affects modeled irradiances from 1882 - 1978. Second, the impact of a revised record of sunspot number by the Sunspot Index and Long-term Solar Observations center on modeled irradiances was assessed. This implementation provides two different reconstructions of historical, yearly-averaged irradiances from 1610-1881. Additionally, we show new, preliminary results that demonstrate improvements in modeled TSI by using

  8. Digitized archive of the Kodaikanal images: Representative results of solar cycle variation from sunspot area determination

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Priya, T. G.; Amareswari, K.; Priyal, M.; Nazia, A. A.; Banerjee, D.

    2013-02-01

    Context. Sunspots have been observed since Galileo Galilei invented the telescope. Later, sunspot drawings have been upgraded to image storage using photographic plate in the second half of nineteenth century. These photographic images are valuable data resources for studying long-term changes in the solar magnetic field and its influence on the Earth's climate and weather. Aims: Digitized photographic plates cannot be used directly for the scientific analysis. It requires certain steps of calibration and processing before using them for extracting any useful information. The final data can be used to study solar cycle variations over several cycles. Methods: We digitized more than 100 years of white-light images stored in photographic plates and films that are available at Kodaikanal observatory starting from 1904. The images were digitized using a 4k × 4k format CCD-camera-based digitizer unit.The digitized images were calibrated for relative plate density and aligned in such a way that the solar north is in upward direction. A semi-automated sunspot detection technique was used to identify the sunspots on the digitized images. Results: In addition to describing the calibration procedure and availability of the data, we here present preliminary results on the sunspot area measurements and their variation with time. The results show that the white-light images have a uniform spatial resolution throughout the 90 years of observations. However, the contrast of the images decreases from 1968 onwards. The images are circular and do not show any major geometrical distortions. The measured monthly averaged sunspot areas closely match the Greenwich sunspot area over the four solar cycles studied here. The yearly averaged sunspot area shows a high degree of correlation with the Greenwich sunspot area. Though the monthly averaged sunspot number shows a good correlation with the monthly averaged sunspot areas, there is a slight anti-correlation between the two during solar

  9. Photometric measurements of solar irradiance variations due to sunspots

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Herzog, A. D.; Laico, D. E.; Lawrence, J. K.; Templer, M. S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage.

  10. Subphotospheric Resonator and Local Oscillations in Sunspots

    NASA Astrophysics Data System (ADS)

    Zhugzhda, Yu. D.

    2018-05-01

    The conditions under which the subphotospheric slow-wave resonator can be responsible for the local oscillations in a sunspot have been determined. A rich spectrum of local 3-min oscillations can be produced by the subphotospheric resonator only if the magnetic field in the resonator magnetic flux tube is much weaker than the surrounding sunspot magnetic field. Convective upflows of hot plasma in the sunspot magnetic field satisfy this condition. Consequently, there must be a correlation between the local oscillations and umbral dots, because the latter are produced by convective flows. Various modes of operation of the subphotospheric resonator give rise to wave packets of 3-min oscillations and umbral flashes. It is shown that giant local umbral flashes can emerge under certain conditions for the excitation of oscillations in the subphotospheric resonator.

  11. Extreme Value Theory and the New Sunspot Number Series

    NASA Astrophysics Data System (ADS)

    Acero, F. J.; Carrasco, V. M. S.; Gallego, M. C.; García, J. A.; Vaquero, J. M.

    2017-04-01

    Extreme value theory was employed to study solar activity using the new sunspot number index. The block maxima approach was used at yearly (1700-2015), monthly (1749-2016), and daily (1818-2016) scales, selecting the maximum sunspot number value for each solar cycle, and the peaks-over-threshold (POT) technique was used after a declustering process only for the daily data. Both techniques led to negative values for the shape parameters. This implies that the extreme sunspot number value distribution has an upper bound. The return level (RL) values obtained from the POT approach were greater than when using the block maxima technique. Regarding the POT approach, the 110 year (550 and 1100 year) RLs were lower (higher) than the daily maximum observed sunspot number value of 528. Furthermore, according to the block maxima approach, the 10-cycle RL lay within the block maxima daily sunspot number range, as expected, but it was striking that the 50- and 100-cycle RLs were also within that range. Thus, it would seem that the RL is reaching a plateau, and, although one must be cautious, it would be difficult to attain sunspot number values greater than 550. The extreme value trends from the four series (yearly, monthly, and daily maxima per solar cycle, and POT after declustering the daily data) were analyzed with the Mann-Kendall test and Sen’s method. Only the negative trend of the daily data with the POT technique was statistically significant.

  12. Wings of the butterfly: Sunspot groups for 1826-2015

    NASA Astrophysics Data System (ADS)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  13. Sunspot splitting triggering an eruptive flare

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Puschmann, Klaus G.; Kliem, Bernhard; Balthasar, Horst; Denker, Carsten

    2014-02-01

    Aims: We investigate how the splitting of the leading sunspot and associated flux emergence and cancellation in active region NOAA 11515 caused an eruptive M5.6 flare on 2012 July 2. Methods: Continuum intensity, line-of-sight magnetogram, and dopplergram data of the Helioseismic and Magnetic Imager were employed to analyse the photospheric evolution. Filtergrams in Hα and He I 10830 Å of the Chromospheric Telescope at the Observatorio del Teide, Tenerife, track the evolution of the flare. The corresponding coronal conditions were derived from 171 Å and 304 Å images of the Atmospheric Imaging Assembly. Local correlation tracking was utilized to determine shear flows. Results: Emerging flux formed a neutral line ahead of the leading sunspot and new satellite spots. The sunspot splitting caused a long-lasting flow towards this neutral line, where a filament formed. Further flux emergence, partly of mixed polarity, as well as episodes of flux cancellation occurred repeatedly at the neutral line. Following a nearby C-class precursor flare with signs of interaction with the filament, the filament erupted nearly simultaneously with the onset of the M5.6 flare and evolved into a coronal mass ejection. The sunspot stretched without forming a light bridge, splitting unusually fast (within about a day, complete ≈6 h after the eruption) in two nearly equal parts. The front part separated strongly from the active region to approach the neighbouring active region where all its coronal magnetic connections were rooted. It also rotated rapidly (by 4.9° h-1) and caused significant shear flows at its edge. Conclusions: The eruption resulted from a complex sequence of processes in the (sub-)photosphere and corona. The persistent flows towards the neutral line likely caused the formation of a flux rope that held the filament. These flows, their associated flux cancellation, the emerging flux, and the precursor flare all contributed to the destabilization of the flux rope. We

  14. Time-Distance Sunspot Seismology with GONG Data

    NASA Astrophysics Data System (ADS)

    Braun, D. C.

    1997-09-01

    We present time-distance analyses of several active regions and a region of quiet Sun observed with the Global Oscillation Network Group (GONG). Analyzing temporal correlations between the p-mode oscillation signal observed within the sunspots with the signals integrated within surrounding annuli, we confirm the recent finding of Duvall and his colleagues that travel times (τ+) for outward propagating p-modes are smaller by approximately 1 minute than corresponding inward travel times (τ-). We also analyze correlations of the oscillation signal integrated within annuli of different radii. By varying the radius of the inner annulus (that which is closer to the target) we show that the radial extent of the region giving rise to the travel time perturbations is coincident with the outer boundary of the sunspot penumbrae. A comparison of independent methods designed to determine the mean travel time perturbations of p-modes passing through the sunspots is made. We find the surprising result that time-distance correlations that do not utilize the signal within the sunspot itself (employing ``two-skip'' trajectories) yield mean travel times that differ substantially from the average of τ+ and τ- and that are significantly closer in agreement with times predicted from scattering phase shifts measured by Hankel decomposition techniques. These observations suggest that it unlikely that Doppler shifts caused by subsurface flows are responsible for the travel time differences determined from center-annuli correlations targeted on sunspots. This work utilizes data obtained by the Global Oscillation Network Group (GONG) project, managed by the National Solar Observatory, a Division of the National Optical Astronomy Observatories, which is operated by AURA, Inc., under a cooperative agreement with the National Science Foundation.

  15. Fine Structure and Dynamics of Sunspot Penumbra

    NASA Astrophysics Data System (ADS)

    Ryutova, M.; Berger, T.; Title, A.

    2007-08-01

    A mature sunspot is usually surrounded by a penumbra: strong vertical magnetic field in the umbra, the dark central region of sunspot, becomes more and more horizontal toward the periphery forming an ensemble of a thin magnetic filaments of varying inclinations. Recent high resolution observations with the 1-meter Swedish Solar Telescope (SST) on La Palma revealed a fine substructure of penumbral filaments and new regularities in their dynamics.1 These findings provide both the basis and constraints for an adequate model of the penumbra whose origin still remains enigmatic. We present results of recent observations obtained with the SST. Our data, taken simultaneously in 4305 Å G-band and 4396 Å continuum bandpasses and compiled in high cadence movies, confirm previous results and reveal new features of the penumbra. We find e.g. that individual filaments are cylindrical helices with a pitch/radius ratio providing their dynamic stability. We propose a mechanism that may explain the fine structure of penumbral filaments, the observed regularities, and their togetherness with sunspot formation. The mechanism is based on the anatomy of sunspots in which not only penumbra has a filamentary structure but umbra itself is a dense conglomerate of twisted interlaced flux tubes.

  16. Tracking Sunspots from Mars, April 2015 Animation

    NASA Image and Video Library

    2015-07-10

    This single frame from a sequence of six images of an animation shows sunspots as viewed by NASA Curiosity Mars rover from April 4 to April 15, 2015. From Mars, the rover was in position to see the opposite side of the sun. The images were taken by the right-eye camera of Curiosity's Mast Camera (Mastcam), which has a 100-millimeter telephoto lens. The view on the left of each pair in this sequence has little processing other than calibration and putting north toward the top of each frame. The view on the right of each pair has been enhanced to make sunspots more visible. The apparent granularity throughout these enhanced images is an artifact of this processing. These sunspots seen in this sequence eventually produced two solar eruptions, one of which affected Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19802

  17. VizieR Online Data Catalog: Scheiner drawing sunspot areas and tilt angles (Arlt+, 2016)

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-09-01

    Christoph Scheiner and his collaborators observed the sunspots from 1611-1631 at five different locations of Rome in Italy, Ingolstadt in Germany, Douai (Duacum in Latin) in France, Freiburg im Breisgau, Germany and Vienna, Austria. However, most of his published drawings were made in Rome. These sunspot drawings are important because they can tell us how the solar activity declined to a very low-activity phase which lasted for nearly five decades. The three sources used for the sunspot data extraction are Scheiner (1630rour.book.....S, Rosa Ursina sive solis), Scheiner (1651ppsm.book.....S, Prodromus pro sole mobili et terra stabili contra Academicum Florentinum Galilaeum a Galilaeis), and Reeves & Van Helden (2010, On sunspots. Galileo Galilei and Christoph Scheiner (University of Chicago Press)). The suspot drawings show the sunspot groups traversing the solar disk in a single full-disk drawing. The positions and areas of the sunspots were measured using 13 circular cursor shapes with different diameters. Umbral areas for 8167 sunspots and tilt angles for 697 manually selected, supposedly bipolar groups were obtained from Scheiner's sunspot drawings. The database does not contain spotless days. There is, of course, no polarity information in the sunspot drawings, so the tilt angles are actually pseudo-tilt angles. Both an updated sunspot database and a tilt angle database may be available at http://www.aip.de/Members/rarlt/sunspots for further study. (2 data files).

  18. Evolution of the Sunspot Number and Solar Wind B Time Series

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.; Herbst, Konstantin

    2018-03-01

    The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.

  19. The nature of the sunspot phenomenon. I - Solutions of the heat transport equation

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.

  20. KULTURisk regional risk assessment methodology for water-related natural hazards - Part 2: Application to the Zurich case study

    NASA Astrophysics Data System (ADS)

    Ronco, P.; Bullo, M.; Torresan, S.; Critto, A.; Olschewski, R.; Zappa, M.; Marcomini, A.

    2015-03-01

    The aim of this paper is the application of the KULTURisk regional risk assessment (KR-RRA) methodology, presented in the companion paper (Part 1, Ronco et al., 2014), to the Sihl River basin, in northern Switzerland. Flood-related risks have been assessed for different receptors lying on the Sihl River valley including Zurich, which represents a typical case of river flooding in an urban area, by calibrating the methodology to the site-specific context and features. Risk maps and statistics have been developed using a 300-year return period scenario for six relevant targets exposed to flood risk: people; economic activities: buildings, infrastructure and agriculture; natural and semi-natural systems; and cultural heritage. Finally, the total risk index map has been produced to visualize the spatial pattern of flood risk within the target area and, therefore, to identify and rank areas and hotspots at risk by means of multi-criteria decision analysis (MCDA) tools. Through a tailored participatory approach, risk maps supplement the consideration of technical experts with the (essential) point of view of relevant stakeholders for the appraisal of the specific scores weighting for the different receptor-relative risks. The total risk maps obtained for the Sihl River case study are associated with the lower classes of risk. In general, higher (relative) risk scores are spatially concentrated in the deeply urbanized city centre and areas that lie just above to river course. Here, predicted injuries and potential fatalities are mainly due to high population density and to the presence of vulnerable people; flooded buildings are mainly classified as continuous and discontinuous urban fabric; flooded roads, pathways and railways, most of them in regards to the Zurich central station (Hauptbahnhof) are at high risk of inundation, causing severe indirect damage. Moreover, the risk pattern for agriculture, natural and semi-natural systems and cultural heritage is relatively

  1. Sunspot Oscillations From The Chromosphere To The Corona

    NASA Astrophysics Data System (ADS)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  2. Parallel Group and Sunspot Counts from SDO/HMI and AAVSO Visual Observers (Abstract)

    NASA Astrophysics Data System (ADS)

    Howe, R.; Alvestad, J.

    2015-06-01

    (Abstract only) Creating group and sunspot counts from the SDO/HMI detector on the Solar Dynamics Observatory (SDO) satellite requires software that calculates sunspots from a “white light” intensity-gram (CCD image) and group counts from a filtered CCD magneto-gram. Images from the satellite come from here http://jsoc.stanford.edu/data/hmi/images/latest/ Together these two sets of images can be used to estimate the Wolf number as W = (10g + s), which is used to calculate the American Relative index. AAVSO now has approximately two years of group and sunspot counts in the SunEntry database as SDOH observer Jan Alvestad. It is important that we compare these satellite CCD image data with our visual observer daily submissions to determine if the SDO/HMI data should be included in calculating the American Relative index. These satellite data are continuous observations with excellent seeing. This contrasts with “snapshot” earth-based observations with mixed seeing. The SDO/HIM group and sunspot counts could be considered unbiased, except that they show a not normal statistical distribution when compared to the overall visual observations, which show a Poisson distribution. One challenge that should be addressed by AAVSO using these SDO/HMI data is the splitting of groups and deriving group properties from the magneto-grams. The filtered CCD detector that creates the magento-grams is not something our visual observers can relate too, unless they were to take CCD images in H-alpha and/or the Calcium spectrum line. So, questions remain as to how these satellite CCD image counts can be integrated into the overall American Relative index.

  3. Sunspots, Starspots, and Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry P.

    2017-08-01

    The composition of plasma in solar and stellar atmospheres is not fixed, but varies from feature to feature. These variations are organized by the First Ionization Potential (FIP) of the element. Solar measurements often indicate that low FIP elements (< 10eV, such as Fe, Si, Mg) are enriched by factors of 3-4 in the corona relative to high FIP elements (>10 eV, such as C, N, O, Ar, He) compared to abundances in the photosphere. Stellar observations have also shown similar enrichments. An inverse FIP effect, where the low FIP elements are depleted, has been observed in stellar coronae of stars believed to have large starspots in their photospheres. The abundances are important for determining radiative loss rates in models, tracing the origin of the slow solar wind, and for understanding wave propagation in the chromosphere and corona. Recently, inverse FIP effects have been discovered in the Sun (Doschek, Warren, & Feldman 2015, ApJ, 808, L7) from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The inverse FIP regions seem always to be near sunspots and cover only a very small area (characteristic length = a few arcseconds). However, in pursuing the search for inverse FIP regions, we have found that in some sunspot groups the coronal abundance at a temperature of 3-4 MK can be near photospheric over much larger areas of the sun near the sunspots (e.g., 6,000 arcsec2). Also, sometimes the abundances at 3-4 MK are in between coronal and photospheric values. This can occur in small areas of an active region. It is predicted (Laming 2015, Sol. Phys., 12, 2) that the FIP effect should be highly variable in the corona. Several examples of coronal abundance variations are presented. Our work indicates that a comprehensive re-investigation of solar abundances is highly desirable. This work is supported by a NASA Hinode grant.

  4. SOHO reveals how sunspots take a stranglehold on the Sun

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Bernhard Fleck, ESA's project scientist for SOHO, comments, "The origin and stability of sunspots has been one of the long-standing mysteries in solar physics. I am delighted to see that with SOHO we are beginning to crack this problem." The gas flows around and beneath a sunspot have been detected by a team of scientists in the USA, using the Michelsen Doppler Imager (MDI) on SOHO. The instrument explores the solar interior by detecting natural sound waves at a million points on the Sun's surface. "After many years of contradictory theories about sunspots, MDI on SOHO is at last telling us what really happens," comments Junwei Zhao of Stanford University, California, lead author of a report published in the Astrophysical Journal. Inflows and downflows similar to those now detected with SOHO were envisaged in 1974 by Friedrich Meyer of Germany's Max-Planck- Institut für Physik und Astrophysik, and his colleagues. A similar expectation figured in a theory of sunspots advanced in 1979 by Eugene Parker of Chicago. "Our observation seems to provide strong evidence for both predictions," Zhao says. Sunspots have fascinated scientists since Galileo's time, 400 years ago, when they shattered a belief that the Sun was divinely free of any blemish. As symptoms of intense magnetic activity, sunspots are often associated with solar flares and mass ejections that affect space weather and the Earth itself. The Sun's activity peaks roughly every 11 years, and the latest maximum in the sunspot count occurred in 2000. Even with huge advances in helioseismology, which deduces layers and flows inside the Sun by analysis of sound waves that travel through it and agitate the surface, seeing behind the scenes in sunspots was never going to be easy. The MDI team refined a method of measuring the travel time of sound waves, invented in 1993 by Thomas Duvall of NASA Goddard, called solar tomography. It is like deducing what obstacles cross-country runners have faced, just by seeing in

  5. AN ASSESSMENT OF SUNSPOT NUMBER DATA COMPOSITES OVER 1845–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, M.; Owens, M. J.; Barnard, L.

    2016-06-10

    New sunspot data composites, some of which are radically different in the character of their long-term variation, are evaluated over the interval 1845–2014. The method commonly used to calibrate historic sunspot data, relative to modern-day data, is “daisy-chaining,” whereby calibration is passed from one data subset to the neighboring one, usually using regressions of the data subsets for the intervals of their overlap. Recent studies have illustrated serious pitfalls in these regressions, and the resulting errors can be compounded by their repeated use as the data sequence is extended back in time. Hence, the recent composite data series by Usoskinmore » et al., R {sub UEA}, is a very important advance because it avoids regressions, daisy-chaining, and other common, but invalid, assumptions: this is achieved by comparing the statistics of “active-day” fractions to those for a single reference data set. We study six sunspot data series, including R {sub UEA} and the new “backbone” data series ( R {sub BB}, recently generated by Svalgaard and Schatten by employing both regression and daisy-chaining). We show that all six can be used with a continuity model to reproduce the main features of the open solar flux variation for 1845–2014, as reconstructed from geomagnetic activity data. However, some differences can be identified that are consistent with tests using a basket of other proxies for solar magnetic fields. Using data from a variety of sunspot observers, we illustrate problems with the method employed in generating R {sub BB} that cause it to increasingly overestimate sunspot numbers going back in time, and we recommend using R {sub UEA} because it employs more robust procedures that avoid such problems.« less

  6. The Solar Rotation in the 1930s from the Sunspot and Flocculi Catalogs of the Ebro Observatory

    NASA Astrophysics Data System (ADS)

    de Paula, V.; Curto, J. J.; Casas, R.

    2016-10-01

    The tables of sunspot and flocculi heliographic positions included in the catalogs published by the Ebro Observatory in the 1930s have recently been recovered and converted into digital format by using optical character recognition (OCR) technology. We here analyzed these data by computing the angular velocity of several sunspot and flocculi groups. A difference was found in the rotational velocity for sunspots and flocculi groups at high latitudes, and we also detected an asymmetry between the northern and southern hemispheres, which is especially marked for the flocculi groups. The results were then fitted with a differential-rotation law [ω=a+b sin2 B] to compare the data obtained with the results published by other authors. A dependence on the latitude that is consistent with former studies was found. Finally, we studied the possible relationship between the sunspot/flocculi group areas and their corresponding angular velocity. There are strong indications that the rotational velocity of a sunspot/flocculi group is reduced (in relation to the differential rotation law) when its maximum area is larger.

  7. Two Populations of Sunspots: Differential Rotation

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Pevtsov, A. A.; Osipova, A. A.

    2018-03-01

    To investigate the differential rotation of sunspot groups using the Greenwich data, we propose an approach based on a statistical analysis of the histograms of particular longitudinal velocities in different latitude intervals. The general statistical velocity distributions for all such intervals are shown to be described by two rather than one normal distribution, so that two fundamental rotation modes exist simultaneously: fast and slow. The differentiality of rotation for the modes is the same: the coefficient at sin2 in Faye's law is 2.87-2.88 deg/day, while the equatorial rotation rates differ significantly, 0.27 deg/day. On the other hand, an analysis of the longitudinal velocities for the previously revealed two differing populations of sunspot groups has shown that small short-lived groups (SSGs) are associated with the fast rotation mode, while large long-lived groups (LLGs) are associated with both fast and slow modes. The results obtained not only suggest a real physical difference between the two populations of sunspots but also give new empirical data for the development of a dynamo theory, in particular, for the theory of a spatially distributed dynamo.

  8. Cooling of a sunspot

    NASA Technical Reports Server (NTRS)

    Boruta, N.

    1977-01-01

    The question of whether a perturbed photospheric area can grow into a region of reduced temperature resembling a sunspot is investigated by considering whether instabilities exist that can lead to a growing temperature change and corresponding magnetic-field concentration in some region of the photosphere. After showing that Alfven cooling can lead to these instabilities, the effect of a heat sink on the temperature development of a perturbed portion of the photosphere is studied. A simple form of Alfven-wave cooling is postulated, and computations are performed to determine whether growing modes exist for physically relevant boundary conditions. The results indicate that simple inhibition of convection does not give growing modes, but Alfven-wave production can result in cooling that leads to growing field concentration. It is concluded that since growing instabilities can occur with strong enough cooling, it is quite possible that energy loss through Alfven waves gives rise to a self-generating temperature change and sunspot formation.

  9. The magnetic nature of umbra-penumbra boundary in sunspots

    NASA Astrophysics Data System (ADS)

    Jurčák, J.; Rezaei, R.; González, N. Bello; Schlichenmaier, R.; Vomlel, J.

    2018-03-01

    Context. Sunspots are the longest-known manifestation of solar activity, and their magnetic nature has been known for more than a century. Despite this, the boundary between umbrae and penumbrae, the two fundamental sunspot regions, has hitherto been solely defined by an intensity threshold. Aim. Here, we aim at studying the magnetic nature of umbra-penumbra boundaries in sunspots of different sizes, morphologies, evolutionary stages, and phases of the solar cycle. Methods: We used a sample of 88 scans of the Hinode/SOT spectropolarimeter to infer the magnetic field properties in at the umbral boundaries. We defined these umbra-penumbra boundaries by an intensity threshold and performed a statistical analysis of the magnetic field properties on these boundaries. Results: We statistically prove that the umbra-penumbra boundary in stable sunspots is characterised by an invariant value of the vertical magnetic field component: the vertical component of the magnetic field strength does not depend on the umbra size, its morphology, and phase of the solar cycle. With the statistical Bayesian inference, we find that the strength of the vertical magnetic field component is, with a likelihood of 99%, in the range of 1849-1885 G with the most probable value of 1867 G. In contrast, the magnetic field strength and inclination averaged along individual boundaries are found to be dependent on the umbral size: the larger the umbra, the stronger and more horizontal the magnetic field at its boundary. Conclusions: The umbra and penumbra of sunspots are separated by a boundary that has hitherto been defined by an intensity threshold. We now unveil the empirical law of the magnetic nature of the umbra-penumbra boundary in stable sunspots: it is an invariant vertical component of the magnetic field.

  10. The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions

    NASA Astrophysics Data System (ADS)

    Clette, F.; Lefevre, L.

    2017-12-01

    Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.

  11. Observational Evidence of a Flux Rope within a Sunspot Umbra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guglielmino, Salvo L.; Zuccarello, Francesca; Romano, Paolo, E-mail: salvo.guglielmino@oact.inaf.it

    We observed an elongated filamentary bright structure inside the umbra of the big sunspot in active region NOAA 12529, which differs from the light bridges usually observed in sunspots for its morphology, magnetic configuration, and velocity field. We used observations taken with the Solar Dynamic Observatory satellite to characterize this feature. Its lifetime is 5 days, during which it reaches a maximum length of about 30″. In the maps of the vertical component of the photospheric magnetic field, a portion of the feature has a polarity opposite to that of the hosting sunspot. At the same time, in the entiremore » feature the horizontal component of the magnetic field is about 2000 G, substantially stronger than in the surrounding penumbral filaments. Doppler velocity maps reveal the presence of both upward and downward plasma motions along the structure at the photospheric level. Moreover, looking at the chromospheric level, we noted that it is located in a region corresponding to the edge of a small filament that seems rooted in the sunspot umbra. Therefore, we interpreted the bright structure as the photospheric counterpart of a flux rope touching the sunspot and giving rise to penumbral-like filaments in the umbra.« less

  12. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  13. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland.

    PubMed

    Buser, Andreas M; Kierkegaard, Amelie; Bogdal, Christian; MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2013-07-02

    Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of D5 and D6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D5 and D6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back-calculate the emission rates of D5 and D6 from the city of Zurich. The average emission rates obtained for D5 and D6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per-capita emissions of 310 mg capita(-1) d(-1) for D5 and 36 mg capita(-1) d(-1) for D6.

  14. Properties of sunspot cycles and hemispheric wings since the 19th century

    NASA Astrophysics Data System (ADS)

    Leussu, Raisa; Usoskin, Ilya G.; Arlt, Rainer; Mursula, Kalevi

    2016-08-01

    Aims: The latitudinal evolution of sunspot emergence over the course of the solar cycle, the so-called butterfly diagram, is a fundamental property of the solar dynamo. Here we present a study of the butterfly diagram of sunspot group occurrence for cycles 7-10 and 11-23 using data from a recently digitized sunspot drawings by Samuel Heinrich Schwabe in 1825-1867, and from RGO/USAF/NOAA(SOON) compilation of sunspot groups in 1874-2015. Methods: We developed a new, robust method of hemispheric wing separation based on an analysis of long gaps in sunspot group occurrence in different latitude bands. The method makes it possible to ascribe each sunspot group to a certain wing (solar cycle and hemisphere), and separate the old and new cycle during their overlap. This allows for an improved study of solar cycles compared to the common way of separating the cycles. Results: We separated each hemispheric wing of the butterfly diagram and analysed them with respect to the number of groups appearing in each wing, their lengths, hemispheric differences, and overlaps. Conclusions: The overlaps of successive wings were found to be systematically longer in the northern hemisphere for cycles 7-10, but in the southern hemisphere for cycles 16-22. The occurrence of sunspot groups depicts a systematic long-term variation between the two hemispheres. During Schwabe time, the hemispheric asymmetry was north-dominated during cycle 9 and south-dominated during cycle 10.

  15. A new look at sunspot formation using theory and observations

    NASA Astrophysics Data System (ADS)

    Losada, I. R.; Warnecke, J.; Glogowski, K.; Roth, M.; Brandenburg, A.; Kleeorin, N.; Rogachevskii, I.

    2017-10-01

    Sunspots are of basic interest in the study of the Sun. Their relevance ranges from them being an activity indicator of magnetic fields to being the place where coronal mass ejections and flares erupt. They are therefore also an important ingredient of space weather. Their formation, however, is still an unresolved problem in solar physics. Observations utilize just 2D surface information near the spot, but it is debatable how to infer deep structures and properties from local helioseismology. For a long time, it was believed that flux tubes rising from the bottom of the convection zone are the origin of the bipolar sunspot structure seen on the solar surface. However, this theory has been challenged, in particular recently by new surface observation, helioseismic inversions, and numerical models of convective dynamos. In this article we discuss another theoretical approach to the formation of sunspots: the negative effective magnetic pressure instability. This is a large-scale instability, in which the total (kinetic plus magnetic) turbulent pressure can be suppressed in the presence of a weak large-scale magnetic field, leading to a converging downflow, which eventually concentrates the magnetic field within it. Numerical simulations of forced stratified turbulence have been able to produce strong super-equipartition flux concentrations, similar to sunspots at the solar surface. In this framework, sunspots would only form close to the surface due to the instability constraints on stratification and rotation. Additionally, we present some ideas from local helioseismology, where we plan to use the Hankel analysis to study the pre-emergence phase of a sunspot and to constrain its deep structure and formation mechanism.

  16. The Impact of the Revised Sunspot Record on Solar Irradiance Reconstructions

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Krivova, N.; Wu, C. J.; Lean, J.

    2016-11-01

    Reliable historical records of the total solar irradiance (TSI) are needed to assess the extent to which long-term variations in the Sun's radiant energy that is incident upon Earth may exacerbate (or mitigate) the more dominant warming in recent centuries that is due to increasing concentrations of greenhouse gases. We investigate the effects that the new Sunspot Index and Long-term Solar Observations (SILSO) sunspot-number time series may have on model reconstructions of the TSI. In contemporary TSI records, variations on timescales longer than about a day are dominated by the opposing effects of sunspot darkening and facular brightening. These two surface magnetic features, retrieved either from direct observations or from solar-activity proxies, are combined in TSI models to reproduce the current TSI observational record. Indices that manifest solar-surface magnetic activity, in particular the sunspot-number record, then enable reconstructing historical TSI. Revisions of the sunspot-number record therefore affect the magnitude and temporal structure of TSI variability on centennial timescales according to the model reconstruction methods that are employed. We estimate the effects of the new SILSO record on two widely used TSI reconstructions, namely the NRLTSI2 and the SATIRE models. We find that the SILSO record has little effect on either model after 1885, but leads to solar-cycle fluctuations with greater amplitude in the TSI reconstructions prior. This suggests that many eighteenth- and nineteenth-century cycles could be similar in amplitude to those of the current Modern Maximum. TSI records based on the revised sunspot data do not suggest a significant change in Maunder Minimum TSI values, and from comparing this era to the present, we find only very small potential differences in the estimated solar contributions to the climate with this new sunspot record.

  17. Directional time-distance probing of model sunspot atmospheres

    NASA Astrophysics Data System (ADS)

    Moradi, H.; Cally, P. S.; Przybylski, D.; Shelyag, S.

    2015-05-01

    A crucial feature not widely accounted for in local helioseismology is that surface magnetic regions actually open a window from the interior into the solar atmosphere, and that the seismic waves leak through this window, reflect high in the atmosphere, and then re-enter the interior to rejoin the seismic wave field normally confined there. In a series of recent numerical studies using translation invariant atmospheres, we utilized a `directional time-distance helioseismology' measurement scheme to study the implications of the returning fast and Alfvén waves higher up in the solar atmosphere on the seismology at the photosphere (Cally & Moradi 2013; Moradi & Cally 2014). In this study, we extend our directional time-distance analysis to more realistic sunspot-like atmospheres to better understand the direct effects of the magnetic field on helioseismic travel-time measurements in sunspots. In line with our previous findings, we uncover a distinct frequency-dependent directional behaviour in the travel-time measurements, consistent with the signatures of magnetohydrodynamic mode conversion. We found this to be the case regardless of the sunspot field strength or depth of its Wilson depression. We also isolated and analysed the direct contribution from purely thermal perturbations to the measured travel times, finding that waves propagating in the umbra are much more sensitive to the underlying thermal effects of the sunspot.

  18. Could a Hexagonal Sunspot Have Been Observed During the Maunder Minimum?

    NASA Astrophysics Data System (ADS)

    Carrasco, V. M. S.; Vaquero, J. M.; Gallego, M. C.

    2018-03-01

    The Maunder Minimum is the period between 1645 and 1715. Its main characteristic is abnormally low and prolonged solar activity. However, some authors have doubted the low level of solar activity during that period by questioning the accuracy and objectivity of the observers. This work presents a particular case of a sunspot observed during the Maunder Minimum with an unusual shape of its umbra and penumbra: a hexagon. This sunspot was observed by Cassini in November 1676, just at the core of the Maunder Minimum. This historical observation is compared with a twin case that occurred recently in May 2016. The conclusion reached is that Cassini's record is another example of the good quality of the observations that were made during the Maunder Minimum, showing the meticulousness of the astronomers of that epoch. This sunspot observation made by Cassini does not support the conclusions of Zolotova and Ponyavin ( Astrophys. J. 800, 42, 2015) that professional astronomers in the seventeenth century only registered round sunspots. Finally, a discussion is given of the importance of this kind of unusual sunspot record for a better assessment of the true level of solar activity in the Maunder Minimum.

  19. COMPARISON OF CHAOTIC AND FRACTAL PROPERTIES OF POLAR FACULAE WITH SUNSPOT ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, L. H.; Xiang, Y. Y.; Dun, G. T.

    The solar magnetic activity is governed by a complex dynamo mechanism and exhibits a nonlinear dissipation behavior in nature. The chaotic and fractal properties of solar time series are of great importance to understanding the solar dynamo actions, especially with regard to the nonlinear dynamo theories. In the present work, several nonlinear analysis approaches are proposed to investigate the nonlinear dynamical behavior of the polar faculae and sunspot activity for the time interval from 1951 August to 1998 December. The following prominent results are found: (1) both the high- and the low-latitude solar activity are governed by a three-dimensional chaoticmore » attractor, and the chaotic behavior of polar faculae is the most complex, followed by that of the sunspot areas, and then the sunspot numbers; (2) both the high- and low-latitude solar activity exhibit a high degree of persistent behavior, and their fractal nature is due to such long-range correlation; (3) the solar magnetic activity cycle is predictable in nature, but the high-accuracy prediction should only be done for short- to mid-term due to its intrinsically dynamical complexity. With the help of the Babcock–Leighton dynamo model, we suggest that the nonlinear coupling of the polar magnetic fields with strong active-region fields exhibits a complex manner, causing the statistical similarities and differences between the polar faculae and the sunspot-related indicators.« less

  20. Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.

    PubMed

    Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-18

    Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.

  1. Detection of emerging sunspot regions in the solar interior.

    PubMed

    Ilonidis, Stathis; Zhao, Junwei; Kosovichev, Alexander

    2011-08-19

    Sunspots are regions where strong magnetic fields emerge from the solar interior and where major eruptive events occur. These energetic events can cause power outages, interrupt telecommunication and navigation services, and pose hazards to astronauts. We detected subsurface signatures of emerging sunspot regions before they appeared on the solar disc. Strong acoustic travel-time anomalies of an order of 12 to 16 seconds were detected as deep as 65,000 kilometers. These anomalies were associated with magnetic structures that emerged with an average speed of 0.3 to 0.6 kilometer per second and caused high peaks in the photospheric magnetic flux rate 1 to 2 days after the detection of the anomalies. Thus, synoptic imaging of subsurface magnetic activity may allow anticipation of large sunspot regions before they become visible, improving space weather forecast.

  2. On the temperature and velocity through the photosphere of a sunspot penumbra

    NASA Technical Reports Server (NTRS)

    Del Toro Iniesta, J. C.; Tarbell, T. D.; Cobo, B. Ruiz

    1994-01-01

    We investigate the structure in depth of a sunspot penumbra by means of the inversion code of the radiative transfer equation proposed by Ruiz Cobo & del Toro Iniesta (1992), applied to a set of filtergrams of a sunspot, scanning the Fe I line at 5576.1 A, with a sampling interval of 30 mA, from -120 to 120 mA from line center (data previously analyzed by Title et al. 1993). The temperature structure of this penumbra is obtained for each of the 801 pixels selected (0.32 sec x 0.32 sec). On the average, the temperatures seem to decrease as we move inward, but the differences are of the order of the rms values (approximately equal 100-200 K) at a given distance to sunspot center. The outer parts of the penumbra have also a bigger curvature in the T versus log tau(sub 5) relation than the inner parts. We realize, however, that these differences might be influenced by possible stray light effects. Compared to the quiet Sun, penumbral temperatures are cooler at deep layers and hotter at high layers. A mean penumbral model atmosphere is presented. The asymmetries observed in the intensity profile (the line is magnetically insensitive) are deduced to be produced by strong gradients of the line-of-sight velocity that sharply vary spatially along slices of almost constant distance to sunspot center. These variations suggest that such gradients are not only needed to explain the broadband circular polarization observed in sunspots (see Sanchez Almeida & Lites 1992) but are a main characteristic of the fine-scale penumbra. The results are compatible with an Evershed flow present everywhere, but its gradient with depth turns out to vary so that the flow seems to be mainly concentrated in some penumbral fibrils when studied through Dopplergrams. Finally, as by-products of this study, we put constraints to the practical usefulness of the Eddington-Barbier relation, and we explain the values of the Fourier Dopplergrams to be carrying information of layers around the centroid of

  3. Big Sunspot Group

    NASA Image and Video Library

    2015-08-26

    A large group of sunspots that rotated across the Sun over six days (Aug. 21-26, 2015) started out as a single cluster, but gradually separated into distinct groups. This region produced several M-class (medium-sized) flares. These were the only significant spots on the Sun during this period. The still image shows the separated group as it appeared on Aug. 26., 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19876

  4. Solar generated quasi-biennial geomagnetic variation

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1977-01-01

    The existence of highly correlated quasi-biennial variations in the geomagnetic field and in solar activity is demonstrated. The analysis uses a numerical filter technique applied to monthly averages of the geomagnetic horizontal component and of the Zurich relative sunspot number. Striking correlations are found between the quasi-biennial geomagnetic variations determined from several magnetic observatories located at widely different longitudes, indicating a worldwide nature of the obtained variation. The correlation coefficient between the filtered Dst index and the filtered relative sunspot number is found to be -0.79 at confidence level greater than 99% with a time-lag of 4 months, with solar activity preceding the Dst variation. The correlation between the unfiltered data of Dst and of the sunspot number is also high with a similar time-lag. Such a timelag has not been discussed in the literature, and a further study is required to establish the mode of sun-earth relationship that gives this time delay.

  5. Records of auroral candidates and sunspots in Rikkokushi, chronicles of ancient Japan from early 7th century to 887

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Iwahashi, Kiyomi; Tamazawa, Harufumi; Ebihara, Yusuke; Kawamura, Akito Davis; Isobe, Hiroaki; Namiki, Katsuko; Shibata, Kazunari

    2017-12-01

    We present the results of the surveys on sunspots and auroral candidates in Rikkokushi, Japanese official histories from the early 7th century to 887, to review the solar and auroral activities. In total, we found one sunspot record and 13 auroral candidates in Rikkokushi. We then examine the records of the sunspots and auroral candidates, compare the auroral candidates with the lunar phase to estimate their reliability, and compare the records of the sunspots and auroral candidates with the contemporary total solar irradiance reconstructed from radioisotope data. We also identify the locations of the observational sites to review possible equatorward expansion of the auroral oval. These discussions suggest a major gap in auroral candidates from the late 7th to early 9th centuries, which includes the candidate of the grand minimum reconstructed from the radioisotope data, a similar tendency as the distributions of sunspot records in contemporary China, and a relatively high magnetic latitude of observational sites with a higher potential for observing aurorae more frequently than at present.

  6. A Comparison of Wolf's Reconstructed Record of Annual Sunspot Number with Schwabe's Observed Record of Clusters of Spots for the Interval of 1826-1868

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, observed the Sun routinely from Desau, Germany during the interval of 1826-1869, averaging about 290 observing days per year. His yearly counts of 'clusters of spots' (or, more correctly, the yearly number of newly appearing sunspot groups) provided a simple means for describing the overt features of the sunspot cycle (i.e., the timing and relative strengths of cycle minimum and maximum). In 1848, Rudolf Wolf, a Swiss astronomer, having become aware of Schwabe's discovery, introduced his now familiar 'relative sunspot number' and established an international cadre of observers for monitoring the future behavior of the sunspot cycle and for reconstructing its past behavior (backwards in time to 1818, based on daily sunspot number estimates). While Wolf's reconstruction is complete (without gaps) only from 1849 (hence, the beginning of the modern era), the immediately preceding interval of 1818-1848 is incomplete, being based on an average of 260 observing days per year. In this investigation, Wolf's reconstructed record of annual sunspot number is compared against Schwabe's actual observing record of yearly counts of clusters of spots. The comparison suggests that Wolf may have misplaced (by about 1-2 yr) and underestimated (by about 16 units of sunspot number) the maximum amplitude for cycle 7. If true, then, cycle 7's ascent and descent durations should measure about 5 years each instead of 7 and 3 years, respectively, the extremes of the distributions, and its maximum amplitude should measure about 96 instead of 70. This study also indicates that cycle 9's maximum amplitude is more reliably determined than cycle 8's and that both appear to be of comparable size (about 130 units of sunspot number) rather than being significantly different. Therefore, caution is urged against the indiscriminate use of the pre-modern era sunspot numbers in long-term studies of the sunspot cycle, since such use may lead to

  7. Visual Circular Analysis of 266 Years of Sunspot Counts.

    PubMed

    Buelens, Bart

    2016-06-01

    Sunspots, colder areas that are visible as dark spots on the surface of the Sun, have been observed for centuries. Their number varies with a period of ∼11 years, a phenomenon closely related to the solar activity cycle. Recently, observation records dating back to 1749 have been reassessed, resulting in the release of a time series of sunspot numbers covering 266 years of observations. This series is analyzed using circular analysis to determine the periodicity of the occurrence of solar maxima. The circular analysis is combined with spiral graphs to provide a single visualization, simultaneously showing the periodicity of the series, the degree to which individual cycle lengths deviate from the average period, and differences in levels reached during the different maxima. This type of visualization of cyclic time series with varying cycle lengths in which significant events occur periodically is broadly applicable. It is aimed particularly at science communication, education, and public outreach.

  8. Investigation of Quasi-periodic Solar Oscillations in Sunspots Based on SOHO/MDI Magnetograms

    NASA Astrophysics Data System (ADS)

    Kallunki, J.; Riehokainen, A.

    2012-10-01

    In this work we study quasi-periodic solar oscillations in sunspots, based on the variation of the amplitude of the magnetic field strength and the variation of the sunspot area. We investigate long-period oscillations between three minutes and ten hours. The magnetic field synoptic maps were obtained from the SOHO/MDI. Wavelet (Morlet), global wavelet spectrum (GWS) and fast Fourier transform (FFT) methods are used in the periodicity analysis at the 95 % significance level. Additionally, the quiet Sun area (QSA) signal and an instrumental effect are discussed. We find several oscillation periods in the sunspots above the 95 % significance level: 3 - 5, 10 - 23, 220 - 240, 340 and 470 minutes, and we also find common oscillation periods (10 - 23 minutes) between the sunspot area variation and that of the magnetic field strength. We discuss possible mechanisms for the obtained results, based on the existing models for sunspot oscillations.

  9. The nature of the sunspot phenomenon. III - Energy consumption and energy transport. IV - The intrinsic instability of the magnetic configuration

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1975-01-01

    The basic relation is described between conversion of thermal energy into convective fluid motion and convective transport of thermal energy, and the equilibrium configuration of a sunspot's magnetic field is shown to be unstable to the hydromagnetic exchange instability. It is determined that heat transport necessarily accompanies convective driving of fluid motion and that the formation of cool sunspots requires convection extending coherently over several scale heights, a distance of at least 500 km. Several theoretical possibilities for sunspot stabilization are reviewed, and it is suggested that a suitable redistribution of cooling in the umbra may be the stabilization mechanism. It is believed that if cooling extends to a great depth in an elongated portion of a sunspot, the magnetic pressure on the boundary will be reduced, tending to reduce the elongation.

  10. Changing incidence of psychotic disorders among the young in Zurich.

    PubMed

    Ajdacic-Gross, Vladeta; Lauber, Christoph; Warnke, Inge; Haker, Helene; Murray, Robin M; Rössler, Wulf

    2007-09-01

    There is controversy over whether the incidence rates of schizophrenia and psychotic disorders have changed in recent decades. To detect deviations from trends in incidence, we analysed admission data of patients with an ICD-8/9/10 diagnosis of psychotic disorders in the Canton Zurich / Switzerland, for the period 1977-2005. The data was derived from the central psychiatric register of the Canton Zurich. Ex-post forecasting with ARIMA (Autoregressive Integrated Moving Average) models was used to assess departures from existing trends. In addition, age-period-cohort analysis was applied to determine hidden birth cohort effects. First admission rates of patients with psychotic disorders were constant in men and showed a downward trend in women. However, the rates in the youngest age groups showed a strong increase in the second half of the 1990's. The trend reversal among the youngest age groups coincides with the increased use of cannabis among young Swiss in the 1990's.

  11. Prediction on sunspot activity based on fuzzy information granulation and support vector machine

    NASA Astrophysics Data System (ADS)

    Peng, Lingling; Yan, Haisheng; Yang, Zhigang

    2018-04-01

    In order to analyze the range of sunspots, a combined prediction method of forecasting the fluctuation range of sunspots based on fuzzy information granulation (FIG) and support vector machine (SVM) was put forward. Firstly, employing the FIG to granulate sample data and extract va)alid information of each window, namely the minimum value, the general average value and the maximum value of each window. Secondly, forecasting model is built respectively with SVM and then cross method is used to optimize these parameters. Finally, the fluctuation range of sunspots is forecasted with the optimized SVM model. Case study demonstrates that the model have high accuracy and can effectively predict the fluctuation of sunspots.

  12. Early American sunspot drawings from the "year without a summer"

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; McVaugh, M. R.

    2017-07-01

    A set of sunspot drawings from the early nineteenth century were discovered in the journals of the Reverend Jonathan Fisher. These drawings were made during a time when abnormally cold weather caused crops in New England to fail due to intermittent frost throughout the summer months of 1816, normally referred to as the "year without a summer." Global changes in weather patterns were the result of the Mount Tambora volcano eruption. Since this association was unknown at the time, there was speculation that the Sun was the cause inspiring the Reverend Fisher to monitor changes in sunspots during the summer of 1816 and continuing into 1817. These sunspot drawings for the summer of 1816 overlap the solar observations of Sir William Hershel.

  13. On the Relation Between Spotless Days and the Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2005-01-01

    Spotless days are examined as a predictor for the size and timing of a sunspot cycle. For cycles 16-23 the first spotless day for a new cycle, which occurs during the decline of the old cycle, is found to precede minimum amplitude for the new cycle by about approximately equal to 34 mo, having a range of 25-40 mo. Reports indicate that the first spotless day for cycle 24 occurred in January 2004, suggesting that minimum amplitude for cycle 24 should be expected before April 2007, probably sometime during the latter half of 2006. If true, then cycle 23 will be classified as a cycle of shorter period, inferring further that cycle 24 likely will be a cycle of larger than average minimum and maximum amplitudes and faster than average rise, peaking sometime in 2010.

  14. Asymmetric Stokes-V Profiles at the Penumbral Boundary of a Sunspot

    NASA Technical Reports Server (NTRS)

    Choudhary, Debi Prasad; Balasubramanaim, K. S.; Suematsu, Yoshinori

    2003-01-01

    We present the spectropolarimetric measurements of a sunspot in the active region NOAA 6958 (15S03W), situated near the central meridian disk passage. The follower polarity sunspot was somewhat symmetrically round shaped with an elongated penumbra. There were several opposite polarity magnetic elements at, and beyond the penumbral boundary. The H-alpha images of the sunspot show the bright emission regions near the penumbral boundary towards the sun-center, which was of opposite polarity with respect to the main spot. The net-circular polarization (NCP) map shows that NCP is negative in the inner part of the spot and positive at the penumbral boundary and near the H-alpha plage. The Doppler velocities were determined by measuring the center-of-gravity (COG) of the Stokes-I profile and zero-crossing (ZC) wavelength of the Stokes-V profiles. The COG velocity map in general agrees with the Evershed flow. In addition, it shows the up flow in the penumbral region. The ZC velocities show the strong down flow at the penumbral boundary. Double-lobed Stokes-V profiles are observed at the locations, where the penumbral fibrils terminate coinciding the H-alpha plage. The Double lobed profiles had an unshifted component similar to the Stokes-V profiles of the sunspot penumbra and a shifted component with a velocity of about 5 km/s. The amplitude of the second component increases along the penumbral fibril as a function of the distance from the center of the sunspot. In this paper we discuss the role of emerging flux in generating the observed double lobed profiles. Based on our present observations, we propose to observe with the Solar-B Spectropolarimeter for understanding the nature of emerging flux near the sunspots.

  15. Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate

    NASA Astrophysics Data System (ADS)

    Maliniemi, Ville; Mursula, Kalevi; Roy, Indrani; Asikainen, Timo

    2017-04-01

    We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere.

  16. Phenomenological Study of Interaction between Solar Acoustic Waves and Sunspots from Measured Scattered Wavefunctions

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao

    2012-08-01

    The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their

  17. Evidence as Source of Power in School Reforms: The Quest for the Extension of Compulsory Education in Zurich

    ERIC Educational Resources Information Center

    Imlig, Flavian; Ruoss, Thomas

    2015-01-01

    This article investigates the use of evidence in educational policy and politics, and how this use has changed over time. Using an analytical framework that combines research approaches from both political and educational science, evidence-related arguments in two major school reforms in the canton of Zurich, Switzerland are described. In…

  18. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  19. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    USGS Publications Warehouse

    Love, J.J.; Mursula, K.; Tsai, V.C.; Perkins, D.M.

    2011-01-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically- significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction. ?? 2011 by the American Geophysical Union.

  20. Are secular correlations between sunspots, geomagnetic activity, and global temperature significant?

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.; Mursula, Kalevi; Tsai, Victor C.; Perkins, David M.

    2011-11-01

    Recent studies have led to speculation that solar-terrestrial interaction, measured by sunspot number and geomagnetic activity, has played an important role in global temperature change over the past century or so. We treat this possibility as an hypothesis for testing. We examine the statistical significance of cross-correlations between sunspot number, geomagnetic activity, and global surface temperature for the years 1868-2008, solar cycles 11-23. The data contain substantial autocorrelation and nonstationarity, properties that are incompatible with standard measures of cross-correlational significance, but which can be largely removed by averaging over solar cycles and first-difference detrending. Treated data show an expected statistically-significant correlation between sunspot number and geomagnetic activity, Pearson p < 10-4, but correlations between global temperature and sunspot number (geomagnetic activity) are not significant, p = 0.9954, (p = 0.8171). In other words, straightforward analysis does not support widely-cited suggestions that these data record a prominent role for solar-terrestrial interaction in global climate change. With respect to the sunspot-number, geomagnetic-activity, and global-temperature data, three alternative hypotheses remain difficult to reject: (1) the role of solar-terrestrial interaction in recent climate change is contained wholly in long-term trends and not in any shorter-term secular variation, or, (2) an anthropogenic signal is hiding correlation between solar-terrestrial variables and global temperature, or, (3) the null hypothesis, recent climate change has not been influenced by solar-terrestrial interaction.

  1. Negative or positive? The iron lung and poliomyelitis-Zurich, 1951.

    PubMed

    Eichel, T; Dreux, M L

    2017-03-01

    During the poliomyelitis epidemics of the last century hospitals were inundated with patients in acute respiratory failure. Between 1946 and 1949, Nandor (Ferdinand) Eichel documented the use of the iron lung in children with acute poliomyelitis at the University Children's Hospital, Zurich. The aim was to assess the effectiveness of the Iron lung and negative pressure respiratory support for this indication and to establish its role in the context of other existing therapies at the time. Eichel produced his review and data as the Inaugural Dissertation towards his medical degree from the the University of Zurich, published in 1951. The dissertation was written in German and first translated into English in 2014. The current paper explores the findings of the dissertation and explains why there has been the transition to techniques of respiratory support today. It includes a biography of Dr F. N. Eichel and an update on the current status of poliomyelitis. The original dissertation was found in the home of Nandor's son and was of great interest to the current authors, Nandor's granddaughter and her colleague.

  2. Multifractal properties of solar filaments and sunspots numbers

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Li, Qi-Xiu; Zou, Peng

    2015-07-01

    We analyze multifractal properties of low (LLSFNs; < 50 °), high (HLSFNs; ⩾ 50 °), full-disk (FDSFNs; 0 ° ˜ 90 °) solar filament numbers (SFNs) and international sunspot numbers (ISNs) by estimating characteristic parameters (α0, Δα , spectrum skewness) of f (α) singularity spectrum. We find that the SFNs and ISNs have multifractal nature. The obtained α0 and Δα indicate that long-term behaviour of the solar filaments is more complex than that of the sunspots and the high-latitude filaments is the most complex in long-term behaviour. The spectrum skewnesses manifest that the ISNs display well symmetrical distribution in singularity strengths, whereas the SFNs are dominated by low singularity strengths, which means that the long-term behaviour of sunspots has homogenous structures and the filaments display averagely small fluctuations in amplitude. To detect the origin of their multifractality, we decompose the raw data of ISNs and SFNs: smoothed data represent ˜11-year cyclic activities and detrended data represent accidental activities. We also calculate their f (α) spectra, respectively. We find that the ˜11-year cyclic activities of filaments and sunspots tend to be a monofractal and display a bit predominance of low singularity strengths. Their accidental activities have the most complex behaviour than the raw and smoothed data. The accidental activities are dominated by high singularity strengths showing averagely large fluctuations in amplitude. Furthermore, multifractal properties from α0 and Δα of the accidental activities have the same features as that of raw data. We think that the ˜11-year periodic activity determines global fluctuations, while the accidental activities rule local complexity.

  3. Activity Report of the Language Laboratory of the University of Zurich

    ERIC Educational Resources Information Center

    Ebneter, Theodor

    1975-01-01

    Reports on the lab's activities as a center for the development of university language lab courses and for research into contemporary oral colloquial French, a part of the applied linguistics research area, and a center for the development of a language lab grammar for Zurich German. (RM)

  4. The "Zurich E-Learning Certificate": A Role Model for the Acquirement of eCompetence for Academic Staff and an Example of a Practical Implementation

    ERIC Educational Resources Information Center

    Volk, Benno; Keller, Stefan Andreas

    2010-01-01

    Since 2002 the "Zurich E-Learning Certificate" offers lecturers and academic staff from the three main universities in Zurich the possibility to take part in a professional development program which supports the acquirement of eCompetence. The program is the result of a cooperation between the University of Zurich (UZH), the Swiss…

  5. Sunspots, El Niño, and the levels of Lake Victoria, East Africa

    NASA Astrophysics Data System (ADS)

    Stager, J. Curt; Ruzmaikin, Alexander; Conway, Declan; Verburg, Piet; Mason, Peter J.

    2007-08-01

    An association of high sunspot numbers with rises in the level of Lake Victoria, East Africa, has been the focus of many investigations and vigorous debate during the last century. In this paper, we show that peaks in the ~11-year sunspot cycle were accompanied by Victoria level maxima throughout the 20th century, due to the occurrence of positive rainfall anomalies ~1 year before solar maxima. Similar patterns also occurred in at least five other East African lakes, which indicates that these sunspot-rainfall relationships were broadly regional in scale. Although irradiance fluctuations associated with the sunspot cycle are weak, their effects on tropical rainfall could be amplified through interactions with sea surface temperatures and atmospheric circulation systems, including ENSO. If this Sun-rainfall relationship persists in the future, then sunspot cycles can be used for long-term prediction of precipitation anomalies and associated outbreaks of insect-borne disease in much of East Africa. In that case, unusually wet rainy seasons and Rift Valley Fever epidemics should occur a year or so before the next solar maximum, which is expected to occur in 2011-2012 AD.

  6. Empirical mode decomposition and long-range correlation analysis of sunspot time series

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Leung, Yee

    2010-12-01

    Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the

  7. Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858): A Connection?

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for 13 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages). as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of' each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7 C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. In particular, the interval of increasing number of observing days at the beginning of the record (i.e., 1818-1819) may be related to the improving atmospheric conditions in Europe following the 1815 eruption of Tambora (Indonesia; 8 deg. S), which previously, has been linked to "the year without a summer" (in 1816) and which is the strongest eruption in recent history, while the decreases associated with the years of 1824, 1837, and 1847 may, be linked, respectively, to the large, catacivsmic volcanic eruptions of Galunggung (Indonesia; 7 deg. S) in 1822, Cosiguina (Nicaragua) in 1835, and, perhaps, Hekla (Iceland; 64 deg. N) in 1845. Surprisingly, the number of observing days per year, as recorded specifically b), SchAabe (from Dessau, Germany), is found to be linearly correlated against the yearly mean temperature at Armagh Observatory (r = 0.5 at the 2 percent level of

  8. SUNSPOT ROTATION AS A DRIVER OF MAJOR SOLAR ERUPTIONS IN THE NOAA ACTIVE REGION 12158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemareddy, P.; Ravindra, B.; Cheng, X., E-mail: vemareddy@iiap.res.in

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h{sup −1} with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the ARmore » magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.« less

  9. Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico

    NASA Astrophysics Data System (ADS)

    Domínguez-Castro, Fernando; Gallego, María Cruz; Vaquero, José Manuel

    2017-06-01

    Two sunspot observations recorded by the Mexican Felipe de Zúñiga y Ontiveros have been revealed from a manuscript. One sunspot group was recorded on 9th January 1777 and four sunspot groups on 29th December 1777. Both records were taken during the observation of solar eclipses from Mexico City and their description also included sketches of the solar disk with sunspots. The sunspot group corresponding to 9th January was also observed by Erasmus Lievog. The observation on 29th December 1777 is the only record corresponding to this date.

  10. Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1992-01-01

    The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

  11. The Sunspot Number and beyond : reconstructing detailed solar information over centuries

    NASA Astrophysics Data System (ADS)

    Lefevre, L.

    2014-12-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. Because of its importance, this unique time-series must be closely monitored for any possible biases and drifts. Here, we report about recent disagreements between solar indices, for example the sunspot sumber and the 10.7cm radio flux. Recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the TOSCA (www.cost-tosca.eu/) and SOLID (projects.pmodwrc.ch/solid/) projects, we produced a survey of all existing catalogs providing detailed sunspot information (Lefevre & Clette, 2014:10.1007/s11207-012-0184-5) and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs. These are first steps towards the construction of a multi-parametric time series of multiple sunspot and sunspot group properties over more than a century, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The preliminary version catalog now extends over the last 150 years. It makes use of data from DPD (http://fenyi.solarobs.unideb.hu/DPD/index.html), from the Uccle Solar Equatorial Table (USET:http://sidc.oma.be/uset/) operated by the Royal Obeservatory of Belgium, the Greenwich

  12. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hui; Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. Inmore » the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.« less

  13. High resolution studies of sunspots and flux tubes

    NASA Technical Reports Server (NTRS)

    Title, Alan

    1994-01-01

    This contract is for a three-year research study of sunspots and magnetic flux tubes in the solar atmosphere, using tunable filter images collected with a CCD camera during observing runs at the Canary Islands observatories in Spain. The best observations are analyzed and compared with theoretical models, to study the structure and dynamics of sunspots, their connections with surrounding magnetic fields, and the properties and evolution of smaller flux tubes in plage and quiet sun. Scientific results are reported at conferences and published in the appropriate journals. The contract is being performed by the Solar and Astrophysics Laboratory, part of the Lockheed Palo Alto Research Laboratory (LPARL) of the Research and Development Division (RDD) of Lockheed Missiles and Space Co., Inc. (LMSC). The principal investigator is Dr. Alan Title, and the research is done by him and other scientific staff at LPARL and Solar Physics Research Corporation (SPRC), often in collaboration with visiting scientists and students from other institutions. Highlights during this reporting period include completing the final version of a paper on the Evershed effect, writing a paper on magnetic diffusion, continuing work on contrast of small flux tubes, and work on the development of new models to interpret our sunspots observations.

  14. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    NASA Astrophysics Data System (ADS)

    Hrushesky, William J. M.; Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-03-01

    Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10-11 and 5-6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9"N, 4°29"E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56"N, 93°8"W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology.

  15. Solar activity prediction

    NASA Technical Reports Server (NTRS)

    Slutz, R. J.; Gray, T. B.; West, M. L.; Stewart, F. G.; Leftin, M.

    1971-01-01

    A statistical study of formulas for predicting the sunspot number several years in advance is reported. By using a data lineup with cycle maxima coinciding, and by using multiple and nonlinear predictors, a new formula which gives better error estimates than former formulas derived from the work of McNish and Lincoln is obtained. A statistical analysis is conducted to determine which of several mathematical expressions best describes the relationship between 10.7 cm solar flux and Zurich sunspot numbers. Attention is given to the autocorrelation of the observations, and confidence intervals for the derived relationships are presented. The accuracy of predicting a value of 10.7 cm solar flux from a predicted sunspot number is dicussed.

  16. Development of a Sunspot Tracking System

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1998-01-01

    Large solar flares produce a significant amount of energetic particles which pose a hazard for human activity in space. In the hope of understanding flare mechanisms and thus better predicting solar flares, NASA's Marshall Space Flight Center (MSFC) developed an experimental vector magnetograph (EXVM) polarimeter to measure the Sun's magnetic field. The EXVM will be used to perform ground-based solar observations and will provide a proof of concept for the design of a similar instrument for the Japanese Solar-B space mission. The EXVM typically operates for a period of several minutes. During this time there is image motion due to atmospheric fluctuation and telescope wind loading. To optimize the EXVM performance an image motion compensation device (sunspot tracker) is needed. The sunspot tracker consists of two parts, an image motion determination system and an image deflection system. For image motion determination a CCD or CID camera is used to digitize an image, than an algorithm is applied to determine the motion. This motion or error signal is sent to the image deflection system which moves the image back to its original location. Both of these systems are under development. Two algorithms are available for sunspot tracking which require the use of only one row and one column of image data. To implement these algorithms, two identical independent systems are being developed, one system for each axis of motion. Two CID cameras have been purchased; the data from each camera will be used to determine image motion for each direction. The error signal generated by the tracking algorithm will be sent to an image deflection system consisting of an actuator and a mirror constrained to move about one axis. Magnetostrictive actuators were chosen to move the mirror over piezoelectrics due to their larger driving force and larger range of motion. The actuator and mirror mounts are currently under development.

  17. Sunspot activity and influenza pandemics: a statistical assessment of the purported association.

    PubMed

    Towers, S

    2017-10-01

    Since 1978, a series of papers in the literature have claimed to find a significant association between sunspot activity and the timing of influenza pandemics. This paper examines these analyses, and attempts to recreate the three most recent statistical analyses by Ertel (1994), Tapping et al. (2001), and Yeung (2006), which all have purported to find a significant relationship between sunspot numbers and pandemic influenza. As will be discussed, each analysis had errors in the data. In addition, in each analysis arbitrary selections or assumptions were also made, and the authors did not assess the robustness of their analyses to changes in those arbitrary assumptions. Varying the arbitrary assumptions to other, equally valid, assumptions negates the claims of significance. Indeed, an arbitrary selection made in one of the analyses appears to have resulted in almost maximal apparent significance; changing it only slightly yields a null result. This analysis applies statistically rigorous methodology to examine the purported sunspot/pandemic link, using more statistically powerful un-binned analysis methods, rather than relying on arbitrarily binned data. The analyses are repeated using both the Wolf and Group sunspot numbers. In all cases, no statistically significant evidence of any association was found. However, while the focus in this particular analysis was on the purported relationship of influenza pandemics to sunspot activity, the faults found in the past analyses are common pitfalls; inattention to analysis reproducibility and robustness assessment are common problems in the sciences, that are unfortunately not noted often enough in review.

  18. NUMERICAL SIMULATIONS OF SUNSPOT DECAY: ON THE PENUMBRA–EVERSHED FLOW–MOAT FLOW CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempel, M., E-mail: rempel@ucar.edu

    We present a series of high-resolution sunspot simulations that cover a timespan of up to 100 hr. The simulation domain extends about 18 Mm in depth beneath the photosphere and 98 Mm horizontally. We use open boundary conditions that do not maintain the initial field structure against decay driven by convective motions. We consider two setups: a sunspot simulation with penumbra, and a “naked-spot” simulation in which we removed the penumbra after 20 hr through a change in the magnetic top boundary condition. While the sunspot has an Evershed outflow of 3–4 km s{sup −1}, the naked spot is surroundedmore » by an inflow of 1–2 km s{sup −1} in close proximity. However, both spots are surrounded by an outflow on larger scales with a few 100 m s{sup −1} flow speed in the photosphere. While the sunspot has an almost constant magnetic flux content for the simulated timespan of three to four days, the naked spot decays steadily at a rate of 10{sup 21} Mx day{sup −1}. A region with reduced downflow filling factor, which is more extended for the sunspot, surrounds both spots. The absence of downflows perturbs the upflow/downflow mass flux balance and leads to a large-scale radially overturning flow system; the photospheric component of this flow is the observable moat flow. The reduction of the downflow filling factor also inhibits the submergence of magnetic field in the proximity of the spots, which stabilizes them against decay. While this effect is present for both spots, it is more pronounced for the sunspot and explains the almost stationary magnetic flux content.« less

  19. Sunspot seismology: accounting for magnetohydrodynamic wave processes using imaging spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Rajaguru, S. P.

    Effects of acoustic wave absorption, mode conversion and transmission by a sunspot on the helioseismic inferences are widely discussed, yet accounting for them has proved difficult for lack of a consistent framework within helioseismic modelling. Here, following a discussion of problems and issues that the near-surface magnetohydrodynamics hosts through a complex interplay of radiative transfer, measurement issues, and MHD wave processes, I present some possibilities entirely from observational analyses based on imaging spectropolarimetry. In particular, I present some results on wave evolution as a function of observation height and inclination of magnetic field to the vertical, derived from a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings using the instrument IBIS (NSO/Sac Peak, USA). These observations were made in magnetically sensitive (Fe I 6173 Å) and insensitive (Fe I 7090 Å) upper photospheric absorption lines. Wave travel time contributions from within the photospheric layers of a sunspot estimated here would then need to be removed from the inversion modelling procedure, that does not have the provision to account for them.

  20. Sunspots and Their Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Ribeiro, C. I.

    2013-01-01

    In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.

  1. Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology

    PubMed Central

    Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.

    2011-01-01

    Abstract Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10–11 and 5–6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9″N, 4°29″E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56″N, 93°8″W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology. Key Words: Cervical infections—Cervical premalignancy—Geo-solar magnetic interactions—Pap smear—Schwabe cycle—10-year rhythm. Astrobiology 11, 93–103. PMID:21391821

  2. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    DTIC Science & Technology

    2014-03-27

    FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Gordon M. Spahr, Second Lieutenant, USAF AFIT-ENP-14-M-34...CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...DISTRIUBUTION UNLIMITED. AFIT-ENP-14-M-34 FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB Gordon M. Spahr, BS Second

  3. Synthetic observations of wave propagation in a sunspot umbra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felipe, T.; Socas-Navarro, H.; Khomenko, E.

    2014-11-01

    Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic fieldmore » oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.« less

  4. Long-term oscillations of sunspots and a special class of artifacts in SOHO/MDI and SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Efremov, V. I.; Solov'ev, A. A.; Parfinenko, L. D.; Riehokainen, A.; Kirichek, E.; Smirnova, V. V.; Varun, Y. N.; Bakunina, I.; Zhivanovich, I.

    2018-03-01

    A specific type of artifacts (named as " p2p"), that originate due to displacement of the image of a moving object along the digital (pixel) matrix of receiver are analyzed in detail. The criteria of appearance and the influence of these artifacts on the study of long-term oscillations of sunspots are deduced. The obtained criteria suggest us methods for reduction or even elimination of these artifacts. It is shown that the use of integral parameters can be very effective against the " p2p" artifact distortions. The simultaneous observations of sunspot magnetic field and ultraviolet intensity of the umbra have given the same periods for the long-term oscillations. In this way the real physical nature of the oscillatory process, which is independent of the artifacts have been confirmed again. A number of examples considered here confirm the dependence between the periods of main mode of the sunspot magnetic field long-term oscillations and its strength. The dependence was derived earlier from both the observations and the theoretical model of the shallow sunspot. The anti-phase behavior of time variations of sunspot umbra area and magnetic field of the sunspot demonstrates that the umbra of sunspot moves in long-term oscillations as a whole: all its points oscillate with the same phase.

  5. Photospheric Origin of Three-minute Oscillations in a Sunspot

    NASA Astrophysics Data System (ADS)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk; Cho, Kyungsuk; Yurchyshyn, Vasyl

    2017-02-01

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni I λ5436, Fe I λ5435, and Na I D2 λ5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  6. Outflow of chromospheric emission features from the rim of a sunspot

    NASA Technical Reports Server (NTRS)

    Liu, S.-Y.

    1973-01-01

    In viewing a 16 mm movie made from a time sequence of spectroheliograms, some of these emission features are found to move outward from the rim of the sunspot until they are eventually lost in the small plage. There are two interpretations for the streaming of the magnetic features. It is possible that kinks in the line of force propagate along a horizontal extension of the penumbral magnetic field. Alternatively, fragments of the sunspot magnetic field are carried away by the photospheric velocity field.

  7. Evaluation of the capability of local helioseismology to discern between monolithic and spaghetti sunspot models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felipe, T.; Crouch, A. D.; Birch, A. C., E-mail: tobias@nwra.com

    2014-06-20

    The helioseismic properties of the wave scattering generated by monolithic and spaghetti sunspots are analyzed by means of numerical simulations. In these computations, an incident f- or p {sub 1}-mode travels through the sunspot model, which produces absorption and phase shift of the waves. The scattering is studied by inspecting the wavefield, computing travel-time shifts, and performing Fourier-Hankel analysis. The comparison between the results obtained for both sunspot models reveals that the differences in the absorption coefficient can be detected above noise level. The spaghetti model produces a steep increase of the phase shift with the degree of the modemore » at short wavelengths, while mode mixing is more efficient for the monolithic model. These results provide a clue for what to look for in solar observations to discern the constitution of sunspots between the proposed monolithic and spaghetti models.« less

  8. LOOKING FOR GRANULATION AND PERIODICITY IMPRINTS IN THE SUNSPOT TIME SERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Ilídio; Silva, Hugo G., E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: hgsilva@uevora.pt

    2015-05-10

    The sunspot activity is the end result of the cyclic destruction and regeneration of magnetic fields by the dynamo action. We propose a new method to analyze the daily sunspot areas data recorded since 1874. By computing the power spectral density of daily data series using the Mexican hat wavelet, we found a power spectrum with a well-defined shape, characterized by three features. The first term is the 22 yr solar magnetic cycle, estimated in our work to be 18.43 yr. The second term is related to the daily volatility of sunspots. This term is most likely produced by themore » turbulent motions linked to the solar granulation. The last term corresponds to a periodic source associated with the solar magnetic activity, for which the maximum power spectral density occurs at 22.67 days. This value is part of the 22–27 day periodicity region that shows an above-average intensity in the power spectra. The origin of this 22.67 day periodic process is not clearly identified, and there is a possibility that it can be produced by convective flows inside the star. The study clearly shows a north–south asymmetry. The 18.43 yr periodical source is correlated between the two hemispheres, but the 22.67 day one is not correlated. It is shown that toward the large timescales an excess occurs in the northern hemisphere, especially near the previous two periodic sources. To further investigate the 22.67 day periodicity, we made a Lomb–Scargle spectral analysis. The study suggests that this periodicity is distinct from others found nearby.« less

  9. Correlations for number of sunspots, unemployment rate, and suicide mortality in Japan.

    PubMed

    Otsu, Akiko; Chinami, Masanobu; Morgenthale, Stephan; Kaneko, Yoshihiro; Fujita, Daisuke; Shirakawa, Taro

    2006-04-01

    We studied the correlations among sunspot numbers, business cycles, and suicide mortalitites. Based on data from Japan between 1971 and 2001, a significant negative correlation between sunspot numbers and unemployment rate was found, R= -.17. The correlation between suicide mortality and unemployment rate was positive for males (R=.46) and negative for females (R =-.69). Both are statistically significant. The hypothesis that variation of sun activity may affect the economy and the unemployment rate and hence increase the male suicide mortality is raised.

  10. Development of a diode laser heterodyne spectrometer and observations of silicon monoxide in sunspots. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1981-01-01

    A state of the art, tunable diode laser infrared heterodyne spectrometer was designed and constructed for ground based observations throughout the 8 to 12 micron atmospheric window. The instrument was optimized for use with presently available tunable diode lasers, and was designed as a flexible field system for use with large reflecting telescopes. The instrument was aligned and calibrated using laboratory and astronomical sources. Observations of SiO fundamental (v = 1-0) and hot band (v = 2-1) absorption features were made in sunspots near 8 microns using the spectrometer. The data permit an unambiguous determination of the temperature pressure relation in the upper layers of the umbral atmosphere, and support the sunspot model suggested by Stellmacher and Wiehr.

  11. Statistical Investigation of Supersonic Downflows in the Transition Region above Sunspots

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Tian, Hui; Prasad Choudhary, Debi

    2018-06-01

    Downflows at supersonic speeds have been observed in the transition region (TR) above sunspots for more than three decades. These downflows are often seen in different TR spectral lines above sunspots. We have performed a statistical investigation of these downflows using a large sample that was missing previously. The Interface Region Imaging Spectrograph (IRIS) has provided a wealth of observational data of sunspots at high spatial and spectral resolutions in the past few years. We have identified 60 data sets obtained with IRIS raster scans. Using an automated code, we identified the locations of strong downflows within these sunspots. We found that around 80% of our sample shows supersonic downflows in the Si IV 1403 Å line. These downflows mostly appear in the penumbral regions, though some of them are found in the umbrae. We also found that almost half of these downflows show signatures in chromospheric lines. Furthermore, a detailed spectral analysis was performed by selecting a small spectral window containing the O IV 1400/1401 Å and Si IV 1403 Å lines. Six Gaussian functions were simultaneously fitted to these three spectral lines and their satellite lines associated with the supersonic downflows. We calculated the intensity, Doppler velocity, and line width for these lines. Using the O IV 1400/1401 Å line ratio, we find that the downflow components are around one order of magnitude less dense than the regular components. Results from our statistical analysis suggest that these downflows may originate from the corona and that they are independent of the background TR plasma.

  12. Why are the Daily Sunspot Observations Interesting? One Observer's Perspective (Abstract)

    NASA Astrophysics Data System (ADS)

    Dempsey, F.

    2016-06-01

    (Abstract only) Daily sunspot counts made for the AAVSO Solar Section may cause the observer to feel in touch with the daily (and longer-term) changes on the sun's surface, and this connection may be more interesting when the solar observer remains aware of the larger solar and geomagnetic environment. The daily sunspot observations may become more interesting when correlated with transient events including solar flares, filaments, coronal holes, and coronal mass ejections that can be followed in near-real time multi-wavelength X-ray and UV solar images as well as particle flux and magnetic field measurements.

  13. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  14. Magneto-acoustic wave energy in sunspots: observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.

    2011-11-01

    We have reproduced some sunspot wave signatures obtained from spectropolarimetric observations through 3D MHD numericalsimulations. The results of the simulations arecompared with the oscillations observed simultaneously at different heights from the SiI lambda10827Å line, HeI lambda10830Å line, the CaII H core and the FeI blends at the wings of the CaII H line. The simulations show a remarkable agreement with the observations, and we have used them to quantify the energy contribution of the magneto-acoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is 5-10 times lower than the amount needed to balance the chromospheric radiative losses.

  15. Vortex attraction and the formation of sunspots

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1992-01-01

    A downdraft vortex ring in a stratified atmosphere exhibits universal attraction for nearby vertical magnetic flux bundles. It is speculated that the magnetic fields emerging through the surface of the sun are individually encircled by one or more subsurface vortex rings, providing an important part of the observed clustering of magnetic fibrils to form pores and sunspots.

  16. Response of Solar Irradiance to Sunspot-area Variations

    NASA Astrophysics Data System (ADS)

    Dudok de Wit, T.; Kopp, G.; Shapiro, A.; Witzke, V.; Kretzschmar, M.

    2018-02-01

    One of the important open questions in solar irradiance studies is whether long-term variability (i.e., on timescales of years and beyond) can be reconstructed by means of models that describe short-term variability (i.e., days) using solar proxies as inputs. Preminger & Walton showed that the relationship between spectral solar irradiance and proxies of magnetic-flux emergence, such as the daily sunspot area, can be described in the framework of linear system theory by means of the impulse response. We significantly refine that empirical model by removing spurious solar-rotational effects and by including an additional term that captures long-term variations. Our results show that long-term variability cannot be reconstructed from the short-term response of the spectral irradiance, which questions the extension of solar proxy models to these timescales. In addition, we find that the solar response is nonlinear in a way that cannot be corrected simply by applying a rescaling to a sunspot area.

  17. Chaos in the sunspot cycle - Analysis and prediction

    NASA Technical Reports Server (NTRS)

    Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.

    1991-01-01

    The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.

  18. Towards a first detailed reconstruction of sunspot information over the last 150 years

    NASA Astrophysics Data System (ADS)

    Lefevre, Laure; Clette, Frédéric

    2013-04-01

    With four centuries of solar evolution, the International Sunspot Number (SSN) forms the longest solar time series currently available. It provides an essential reference for understanding and quantifying how the solar output has varied over decades and centuries and thus for assessing the variations of the main natural forcing on the Earth climate. For such a quantitative use, this unique time-series must be closely monitored for any possible biases and drifts. This is the main objective of the Sunspot Workshops organized jointly by the National Solar Observatory (NSO) and the Royal Observatory of Belgium (ROB) since 2010. Here, we will report about some recent outcomes of past workshops, like diagnostics of scaling errors and their proposed corrections, or the recent disagreement between the sunspot sumber and other solar indices like the 10.7cm radio flux. Our most recent analyses indicate that while part of this divergence may be due to a calibration drift in the SSN, it also results from an intrinsic change in the global magnetic parameters of sunspots and solar active regions, suggesting a possible transition to a new activity regime. Going beyond the SSN series, in the framework of the SOTERIA, TOSCA and SOLID projects, we produced a survey of all existing catalogs providing detailed sunspot information and we also located different primary solar images and drawing collections that can be exploitable to complement the existing catalogs (COMESEP project). These are first steps towards the construction of a multi-parametric time series of multiple sunspot group properties over at least the last 150 years, allowing to reconstruct and extend the current 1-D SSN series. By bringing new spatial, morphological and evolutionary information, such a data set should bring major advances for the modeling of the solar dynamo and solar irradiance. We will present here the current status of this work. The catalog now extends over the last 3 cycles (Lefevre & Clette 2011

  19. The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering

    NASA Technical Reports Server (NTRS)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.

  20. On the dissolution of sunspot groups

    NASA Technical Reports Server (NTRS)

    Wallenhorst, S. G.; Howard, R.

    1982-01-01

    The behavior of magnetic fluxes from active regions is investigated for times near sunspot disappearance. It is found that the magnetic fluxes decrease on or near the date the spot vanishes. This effect is investigated and it is concluded that it is actually due to changes in the field, rather than through dissipation of the active region fields. This is important in considerations of the large-scale behavior of solar magnetic fields.

  1. Sunspot variation and selected associated phenomena: A look at solar cycle 21 and beyond

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1982-01-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated.

  2. Coronal and chromospheric physics. [Sun, sunspots, and solar limb

    NASA Technical Reports Server (NTRS)

    Hall, D. N. B.; Landman, D. A.; Orrall, F. Q.

    1984-01-01

    The Solar Maximum Mission support program is mentioned along with investigations of the solar corona, prominences, and chromosphere. The solar limb was studied using far infrared and submillimeter photometry. Stokes profiles obtained from sunspot observations were examined with a polarimetric technique.

  3. ANOMALOUS RELATIVE AR/CA CORONAL ABUNDANCES OBSERVED BY THE HINODE/EUV IMAGING SPECTROMETER NEAR SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doschek, G. A.; Warren, H. P.; Feldman, U.

    2015-07-20

    In determining the element abundance of argon (a high first ionization potential; FIP element) relative to calcium (a low FIP element) in flares, unexpectedly high intensities of two Ar xiv lines (194.40, 187.96 Å) relative to a Ca xiv line (193.87 Å) intensity were found in small (a few arcseconds) regions near sunspots in flare spectra recorded by the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. In the most extreme case the Ar xiv line intensity relative to the Ca xiv intensity was 7 times the value expected from the photospheric abundance ratio, which is about 30 times the abundancemore » of argon relative to calcium in active regions, i.e., the measured Ar/Ca abundance ratio is about 10 instead of 0.37 as in active regions. The Ar xiv and Ca xiv lines are formed near 3.4 MK and have very similar contribution functions. This is the first observation of the inverse FIP effect in the Sun. Other regions show increases of 2–3 over photospheric abundances, or just photospheric abundances. This phenomenon appears to occur rarely and only over small areas of flares away from the regions containing multi-million degree plasma, but more work is needed to quantify the occurrences and their locations. In the bright hot regions of flares the Ar/Ca abundance ratio is coronal, i.e., the same as in active regions. In this Letter we show three examples of the inverse FIP effect.« less

  4. Observation of a reversal of rotation in a sunspot during a solar flare

    PubMed Central

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Bo; Xu, Zhe

    2016-01-01

    The abrupt motion of the photospheric flux during a solar flare is thought to be a back reaction caused by the coronal field reconfiguration. However, the type of motion pattern and the physical mechanism responsible for the back reaction has been uncertain. Here we show that the direction of a sunspot's rotation is reversed during an X1.6 flare using observations from the Helioseismic and Magnetic Imager. A magnetic field extrapolation model shows that the corresponding coronal magnetic field shrinks with increasing magnetic twist density. This suggests that the abrupt reversal of rotation in the sunspot may be driven by a Lorentz torque that is produced by the gradient of twist density from the solar corona to the solar interior. These results support the view that the abrupt reversal in the rotation of the sunspot is a dynamic process responding to shrinkage of the coronal magnetic field during the flare. PMID:27958266

  5. Sunspot cycle-dependent changes in the distribution of GSE latitudinal angles of IMF observed near 1 AU

    NASA Astrophysics Data System (ADS)

    Felix Pereira, B.; Girish, T. E.

    2004-05-01

    The solar cycle variations in the characteristics of the GSE latitudinal angles of the Interplanetary Magnetic Field ($\\theta$GSE) observed near 1 AU have been studied for the period 1967-2000. It is observed that the statistical parameters mean, standard deviation, skewness and kurtosis vary with sunspot cycle. The $\\theta$GSE distribution resembles the Gaussian curve during sunspot maximum and is clearly non-Gaussian during sunspot minimum. The width of the $\\theta$GSE distribution is found to increase with sunspot activity, which is likely to depend on the occurrence of solar transients. Solar cycle variations in skewness are ordered by the solar polar magnetic field changes. This can be explained in terms of the dependence of the dominant polarity of the north-south component of IMF in the GSE system near 1 AU on the IMF sector polarity and the structure of the heliospheric current sheet.

  6. Suppression of Heating of Coronal Loops Rooted in Opposite Polarity Sunspot Umbrae

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep K.; Winebarger, Amy R.

    2016-01-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-­polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.

  7. Magnetoacoustic Wave Energy from Numerical Simulations of an Observed Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-07-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I λ10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I λ10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I λ10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

  8. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, S. Krishna; Jess, D. B.; Doorsselaere, T. Van

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which themore » oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.« less

  9. A comprehensive search for sunspots without the aid of a telescope, 1981-1982

    NASA Astrophysics Data System (ADS)

    Mossman, J. E.

    1989-03-01

    Results are presented from a daily sunspot survey conducted in Crosby, UK between February 1, 1981 and Febrary 28, 1982. It is found that spots or spot groups as small as 0.4 arcmin can be detected without the aid of a telescope. A total of 278 spots or spot groups corresponding to 72 long-lived active regions were observed. It is shown that periods of high sunspot activity are visible to the naked eye, suggesting that ancient Chinese observations of solar activity might be accurate.

  10. Evidence of mass outflow in the low corona over a large sunspot

    NASA Astrophysics Data System (ADS)

    Neupert, W. M.; Brosius, J. W.; Thomas, R. J.; Thompson, W. T.

    1994-04-01

    An extreme ultraviolet (EUV) imaging spectrograph designed for sounding rocket flight has been used to search for velocity fields in the low solar corona. During a flight in May, 1989, we obtained emission line profile measurements along a chord through an active region on the Sun. Relative Doppler velocities were measured in emission lines of Mg IX, Fe XV, and Fe XVI with a sensitivity of 2-3 km/s at 350 A. The only Doppler shift appreciably greater than this level was observed in the line of Mg IX at 368.1 A over the umbra of the large sunspot. The maximum shift measured at that location corresponded to a velocity toward the observer of 14 plus or minus 3 km/s relative to the mean of measurements in that emission line made elsewhere over the active region. The magnetic field in the low corona was aligned to within 10 deg of the line of sight at the location of maximum Doppler shift. Depending on the magnetic field geometry, this mass outflow could either re-appear as a downflow of material in distant footprints of closed coronal loops or, if along open field lines, could contribute to the solar wind. The site of the sunspot was near a major photospheric magnetic field boundary. Such boundaries have been associated with low-speed solar winds as observed in interplanetary plasmas.

  11. Molecular Diagnostics of the Internal Structure of Starspots and Sunspots

    NASA Astrophysics Data System (ADS)

    Afram, N.; Berdyugina, S. V.; Fluri, D. M.; Solanki, S. K.; Lagg, A.; Petit, P.; Arnaud, J.

    2006-12-01

    We have analyzed the usefulness of molecules as a diagnostic tool for studying solar and stellar magnetism with the molecular Zeeman and Paschen-Back effects. In the first part we concentrate on molecules that are observed in sunspots such as MgH and TiO. We present calculated molecular line profiles obtained by assuming magnetic fields of 2-3 kG and compare these synthetic Stokes profiles with spectro-polarimetric observations in sunspots. The good agreement between the theory and observations allows us to turn our attention in the second part to starspots to gain insight into their internal structure. We investigate the temperature range in which the selected molecules can serve as indicators for magnetic fields on highly active cool stars and compare synthetic Stokes profiles with our recent observations.

  12. The pressure and energy balance of the cool corona over sunspots

    NASA Technical Reports Server (NTRS)

    Foukal, P. V.

    1976-01-01

    The 22 largest sunspots observed with the Skylab SO55 spectrometer are studied for a relation between their EUV radiation and their umbral size or magnetic classification. The ultimate goal is to determine why the coronal plasma is so cool over a sunspot and how this cool plasma manages to support itself against gravity. Based on the time behavior of the EUV emission, a steady-state model is developed for the pressure and energy balance of the cool coronal-plasma loops over the spots. Analysis of the temperature structure in a typical loop indicates that the loop is exceedingly well insulated from the outside corona, that its energy balance is determined purely by internal heating and cooling processes, and that a heat input of about 0.0001 erg/cu cm per sec is required along the full length of the loop. It is proposed that: (1) coronal material flows steadily across the field lines at the tops of the loops and falls downward along both sides under gravity; (2) the corona is heated by mechanical-energy transport across the very thin transition region immediately over network-cell interiors; and (3) strong magnetic fields tend to inhibit mechanical-energy dissipation in the corona.

  13. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  14. Sunspot Observations During the Maunder Minimum from the Correspondence of John Flamsteed

    NASA Astrophysics Data System (ADS)

    Carrasco, V. M. S.; Vaquero, J. M.

    2016-11-01

    We compile and analyze the sunspot observations made by John Flamsteed for the period 1672 - 1703, which corresponds to the second part of the Maunder Minimum. They appear in the correspondence of the famous astronomer. We include in an appendix the original texts of the sunspot records kept by Flamsteed. We compute an estimate of the level of solar activity using these records, and compare the results with the latest reconstructions of solar activity during the Maunder Minimum, obtaining values characteristic of a grand solar minimum. Finally, we discuss a phenomenon observed and described by Stephen Gray in 1705 that has been interpreted as a white-light flare.

  15. Estimating the Mean Annual Surface Air Temperature at Armagh Observatory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, the Current Ongoing Sunspot Cycle

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    As noted by Gray et al., Sir William Herschel was the first to suggest a possible close connection between the Sun and the Earth’s climate. The Sun, being the source of energy that impacts and drives the Earth’s climate system, displays a variety of changes over both short and long term time scales, the most obvious examples being the somewhat regular waxing and waning of sunspots with time (i.e., the sunspot cycle (SC)), first described by Samuel Heinrich Schwabe, a German apothecary and amateur astronomer who observed the Sun from Dessau, Germany, and the now well established variation of the Sun’s irradiance over the SC. Other factors related to the SC have been linked to changes in climate as well. Some of these other factors include the role of cosmic rays and the solar wind (i.e., the geomagnetic cycle) on climate, as well as the apparent close association between trends in global and northern hemispheric temperature and the length of the SC, although some investigators have described the inferred association between climate and, in particular, SC length as now being weak. More recently, Solheim et al. have reported on the relation between SC length and the average temperature in the same and immediately following SC for a number of meteorological stations in Norway and in the North Atlantic region. They noted that while they found no significant trend (correlation) between SC length and the average temperature when measured for the same cycle, in contrast, they found a significant negative trend when SC length was compared with the following cycle’s average temperature. From this observation, they suggested that average northern hemispheric temperature during the present ongoing SC (SC24) will be lower by about 0.9 °C than was seen in SC23 (spanning 1996–2007, based on yearly averages of sunspot number (SSN), and onset for SC24 occurring in 2008). The purpose of this Technical Publication (TP) is to examine the annual variations of the Armagh

  16. An Estimate of the Size and Shape of Sunspot Cycle 24 Based on its Early Cycle Behavior using the Hathaway-Wilson-Reichmann Shape-Fitting Function

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2011-01-01

    On the basis of 12-month moving averages (12-mma) of monthly mean sunspot number (R), sunspot cycle 24 had its minimum amplitude (Rm = 1.7) in December 2008. At 12 mo past minimum, R measured 8.3, and at 18 mo past minimum, it measured 16.4. Thus far, the maximum month-to-month rate of rise in 12-mma values of monthly mean sunspot number (AR(t) max) has been 1.7, having occurred at elapsed times past minimum amplitude (t) of 14 and 15 mo. Compared to other sunspot cycles of the modern era, cycle 24?s Rm and AR(t) max (as observed so far) are the smallest on record, suggesting that it likely will be a slow-rising, long-period sunspot cycle of below average maximum amplitude (RM). Supporting this view is the now observed relative strength of cycle 24?s geomagnetic minimum amplitude as measured using the 12-mma value of the aa-geomagnetic index (aam = 8.4), which also is the smallest on record, having occurred at t equals 8 and 9 mo. From the method of Ohl (the inferred preferential association between RM and aam), one predicts RM = 55 +/- 17 (the ?1 se prediction interval) for cycle 24. Furthermore, from the Waldmeier effect (the inferred preferential association between the ascent duration (ASC) and RM) one predicts an ASC longer than 48 mo for cycle 24; hence, maximum amplitude occurrence should be after December 2012. Application of the Hathaway-Wilson-Reichmann shape-fitting function, using an RM = 70 and ASC = 56 mo, is found to adequately fit the early sunspot number growth of cycle 24.

  17. The chromosphere above a δ-sunspot in the presence of fan-shaped jets

    NASA Astrophysics Data System (ADS)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodríguez, Jaime

    2018-01-01

    Context. Delta-sunspots are known to be favourable locations for fast and energetic events like flares and coronal mass ejections. The photosphere of this sunspot type has been thoroughly investigated in the past three decades. The atmospheric conditions in the chromosphere are not as well known, however. Aims: This study is focused on the chromosphere of a δ-sunspot that harbours a series of fan-shaped jets in its penumbra. The aim of this study is to establish the magnetic field topology and the temperature distribution in the presence of jets in the photosphere and the chromosphere. Methods: We use data from the Swedish 1m Solar Telescope (SST) and the Solar Dynamics Observatory. We invert the spectropolarimetric Fe I 6302 Å and Ca II 8542 Å data from the SST using the non-LTE inversion code NICOLE to estimate the magnetic field configuration, temperature, and velocity structure in the chromosphere. Results: A loop-like magnetic structure is observed to emerge in the penumbra of the sunspot. The jets are launched from this structure. Magnetic reconnection between this emerging field and the pre-existing vertical field is suggested by hot plasma patches on the interface between the two fields. The height at which the reconnection takes place is located between log τ500 = -2 and log τ500 = -3. The magnetic field vector and the atmospheric temperature maps show a stationary configuration during the whole observation. Movies associated to Figs. 3-5 are available at http://www.aanda.org

  18. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    NASA Astrophysics Data System (ADS)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  19. Lomb-Scargle periodogram analysis of the periods around 5.5 year and 11 year in the international sunspot numbers

    NASA Astrophysics Data System (ADS)

    Zhu, F. R.; Jia, H. Y.

    2018-07-01

    The New International Sunspot Numbers (NISNs) have been successfully compiled and can be downloaded from the World Data Center-Sunspot index and Long-term Solar Observations, Royal Observatory of Belgium, Brussels. The periods in these NISNs have been studied by using the Lomb-Scargle periodogram. The results show that the international sunspot numbers have a lot of periods. Of the various periods, the most outstanding period around 11 year is 10.108 year after removing the 10.862 year signal from the time series of sunspot numbers, while the periods of 11.988 year, 7.990 year, 9.612 year, 5.445 year, 8.915 year, 5.792 year are also found with the period of 5.445 year being stronger than those of 5.792 year and 8.915 year. However, the period of 5.445 year is still much weaker than the period of 10.862 year. It is evident that the periods around 11 year and 5.5 year in the revised international sunspot numbers obtained by using the Lomb-Scargle periodogram method is somewhat different from the ones in previous studies.

  20. The Schwabe and Gleissberg Periods in the Wolf Sunspot Numbers and the Group Sunspot Numbers

    NASA Astrophysics Data System (ADS)

    Li, K. J.; Gao, P. X.; Su, T. W.

    2005-06-01

    Three wavelet functions: the Morlet wavelet, the Paul wavelet, and the DOG wavelet have been respectively performed on both the monthly Wolf sunspot numbers (Rz) from January 1749 to May 2004 and the monthly group sunspot numbers (Rg) from June 1795 to December 1995 to study the evolution of the Gleissberg and Schwabe periods of solar activity. The main results obtained are (1) the two most obvious periods in both the Rz and Rg are the Schwabe and Gleissberg periods. The Schwabe period oscillated during the second half of the eighteenth century and was steady from the 1850s onward. No obvious drifting trend of the Schwabe period exists. (2) The Gleissberg period obviously drifts to longer periods the whole consideration time, and the drifting speed of the Gleissberg period is larger for Rz than for Rg. (3) Although the Schwabe-period values for Rz and Rg are about 10.7 years, the value for Rz seems slightly larger than that for Rg. The Schwabe period of Rz is highly significant after the 1820s, and the Schwabe period of Rg is highly significant over almost the whole consideration time except for about 20 years around the 1800s. The evolution of the Schwabe period for both Rz and Rg in time is similar to each other. (4) The Gleissberg period in Rz and Rg is highly significant during the whole consideration time, but this result is unreliable at the two ends of each of the time series of the data. The evolution of the Gleissberg period in Rz is similar to that in Rg.

  1. Lateral Downflows in Sunspot Penumbral Filaments and their Temporal Evolution

    NASA Astrophysics Data System (ADS)

    Esteban Pozuelo, S.; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2015-04-01

    We study the temporal evolution of downflows observed at the lateral edges of penumbral filaments in a sunspot located very close to the disk center. Our analysis is based on a sequence of nearly diffraction-limited scans of the Fe i 617.3 nm line taken with the CRisp Imaging Spectro-Polarimeter instrument at the Swedish 1 m Solar Telescope. We compute Dopplergrams from the observed intensity profiles using line bisectors and filter the resulting velocity maps for subsonic oscillations. Lateral downflows appear everywhere in the center-side penumbra as small, weak patches of redshifts next to or along the edges of blueshifted flow channels. These patches have an intermittent life and undergo mergings and fragmentations quite frequently. The lateral downflows move together with the hosting filaments and react to their shape variations, very much resembling the evolution of granular convection in the quiet Sun. There is a good relation between brightness and velocity in the center-side penumbra, with downflows being darker than upflows on average, which is again reminiscent of quiet Sun convection. These results point to the existence of overturning convection in sunspot penumbrae, with elongated cells forming filaments where the flow is upward but very inclined, and weak lateral downward flows. In general, the circular polarization profiles emerging from the lateral downflows do not show sign reversals, although sometimes we detect three-lobed profiles that are suggestive of opposite magnetic polarities in the pixel.

  2. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    NASA Astrophysics Data System (ADS)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  3. Giant Sunspot Erupts with 4th Substantial Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. Read more: www.nasa.gov/content/goddard/giant-sunspot-erupts-with-4t...

  4. The evolution of flaring and non-flaring active regions

    NASA Astrophysics Data System (ADS)

    Kilcik, A.; Yurchyshyn, V.; Sahin, S.; Sarp, V.; Obridko, V.; Ozguc, A.; Rozelot, J. P.

    2018-06-01

    According to the modified Zurich classification, sunspot groups are classified into seven different classes (A, B, C, D, E, F and H) based on their morphology and evolution. In this classification, classes A and B, which are small groups, describe the beginning of sunspot evolution, while classes D, E and F describe the large and evolved groups. Class C describes the middle phase of sunspot evolution and the class H describes the end of sunspot evolution. Here, we compare the lifetime and temporal evolution of flaring and non-flaring active regions (ARs), and the flaring effect on ARs in these groups in detail for the last two solar cycles (1996 through 2016). Our main findings are as follows: (i) Flaring sunspot groups have longer lifetimes than non-flaring ones. (ii) Most of the class A, B and C flaring ARs rapidly evolve to higher classes, while this is not applicable for non-flaring ARs. More than 50 per cent of the flaring A, B and C groups changed morphologically, while the remaining D, E, F and H groups did not change remarkably after the flare activity. (iii) 75 per cent of all flaring sunspot groups are large and complex. (iv) There is a significant increase in the sunspot group area in classes A, B, C, D and H after flaring activity. In contrast, the sunspot group area of classes E and F decreased. The sunspot counts of classes D, E and F decreased as well, while classes A, B, C and H showed an increase.

  5. Fractal Dimensions of Umbral and Penumbral Regions of Sunspots

    NASA Astrophysics Data System (ADS)

    Rajkumar, B.; Haque, S.; Hrudey, W.

    2017-11-01

    The images of sunspots in 16 active regions taken at the University College of the Cayman Islands (UCCI) Observatory on Grand Cayman during June-November 2015 were used to determine their fractal dimensions using the perimeter-area method for the umbral and the penumbral region. Scale-free fractal dimensions of 2.09 ±0.42 and 1.72 ±0.4 were found, respectively. This value was higher than the value determined by Chumak and Chumak ( Astron. Astrophys. Trans. 10, 329, 1996), who used a similar method, but only for the penumbral region of their sample set. The umbral and penumbral fractal dimensions for the specific sunspots are positively correlated with r = 0.58. Furthermore, a similar time-series analysis was performed on eight images of AR 12403, from 21 August 2015 to 28 August 2015 taken from the Debrecen Photoheliographic Data (DPD). The correlation is r = 0.623 between the umbral and penumbral fractal dimensions in the time series, indicating that the complexity in morphology indicated by the fractal dimension between the umbra and penumbra followed each other in time as well.

  6. Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Owens, M. J.; Barnard, L.

    2014-07-01

    We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, RC , and the group sunspot number RG . RC uses corrections for both the "Waldmeier discontinuity," as derived in Paper 1, and the "Wolf discontinuity" revealed by Leussu et al. (2013). We show that the simple correlation of the geomagnetic indices with RCn or RGn masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between RC and RG have a variety of causes and are highly unlikely to be attributable to errors in either RG alone, as has recently been assumed. Because it is not known if RC or RG is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like RG , enables modeling of the open solar flux for 1610 onward in Paper 3 but maintains the characteristics of RC .

  7. Polarimetry and spectroscopy of a simple sunspot. I - On the magnetic field of a sunspot penumbra

    NASA Technical Reports Server (NTRS)

    Schmidt, W.; Hofmann, A.; Balthasar, H.; Tarbell, T. D.; Frank, Z. A.

    1992-01-01

    We investigate the magnetic field structure of a medium sized sunspot using high resolution magnetograms and spectrograms and derive a relationship between the brightness of penumbral structures and the inclination of the magnetic field. The field inclination to the spot normal is larger in the dark structures than in the bright ones. We show that the field strength does not vary between dark and bright structures. At the inner penumbral boundary the field strength is 2000 Gauss and about 1000 Gauss at the outer penumbral edge. The line-of sight component of the material flow decreases rapidly within one arcsecond at the photospheric boundary of the spot.

  8. THE MYSTERIOUS CASE OF THE SOLAR ARGON ABUNDANCE NEAR SUNSPOTS IN FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doschek, G. A.; Warren, H. P.

    Recently we discussed an enhancement of the abundance of Ar xiv relative to Ca xiv near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The observed Ar xiv/Ca xiv ratio yields an argon/calcium abundance ratio seven times greater than expected from the photospheric abundance. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as being due to an inverse first ionization potential (FIP) effect. In the published work, two lines of Ar xiv were observed, and one line was tentatively identified as anmore » Ar xi line. In this paper, we report observing a similar enhancement in a full-CCD EIS flare spectrum in 13 argon lines that lie within the EIS wavelength ranges. The observed lines include two Ar xi lines, four Ar xiii lines, six Ar xiv lines, and one Ar xv line. The enhancement is far less than reported in Doschek et al. but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and the abundance could be photospheric. This enhancement occurs in association with a sunspot in a small area only a few arcseconds (1″ = about 700 km) in size. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. indicate a depletion of low-FIP elements.« less

  9. Distribution of electric currents in sunspots from photosphere to corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosain, Sanjay; Démoulin, Pascal; López Fuentes, Marcelo

    2014-09-20

    We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z}more » has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.« less

  10. Depressed emission between magnetic arcades near a sunspot

    NASA Astrophysics Data System (ADS)

    Ryabov, B. I.; Shibasaki, K.

    The locations of the depressed emission in microwaves, EUV and soft X-rays are compared with each other and with the location of the plasma outflow in the active region (AR) 8535 on the Sun. We found that two open-field regions overlap the regions of depressed emission near the AR's sunspot. These two open-field regions are simulated with the potential-field source-surface (PFSS) model under radial distances of RSS = 1.8 R⊙ and RSS = 2.5 R⊙. Each open-field region is located between the arcades of the loops of the same magnetic polarity. The former open-field region covers the region of the plasma outflow, which is thus useful for the tests on connection to the heliosphere. The utmost microwave depression of the intensity in the ordinary mode (the Very Large Array 15 GHz observations) also overlaps the region of the plasma outflow and thus indicates this outflow. The lasting for eight days depression in soft X-rays and the SOHO EIT 2.84× 10-8 m images are attributed to the evacuation of as hot coronal plasma as T≥ 2× 106 K from the extended in height (``open") magnetic structures. We conclude that the AR 8535 presents the sunspot atmosphere affected by the large-scale magnetic fields.

  11. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  12. THE FORMATION OF AN INVERSE S-SHAPED ACTIVE-REGION FILAMENT DRIVEN BY SUNSPOT MOTION AND MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    2016-11-20

    We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two oppositemore » polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.« less

  13. Simulating the dispersion of NOx and CO2 in the city of Zurich at building resolving scale

    NASA Astrophysics Data System (ADS)

    Brunner, Dominik; Berchet, Antoine; Emmenegger, Lukas; Henne, Stephan; Müller, Michael

    2017-04-01

    Cities are emission hotspots for both greenhouse gases and air pollutants. They contribute about 70% of global greenhouse gas emissions and are home to a growing number of people potentially suffering from poor air quality in the urban environment. High-resolution atmospheric transport modelling of greenhouse gases and air pollutants at the city scale has, therefore, several important applications such as air pollutant exposure assessment, air quality forecasting, or urban planning and management. When combined with observations, it also has the potential to quantify emissions and monitor their long-term trends, which is the main motivation for the deployment of urban greenhouse gas monitoring networks. We have developed a comprehensive atmospheric modeling model system for the city of Zurich, Switzerland ( 600,000 inhabitants including suburbs), which is composed of the mesoscale model GRAMM simulating the flow in a larger domain around Zurich at 100 m resolution, and the nested high-resolution model GRAL simulating the flow and air pollutant dispersion in the city at building resolving (5-10 m) scale. Based on an extremely detailed emission inventory provided by the municipality of Zurich, we have simulated two years of hourly NOx and CO2 concentration fields across the entire city. Here, we present a detailed evaluation of the simulations against a comprehensive network of continuous monitoring sites and passive samplers for NOx and analyze the sensitivity of the results to the temporal variability of the emissions. Furthermore, we present first simulations of CO2 and investigate the challenges associated with CO2 sources not covered by the inventory such as human respiration and exchange fluxes with urban vegetation.

  14. High resolution He I 10830 angstrom narrow-band imaging of an M-class flare.I-analysis of sunspot dynamics during flaring

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Su, Yingna; Hong, Zhenxiang; Zeng, Zhicheng; Ji, Kaifan; Goode, Philip R.; Cao, Wenda; Ji, Haisheng

    2016-10-01

    We report our first-step results of high resolution He I 1083 nm narrow-band imaging of an M 1.8 class two-ribbon flare on July 5,2012. The flare was observed with the 1.6 meter aperture New Solar Telescope at Big Bear Solar Observatory. For this unique data set, sunspot dynamics during flaring were analyzed for the first time. By directly imaging the upper chromosphere, running penumbral waves are clearly seen as an outward extention of umbral flashes, both take the form of absorption in our 1083 nm narrow-band images. From a space-time image made of a slit cutting across the ribbon and the sunspot, we find that dark lanes for umbral flashes and penumbral waves are obviously broadened after the flare. The most prominent feature is the sudden appearance of an oscillating absorption strip inside one ribbon of the flare when it sweeps into sunspot's penumbral and umbral regions. During each oscillation, outwardly propagating umbral flashes and subsequent penumbral waves rush out into the inwardly sweeping ribbon, followed by a returning of the absorption strip with similar speed. We tentatively explain the phenomenon as the result of a sudden increase in the density of ortho-Helium atoms in the area of the sunspot area being excited by the flare's EUV illumination. This explanation is based on the obsevation that 1083 nm absorption in the sunspot area gets enhanced during the flare. Nevertheless, questions are still open and we need further well-devised observations to investigate the behavior of sunspot dynamics during flares.

  15. Some Features of the Variation of the Magnetic Field Characteristics in the Umbra of Sunspots During Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Zagainova, Yu. S.; Fainshtein, V. G.; Rudenko, G. V.; Obridko, V. N.

    2017-12-01

    The observed variations of the magnetic properties of sunspots during eruptive events (solar flares and coronal mass ejections (CMEs)) are discussed. Variations of the magnetic field characteristics in the umbra of the sunspots of active regions (ARs) recorded during eruptive events on August 2, 2011, March 9, 2012, April 11, 2013, January 7, 2014, and June 18, 2015, are studied. The behavior of the maximum of the total field strength B max, the minimum inclination angle of the field lines to the radial direction from the center of the Sun αmin (i.e., the inclination angle of the axis of the magnetic tube from the sunspot umbra), and values of these parameters B mean and αmean mean within the umbra are analyzed. The main results of our investigation are discussed by the example of the event on August 2, 2011, but, in general, the observed features of the variation of magnetic field properties in AR sunspots are similar for all of the considered eruptive events. It is shown that, after the flare onset in six AR sunspots on August 2, 2011, the behavior of the specified magnetic field parameters changes in comparison with that observed before the flare onset.

  16. A model of a sunspot chromosphere based on OSO 8 observations

    NASA Technical Reports Server (NTRS)

    Lites, B. W.; Skumanich, A.

    1982-01-01

    OSO 8 spectrometer observations of the H I, Mg II, and Ca II resonance lines of a large quiet sunspot during November 16-17, 1975, along with a C IV line of that event obtained by a ground-based spectrometer, are analyzed together with near-simultaneous ground-based Stokes measurements to yield an umbral chromosphere and transition region model. Features of this model include a chromosphere that is effectively thin in the resonance lines of H I and Mg II, while being saturated in Ca II, and an upper chromospheric structure similar to that of quiet-sun models. The similarity of the upper chromosphere of the sunspot umbra to the quiet-sun chromosphere suggests that the intense magnetic field plays only a passive role in the chromospheric heating mechanism, and the observations cited indicate that solar-type stars with large areas of ordered magnetic flux would not necessarily exhibit extremely active chromosphere.

  17. Anticorrelation of X-ray bright points with sunspot number, 1970-1978

    NASA Technical Reports Server (NTRS)

    Golub, L.; Davis, J. M.; Krieger, A. S.

    1979-01-01

    Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.

  18. SOHO sees right through the Sun, and finds sunspots on the far side

    NASA Astrophysics Data System (ADS)

    2000-03-01

    The story is told today in the journal Science by Charles Lindsey of Tucson, Arizona, and Doug Braun of Boulder, Colorado. They realised that the analytical witchcraft called helioseismic holography might open a window right through the Sun. And the technique worked when they used it to decode waves seen on the visible surface by one of SOHO's instruments, the Michelson Doppler Imager, or MDI. "We've known for ten years that in theory we could make the Sun transparent all the way to the far side," said Charles Lindsey. "But we needed observations of exceptional quality. In the end we got them, from MDI on SOHO." For more than 100 years scientists have been aware that groups of dark sunspots on the Sun's visible face are often the scene of flares and other eruptions. Nowadays they watch the Sun more closely than ever, because modern systems are much more vulnerable to solar disturbances than old-style technology was. The experts can still be taken by surprise, because the Sun turns on its axis. A large group of previously hidden sunspots can suddenly swing into view on the eastern (left-hand) edge of the Sun. It may already be blazing away with menacing eruptions. With a far-side preview of sunspots, nasty shocks for the space weather forecasters may now be avoidable. Last year, French and Finnish scientists used SWAN, another instrument on SOHO, to detect activity on the far side. They saw an ultraviolet glow lighting up gas in the Solar System beyond the Sun, and moving across the sky like a lighthouse beam as the Sun rotated. The method used by Lindsey and Braun with MDI data is completely different, and it pinpoints the source of the activity on the far side. Solar seismology chalks up another success Detection of sound waves reverberating through the Sun opened its gassy interior for investigation, in much the same way as seismologists learned to explore the Earth's rocky interior with earthquake waves. Using special telescopes on the ground and in space

  19. Diamagnetic reduction in the magnetic field above a sunspot in the gamma-ray burst on July 14, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kichigin, G. N., E-mail: king@iszf.irk.ru; Miroshnichenko, L. I.; Sidorov, V. I.

    2015-08-15

    Earlier, the authors proposed a model for describing the motion of trapped ions accelerated to energies of 10–100 MeV/nucleon in an electric field of 0.01–0.1 V/cm with a nonzero magnetic-field-aligned component in coronal solar loops with a characteristic size of ∼100 000 km. The simulation results were used to interpret the properties of gamma-ray sources in a powerful solar burst that occurred on July 14, 2000. According to the proposed model, the gamma-ray source emitting lines with photon energies of 4.1–6.7 MeV was located above the sunspot and the source of the 2.223-MeV line coincided with the region of themore » observed drop-out of accelerated ions into dense layers of the solar atmosphere in the sunspot, where a short-term reduction in the photospheric magnetic field by about 100 G was simultaneously observed. An idea is stated and justified for the first time that the local reduction in the magnetic field in the sunspot is caused by the diamagnetic effect created by accelerated ions in the magnetic mirror of the coronal magnetic flux rope above the sunspot.« less

  20. Sunspot Light Walls Suppressed by Nearby Brightenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Hou, Yijun

    Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, andmore » 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.« less

  1. Surge-like Oscillations above Sunspot Light Bridges Driven by Magnetoacoustic Shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingwen; Tian, Hui; He, Jiansen

    2017-03-20

    High-resolution observations of the solar chromosphere and transition region often reveal surge-like oscillatory activities above sunspot light bridges (LBs). These oscillations are often interpreted as intermittent plasma jets produced by quasi-periodic magnetic reconnection. We have analyzed the oscillations above an LB in a sunspot using data taken by the Interface Region Imaging Spectrograph . The chromospheric 2796 Å images show surge-like activities above the entire LB at any time, forming an oscillating wall. Within the wall we often see that the core of the Mg ii k 2796.35 Å line first experiences a large blueshift, and then gradually decreases tomore » zero shift before increasing to a redshift of comparable magnitude. Such a behavior suggests that the oscillations are highly nonlinear and likely related to shocks. In the 1400 Å passband, which samples emission mainly from the Si iv ion, the most prominent feature is a bright oscillatory front ahead of the surges. We find a positive correlation between the acceleration and maximum velocity of the moving front, which is consistent with numerical simulations of upward propagating slow-mode shock waves. The Si iv 1402.77 Å line profile is generally enhanced and broadened in the bright front, which might be caused by turbulence generated through compression or by the shocks. These results, together with the fact that the oscillation period stays almost unchanged over a long duration, lead us to propose that the surge-like oscillations above LBs are caused by shocked p-mode waves leaked from the underlying photosphere.« less

  2. A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Partha; Choudhary, D. P.; Gosain, Sanjay, E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: debiprasad.choudhary@csun.edu, E-mail: sgosain@nso.edu

    2013-05-10

    Solar activity indices vary over the Sun's disk, and various activity parameters are not considered to be symmetric between the northern and southern hemispheres of the Sun. The north-south asymmetry of different solar indices provides an important clue to understanding subphotospheric dynamics and solar dynamo action, especially with regard to nonlinear dynamo models. In the present work, we study the statistical significance of the north-south asymmetry of sunspot areas for the complete solar cycle 23 (1996-2008) and rising branch of cycle 24 (first 45 months). The preferred hemisphere in each year of cycles 23 and 24 has been identified bymore » calculating the probability of hemispheric distribution of sunspot areas. The statistically significant intermediate-term periodicities of the north-south asymmetry of sunspot area data have also been investigated using Lomb-Scargle and wavelet techniques. A number of short- and mid-term periods including the best-known Rieger one (150-160 days) are detected in cycle 23 and near Rieger-type periods during cycle 24, and most of them are found to be time variable. We present our results and discuss their possible explanations with the help of theoretical models and observations.« less

  3. Umbral oscillations and penumbral waves in H alpha. [in sunspots

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Tang, F.

    1975-01-01

    Examples are presented of umbral oscillations observed on Big Bear H-alpha filtergram movies, and the relation between umbral oscillations and running penumbral waves occurring in the same sunspot is investigated. Umbral oscillations near the center of the umbra are probably physically independent of the penumbral waves because the period of these umbral oscillations (150 sec) is shorter than the penumbral wave period (270 sec), but not a harmonic. Dark puffs emerge from the edge of the umbra and move outward across the penumbra, and have the same period as the running penumbral waves. These dark puffs are interpreted to be the extension of chromospheric umbral oscillations at the edge of the umbra. It is suggested that the dark puffs and the running penumbral waves have a common source: photospheric oscillations just inside the umbra.

  4. Sunspot Pattern Classification using PCA and Neural Networks (Poster)

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Thompson, D. E.; Slater, G. L.

    2005-01-01

    The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.

  5. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  6. Non-Stationary Effects and Cross Correlations in Solar Activity

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Panischev, Oleg; Demin, Sergey

    2016-07-01

    In this paper within the framework of the Flicker-Noise Spectroscopy (FNS) we consider the dynamic properties of the solar activity by analyzing the Zurich sunspot numbers. As is well-known astrophysics objects are the non-stationary open systems, whose evolution are the quite individual and have the alternation effects. The main difference of FNS compared to other related methods is the separation of the original signal reflecting the dynamics of solar activity into three frequency bands: system-specific "resonances" and their interferential contributions at lower frequencies, chaotic "random walk" ("irregularity-jump") components at larger frequencies, and chaotic "irregularity-spike" (inertial) components in the highest frequency range. Specific parameters corresponding to each of the bands are introduced and calculated. These irregularities as well as specific resonance frequencies are considered as the information carriers on every hierarchical level of the evolution of a complex natural system with intermittent behavior, consecutive alternation of rapid chaotic changes in the values of dynamic variables on small time intervals with small variations of the values on longer time intervals ("laminar" phases). The jump and spike irregularities are described by power spectra and difference moments (transient structural functions) of the second order. FNS allows revealing the most crucial points of the solar activity dynamics by means of "spikiness" factor. It is shown that this variable behaves as the predictor of crucial changes of the sunspot number dynamics, particularly when the number comes up to maximum value. The change of averaging interval allows revealing the non-stationary effects depending by 11-year cycle and by inside processes in a cycle. To consider the cross correlations between the different variables of solar activity we use the Zurich sunspot numbers and the sequence of corona's radiation energy. The FNS-approach allows extracting the

  7. The Formation of a Sunspot Penumbra Sector in Active Region NOAA 12574

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Yan, Xiaoli; Wang, Jincheng; Kong, DeFang; Xue, Zhike; Yang, Liheng; Cao, Wenda

    2018-04-01

    We present a particular case of the formation of a penumbra sector around a developing sunspot in the active region NOAA 12574 on 2016 August 11 by using the high-resolution data observed by the New Solar Telescope at the Big Bear Solar Observatory and the data acquired by the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory satellite. Before the new penumbra sector formed, the developing sunspot already had two umbrae with some penumbral filaments. The penumbra sector gradually formed at the junction of two umbrae. We found that the formation of the penumbra sector can be divided into two stages. First, during the initial stage of penumbral formation, the region where the penumbra sector formed always appeared blueshifted in a Dopplergram. The area, mean transverse magnetic field strength, and total magnetic flux of the umbra and penumbra sector all increased with time. The initial penumbral formation was associated with magnetic emergence. Second, when the penumbra sector appeared, the magnetic flux and area of the penumbra sector increased after the umbra’s magnetic flux and area decreased. These results indicate that the umbra provided magnetic flux for penumbral development after the penumbra sector appeared. We also found that the newly formed penumbra sector was associated with sunspot rotation. Based on these findings, we suggest that the penumbra sector was the result of the emerging flux that was trapped in the photosphere at the initial stage of penumbral formation, and when the rudimentary penumbra formed, the penumbra sector developed at the cost of the umbra.

  8. SMALL-SCALE AND GLOBAL DYNAMOS AND THE AREA AND FLUX DISTRIBUTIONS OF ACTIVE REGIONS, SUNSPOT GROUPS, AND SUNSPOTS: A MULTI-DATABASE STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz-Jaramillo, Andrés; Windmueller, John C.; Amouzou, Ernest C.

    2015-02-10

    In this work, we take advantage of 11 different sunspot group, sunspot, and active region databases to characterize the area and flux distributions of photospheric magnetic structures. We find that, when taken separately, different databases are better fitted by different distributions (as has been reported previously in the literature). However, we find that all our databases can be reconciled by the simple application of a proportionality constant, and that, in reality, different databases are sampling different parts of a composite distribution. This composite distribution is made up by linear combination of Weibull and log-normal distributions—where a pure Weibull (log-normal) characterizesmore » the distribution of structures with fluxes below (above) 10{sup 21}Mx (10{sup 22}Mx). Additionally, we demonstrate that the Weibull distribution shows the expected linear behavior of a power-law distribution (when extended to smaller fluxes), making our results compatible with the results of Parnell et al. We propose that this is evidence of two separate mechanisms giving rise to visible structures on the photosphere: one directly connected to the global component of the dynamo (and the generation of bipolar active regions), and the other with the small-scale component of the dynamo (and the fragmentation of magnetic structures due to their interaction with turbulent convection)« less

  9. Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube

    NASA Astrophysics Data System (ADS)

    Sturrock, Z.; Hood, A. W.

    2016-09-01

    Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.

  10. [Anthrax in the canton of Zurich between 1878 and 2005].

    PubMed

    Brandes Ammann, A; Brandl, H

    2007-07-01

    Historical records reporting cases of animal anthrax in the canton of Zurich between 1878 and 2005 were analysed on the level of political communities regarding occurrence and number of cases, animals affected, and number of communities affected. Data were correlated with industrial activities (tanning, wool and horse hair processing) in a community and to the prevailing meteorological conditions. A total of 830 cases of animal anthrax has been recorded in 140 of 171 communities. Occurrence correlated with industrial activities in a community such as companies handling potentially contaminated materials (hides, fur, wool, hair, meat, or bone meal). The influence of wool processing companies (P = 0. 004) and tanneries (P = 0. 032) was significant whereas horse hair processing had no effect. However, a statistical relationship between the number of cases reported and meteorological data (rainfall, mean temperature) was not found.

  11. On the paleoenvironmental potential of 253 newly discovered pine stumps from Zurich, Switzerland

    NASA Astrophysics Data System (ADS)

    Reinig, Frederick; Nievergelt, Daniel; Esper, Jan; Friedrich, Michael; Helle, Gerhard; Hellmann, Lena; Kromer, Bernd; Morganti, Sandro; Pauly, Maren; Sookdeo, Adam; Tegel, Willy; Treydte, Kerstin; Wacker, Lukas; Büntgen, Ulf

    2017-04-01

    The transition from the last Ice Age to the early Holocene 15'000-10'000 BP represents a close natural analog to the ongoing and predicted rates of anthropogenic climate change. A reduced quality and quantity of high-resolution proxy archives during this period, however, limits our understanding of the magnitude and pace of Late Glacial (LG) environmental variability. Here, we present the world's best preserved, most replicated and oldest forest remains: A total of 253 subfossil pine stumps were recently discovered in Zurich. The combined approach of tree-ring and radiocarbon (14C) measurements results in an absolutely dated Preboreal Swiss tree-ring width chronology and eight floating chronologies. With tree ages ranging between 41 and 506 years, often including pith and bark, and a mean segment length of 163 years, this exceptional find is distributed over nearly 2'000 years between the Allerød and the Preboreal. Together with 200 previously collected LG pines from the greater Zurich region, this study sets a benchmark in terms of sample replication and dating precision for stable more dynamic climatic periods such as the Laacher See eruption, the Older and Younger Dryas. The paleoenvironmental significance would even increase when annually resolved 14C-measurements help fixing a major, Northern Hemispheric gap in the absolutely dated dendro time series during the Younger Dryas. While overcoming this interlude, our results further emphasize the importance of interdisciplinary research on these striking LG climatic shifts to better understand and assess their ecological and environmental impact.

  12. Questioning the Influence of Sunspots on Amazon Hydrology: Even a Broken Clock Tells the Right Time Twice a Day

    NASA Astrophysics Data System (ADS)

    Baker, J. C. A.; Gloor, M.; Boom, A.; Neill, D. A.; Cintra, B. B. L.; Clerici, S. J.; Brienen, R. J. W.

    2018-02-01

    It was suggested in a recent article that sunspots drive decadal variation in Amazon River flow. This conclusion was based on a novel time series decomposition method used to extract a decadal signal from the Amazon River record. We have extended this analysis back in time, using a new hydrological proxy record of tree ring oxygen isotopes (δ18OTR). Consistent with the findings of Antico and Torres, we find a positive correlation between sunspots and the decadal δ18OTR cycle from 1903 to 2012 (r = 0.60, p < 0.001). However, the relationship does not persist into the preceding century and even becomes weakly negative (r = -0.30, p = 0.11, 1799-1902). This result casts considerable doubt over the mechanism by which sunspots are purported to influence Amazon hydrology.

  13. Major revision of sunspot number: implication for the ionosphere models

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara

    2016-07-01

    Recently on 1st July, 2015, a major revision of the historical sunspot number series has been carried out as discussed in [Clette et al., Revisiting the Sunspot Number. A 400-Year Perspective on the Solar Cycle, Space Science Reviews, 186, Issue 1-4, pp. 35-103, 2014). The revised SSN2.0 dataset is provided along with the former SSN1.0 data at http://sidc.oma.be/silso/. The SSN2.0 values exceed the former conventional SSN1.0 data so that new SSNs are greater in many cases than the solar radio flux F10.7 values which pose a problem of SSN2.0 implementation as a driver of the International Reference Ionosphere, IRI, its extension to plasmasphere, IRI-Plas, NeQuick model, Russian Standard Ionosphere, SMI. In particular, the monthly predictions of the F2 layer peak are based on input of the ITU-R (former CCIR) and URSI maps. The CCIR and URSI maps coefficients are available for each month of the year, and for two levels of solar activity: low (SSN = 0) and high (SSN = 100). SSN is the monthly smoothed sunspot number from the SSN1.0 data set used as an index of the level of solar activity. For every SSN different from 0 or 100 the critical frequency foF2 and the M3000F2 radio propagation factor used for the peak height hmF2 production may be evaluated by an interpolation. The ionospheric proxies of the solar activity IG12 index or Global Electron Content GEC12 index, driving the ionospheric models, are also calibrated with the former SSN1.0 data. The paper presents a solar proxy intended to calibrate SSN2.0 data set to fit F10.7 solar radio flux and/or SSN1.0 data series. This study is partly supported by TUBITAK EEEAG 115E915.

  14. Sunspot Time Series: Passive and Active Intervals

    NASA Astrophysics Data System (ADS)

    Zięba, S.; Nieckarz, Z.

    2014-07-01

    Solar activity slowly and irregularly decreases from the first spotless day (FSD) in the declining phase of the old sunspot cycle and systematically, but also in an irregular way, increases to the new cycle maximum after the last spotless day (LSD). The time interval between the first and the last spotless day can be called the passive interval (PI), while the time interval from the last spotless day to the first one after the new cycle maximum is the related active interval (AI). Minima of solar cycles are inside PIs, while maxima are inside AIs. In this article, we study the properties of passive and active intervals to determine the relation between them. We have found that some properties of PIs, and related AIs, differ significantly between two group of solar cycles; this has allowed us to classify Cycles 8 - 15 as passive cycles, and Cycles 17 - 23 as active ones. We conclude that the solar activity in the PI declining phase (a descending phase of the previous cycle) determines the strength of the approaching maximum in the case of active cycles, while the activity of the PI rising phase (a phase of the ongoing cycle early growth) determines the strength of passive cycles. This can have implications for solar dynamo models. Our approach indicates the important role of solar activity during the declining and the rising phases of the solar-cycle minimum.

  15. A physical mechanism for the prediction of the sunspot number during solar cycle 21. [graphs (charts)

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the sun's polar field strength near a solar minimum is closely related to the following cycle's solar activity. Four methods of estimating the sun's polar magnetic field strength near solar minimum are employed to provide an estimate of cycle 21's yearly mean sunspot number at solar maximum of 140 plus or minus 20. This estimate is considered to be a first order attempt to predict the cycle's activity using one parameter of physical importance.

  16. The interpretation of sunspot magnetic field observations

    NASA Astrophysics Data System (ADS)

    Adam, M. G.

    1985-03-01

    Magnetic field strengths and directions of the lines of force have been measured over two large sunspots in 1975 and 1976 using Treanor's (cf Adam, 1971, 1975) method. Further refinements in observational technique reduce the effects of instrumental polarization to a small phase change, and the reduction procedure has been made more objective. The new observations confirm the existence of differences between the polarization states of the red and violet Zeeman sigma-components in some regions of the spots. These differences, which are especially associated with light bridges and streamers, are attributed to magnetooptical effects, coupled with Doppler shifts, in extraneous material lying over the spots.

  17. Helioseismic Holography of Simulated Sunspots: dependence of the travel time on magnetic field strength and Wilson depression

    PubMed Central

    Felipe, T.; Braun, D. C.; Birch, A. C.

    2018-01-01

    Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods. PMID:29670298

  18. Helioseismic Holography of Simulated Sunspots: dependence of the travel time on magnetic field strength and Wilson depression.

    PubMed

    Felipe, T; Braun, D C; Birch, A C

    2017-01-01

    Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods.

  19. Evidence from IRIS that Sunspot Large Penumbral Jets Spin

    NASA Technical Reports Server (NTRS)

    Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy R.; Sterling, Alphonse C.

    2017-01-01

    Recent observations from Hinode (SOT/FG) revealed the presence of large penumbral jets (widths = 500 km, larger than normal penumbral microjets, which have widths < 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 Å, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 Å slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. The few large penumbral jets for which we have IRIS spectra show evidence of spin. If these have mixed-polarity at their base, then they might be driven the same way as coronal jets and CMEs.

  20. Evidence of suppressed heating of coronal loops rooted in opposite polarity sunspot umbrae

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Winebarger, Amy R.; Panesar, Navdeep K.; Moore, Ronald

    2015-04-01

    Observations of active region (AR) coronae in different EUV wavelengths reveal the presence of various loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect opposite-polarity plage or a sunspot to a opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94 A, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.From this result, we further hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbrae. Many

  1. Geomagnetic and sunspot activity associations and ionospheric effects of lightning phenomena at Trivandrum near dip equator

    NASA Astrophysics Data System (ADS)

    Girish, T. E.; Eapen, P. E.

    2008-12-01

    From a study of thunder/lightning observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot activity and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest lightning-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm activity near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar activity changes.

  2. Choice of rock excavation method for tramway tunnel in Zurich

    NASA Astrophysics Data System (ADS)

    Andráskay, E.; Ramer, E.; Berger, E.

    1983-02-01

    Within the city of Zurich a new tramway line is under construction. One section consists of a tunnel, 350 m long, which is to be built undergound. Different rock excavation methods were evaluated for this tunnel in the light of the many constraints given by the urban environment, such as disturbance of residents in nearby residential houses and closeness of other structures (bridges, road tunnel, university laboratory with vibration-sensitive equipment, etc.). The excavation methods considered were blasting, hydraulic hammer, bulldozer with ripper tooth and mechanical boring with roadheader. The evaluation was made on the basis of vibrations and noise caused by the different excavation methods and on the basis of their respective construction time and cost. Finally the decisions which led to the choice of the excavation method and to the instructions in the tender, documents are presented, and first experiences from the site are discussed.

  3. Emergence of Magnetic Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots and Active Regions, and The Origin of Their Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Rempel, Matthias; Fan, Yuhong, E-mail: chenfeng@ucar.edu

    We present a realistic numerical model of sunspot and active region formation based on the emergence of flux bundles generated in a solar convective dynamo. To this end, we use the magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation to drive realistic radiative-magnetohydrodynamic simulations of the uppermost layers of the convection zone. The main results are as follows. (1) The emerging flux bundles rise with the mean speed of convective upflows and fragment into small-scale magnetic elements that further rise to the photosphere, where bipolar sunspot pairs are formed throughmore » the coalescence of the small-scale magnetic elements. (2) Filamentary penumbral structures form when the sunspot is still growing through ongoing flux emergence. In contrast to the classical Evershed effect, the inflow seems to prevail over the outflow in a large part of the penumbra. (3) A well-formed sunspot is a mostly monolithic magnetic structure that is anchored in a persistent deep-seated downdraft lane. The flow field outside the spot shows a giant vortex ring that comprises an inflow below 15 Mm depth and an outflow above 15 Mm depth. (4) The sunspots successfully reproduce the fundamental properties of the observed solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of bipolar sunspot pairs. These asymmetries can be linked to the intrinsic asymmetries in the magnetic and flow fields adapted from the convective dynamo simulation.« less

  4. Comment on "Detection of emerging sunspot regions in the solar interior".

    PubMed

    Braun, Douglas C

    2012-04-20

    Ilonidis et al. (Reports, 19 August 2011, p. 993) report acoustic travel-time decreases associated with emerging sunspot regions before their appearance on the solar surface. An independent analysis using helioseismic holography does not confirm these travel-time anomalies for the four regions illustrated by Ilonidis et al. This negative finding is consistent with expectations based on current emerging flux models.

  5. Solar Activity Seen at Sunspot Site Tracked by Mars Rover

    NASA Image and Video Library

    2015-07-10

    An eruption from the surface of the sun is conspicuous in the lower left portion of this July 6, 2015, image from NASA's Earth-orbiting Solar Dynamics Observatory (SDO). It originates from a location on the surface where NASA's Curiosity Mars rover had been tracking a sunspot in late June and early July. This image was taken by the Atmosphere Imaging Assembly on SDO using the instrument's 131-Angstrom wavelength channel, which is sensitive to hot solar flares. The sun completes a rotation about once a month -- faster near its equator than near its poles. This summer, Mars has a view of the opposite side of the sun from what's facing Earth. Images from Curiosity tracking a southern-hemisphere sunspot until it rotated out of view during the July 4 weekend are in an animation at PIA19801. This location on the sun rotated into position to be seen from Earth a few days later. The eruption visible in this image was linked to a coronal mass ejection observed by SDO and NASA's Solar and Heliospheric Observatory. The coronal mass ejection affected interplanetary space weather, as shown at http://go.nasa.gov/1JSXLF3. http://photojournal.jpl.nasa.gov/catalog/PIA19680

  6. Oscillations in a Sunspot with Light Bridges

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Nakariakov, Valery M.; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minute oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.

  7. Oscillations in a sunspot with light bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Su, Jiangtao; Yan, Yihua

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minutemore » oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.« less

  8. Solar Variability from 240 to 1750 nm in Terms of Faculae Brightening and Sunspot Darkening from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  9. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-08-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variationsmore » above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.« less

  10. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  11. The mutual attraction of magnetic knots. [solar hydromagnetic instability in sunspot regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability. The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side.

  12. A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana

    2017-12-01

    The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.

  13. Records of sunspots and aurora candidates in the Chinese official histories of the Yuán and Míng dynasties during 1261-1644

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hisashi; Tamazawa, Harufumi; Ebihara, Yusuke; Miyahara, Hiroko; Kawamura, Akito Davis; Aoyama, Tadanobu; Isobe, Hiroaki

    2017-08-01

    Records of observations of sunspots and auroras in pre-telescopic historical documents provide useful information about past solar activity both in long-term trends and short-term space weather events. In this study, we present the results of a comprehensive survey of the records of sunspots and aurora candidates in the Yuánshĭ and Míngshĭ, Chinese Official Histories spanning 1261-1368 and 1368-1644, based on continuous observations with well-formatted reportds conducted by contemporary professional astronomers. We then provide a brief comparison of these data with Total Solar Irradiance (TSI) as an indicator of the solar activity during the corresponding periods to show significant active phases between the 1350s-80s and 1610s-30s. We then compared the former with contemporary Russian reports concerning naked-eye sunspots and the latter with contemporary sunspot drawings based on Western telescopic observations. Especially some of the latter are consistent with nitrate signals preserved in ice cores. These results show us some insights on and beyond minima and maxima of solar activity during the 13th-17th centuries.

  14. Periodicity of sunspot group number during the Maunder Minimum

    NASA Astrophysics Data System (ADS)

    Gao, P. X.

    2017-12-01

    Applying the Hilbert-Huang Transform (HHT) method to the yearly average sunspot group (SG) number reconstructed by Svalgaard & Schatten, we investigate the periodicity of SG number from 1610 to 2015. Our main findings are summarized below. Periodicities of 3.56 ± 0.24 (Quasi-Triennial Oscillations), 9.22 ± 0.13 (Schwabe Cycle), 16.91 ± 0.99 (Hale Cycle), 49.25 ± 0.96, 118.64 ± 2.52 (Centennial Gleissberg Cycle), and 206.32 ± 4.60 yr are statistically significant in the SG numbers. During the Maunder Minimum (MM), the occurrences of the Schwabe Cycle and the Hale Cycle, extracted from SG numbers, are suspended; before and after the MM, Schwabe Cycle and the Hale Cycle, extracted from SG numbers, all exist. The results of applying the Morlet Wavelet Analysis to the SG number confirm that, for SG number, the occurrence of the Schwabe Cycle is suspended during the MM, and, before and after the MM, the Schwabe Cycle all exist. Then we investigate the periodicity in the annual 10Be data from 1391 to 1983, which are given in a supplementary file to McCracken & Beer, using HHT and the Morlet wavelet transform. We find that, for the 10Be data, the Schwabe Cycle and the Hale Cycle persist throughout the MM. Our results support the suggestion that the Schwabe Cycle is too weak to be detected in the sunspot data.

  15. Analysis of a 12-Hour Artifact in LF Oscillations of the Magnetic Field of Sunspots According to SDO/HMI Data

    NASA Astrophysics Data System (ADS)

    Efremov, V. I.; Parfinenko, L. D.; Solov'ev, A. A.

    2017-12-01

    The properties of the 12-h artifact in the data of the SDO/HMI instrument (Helioseismic and Magnetic Imager) caused by the nonzero radial velocity of the station relative to the Sun are investigated. The study has been carried out with respect to long-period oscillations of the magnetic field of sunspots for different station positions in the Earth's orbit by the alternative spectral method of singular decomposition of the signal CaterPillarSSA. Features of artifact filtering, both in special positions of the station (at the points of aphelion and perihelion) and at arbitrarily selected orbital points, are considered. It is shown that the 12-h artifact mode can be completely filtered from the time series of the observed variable, not only at these two orbital points (because of the symmetry of the station's radial velocity with respect to the zero mean here) but also at any others. It is shown that only a 12-h mode is physically justified, while the 24-h harmonic appears only as an artifact in the Fourier decomposition of the amplitude-modulated signal. It is emphasized that the values of the magnetic field measured with SDO/HMI are sensitive only to the station's radial velocity absolute values with respect to the Sun and do not depend on its direction. It has been noted that the periods of sunspot oscillation as a whole obtained from SDO/HMI data after orbital artifact filtration fit well into the dependence diagram of the period of sunspot oscillations on the value of its magnetic field strength constructed earlier by SOHO/MDIdata.

  16. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  17. Hi-C OBSERVATIONS OF SUNSPOT PENUMBRAL BRIGHT DOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, Shane E.; Tiwari, Sanjiv K.; Moore, Ronald L.

    We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 Å and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1″ and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 Å images, which have a 1.″2 spatial resolution, but become readily apparent with Hi-C's spatial resolution, which is five times better. We supplement Hi-C data with data from AIA's 193 Å passband to see the complete lifetime of the BDs that appeared before and/or lasted longer thanmore » Hi-C's three-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, either toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, which was recently reported by Tian et al., and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the light curves of the BDs to test whether the Hi-C BDs have transition region (TR) temperatures like those of the IRIS BDs. The light curves of most Hi-C BDs peak together in different AIA channels, indicating that their temperatures are likely in the range of the cooler TR (1−4 × 10{sup 5} K).« less

  18. Vigorous convection in a sunspot granular light bridge

    NASA Astrophysics Data System (ADS)

    Lagg, Andreas; Solanki, Sami K.; van Noort, Michiel; Danilovic, Sanja

    2014-08-01

    Context. Light bridges are the most prominent manifestation of convection in sunspots. The brightest representatives are granular light bridges composed of features that appear to be similar to granules. Aims: An in-depth study of the convective motions, temperature stratification, and magnetic field vector in and around light bridge granules is presented with the aim of identifying similarities and differences to typical quiet-Sun granules. Methods: Spectropolarimetric data from the Hinode Solar Optical Telescope were analyzed using a spatially coupled inversion technique to retrieve the stratified atmospheric parameters of light bridge and quiet-Sun granules. Results: Central hot upflows surrounded by cooler fast downflows reaching 10 km s-1 clearly establish the convective nature of the light bridge granules. The inner part of these granules in the near surface layers is field free and is covered by a cusp-like magnetic field configuration. We observe hints of field reversals at the location of the fast downflows. The quiet-Sun granules in the vicinity of the sunspot are covered by a low-lying canopy field extending radially outward from the spot. Conclusions: The similarities between quiet-Sun and light bridge granules point to the deep anchoring of granular light bridges in the underlying convection zone. The fast, supersonic downflows are most likely a result of a combination of invigorated convection in the light bridge granule due to radiative cooling into the neighboring umbra and the fact that we sample deeper layers, since the downflows are immediately adjacent to the slanted walls of the Wilson depression. The two movies are available in electronic form at http://www.aanda.org

  19. Solar magnetic field studies using the 12 micron emission lines. II - Stokes profiles and vector field samples in sunspots

    NASA Technical Reports Server (NTRS)

    Hewagama, Tilak; Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Zipoy, David; Mickey, Donald L.; Garcia, Howard

    1993-01-01

    Polarimetric observations at 12 microns of two sunpots are reported. The horizontal distribution of parameters such as magnetic field strength, inclination, azimuth, and magnetic field filling factors are presented along with information about the height dependence of the magnetic field strength. Comparisons with contemporary magnetostatic sunspot models are made. The magnetic data are used to estimate the height of 12 micron line formation. From the data, it is concluded that within a stable sunspot there are no regions that are magnetically filamentary, in the sense of containing both strong-field and field-free regions.

  20. Structure of sunspot penumbrae - Fallen magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Wentzel, Donat G.

    1992-01-01

    A model is presented of a sunspot penumbra involving magnetic flux tubes that have fallen into the photosphere and float there. An upwelling at the inner end of a fallen tube continuously provides additional gas. This gas flows along and lengthens the tube and is observable as the Evershed flow. Fallen flux tubes may appear as bright streaks near the upwelling, but they become dark filaments further out. The model is corroborated by recent optical high-resolution magnetic data regarding the penumbral filaments, by the 12-micron magnetic measurements relevant to the height of the temperature minimum, and by photographs of the umbra/penumbra boundary.

  1. Skin Cancer, Irradiation, and Sunspots: The Solar Cycle Effect

    PubMed Central

    Zurbenko, Igor

    2014-01-01

    Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the destructive presence of noise. PMID:25126567

  2. Phase Diversity Applied to Sunspot Observations

    NASA Astrophysics Data System (ADS)

    Tritschler, A.; Schmidt, W.; Knolker, M.

    We present preliminary results of a multi-colour phase diversity experiment carried out with the Multichannel Filter System of the Vacuum Tower Telescope at the Observatorio del Teide on Tenerife. We apply phase-diversity imaging to a time sequence of sunspot filtergrams taken in three continuum bands and correct the seeing influence for each image. A newly developed phase diversity device allowing for the projection of both the focused and the defocused image onto a single CCD chip was used in one of the wavelength channels. With the information about the wavefront obtained by the image reconstruction algorithm the restoration of the other two bands can be performed as well. The processed and restored data set will then be used to derive the temperature and proper motion of the umbral dots. Data analysis is still under way, and final results will be given in a forthcoming article.

  3. Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae.

    PubMed

    Thomas, John H; Weiss, Nigel O; Tobias, Steven M; Brummell, Nicholas H

    2002-11-28

    The structure of a sunspot is determined by the local interaction between magnetic fields and convection near the Sun's surface. The dark central umbra is surrounded by a filamentary penumbra, whose complicated fine structure has only recently been revealed by high-resolution observations. The penumbral magnetic field has an intricate and unexpected interlocking-comb structure and some field lines, with associated outflows of gas, dive back down below the solar surface at the outer edge of the spot. These field lines might be expected to float quickly back to the surface because of magnetic buoyancy, but they remain submerged. Here we show that the field lines are kept submerged outside the spot by turbulent, compressible convection, which is dominated by strong, coherent, descending plumes. Moreover, this downward pumping of magnetic flux explains the origin of the interlocking-comb structure of the penumbral magnetic field, and the behaviour of other magnetic features near the sunspot.

  4. Calculations for interpretation of solar vector magnetograph data. [sunspots - spectrum analysis/data correlation

    NASA Technical Reports Server (NTRS)

    Dunn, A. R.

    1975-01-01

    Computer techniques for data analysis of sunspot observations are presented. Photographic spectra were converted to digital form and analyzed. Methods of determining magnetic field strengths, i.e., the Zeeman effect, are discussed. Errors originating with telescope equipment and the magnetograph are treated. Flow charts of test programs and procedures of the data analysis are shown.

  5. On the statistical aspects of sunspot number time series and its association with the summer-monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    The present paper reports studies on the association between the mean annual sunspot numbers and the summer monsoon rainfall over India. The cross correlations have been studied. After Box-Cox transformation, the time spectral analysis has been executed and it has been found that both of the time series have an important spectrum at the fifth harmonic. An artificial neural network (ANN) model has been developed on the data series averaged continuously by five years and the neural network could establish a predictor-predict and relationship between the sunspot numbers and the mean yearly summer monsoon rainfall over India.

  6. Tracking Waves from Sunspots Gives New Solar Insight

    NASA Image and Video Library

    2017-12-08

    While it often seems unvarying from our viewpoint on Earth, the sun is constantly changing. Material courses through not only the star itself, but throughout its expansive atmosphere. Understanding the dance of this charged gas is a key part of better understanding our sun – how it heats up its atmosphere, how it creates a steady flow of solar wind streaming outward in all directions, and how magnetic fields twist and turn to create regions that can explode in giant eruptions. Now, for the first time, researchers have tracked a particular kind of solar wave as it swept upward from the sun's surface through its atmosphere, adding to our understanding of how solar material travels throughout the sun. Scientists analyzed sunspot images from a trio of observatories -- including the Big Bear Solar Observatory, which captured this footage -- to make the first-ever observations of a solar wave traveling up into the sun’s atmosphere from a sunspot. Tracking solar waves like this provides a novel tool for scientists to study the atmosphere of the sun. The imagery of the journey also confirms existing ideas, helping to nail down the existence of a mechanism that moves energy – and therefore heat – into the sun’s mysteriously-hot upper atmosphere, called the corona. A study on these results was published Oct. 11, 2016, in The Astrophysical Journal Letters. Image credit: Zhao et al/NASA/SDO/IRIS/BBSO Read more: go.nasa.gov/2dRv80g NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. The Earth's Interaction With the Sun Over the Millennia From Analyses of Historical Sunspot, Auroral and Climate Records

    NASA Astrophysics Data System (ADS)

    Yau, K.

    2001-12-01

    A prolonged decrease in the Sun's irradiance during the Maunder Minimum has been proposed as a cause of the Little Ice Age ({ca} 1600-1800). Eddy [{Science} {192}, 1976, 1189] made this suggestion after noting that very few sunspots were observed from 1645 to 1715, indicative of a weakened Sun. Pre-telescopic Oriental sunspot records go back over 2200 years. Periods when no sunspots were seen have been documented by, {eg}, Clark [{Astron} {7}, 2/1979, 50]. Abundances of C 14 in tree rings and Be10 in ice cores are also good indicators of past solar activity. These isotopes are produced by cosmic rays high in the atmosphere. When the Sun is less active more of them are made and deposited at ground level. There is thus a strong {negative} correlation between their abundances and sunspot counts. Minima of solar activity in tree rings and a south polar ice core have been collated by, {eg}, Bard [{Earth Planet Sci Lett} {150} 1997, 453]; and show striking correspondence with periods when no sunspots were seen, centered at {ca} 900, 1050, 1500, 1700. Pang and Yau [{Eos} {79}, #45, 1998, F149] investigated the Medieval Minimum at 700, using in addition the frequency of auroral sighting7s, a good indicator of solar activity too [Yau, PhD thesis, 1988]; and found that the progression of minima in solar activity goes back to 700. Auroral frequency, C 14 and Be 10 concentrations are also affected by variations in the geomagnetic field. Deposition changes can also influence C 14 and Be 10 abundances. Sunspot counts are thus the only true indicator of solar activity. The Sun's bolometric variations (-0.3% for the Maunder Minimum) can contribute to climatic changes (\\0.5° C for the Little Ice Age)[{eg}, Lean, {GRL} {22}, 1995, 3195]. For times with no thermometer data, temperature can be estimated from, {eg}, Oxygen 18 isotopic abundance in ice cores, which in turn depends on the temperature of the ocean water it evaporated from. We have linked the Medieval Minimum to the cold

  8. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana, E-mail: Hardersen@space.edu

    2013-08-10

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and H{alpha} (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-classmore » solar flare.« less

  9. The KULTURisk Regional Risk Assessment methodology for flood risk: the case of Sihl river in Zurich

    NASA Astrophysics Data System (ADS)

    Ronco, Paolo; Bullo, Martina; Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Buchecker, Matthias; Marcomini, Antonio

    2014-05-01

    -spot areas and targets at risk (i.e. people, buildings, infrastructures, agriculture, natural and semi-natural systems, cultural heritages) in the considered region by comparing the baseline scenario with alternative scenarios, where different structural and/or non-structural mitigation measures are planned. Risk maps, along with related statistics, provide crucial information about flood risk pattern, and allow the development of relevant and strategic mitigation and prevention measures to minimizing flood risk in urban areas. The present study applied and validated the KULTURisk RRA methodology to the Sihl river case study in Zurich (Switzerland). Through a tuning process of the methodology to the site-specific context and features, flood related risks have been assessed for different receptors lying on the Sihl river valley, which represents a typical case of river flooding in urban area. The total risk maps obtained under a 300 years return period scenario (selected as the reference one) have highlighted that the area is associated with the lower class of risk. Moreover, the relative risk is higher in Zurich city centre, in the few residential areas around the city centre and within the districts that rely just beside to the Sihl river course.

  10. Sub- and Quasi-Centurial Cycles in Solar and Geomagnetic Activity Data Series

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Sello, S.; Duchlev, P.; Dechev, M.; Penev, K.; Koleva, K.

    2016-07-01

    The subject of this paper is the existence and stability of solar cycles with durations in the range of 20-250 years. Five types of data series are used: 1) the Zurich series (1749-2009 AD), the mean annual International sunspot number Ri, 2) the Group sunspot number series Rh (1610-1995 AD), 3) the simulated extended sunspot number from Extended time series of Solar Activity Indices (ESAI) (1090-2002 AD), 4) the simulated extended geomagnetic aa-index from ESAI (1099-2002 AD), 5) the Meudon filament series (1919-1991 AD). Two principally independent methods of time series analysis are used: the T-R periodogram analysis (both in standard and ``scanning window'' regimes) and the wavelet-analysis. The obtained results are very similar. A strong cycle with a mean duration of 55-60 years is found to exist in all series. On the other hand, a strong and stable quasi 110-120 years and ˜200-year cycles are obtained in all of these series except in the Ri one. The high importance of the long term solar activity dynamics for the aims of solar dynamo modeling and predictions is especially noted.

  11. Acrylamide in a fried potato dish (rösti) from restaurants in Zurich, Switzerland.

    PubMed

    McCombie, Gregor; Biedermann, Maurus; Biedermann-Brem, Sandra; Suter, Gaby; Eicher, Angela; Pfefferle, Anton

    2016-01-01

    Rösti, a fried potato product, is a large contributor to acrylamide exposure locally in Switzerland. A survey of 55 dishes prepared by 51 restaurants in the city of Zurich showed that the average rösti contained 702 µg/kg acrylamide. By analysing the content of reducing sugars in the potatoes used for frying, it is shown that with simple measures, the exposure to acrylamide could easily be reduced by factor 2 or more, while even improving the culinary experience. Though rösti is a typical dish in the German-speaking areas in Switzerland, the result may be of general interest for fried potato products which are popular in large areas of Central Europe.

  12. An Early Prediction of Sunspot Cycle 25

    NASA Astrophysics Data System (ADS)

    Nandy, D.; Bhowmik, P.

    2017-12-01

    The Sun's magnetic activity governs our space environment, creates space weather and impacts our technologies and climate. With increasing reliance on space- and ground-based technologies that are subject to space weather, the need to be able to forecast the future activity of the Sun has assumed increasing importance. However, such long-range, decadal-scale space weather prediction has remained a great challenge as evident in the diverging forecasts for solar cycle 24. Based on recently acquired understanding of the physics of solar cycle predictability, we have devised a scheme to extend the forecasting window of solar cycles. Utilizing this we present an early forecast for sunspot cycle 25 which would be of use for space mission planning, satellite life-time estimates, and assessment of the long-term impacts of space weather on technological assets and planetary atmospheres.

  13. The Mysterious Case of the Solar Argon Abundance Near Sunspots in Flares

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry

    2016-05-01

    Recently Doschek et al. (2015, ApJL, 808, L7) reported on an observation of an enhancement of the abundance of Ar XIV relative to Ca XIV of about a factor of 30 near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. This enhancement yields an argon/calcium abundance ratio 7 times greater than expected from the photospheric abundances. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as due to an inverse First Ionization Potential (FIP) effect. Argon is a high-FIP element and calcium is a low-FIP element. In the published work two lines of Ar XIV were observed and one line was tentatively identified as an Ar XI line. The number of argon lines was limited by the limitations of the flare study that was executed. In this paper we report observing a similar enhancement in a full-CCD EIS flare spectrum in argon lines with reasonable statistics and lack of blending that lie within the EIS wavelength ranges. The observed lines include two Ar XI lines, four Ar XIII lines, six Ar XIV lines, and one Ar XV line. The enhancement is far less than reported in Doschek et al. (2015) but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and is only marginally an inverse FIP effect. However, as for the published cases, this newly discovered enhancement occurs in association with a sunspot in a small area only a few arcsec in size and therefore we feel it is produced by the same physics that produced the strong inverse FIP case. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. (2015) indicate that the argon/calcium enhancement is due to a depletion of low-FIP elements. This work is supported by a NASA Hinode grant.

  14. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  15. Image Patch Analysis of Sunspots and Active Regions

    NASA Astrophysics Data System (ADS)

    Moon, K.; Delouille, V.; Hero, A.

    2017-12-01

    The flare productivity of an active region has been observed to be related to its spatial complexity. Separating active regions that are quiet from potentially eruptive ones is a key issue in space weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature does not use all of the information present in the observations. In our work, we present an image patch analysis for characterizing sunspots and active regions. We first propose fine-scale quantitative descriptors for an active region's complexity such as intrinsic dimension, and we relate them to the Mount Wilson classification. Second, we introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. To obtain this local geometry, we use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches using the singular value decomposition. The resulting factorizations of active regions can be compared via the definition of appropriate metrics on the factors. The distances obtained from these metrics are then used to cluster the active regions. Results. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the R-value.

  16. TRANSITION-REGION/CORONAL SIGNATURES AND MAGNETIC SETTING OF SUNSPOT PENUMBRAL JETS: HINODE (SOT/FG), Hi-C, AND SDO/AIA OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.

    2016-01-10

    Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca ii H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronalmore » Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field.« less

  17. Sunspot activity and cosmic ray modulation at 1 a.u. for 1900-2013

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.

    2014-10-01

    The descent of sunspot cycle 23 to an unprecedented minimum of long duration in 2006-2009 led to a prolonged galactic cosmic ray (GCR) recovery to the highest level observed in the instrumental era for a variety of energetic charged particle species on Earth, over a wide range of rigidities. The remarkable GCR increase measured by several ground-based, balloon-borne, and detectors on a satellite is described and discussed. It is accompanied by a decrease in solar wind velocity and interplanetary magnetic field at 1 a.u., reaching the lowest values since measurements of the solar wind began in October 1963; the solar polar field strength (μT) measured at the Wilcox Solar Observatory (WSO) is also significantly reduced compared to prior cycles since the start of the program in 1976, the polar field in the northern hemisphere reversed in June 2012 and again in February 2014, that in the southern hemisphere reversed in July 2013. If updates of WSO data confirm the second reversal in northern solar hemisphere, it would pose a serious challenge to the Dynamo Theory. The long-term change in solar behavior may have begun in 1992, perhaps earlier. The physical underpinnings of these solar changes need to be understood and their effect on GCR modulation processes clarified. The study discusses the recent phenomena in the context of GCR modulation since 1900. These happenings affected our empirical predictions for the key parameters for the next two sunspot cycles (they may be progressively less active than sunspot cycle 24) but it enhanced support for our prediction that solar activity is descending into a Dalton-like grand minimum in the middle of the twentyfirst century, reducing the frequency of the coronal mass ejections; they determine the space weather affecting the quality of life on Earth, radiation dose for hardware and human activities in space as well as the frequency of large Forbush decreases at 1 a.u.

  18. Microjets in the penumbra of a sunspot

    NASA Astrophysics Data System (ADS)

    Drews, Ainar; Rouppe van der Voort, Luc

    2017-06-01

    Context. Penumbral microjets (PMJs) are short-lived jets found in the penumbra of sunspots, first observed in wide-band Ca II H line observations as localized brightenings, and are thought to be caused by magnetic reconnection. Earlier work on PMJs has focused on smaller samples of by-eye selected events and case studies. Aims: It is our goal to present an automated study of a large sample of PMJs to place the basic statistics of PMJs on a sure footing and to study the PMJ Ca II 8542 Å spectral profile in detail. Methods: High spatial resolution and spectrally well-sampled observations in the Ca II 8542 Å line obtained from the Swedish 1-m Solar Telescope (SST) were reduced by a principle component analysis and subsequently used in the automated detection of PMJs using the simple machine learning algorithm k-nearest neighbour. PMJ detections were verified with co-temporal Ca II H line observations. Results: We find a total of 453 tracked PMJ events, 4253 PMJs detections tallied over all timeframes, and a detection rate of 21 events per timestep. From these, an average length, width and lifetime of 640 km, 210 km and 90 s are obtained. The average PMJ Ca II 8542 Å line profile is characterized by enhanced inner wings, often in the form of one or two distinct peaks, and a brighter line core as compared to the quiet-Sun average. Average blue and red peak positions are determined at - 10.4 km s-1 and + 10.2 km s-1 offsets from the Ca II 8542 Å line core. We find several clusters of PMJ hot-spots within the sunspot penumbra, in which PMJ events occur in the same general area repeatedly over time. Conclusions: Our results indicate smaller average PMJs sizes and longer lifetimes compared to previously published values, but with statistics still in the same orders of magnitude. The investigation and analysis of the PMJ line profiles strengthens the proposed heating of PMJs to transition region temperatures. The presented statistics on PMJs form a solid basis for future

  19. Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep; Winebarger, Amy R.

    2016-05-01

    EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the HMI onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral areas of the opposite polarity sunspots. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.We hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbra. Many transient, outstandingly bright, loops in the AIA 94 movie of the AR do have this expected rooting pattern. We will also present another example of AR in

  20. Predicting the Size and Timing of Sunspot Maximum for Cycle 24

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2010-01-01

    For cycle 24, the minimum value of the 12-month moving average (12-mma) of the AA-geomagnetic index in the vicinity of sunspot minimum (AAm) appears to have occurred in September 2009, measuring about 8.4 nT and following sunspot minimum by 9 months. This is the lowest value of AAm ever recorded, falling below that of 8.9 nT, previously attributed to cycle 14, which also is the smallest maximum amplitude (RM) cycle of the modern era (RM = 64.2). Based on the method of Ohl (the preferential association between RM and AAm for an ongoing cycle), one expects cycle 24 to have RM = 55+/-17 (the +/-1 - sigma prediction interval). Instead, using a variation of Ohl's method, one based on using 2-cycle moving averages (2-cma), one expects cycle 23's 2-cma of RM to be about 115.5+/-8.7 (the +/-1 - sigma prediction interval), inferring an RM of about 62+/-35 for cycle 24. Hence, it seems clear that cycle 24 will be smaller in size than was seen in cycle 23 (RM = 120.8) and, likely, will be comparable in size to that of cycle 14. From the Waldmeier effect (the preferential association between the ascent duration (ASC) and RM for an ongoing cycle), one expects cycle 24 to be a slow-rising cycle (ASC > or equal to 48 months), having RM occurrence after December 2012, unless it turns out to be a statistical outlier.

  1. A scaling theory for number-flux distributions generated during steady-state coagulation and settling and application to particles in Lake Zurich, Switzerland.

    PubMed

    Boehm, Alexandria B

    2002-10-15

    In this study, we extend the established scaling theory for cluster size distributions generated during unsteady coagulation to number-flux distributions that arise during steady-state coagulation and settling in an unmixed water mass. The scaling theory predicts self-similar number-flux distributions and power-law decay of total number flux with depth. The shape of the number-flux distributions and the power-law exponent describing the decay of the total number flux are shown to depend on the homogeneity and small i/j limit of the coagulation kernel and the exponent kappa, which describes the variation in settling velocity with cluster volume. Particle field measurements from Lake Zurich, collected by U. Weilenmann and co-workers (Limnol. Oceanogr.34, 1 (1989)), are used to illustrate how the scaling predictions can be applied to a natural system. This effort indicates that within the mid-depth region of Lake Zurich, clusters of the same size preferentially interact and large clusters react with one another more quickly than small ones, indicative of clusters coagulating in a reaction-limited regime.

  2. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  3. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, B. H.; Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limitmore » our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.« less

  4. Records of sunspot and aurora activity during 581-959 CE in Chinese official histories concerning the periods of Suí, Táng, and the Five Dynasties and Ten Kingdoms

    NASA Astrophysics Data System (ADS)

    Tamazawa, Harufumi; Kawamura, Akito Davis; Hayakawa, Hisashi; Tsukamoto, Asuka; Isobe, Hiroaki; Ebihara, Yusuke

    2017-04-01

    Recent studies concerning radioisotopes in tree rings or ice cores suggest that extreme space weather events occurred during the pre-telescope age. Observational records of naked-eye sunspots and low-latitude auroras in historical documents during this age can provide useful information about past solar activity. In this paper, we present the results of a comprehensive survey of records of sunspots and auroras in Chinese official histories from the 6th century to the 10th century, in the period of Suí, Táng, the Five Dynasties and Ten Kingdoms. These official histories contain records of continuous observations with well-formatted reports conducted under the policy of the governments. A brief comparison of the frequency of observations of sunspots and auroras based on observations of radioisotopes as an indicator of solar activity during the corresponding periods is provided. Using our data, we surveyed and compiled the records of sunspots and auroras in historical documents from various locations and in several languages, and ultimately provide these as open data to the scientific community.

  5. Structural and spectral studies of sunspots. [umbral core modelling

    NASA Technical Reports Server (NTRS)

    Wyller, A. A.

    1974-01-01

    Observations of umbral cores, both by multicolor photometry and by narrow band photometry in the vicinity of the sodium D lines, are described, and evidence is given which supports the validity of many umbral models, each of which describes different aspects of the observed umbral cores. Theoretical studies carried on at the observatory include the following: (1) Zeeman profiles of the sodium D sub 2 line and other lines; (2) turbulent heat conduction, sound waves, and the missing flux in sunspots; (3) chromospheric heating above spots by Alfven waves; (4) magnetic convection in the sun and solar neutrinos; (5) models of starspots on flare stars; (5) starspots on the primaries of contact binary systems; and (6) implications of starspots on red dwarfs.

  6. Temporal Variations of Different Solar Activity Indices Through the Solar Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Singh, J.; Nutku, F.; Priyal, M.

    2017-12-01

    Here, we compare the sunspot counts and the number of sunspot groups (SGs) with variations of total solar irradiance (TSI), magnetic activity, Ca II K-flux, faculae and plage areas. We applied a time series method for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23. Our results suggest that there is a strong correlation between solar activity indices and the changes in small (A, B, C and H-modified Zurich Classification) and large (D, E and F) SGs. This somewhat unexpected finding suggests that plage regions substantially decreased in spite of the higher number of large SGs in SAC 23 while the Ca II K-flux did not decrease by a large amount nor was it comparable with SAC 22 and relates with C and DEF type SGs. In addition to this, the increase of facular areas which are influenced by large SGs, caused a small percentage decrease in TSI while the decrement of plage areas triggered a higher decrease in the magnetic field flux. Our results thus reveal the potential of such a detailed comparison of the SG analysis with solar activity indices for better understanding and predicting future trends in the SACs.

  7. SYSTEMATIC REGULARITY OF HEMISPHERIC SUNSPOT AREAS OVER THE PAST 140 YEARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, L. H.; Xiang, Y. Y.; Qu, Z. N.

    2016-03-15

    Solar magnetic activity varies with time in the two hemispheres in different ways. The hemispheric interconnection of solar activity phenomena provides an important clue to understanding the dynamical behavior of solar dynamo actions. In this paper, several analysis approaches are proposed to analyze the systematic regularity of hemispheric asynchronism and amplitude asymmetry of long-term sunspot areas during solar cycles 9–24. It is found that, (1) both the hemispheric asynchronism and the amplitude asymmetry of sunspot areas are prevalent behaviors and are not anomalous, but the hemispheric asynchronism exhibits a much more regular behavior than the amplitude asymmetry; (2) the phase-leadingmore » hemisphere returns back to the identical hemisphere every 8 solar cycles, and the secular periodic pattern of hemispheric phase differences follows 3 (south leading) + 5 (north leading) solar cycles, which probably corresponds to the Gleissberg cycle; and (3) the pronounced periodicities of (absolute and normalized) asymmetry indices and lines of synchronization (LOSs) are not identical: the significant periodic oscillations are 80.65 ± 6.31, 20.91 ± 0.40, and 13.45 ± 0.16 years for the LOS values, and 51.34 ± 2.48, 8.83/8.69 ± 0.07, and 3.77 ± 0.02 years for the (absolute and normalized) asymmetry indices. The analysis results improve our knowledge on the hemispheric interrelation of solar magnetic activity and may provide valuable constraints for solar dynamo models.« less

  8. Small-scale chromospheric jets above a sunspot light bridge

    NASA Astrophysics Data System (ADS)

    Louis, Rohan E.; Beck, Christian; Ichimoto, Kiyoshi

    2014-07-01

    Context. The chromosphere above sunspot umbrae and penumbrae shows several different types of fast dynamic events such as running penumbral waves, umbral flashes, and penumbral microjets. Aims: The aim of this paper is to identify the physical driver responsible for the dynamic and small-scale chromospheric jets above a sunspot light bridge. Methods: High-resolution broadband filtergrams of active region NOAA 11271 in Ca ii H and G band were obtained with the Solar Optical Telescope on board Hinode. We identified the jets in the Ca ii H images using a semi-automatic routine and determined their length and orientation. We applied local correlation tracking (LCT) to the G-band images to obtain the photospheric horizontal velocity field. The magnetic field topology was derived from a Milne-Eddington inversion of a simultaneous scan with the Spectropolarimeter. Results: The chromospheric jets consist of a bright, triangular-shaped blob that lies on the light bridge, while the apex of this blob extends into a spike-like structure that is bright against the dark umbral background. Most of the jets have apparent lengths of less than 1000 km and about 30% of the jets have lengths between 1000-1600 km. The jets are oriented within ±35° to the normal of the spine of the light bridge. Most of them are clustered near the central part of the light bridge within a 2'' area. The jets are seen to move rapidly along the light bridge and many of them cannot be identified in successive images taken with a 2 min cadence. The jets are primarily located on one side of the light bridge and are directed into the umbral core. The Stokes profiles at or close to the location of the blobs on the LB exhibit both a significant net circular polarization and multiple components, including opposite-polarity lobes. The magnetic field diverges from the light bridge towards the umbral cores that it separates. The LCT reveals that in the photosphere there is a predominantly uni-directional flow with

  9. Photometric study of fine structure of a sunspot penumbra (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, R.

    1973-10-01

    The microphotometric analysis of the fime structure of a sunspot penumbra, photographed in white hight with the 38 cm refractor of the Pic du Midi Observatory with a resolution very close to 0.3'', allows to give from it, at lambda 5280, the following picture: the penumbra appears to consist of bright grains, lined up in the form of filaments, with am average brightness I/sub beta //I = 0.95 of average width 0.36''(270 km) and which cover 43% of its surface, show-ing up a dark background of brightness I/sub beta //I = 0.6 nearly uniform. (auth)

  10. Determination of the Alfvén Speed and Plasma-beta Using the Seismology of Sunspot Umbra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, I.-H.; Moon, Y.-J.; Nakariakov, V. M.

    For 478 centrally located sunspots observed in the optical continuum with Solar Dynamics Observatory /Helioseismic Magnetic Imager, we perform seismological diagnostics of the physical parameters of umbral photospheres. The new technique is based on the theory of slow magnetoacoustic waves in a non-isothermally stratified photosphere with a uniform vertical magnetic field. We construct a map of the weighted frequency of three-minute oscillations inside the umbra and use it for the estimation of the Alfvén speed, plasma-beta, and mass density within the umbra. We find the umbral mean Alfvén speed ranges between 10.5 and 7.5 km s{sup −1} and is negativelymore » correlated with magnetic field strength. The umbral mean plasma-beta is found to range approximately between 0.65 and 1.15 and does not vary significantly from pores to mature sunspots. The mean density ranges between (1–6) × 10{sup −4} kg m{sup −3} and shows a strong positive correlation with magnetic field strength.« less

  11. Solar proton fluxes since 1956. [sunspot activity correlation

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of Co-56 in several lunar rocks are consistent with the solar proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of Na-22 and Fe-55 in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965-1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954-1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20 and are about five times the previous estimate for cycle 19 based on neutron-monitor and radio ionospheric measurements. These solar-proton flux variations correlate with changes in sunspot activity.

  12. THE RECENT REJUVENATION OF THE SUN’S LARGE-SCALE MAGNETIC FIELD: A CLUE FOR UNDERSTANDING PAST AND FUTURE SUNSPOT CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheeley, N. R. Jr.; Wang, Y.-M.

    The quiet nature of sunspot cycle 24 was disrupted during the second half of 2014 when the Sun’s large-scale field underwent a sudden rejuvenation: the solar mean field reached its highest value since 1991, the interplanetary field strength doubled, and galactic cosmic rays showed their strongest 27-day modulation since neutron-monitor observations began in 1957; in the outer corona, the large increase of field strength was reflected by unprecedentedly large numbers of coronal loops collapsing inward along the heliospheric current sheet. Here, we show that this rejuvenation was not caused by a significant increase in the level of solar activity asmore » measured by the smoothed sunspot number and CME rate, but instead was caused by the systematic emergence of flux in active regions whose longitudinal distribution greatly increased the Sun’s dipole moment. A similar post-maximum increase in the dipole moment occurred during each of the previous three sunspot cycles, and marked the start of the declining phase of each cycle. We note that the north–south component of this peak dipole moment provides an early indicator of the amplitude of the next cycle, and conclude that the amplitude of cycle 25 may be comparable to that of cycle 24, and well above the amplitudes obtained during the Maunder Minimum.« less

  13. NARROW-LINE-WIDTH UV BURSTS IN THE TRANSITION REGION ABOVE SUNSPOTS OBSERVED BY IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong

    Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si iv line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise one or multiple compact bright cores at sub-arcsecond scales. We found six NUBs in two data sets (a raster and a sit-and-stare data set). Among these, fourmore » events are short-lived with a duration of ∼10 minutes, while two last for more than 36 minutes. All NUBs have Doppler shifts of 15–18 km s{sup −1}, while the NUB found in sit-and-stare data possesses an additional component at ∼50 km s{sup −1} found only in the C ii and Mg ii lines. Given that these events are found to play a role in the local dynamics, it is important to further investigate the physical mechanisms that generate these phenomena and their role in the mass transport in sunspots.« less

  14. A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    1996-01-01

    NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.

  15. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  16. Solar B/Hinode Image of Sunspot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). This image of a sunspot, taken by Hinode, is a prime example of what the spacecraft can offer.

  17. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.

  18. New reconstruction of the sunspot group numbers since 1739 using direct calibration and "backbone" methods

    NASA Astrophysics Data System (ADS)

    Chatzistergos, Theodosios; Usoskin, Ilya G.; Kovaltsov, Gennady A.; Krivova, Natalie A.; Solanki, Sami K.

    2017-06-01

    Context. The group sunspot number (GSN) series constitute the longest instrumental astronomical database providing information on solar activity. This database is a compilation of observations by many individual observers, and their inter-calibration has usually been performed using linear rescaling. There are multiple published series that show different long-term trends for solar activity. Aims: We aim at producing a GSN series, with a non-linear non-parametric calibration. The only underlying assumptions are that the differences between the various series are due to different acuity thresholds of the observers, and that the threshold of each observer remains constant throughout the observing period. Methods: We used a daisy chain process with backbone (BB) observers and calibrated all overlapping observers to them. We performed the calibration of each individual observer with a probability distribution function (PDF) matrix constructed considering all daily values for the overlapping period with the BB. The calibration of the BBs was carried out in a similar manner. The final series was constructed by merging different BB series. We modelled the propagation of errors straightforwardly with Monte Carlo simulations. A potential bias due to the selection of BBs was investigated and the effect was shown to lie within the 1σ interval of the produced series. The exact selection of the reference period was shown to have a rather small effect on our calibration as well. Results: The final series extends back to 1739 and includes data from 314 observers. This series suggests moderate activity during the 18th and 19th century, which is significantly lower than the high level of solar activity predicted by other recent reconstructions applying linear regressions. Conclusions: The new series provides a robust reconstruction, based on modern and non-parametric methods, of sunspot group numbers since 1739, and it confirms the existence of the modern grand maximum of solar

  19. Observations of Upward Propagating Waves in the Transition Region and Corona above Sunspots

    NASA Astrophysics Data System (ADS)

    Hou, Zhenyong; Huang, Zhenghua; Xia, Lidong; Li, Bo; Fu, Hui

    2018-03-01

    We present observations of persistent oscillations of some bright features in the upper-chromosphere/transition region above sunspots taken by IRIS SJ 1400 Å and upward propagating quasi-periodic disturbances along coronal loops rooted in the same region taken by the AIA 171 Å passband. The oscillations of the features are cyclic oscillatory motions without any obvious damping. The amplitudes of the spatial displacements of the oscillations are about 1″. The apparent velocities of the oscillations are comparable to the sound speed in the chromosphere, but the upward motions are slightly larger than that of the downward. The intensity variations can take 24%–53% of the background, suggesting nonlinearity of the oscillations. The FFT power spectra of the oscillations show a dominant peak at a period of about 3 minutes, which is consistent with the omnipresent 3 minute oscillations in sunspots. The amplitudes of the intensity variations of the upward propagating coronal disturbances are 10%–15% of the background. The coronal disturbances have a period of about 3 minutes, and propagate upward along the coronal loops with apparent velocities in a range of 30 ∼ 80 km s‑1. We propose a scenario in which the observed transition region oscillations are powered continuously by upward propagating shocks, and the upward propagating coronal disturbances can be the recurrent plasma flows driven by shocks or responses of degenerated shocks that become slow magnetic-acoustic waves after heating the plasma in the coronal loops at their transition-region bases.

  20. Sunspot observations from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Shine, R. A.; Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.

    1987-09-01

    A series of white light images obtained by the SOUP instrument on Spacelab 2 of active region 4682 on August 5, 1985 were analyzed in the area containing sunspots. Although the umbra of the spot is underexposed, the film is well exposed in the penumbral regions. These data were digitally processed to remove noise and to separate p-mode oscillations from low velocity material motions. The results of this preliminary investigation include: (1) proper motion measurements of a radial outflow in the photospheric granulation pattern just outside the penumbra; (2) discovery of occasional bright structures (streakers) that appear to be ejected outward from the penumbra; (3) broad dark clouds moving outward in the penumbra in addition to the well known bright penumbral grains moving inward; (4) apparent extensions and contractions of penumbral filaments over the photosphere; and (5) observation of a faint bubble or loop-like structure which seems to expand from two bright penumbral filaments into the photosphere.

  1. Sunspot observations from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Shine, R. A.; Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.

    1987-01-01

    A series of white light images obtained by the SOUP instrument on Spacelab 2 of active region 4682 on August 5, 1985 were analyzed in the area containing sunspots. Although the umbra of the spot is underexposed, the film is well exposed in the penumbral regions. These data were digitally processed to remove noise and to separate p-mode oscillations from low velocity material motions. The results of this preliminary investigation include: (1) proper motion measurements of a radial outflow in the photospheric granulation pattern just outside the penumbra; (2) discovery of occasional bright structures (streakers) that appear to be ejected outward from the penumbra; (3) broad dark clouds moving outward in the penumbra in addition to the well known bright penumbral grains moving inward; (4) apparent extensions and contractions of penumbral filaments over the photosphere; and (5) observation of a faint bubble or loop-like structure which seems to expand from two bright penumbral filaments into the photosphere.

  2. From "uncertifiable" medical practice to Berlin Clinic of Women Doctors: the medical career of Franziska Tiburtius (M.D. Zurich, 1876).

    PubMed

    Meyer, P

    1999-01-01

    Problems in gender expectations and relationships complicated increasing professionalization of medical arts at an important point of transformation toward the modern industrial European state. Subordination of women's work in these processes altered possible outcomes for German society in general and for female medical careers in particular. Franziska Tiburtius was one of twenty German women who graduated from the coeducational medical school in Zurich, Switzerland, in the nineteenth century. She was a founder of the Clinic of Women Doctors despite prohibitions against certifying women as physicians. Imperial Germany was the last Western nation to admit women to full medical practice in 1899.

  3. Possible Explanation of the Different Temporal Behaviors of Various Classes of Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Li, Ke-Jun; Li, Fu-Yu

    2017-09-01

    In order to investigate the periodicity and long-term trends of various classes of sunspot groups (SGs), we separated SGs into two categories: simple SGs (A/U ≤ 4.5, where A represents the total corrected whole spot area of the group in millionths of the solar hemisphere (msh), and U represents the total corrected umbral area of the group in msh); and complex SGs (A/U > 6.2). Based on the revised version of the Greenwich Photoheliographic Results sunspot catalogue, we investigated the periodic behaviors and long-term trends of simple and complex SGs from 1875 to 1976 using the Hilbert-Huang Transform method, and we confirm that the temporal behaviors of simple and complex SGs are quite different. Our main findings are as follows. i) For simple and complex SGs, the values of the Schwabe cycle wax and wane, following the solar activity cycle. ii) There are significant phase differences (almost antiphase) between the periodicity of 53.50 ± 3.79 years extracted from yearly simple SG numbers and the periodicity of 56.21 ± 2.92 years extracted from yearly complex SG numbers. iii) The adaptive trends of yearly simple and complex SG numbers are also quite different: for simple SGs, the values of the adaptive trend gradually increase during the time period of 1875 - 1949, then they decrease gradually from 1949 to 1976, similar to the rise and the maximum phase of a sine curve; for complex SGs, the values of the adaptive trend first slowly increase and then quickly increase, similar to the minimum and rise phase of a sine curve.

  4. The study on the new approach to the prediction of the solar flares: The statistical relation from the SOHO archive

    NASA Astrophysics Data System (ADS)

    Lee, S.; Oh, S.; Lee, J.; Hong, S.

    2013-12-01

    We have investigated the statistical relationship of the solar active region to predict the solar flare event analyzing the sunspot catalogue, which has been newly constructed from the SOHO MDI observation data during the period from 1996 to 2011 (Solar Cycle 23 & 24) by ASSA(Automatic Solar Synoptic Analyzer) algorithms. The prediction relation has been made by machine-learning algorithms to establish a short- term flare prediction model for operational use in near future. In this study, continuum and magnetogram images observed by SOHO has been processed to yield 15-year sunspot group catalogue that contains various physical parameters such as sunspot area, extent, asymmetry measure of largest penumbral sunspot, roughness of magnetic neutral line as well as McIntosh and Mt. Wilson classification results.The latest result of our study will be presented and the new approach to the prediction of the solar flare will be discussed.

  5. SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuo; Liu, Chang; Deng, Na

    2014-02-20

    The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2.2 flare on 2011 February 15. It is found that the shear flow around the flaring magnetic polarity inversion line exhibits a sudden decrease,more » and both of the two main sunspots undergo a sudden change in rotational motion during the impulsive phase of the flare. These results are discussed in the context of the Lorentz-force change that was proposed by Hudson et al. and Fisher et al. This mechanism can explain the connections between the rapid and irreversible photospheric vector magnetic field change and the observed short-term motions associated with the flare. In particular, the torque provided by the horizontal Lorentz force change agrees with what is required for the measured angular acceleration.« less

  6. Two-dimensional spectroscopy of a sunspot. III. Thermal and kinematic structure of the penumbra at 0.5 arcsec resolution

    NASA Astrophysics Data System (ADS)

    Bellot Rubio, L. R.; Schlichenmaier, R.; Tritschler, A.

    2006-07-01

    We investigate the thermal and kinematic configuration of a sunspot penumbra using high spectral and spatial resolution intensity profiles of the non-magnetic Fe I 557.6 nm line. The data set was acquired with the 2D solar spectrometer TESOS. The profiles are inverted using a one-component model atmosphere with gradients of the physical quantities. From this inversion we obtain the stratification with depth of temperature, line-of-sight velocity, and microturbulence across the penumbra. Our results suggest that the physical mechanism(s) responsible for the penumbral filaments operate preferentially in the lower photosphere. The spot, located at an heliocentric angle of 23°, exhibits larger continuum intensities in the center-side penumbra as compared with the limb side, which translates into an average temperature difference of 100-150 K at log τ500 = 0. We investigate the nature of the bright ring that appears in the inner penumbra when sunspots are observed in the wing of spectral lines. It is suggested that the bright ring does not reflect a temperature enhancement in the mid photospheric layers. The line-of-sight velocities retrieved from the inversion are used to determine the flow geometry at different heights in the photosphere. Both the flow speed and flow angle increase with optical depth and radial distance. Downflows are detected in the mid and outer penumbra, but only in deep layers (log τ500 ≥ -1.4). We demonstrate that the velocity stratifications retrieved from the inversion are consistent with the idea of penumbral flux tubes channeling the Evershed flow. Finally, we show that larger Evershed flows are associated with brighter continuum intensities in the inner center-side penumbra. Dark structures, however, are also associated with significant Evershed flows. This leads us to suggest that the bright and dark filaments seen at 0.5 arcsec resolution are not individual flow channels, but a collection of them. Our analysis highlights the

  7. Signatures of the impact of flare-ejected plasma on the photosphere of a sunspot light bridge

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Collados, M.; Khomenko, E.; Rajaguru, S. P.; Franz, M.; Kuckein, C.; Asensio Ramos, A.

    2017-12-01

    Aims: We investigate the properties of a sunspot light bridge, focusing on the changes produced by the impact of a plasma blob ejected from a C-class flare. Methods: We observed a sunspot in active region NOAA 12544 using spectropolarimetric raster maps of the four Fe I lines around 15 655 Å with the GREGOR Infrared Spectrograph, narrow-band intensity images sampling the Fe I 6173 Å line with the GREGOR Fabry-Pérot Interferometer, and intensity broad-band images in G-band and Ca II H-band with the High-resolution Fast Imager. All these instruments are located at the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The data cover the time before, during, and after the flare event. The analysis is complemented with Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager data from the Solar Dynamics Observatory. The physical parameters of the atmosphere at differents heights were inferred using spectral-line inversion techniques. Results: We identify photospheric and chromospheric brightenings, heating events, and changes in the Stokes profiles associated with the flare eruption and the subsequent arrival of the plasma blob to the light bridge, after traveling along an active region loop. Conclusions: The measurements suggest that these phenomena are the result of reconnection events driven by the interaction of the plasma blob with the magnetic field topology of the light bridge. Movies attached to Figs. 1 and 3 are available at http://www.aanda.org

  8. High-frequency Oscillations in the Atmosphere above a Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Deng, Hui; Li, Bo; Feng, Song; Bai, Xianyong; Deng, Linhua; Yang, Yunfei; Xue, Zhike; Wang, Rui

    2018-03-01

    We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time–frequency analysis method, namely, the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable of resolving weak signals even when their strength is comparable to the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12 mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 Å illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time–distance diagram, coupled with a subsonic wave speed (∼49 km s‑1), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.

  9. Solutions of the equation of heat flow. [in and around sunspots

    NASA Technical Reports Server (NTRS)

    Margolis, S. H.; Knobloch, E.

    1980-01-01

    The geometry of sunspots has been used to suggest a problem in heat flow. The equation of heat transport is solved for the case of a cylinder with a given thermal conductivity imbedded in an otherwise uniform medium with different conductivity. The surface of this region radiates heat with flux proportional to temperature. At a lower surface, either in heat flux or temperature is held constant. The cylinder can have an anisotropic thermal conductivity. The variations in temperature along the radiating surface have been determined. A simple approximation is noted which has been found to give a general solution with acceptable accuracy. This method may be of some use in other situations requiring the solution of Laplace's equation with a free surface. The analysis is used to set limits on the ratio of diameter to depth for cases which preserve the sharp surface temperature transition across the cylinder.

  10. Umbral oscillations as resonant modes of magneto-atmospheric waves. [in sunspots

    NASA Technical Reports Server (NTRS)

    Scheuer, M. A.; Thomas, J. H.

    1981-01-01

    Umbral oscillations in sunspots are identified as a resonant response of the umbral atmosphere to forcing by oscillatory convection in the subphotosphere. The full, linearized equations for magnetoatmospheric waves are solved numerically for a detailed model of the umbral atmosphere, for both forced and free oscillations. Resonant 'fast' modes are found, the lowest mode having a period of 153 s, typical of umbral oscillations. A comparison is made with a similar analysis by Uchida and Sakurai (1975), who calculated resonant modes using an approximate ('quasi-Alfven') form of the wave equations. Whereas both analyses give an appropriate value for the period of oscillation, several new features of the motion follow from the full equations. The resonant modes are due to upward reflection in the subphotosphere (due to increasing sound speed) and downward reflection in the photosphere and low chromosphere (due to increasing Alfven speed); downward reflection at the chromosphere-corona transition is unimportant for these modes.

  11. INTERFERENCE OF THE RUNNING WAVES AT LIGHT BRIDGES OF A SUNSPOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, J. T.; Priya, T. G.; Yu, S. J.

    The observations of chromospheric oscillations of two umbral light bridges (LBs) within a sunspot from NOAA Active Region 12127 are presented. It was found that the running umbral waves with periods of 2.2–2.6 minutes underwent very fast damping before approaching umbral boundaries, while those with higher periods (>2.6 minutes) could propagate outside umbrae. On two sides of each LB adjacent to umbrae, the cross-wavelet spectra displayed that the oscillations on them had a common significant power region with dominant frequencies of 2–6 minutes and phase differences of ∼90°. A counterstream of two running umbral waves in the 2–6 minute frequencymore » range propagated toward the LBs, where they encountered each other and gave rise to constructive or even destructive interference on the LBs. In addition, the velocity and density perturbations on the LBs were found in opposite phases suggesting that the perturbations were caused by the downward propagating waves.« less

  12. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Fundel, F.; Zappa, M.

    2011-07-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used to generate high discharge

  13. Numerical Simulations of Flare-productive Active Regions: δ-sunspots, Sheared Polarity Inversion Lines, Energy Storage, and Predictions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Takasao, Shinsuke

    2017-11-01

    Solar active regions (ARs) that produce strong flares and coronal mass ejections (CMEs) are known to have a relatively high non-potentiality and are characterized by δ-sunspots and sheared magnetic structures. In this study, we conduct a series of flux emergence simulations from the convection zone to the corona and model four types of active regions that have been observationally suggested to cause strong flares, namely the spot-spot, spot-satellite, quadrupole, and inter-AR cases. As a result, we confirm that δ-spot formation is due to the complex geometry and interaction of emerging magnetic fields, and we find that the strong-field, high-gradient, highly sheared polarity inversion line (PIL) is created by the combined effect of the advection, stretching, and compression of magnetic fields. We show that free magnetic energy builds up in the form of a current sheet above the PIL. It is also revealed that photospheric magnetic parameters that predict flare eruptions reflect the stored free energy with high accuracy, while CME-predicting parameters indicate the magnetic relationship between flaring zones and entire ARs.

  14. Does psychomotor agitation in major depressive episodes indicate bipolarity? Evidence from the Zurich Study.

    PubMed

    Angst, Jules; Gamma, Alex; Benazzi, Franco; Ajdacic, Vladeta; Rössler, Wulf

    2009-02-01

    Kraepelin's partial interpretation of agitated depression as a mixed state of "manic-depressive insanity" (including the current concept of bipolar disorder) has recently been the focus of much research. This paper tested whether, how, and to what extent both psychomotor symptoms, agitation and retardation in depression are related to bipolarity and anxiety. The prospective Zurich Study assessed psychiatric and somatic syndromes in a community sample of young adults (N = 591) (aged 20 at first interview) by six interviews over 20 years (1979-1999). Psychomotor symptoms of agitation and retardation were assessed by professional interviewers from age 22 to 40 (five interviews) on the basis of the observed and reported behaviour within the interview section on depression. Psychiatric diagnoses were strictly operationalised and, in the case of bipolar-II disorder, were broader than proposed by DSM-IV-TR and ICD-10. As indicators of bipolarity, the association with bipolar disorder, a family history of mania/hypomania/cyclothymia, together with hypomanic and cyclothymic temperament as assessed by the general behavior inventory (GBI) [15], and mood lability (an element of cyclothymic temperament) were used. Agitated and retarded depressive states were equally associated with the indicators of bipolarity and with anxiety. Longitudinally, agitation and retardation were significantly associated with each other (OR = 1.8, 95% CI = 1.0-3.2), and this combined group of major depressives showed stronger associations with bipolarity, with both hypomanic/cyclothymic and depressive temperamental traits, and with anxiety. Among agitated, non-retarded depressives, unipolar mood disorder was even twice as common as bipolar mood disorder. Combined agitated and retarded major depressive states are more often bipolar than unipolar, but, in general, agitated depression (with or without retardation) is not more frequently bipolar than retarded depression (with or without agitation), and

  15. Comparison between the Movement ABC-2 and the Zurich Neuromotor Assessment in Preschool Children.

    PubMed

    Kakebeeke, Tanja H; Knaier, Elisa; Köchli, Sabrina; Chaouch, Aziz; Rousson, Valentin; Kriemler, Susi; Jenni, Oskar G

    2016-12-01

    An established test instrument for the assessment of motor performance in children between 3 and 16 years is the Movement Assessment Battery for Children - Second Edition (M-ABC-2). The Zurich Neuromotor Assessment (ZNA) is also widely used for the evaluation of children's motor performance but has not been compared with the M-ABC-2 for children below five years for the purpose of convergent validity. Forty-seven children (26 boys, 21 girls) between three and five years of age were assessed using the M-ABC-2 and the ZNA3-5. Rank correlations between scores of different test components were calculated. Only low-to-moderate correlations were observed when separate components of these tests were compared (.31 to .68, p < .05), especially when involving the associated movements from the ZNA3-5 (-.05 to -.13, p > .05). However, the correlation between summary scores of the two tests was .77 (p < .001), and it increased to .84 when associated movements were excluded, which was comparable in magnitude to the test-retest reliability of the M-ABC-2, supporting convergent validity between the two tests. Although the ZNA3-5 and M-ABC-2 measure different aspects of motor behavior, the two instruments may thus measure essentially the same construct. © The Author(s) 2016.

  16. Understanding Sun-Climate Connection by Analysis of Historical Sunspot, Auroral and Weather Records

    NASA Astrophysics Data System (ADS)

    Pang, K. D.; Yau, K. K.

    2005-12-01

    Fifty years of galactic cosmic ray data show changes with the solar cycle. Deflection of the highly energetic particles from exploding supernovae by the solar wind and associated magnetic field also modulates cosmogenic radioisotope production high in the atmosphere. The same trends are seen in carbon-14 and beryllium-10 abundances from long-lived trees and polar ice cores, respectively. Total solar irradiances measured by satellite radiometers show a 0.1% variance over the last two solar cycles, with only a small effect on global temperatures. A longer view is obviously needed. During the Maunder Minimum (1645-1715) sunspots were rarely seen. Total solar irradiances, reconstructed from historical sunspot data, were 0.24% lower, correlating nicely with an estimated 0.5-degree drop in Northern Hemisphere surface temperatures during the Little Ice Age [Lean and Rind, J. Clim. 11, 3069, 1998]. A longer time series has been reconstructed from even earlier records. From the frequencies of sunspot and auroral sightings in East Asian and European chronicles, C-14 and Be-10 abundances we have reconstructed the recent history of a variable Sun. In the past 1800 years the Sun has gone through nine cycles of brightness change. Although these long-term changes were <1% they have clearly affected the climate [Pang and Yau, Eos 83, No. 43, 481, 2002]. We have also analyzed Chinese historical weather records for comparison. Reports of unseasonable cold are classified by their degree of severity: (1) Late (April-June) or early (July-Sept.) killing frosts; (2) Bitter cold/heavy snowfall; and (3) Heavy sustained snowfall, bitter cold with frozen wells, lakes, rivers and icebound seas. The latter cases were often widespread and multi-year. All categories occurred most often during Maunder Minimum. The Category 3 episodes were in 1652-54, 1656, 1664, 1670-72, 1676-77, 1683, 1688-91, 1716 and 1718-19. The coldest time 1670-1697 coincides with lows in aurora sightings and numerical

  17. On the level of skill in predicting maximum sunspot number - A comparative study of single variate and bivariate precursor techniques

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1990-01-01

    The level of skill in predicting the size of the sunspot cycle is investigated for the two types of precursor techniques, single variate and bivariate fits, both applied to cycle 22. The present level of growth in solar activity is compared to the mean level of growth (cycles 10-21) and to the predictions based on the precursor techniques. It is shown that, for cycle 22, both single variate methods (based on geomagnetic data) and bivariate methods suggest a maximum amplitude smaller than that observed for cycle 19, and possibly for cycle 21. Compared to the mean cycle, cycle 22 is presently behaving as if it were a +2.6 sigma cycle (maximum amplitude of about 225), which means that either it will be the first cycle not to be reliably predicted by the combined precursor techniques or its deviation relative to the mean cycle will substantially decrease over the next 18 months.

  18. Variations and Regularities in the Hemispheric Distributions in Sunspot Groups of Various Classes

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin

    2018-05-01

    The present study investigates the variations and regularities in the distributions in sunspot groups (SGs) of various classes in the northern and southern hemispheres from Solar Cycles (SCs) 12 to 23. Here, we use the separation scheme that was introduced by Gao, Li, and Li ( Solar Phys. 292, 124, 2017), which is based on A/U ( A is the corrected area of the SG, and U is the corrected umbral area of the SG), in order to separate SGs into simple SGs (A/U ≤ 4.5) and complex SGs (A/U > 6.2). The time series of Greenwich photoheliographic results from 1875 to 1976 (corresponding to complete SCs 12 - 20) and Debrecen photoheliographic data during the period 1974 - 2015 (corresponding to complete SCs 21 - 23) are used to show the distributions of simple and complex SGs in the northern and southern hemispheres. The main results we obtain are reported as follows: i) the larger of the maximum annual simple SG numbers in the two hemispheres and the larger of the maximum annual complex SG numbers in the two hemispheres occur in different hemispheres during SCs 12, 14, 18, and 19; ii) the relative changing trends of two curves - cumulative SG numbers in the northern and southern hemispheres - for simple SGs are different from those for complex SGs during SCs 12, 14, 18, and 21; and iii) there are discrepancies between the dominant hemispheres of simple and complex SGs for SCs 12, 14, 18, and 21.

  19. Predicting the Size of Sunspot Cycle 24 on the Basis of Single- and Bi-Variate Geomagnetic Precursor Methods

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2009-01-01

    Examined are single- and bi-variate geomagnetic precursors for predicting the maximum amplitude (RM) of a sunspot cycle several years in advance. The best single-variate fit is one based on the average of the ap index 36 mo prior to cycle minimum occurrence (E(Rm)), having a coefficient of correlation (r) equal to 0.97 and a standard error of estimate (se) equal to 9.3. Presuming cycle 24 not to be a statistical outlier and its minimum in March 2008, the fit suggests cycle 24 s RM to be about 69 +/- 20 (the 90% prediction interval). The weighted mean prediction of 11 statistically important single-variate fits is 116 +/- 34. The best bi-variate fit is one based on the maximum and minimum values of the 12-mma of the ap index; i.e., APM# and APm*, where # means the value post-E(RM) for the preceding cycle and * means the value in the vicinity of cycle minimum, having r = 0.98 and se = 8.2. It predicts cycle 24 s RM to be about 92 +/- 27. The weighted mean prediction of 22 statistically important bi-variate fits is 112 32. Thus, cycle 24's RM is expected to lie somewhere within the range of about 82 to 144. Also examined are the late-cycle 23 behaviors of geomagnetic indices and solar wind velocity in comparison to the mean behaviors of cycles 2023 and the geomagnetic indices of cycle 14 (RM = 64.2), the weakest sunspot cycle of the modern era.

  20. An Electron Density Model above the Sunspot from a Mapping of NOAA 7260 at 17 GHz

    NASA Astrophysics Data System (ADS)

    Yu, Xing-Feng; Yao, Jin-Xing Yao

    2002-06-01

    The brightness temperature distribution of microwave emission in a solar active region generally shows a ring structure, with a dip at the centre. However, no dip was found in the Nobeyama Radioheliograph left handed circular polarization (LCP) image on 1992 August 18; instead, there was a peak. This is a completely LCP source with zero right-handed circular polarization (RCP). We examine this structure in terms of the joint effect of gyroresonance and bremsstrahlung mechanism with a raised electron density above the central part of the sunspot, and the commonly assumed temperature and vertical dipole magnetic field models. The raised electron density is found to be 1.4 × 1011 cm-3 at the chromosphere base.

  1. Vector magnetic fields in sunspots. I - Stokes profile analysis using the Marshall Space Flight Center magnetograph

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, K. S.; West, E. A.

    1991-01-01

    The Marshall Space Flight Center (MSFC) vector magnetograph is a tunable filter magnetograph with a bandpass of 125 mA. Results are presented of the inversion of Stokes polarization profiles observed with the MSFC vector magnetograph centered on a sunspot to recover the vector magnetic field parameters and thermodynamic parameters of the spectral line forming region using the Fe I 5250.2 A spectral line using a nonlinear least-squares fitting technique. As a preliminary investigation, it is also shown that the recovered thermodynamic parameters could be better understood if the fitted parameters like Doppler width, opacity ratio, and damping constant were broken down into more basic quantities like temperature, microturbulent velocity, or density parameter.

  2. The Motion of Magnetic Elements in and around Sunspot Penumbrae

    NASA Astrophysics Data System (ADS)

    Grigor'ev, V. M.; Ermakova, L. V.

    2018-01-01

    Structural magnetic elements observed in sunspot penumbrae are employed as indicators of motions occurring in and around penumbrae. The analysis presented here is base on SDO/HMI continuum images and magnetograms of the line-of-sight field obtained for the active region NOAA 11117. In a first approximation, the penumbral magnetic fields can be considered alternating spines and interspine filaments. In the plane of the sky, spines are thin radial elements with higher field strengths and lower magnetic-field inclinations compared with those in surrounding areas. It is confirmed that spines first appear as protrusions of the umbra magnetic fields visible in magnetograms, and then develop simultaneously with the growth of the penumbra. The departure of magnetic elements from penumbrae as a result of the detachment of the ends of spines begin 1-1.5 h after the spine formation. Inmature penumbrae, magnetic elements emerge fairly often, and the departure of groups of field elements sometimes generates structures resembling moving ribbons. The velocities of magnetic elements that have separated from spines are a factor of two to three lower than those of elements that have separated from inter-spine filaments. The results obtained agree well with an "uncombed" model for the penumbral magnetic fields.

  3. Progress report (1953) on the revision of Washington's Chemical analyses of igneous rocks (U.S.G.S. Prof. Paper 99), presented at the First International Symposium on Geochemistry, under the auspices of the International Union of Chemistry, in Zurich, August 11-13, 1953

    USGS Publications Warehouse

    Hooker, Marjorie

    1954-01-01

    In October of last year, vhen I was here in Zurich, it was my privilege to talk with Professor Niggli about the revision of Washington's "Chemical analysis of igneous rocks" which the United States Geological Survey is undertaking. It was then that he suggested the possibility of a progress report at this meeting in order that information about the revision would be available to those who are most interested. At the time that I talked with Professor Niggli the place or this meeting had not bean decided, but I think he hoped that it would be in Zurich,, Today, we must proceed without him, but I am sure that you must feel, as I do, that he is here sn spirit and that he expects us to continue the work as he would have, - with enthusiasm, with strength, and with happiness.

  4. Small-Scale Activity Above the Penumbra of a Fast-Rotating Sunspot

    NASA Astrophysics Data System (ADS)

    Bharti, L.; Quintero Noda, C.; Rakesh, S.; Sobha, B.; Pandya, A.; Joshi, C.

    2018-03-01

    High-resolution observations of small-scale activity above the filamentary structure of a fast-rotating sunspot of NOAA Active Region 10930 are presented. The penumbral filament that intrudes into the umbra shows a central dark core and substructures. It almost approached another end of the umbra, like a light bridge. The chromospheric Ca ii H images show many jet-like structures with a bright leading edge above it. These bright jets move across the filament tips and show coordinated up and down motions. Transition region images also show brightening at the same location above the intrusion. Coronal 195 Å images suggest that one end of the bright coronal loop footpoints resides in this structure. The intrusion has opposite polarity with respect to the umbra. Strong downflows are observed at the edges along the length of the intrusion where the opposite-polarity field is enhanced. We also observe a counter-Evershed flow in the filamentary structure that also displays brightening and energy dissipation in the upper atmosphere. This scenario suggests that the jets and brightenings are caused by low-altitude reconnection driven by opposite-polarity fields and convective downflows above such structures.

  5. Structure of sunspot light bridges in the chromosphere and transition region

    NASA Astrophysics Data System (ADS)

    Rezaei, R.

    2018-01-01

    Context. Light bridges (LBs) are elongated structures with enhanced intensity embedded in sunspot umbra and pores. Aims: We studied the properties of a sample of 60 LBs observed with the Interface Region Imaging Spectrograph (IRIS). Methods: Using IRIS near- and far-ultraviolet spectra, we measured the line intensity, width, and Doppler shift; followed traces of LBs in the chromosphere and transition region (TR); and compared LB parameters with umbra and quiet Sun. Results: There is a systematic emission enhancement in LBs compared to nearby umbra from the photosphere up to the TR. Light bridges are systematically displaced toward the solar limb at higher layers: the amount of the displacement at one solar radius compares well with the typical height of the chromosphere and TR. The intensity of the LB sample compared to the umbra sample peaks at the middle/upper chromosphere where they are almost permanently bright. Spectral lines emerging from the LBs are broader than the nearby umbra. The systematic redshift of the Si IV line in the LB sample is reduced compared to the quiet Sun sample. We found a significant correlation between the line width of ions arising at temperatures from 3 × 104 to 1.5 × 105 K as there is also a strong spatial correlation among the line and continuum intensities. In addition, the intensity-line width relation holds for all spectral lines in this study. The correlations indicate that the cool and hot plasma in LBs are coupled. Conclusions: Light bridges comprise multi-temperature and multi-disciplinary structures extending up to the TR. Diverse heating sources supply the energy and momentum to different layers, resulting in distinct dynamics in the photosphere, chromosphere, and TR.

  6. Ionospheric climatology at Africa EIA trough stations during descending phase of sunspot cycle 22

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Rabiu, A. B.; Bolaji, O. S.; Adeniyi, J. O.; Amory-Mazaudier, C.

    2018-07-01

    The African equatorial ionospheric climatology during the descending phase of sunspot-cycle 22 (spanning 1992-1996) was investigated using 3 ionosondes located at Dakar (14.70 N, 342.60 E), Ouagadougou (12.420 N, 358.60 E), and Korhogo (9.510 N, 354.40 E). The variations in the virtual height of the F-layer (h'F), maximum electron density (NmF2), vertical plasma drift (Vp) and zonal electric field (Ey) were presented. Significant decrease in the NmF2 amplitude compared to h'F in all of the stations during the descending period is obvious. While NmF2 magnitude maximizes/minimizes during the E-seasons/J-season, h'F attained highest/lowest altitude in J-season/D-season for all stations. D-season anomaly was evident in NmF2 at all stations. For any season, the intensity (Ibt) of NmF2 noon-bite-out is highest at Dakar owning to fountain effect and maximizes in March-E season. Stations across the EIA trough show nearly coherence ionospheric climatology characteristics whose difference is of latitudinal origin. Hemispheric dependence in NmF2 is obvious, with difference more significant during high-solar activity and closes with decreasing solar activity. The variability in the plasma drift during the entire phase is suggested to emanate from solar flux variations, and additionally from enhanced leakage of electric fields from high-to low-latitudes. Existing African regional model of evening/nightttime pre-reversal plasma drift/sunspot number (PREpeak/R) relationship compares well with experimental observations at all stations with slight over-estimation. The correlation/root-mean-square-deviation (RMSdev) pair between the model and observed Vp during the descending phase recorded 94.9%/0.756, 92.4%/1.526, and 79.1%/3.612 at Korhogo, Ouagadougou and Dakar respectively. The Ey/h'F and Ey/NmF2 relationships suggest that zonal electric field is more active in the lifting of h'F and suppression of NmF2 during high- and moderate-solar activities when compared with low

  7. Salient Features of the New Sunspot Number Time Series

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.; Ygbuhay, R. C.

    2016-12-01

    Recently Clette et al. (Space Sci. Rev. 186, 35, 2014) completed the first revision of the international sunspot number SSN(V2) since its creation by Wolf in 1849 SSN(V1) starting in 1700 and ending in May 2015. The yearly values of SSN(V2) are larger than those of SSN(V1) but the secular trend in their timelines both exhibit a gradual descent after Cycle 21 minimum resulting in greatly reduced activity for Cycle 24. It has two peaks; one in 2012 due to activity in the north hemisphere (NH) and the other in 2014 due to excess activity in the south hemisphere (SH). The N-S excess of hemispheric SSNs is examined for 1950 - 2014, in relation to the time variations of the solar polar field for 1976 - 2015, covering five complete solar cycles (19 - 23) and parts of the bordering two (18, 24). We find that SH tends to become progressively more active in the declining phase of the cycles reaching an extreme value that gave rise to a second higher peak in October 2014 in the smoothed SSNs accompanied by a strong solar polar field in SH. There may be a Gleissberg cyclicity in the asymmetric solar dynamo operation. The continuing descent of the secular trend in SSNs implies that we may be near a Dalton-level grand minimum. The low activity spell may last well past 2060, accompanied by a stable but reduced level of the space weather/climate. Fourier spectrum of the time domain of SSNs shows no evidence of the 208 year/cycle (ypc) (DeVries/Suess cycle) seen in the cosmogenic radionuclide ({}^{10}Be) concentration in the polar ice cores and {}^{14}C record in trees indicating that 208 ypc peak may be of non-solar origin. It may arise from the climate process(es) that change(s) the way radionuclides are deposited on polar ice. It should be noted that we only have {˜} 400 years of SSN data, so it is possible that DeVries/Suess cycle is really driven by the Sun but for now we do not have any evidence of that; there is no known physical process linking 208 ypc to solar dynamo

  8. Moyamoya angiopathy in Europe: the beginnings in Zurich, practical lessons learned, increasing awareness and future perspectives.

    PubMed

    Khan, N; Yonekawa, Y

    2008-01-01

    The number of patients, especially children, diagnosed with Moyamoya angiopathy and being referred to us for treatment from all across Europe, has increased over the last few years. An increase in awareness of the occurrence of stroke in children in the general and medical population might be the main cause of this phenomenon. Increasing awareness does not happen "spontaneously" nor does it manifest overnight! It requires regular platforms of communication between the general population and amongst the different medical specialists mainly neurologists, paediatric neurologists, neuropsychologists, neuroradiologists, neurorehabilitation specialists, nursing staff and neurosurgeons. Presently we were lucky to conduct the first Moyamoya Symposium ever to be conducted at a European-Japanese level with participation of specialists of this particular field from across Europe and Japan. Ever since the first child with Moyamoya was managed at the University hospital in Zurich some 7 years ago the number of patients referred to us from all across Europe increased rapidly. The importance of interdisciplinary communication, trust and support amongst specialists and increasing the awareness of the disease among the patients, medical personnel was and remains to be just as important as making the correct diagnosis and treatment of choice in these patients. We present the lessons we learned during these previous years and look into the future perspectives that require our further and urgent attention.

  9. Solar cycle predicts folate-sensitive neonatal genotypes at discrete phases of the first trimester of pregnancy: a novel folate-related human embryo loss hypothesis.

    PubMed

    Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel

    2012-08-01

    Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease.more » Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.« less

  11. Observations of Running Penumbral Waves Emerging in a Sunspot

    NASA Astrophysics Data System (ADS)

    Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi

    2018-01-01

    We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.

  12. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  13. THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. I. WHICH ENVIRONMENT AFFECTS GALAXY EVOLUTION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carollo, C. Marcella; Cibinel, Anna; Lilly, Simon J.

    2013-10-20

    The Zurich Environmental Study (ZENS) is based on a sample of ∼1500 galaxy members of 141 groups in the mass range ∼10{sup 12.5-14.5} M{sub ☉} within the narrow redshift range 0.05 < z < 0.0585. ZENS adopts novel approaches, described here, to quantify four different galactic environments, namely: (1) the mass of the host group halo; (2) the projected halo-centric distance; (3) the rank of galaxies as central or satellites within their group halos; and (4) the filamentary large-scale structure density. No self-consistent identification of a central galaxy is found in ∼40% of <10{sup 13.5} M{sub ☉} groups, from whichmore » we estimate that ∼15% of groups at these masses are dynamically unrelaxed systems. Central galaxies in relaxed and unrelaxed groups generally have similar properties, suggesting that centrals are regulated by their mass and not by their environment. Centrals in relaxed groups have, however, ∼30% larger sizes than in unrelaxed groups, possibly due to accretion of small satellites in virialized group halos. At M > 10{sup 10} M{sub ☉}, satellite galaxies in relaxed and unrelaxed groups have similar size, color, and (specific) star formation rate distributions; at lower galaxy masses, satellites are marginally redder in relaxed relative to unrelaxed groups, suggesting quenching of star formation in low-mass satellites by physical processes active in relaxed halos. Overall, relaxed and unrelaxed groups show similar stellar mass populations, likely indicating similar stellar mass conversion efficiencies. In the enclosed ZENS catalog, we publish all environmental diagnostics as well as the galaxy structural and photometric measurements described in companion ZENS papers II and III.« less

  14. White light sunspot observations from the Solar Optical Universal Polarimeter on Spacelab-2

    NASA Technical Reports Server (NTRS)

    Shine, R. A.; Title, A. M.; Tarbell, T. D.; Topka, K. P.

    1987-01-01

    The flight of the Solar Optical Universal Polarimeter on Spacelab-2 provided the opportunity for the collection of time sequences of diffraction-limited (0.5 arcsec) solar images with excellent pointing stability (0.003 arcsec) and with freedom from the distortion that plagues ground-based images. A series of white-light images of active region 4682 were obtained on August 5, 1985, and the area containing the sunspot has been analyzed. These data have been digitally processed to remove noise and to separate waves from low-velocity material motions. The results include: (1) proper motion measurements of a radial outflow in the photospheric granulation pattern just outside the penumbra; (2) discovery of occasional bright structures ('streakers') that appear to be ejected outward from the penumbra; (3) broad dark 'clouds' moving outward in the penumbra, in addition to the well-known bright penumbral grains moving inward; (4) apparent extensions and contractions of penumbral filaments over the photosphere; and (5) observation of a faint bubble or looplike structure that seems to expand from two bright penumbral filaments into the photosphere.

  15. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  16. Chromospheric Plasma Ejections in a Light Bridge of a Sunspot

    NASA Astrophysics Data System (ADS)

    Song, Donguk; Chae, Jongchul; Yurchyshyn, Vasyl; Lim, Eun-Kyung; Cho, Kyung-Suk; Yang, Heesu; Cho, Kyuhyoun; Kwak, Hannah

    2017-02-01

    It is well-known that light bridges (LBs) inside a sunspot produce small-scale plasma ejections and transient brightenings in the chromosphere, but the nature and origin of such phenomena are still unclear. Utilizing the high-spatial and high-temporal resolution spectral data taken with the Fast Imaging Solar Spectrograph and the TiO 7057 Å broadband filter images installed at the 1.6 m New Solar Telescope of Big Bear Solar Observatory, we report arcsecond-scale chromospheric plasma ejections (1.″7) inside a LB. Interestingly, the ejections are found to be a manifestation of upwardly propagating shock waves as evidenced by the sawtooth patterns seen in the temporal-spectral plots of the Ca II 8542 Å and Hα intensities. We also found a fine-scale photospheric pattern (1″) diverging with a speed of about 2 km s-1 two minutes before the plasma ejections, which seems to be a manifestation of magnetic flux emergence. As a response to the plasma ejections, the corona displayed small-scale transient brightenings. Based on our findings, we suggest that the shock waves can be excited by the local disturbance caused by magnetic reconnection between the emerging flux inside the LB and the adjacent umbral magnetic field. The disturbance generates slow-mode waves, which soon develop into shock waves, and manifest themselves as the arcsecond-scale plasma ejections. It also appears that the dissipation of mechanical energy in the shock waves can heat the local corona.

  17. A Comparison of Wolf's Reconstructed Record of Annual Sunspot Number with Schwabe's Observed Record of 'Clusters of Spots' for the Interval of 1826-1868

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1997-01-01

    On the basis of a comparison of Wolf s reconstructed record of yearly averages of sunspot number against Schwabe's observations of yearly counts of 'clusters of spots' (i.e., the yearly number of newly appearing sunspot groups) during the interval of 1826-1868, one infers that Wolf probably misplaced and underestimated the maximum amplitude for cycle 7. In particular, Schwabe's data suggest that the maximum amplitude for cycle 7 occurred in 1828 rather than in 1830 and that it measured about 86.3 (+/-13.9; i.e., the 90% confidence level) rather than 70.4. If true, then, the ascent and descent durations for cycle 7 should be 5 years each instead of 7 and 3 years, respectively. Likewise, on the basis of the same comparison, one infers that the maximums for cycles 8 and 9, occurring, respectively, in 1837 and 1848, were of comparable size (approximately 130), although, quite possibly, the one for cycle 8 may have been smaller. Lastly, presuming the continued action of the 'odd-even' effect (i.e., the odd-numbered following cycle of Hale even-odd cycle pairs having a maximum amplitude that is of comparable or larger size than the even-numbered leading cycle) during the earlier pre-modem era of cycles 6-9, one infers that Wolf's estimate for the size of cycle 6 probably is too low.

  18. Fan-shaped jets above the light bridge of a sunspot driven by reconnection

    NASA Astrophysics Data System (ADS)

    Robustini, Carolina; Leenaarts, Jorrit; de la Cruz Rodriguez, Jaime; Rouppe van der Voort, Luc

    2016-05-01

    We report on a fan-shaped set of high-speed jets above a strongly magnetized light bridge (LB) of a sunspot observed in the Hα line. We study the origin, dynamics, and thermal properties of the jets using high-resolution imaging spectroscopy in Hα from the Swedish 1m Solar Telescope and data from the Solar Dynamics Observatory and Hinode. The Hα jets have lengths of 7-38 Mm, are impulsively accelerated to a speed of ~100 km s-1 close to photospheric footpoints in the LB, and exhibit a constant deceleration consistent with solar effective gravity. They are predominantly launched from one edge of the light bridge, and their footpoints appear bright in the Hα wings. Atmospheric Imaging Assembly data indicates elongated brightenings that are nearly co-spatial with the Hα jets. We interpret them as jets of transition region temperatures. The magnetic field in the light bridge has a strength of 0.8-2 kG and it is nearly horizontal. All jet properties are consistent with magnetic reconnection as the driver. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  19. Hilbert-Huang Transform: A Spectral Analysis Tool Applied to Sunspot Number and Total Solar Irradiance Variations, as well as Near-Surface Atmospheric Variables

    NASA Astrophysics Data System (ADS)

    Barnhart, B. L.; Eichinger, W. E.; Prueger, J. H.

    2010-12-01

    Hilbert-Huang transform (HHT) is a relatively new data analysis tool which is used to analyze nonstationary and nonlinear time series data. It consists of an algorithm, called empirical mode decomposition (EMD), which extracts the cyclic components embedded within time series data, as well as Hilbert spectral analysis (HSA) which displays the time and frequency dependent energy contributions from each component in the form of a spectrogram. The method can be considered a generalized form of Fourier analysis which can describe the intrinsic cycles of data with basis functions whose amplitudes and phases may vary with time. The HHT will be introduced and compared to current spectral analysis tools such as Fourier analysis, short-time Fourier analysis, wavelet analysis and Wigner-Ville distributions. A number of applications are also presented which demonstrate the strengths and limitations of the tool, including analyzing sunspot number variability and total solar irradiance proxies as well as global averaged temperature and carbon dioxide concentration. Also, near-surface atmospheric quantities such as temperature and wind velocity are analyzed to demonstrate the nonstationarity of the atmosphere.

  20. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  1. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    NASA Astrophysics Data System (ADS)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  2. [Acceptance and feasibility of medical telemonitoring plus individual teleconsultation -A two years research and development project at the University Hospital Zurich].

    PubMed

    Schmidt-Weitmann, Sabine; Buser, Jacqueline; Baumann, Doris; Schmidt, Christian; Brettenhofer, Marlene; Tarnutzer, Silvan; Meienberger, Beda; Otto, Ulrich; Brockes, Christiane

    2015-09-01

    The research and development project "Long Independent Living Assistant (LILA)'; which is financially supported by the Commission for Technology and lnnoyation (KTI}, is based on the results and experiences of many years of the Medical Online Consultation Service at the University Hospital Zurich.The focus is on development and provision of a comprehensive, telemedicine service. Citizens and patients should be provided more safety at home and the family doctor should be supported by the service. Core elements of the project include the telemonitoring of vital signs combined with an individual teleconsultation via telephone, email and video. Technically, the. service is supported by a web-based documentation and communication platform with an integrated patient record. In a one-year planning phase, individual interviews and group discussions were conducted with the participants of the study. The results are continuously incorporated into the concept. The subsequent pilot phase analyzed the developed tetemedical approach and leads to further improvements. The aim of the study is the evaluation of the needs, feasibility and acceptance of telemedicine services from the perspective of the user, taking into account their social environment~

  3. Estudios de clima espacial basados en observaciones solares históricas: recientes progresos y perspectivas

    NASA Astrophysics Data System (ADS)

    Vaquero, J. M.

    During the last decades, an effort has been made to improve the sunspot number time-series, one of the more useful data set for space climate stud- ies, using historical solar observations. Moreover, not only the sunspot number can be studied using these early solar records. During the last years, historical sources (i.e., sunspot drawings and solar radius measurements) have been also used to study the space climate. Here, I review some recent progress on these issues. In a hand, there are some periods with very few sunspot records and sunspot numbers are not so reliable in these intervals. I discuss the quality of sunspot records during these interesting periods: (a) 1610-1645, (b) 1721-1761, and (c) 1779-1795. On the other hand, I dis- cuss the reliability of early sunspot drawings, sunspot position data, and solar diameter determinations to study long-term variations in our Sun. Fi- nally, some information on historical documents from Argentina and Chile related with space climate are summarised. FULL TEXT IN SPANISH

  4. The 2015 Annual Meeting of SETAC German Language Branch in Zurich (7-10 September, 2015): Ecotoxicology and environmental chemistry-from research to application.

    PubMed

    Werner, Inge; Aldrich, Annette; Becker, Benjamin; Becker, Dennis; Brinkmann, Markus; Burkhardt, Michael; Caspers, Norbert; Campiche, Sophie; Chèvre, Nathalie; Düring, Rolf-Alexander; Escher, Beate I; Fischer, Fabian; Giebner, Sabrina; Heye, Katharina; Hollert, Henner; Junghans, Marion; Kienle, Cornelia; Knauer, Katja; Korkaric, Muris; Märkl, Veronika; Muncke, Jane; Oehlmann, Jörg; Reifferscheid, Georg; Rensch, Daniel; Schäffer, Andreas; Schiwy, Sabrina; Schwarz, Simon; Segner, Helmut; Simon, Eszter; Triebskorn, Rita; Vermeirssen, Etiënne L M; Wintgens, Thomas; Zennegg, Markus

    2016-01-01

    This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge 'brokering', and-as it was the International Year of Soil-the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1.

  5. Quasiperiodic Sunspot Oscillations on Timescales from Tens to Hundreds of Minutes: Groundbased Optical Observations (a Review)

    NASA Astrophysics Data System (ADS)

    Nagovitsyn, Yu. A.; Nagovitsyna, E. Yu.

    2017-12-01

    Over the last decade, a number of papers discussing long-period sunspot oscillations—with periods of tens and hundreds of minutes—have appeared. These studies are mainly based on the data of space probes. Despite the many possibilities in the time resolution and the absence of a distorting effect of the atmosphere, such studies face some artifacts connected with the pixel structure of an image (Nagovitsyn and Rybak, 2014); the existence of this phenomenon itself is still under discussion. On the other hand, starting already in the 1970s, long-period oscillations were studied by groundbased methods, including optical investigations after the mid-1980s. Since the papers containing the results of this research were mainly published in the Russian literature, which is not readily available for a wide range of specialists (mostly, in the Solnechnye Dannye bulletin or the proceedings of all-Russia conferences), they have been lost. The objective of this review is to recall these studies and their results and to combine the earlier findings with up-to-date ones.

  6. Very Large Array Observations of the Sun with Related Observations Using the SMM (Solar Maximum Mission) Satellite

    DTIC Science & Technology

    1988-10-12

    white light sunspots (black dotsl but these regions are associated with intense radiation at 20 cm wave- material would, however, be invisible in X...spots. The intense , million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength Hi...capable of measuring the radio intensity and polarization with high angular and time resolution, thereby providing information about the preburst heating

  7. A steady-state supersonic downflow in the transition region above a sunspot umbra

    NASA Astrophysics Data System (ADS)

    Straus, Thomas; Fleck, Bernhard; Andretta, Vincenzo

    2015-10-01

    We investigate a small-scale (~1.5 Mm along the slit), supersonic downflow of about 90 km s-1 in the transition region above the lightbridged sunspot umbra in AR 11836. The observations were obtained with the Interface Region Spectrograph (IRIS) on 2013 September 2 from 16:40 to 17:59 UT. The downflow shows up as redshifted "satellite" lines of the Si iv and O iv transition region lines and is remarkably steady over the observing period of nearly 80 min. The downflow is not visible in the chromospheric lines, which only show an intensity enhancement at the location of the downflow. The density inferred from the line ratio of the redshifted satellites of the O iv lines (Ne = 1010.6 ± 0.25 cm-3) is only a factor 2 smaller than the one inferred from the main components (Ne = 1010.95 ± 0.20 cm-3). Consequently, this implies a substantial mass flux (~5 × 10-7 g cm-2 s-1), which would evacuate the overlying corona on timescales close to 10 s. We interpret these findings as evidence of a stationary termination shock of a supersonic siphon flow in a cool loop that is rooted in the central umbra of the spot. The movie is available in electronic form at http://www.aanda.org

  8. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    NASA Astrophysics Data System (ADS)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  9. Technical foundation and operational effectiveness of noise-related landing fees at the Zurich and Geneva airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schurter, E.

    1982-01-01

    The development of noise-related landing-fees at airports in various countries is discussed. Noise-related landing fees create an inducement for an accelerated pace of fleet renewal, while the monetary yield from fees collected by airports help to defray expenditures incurred by airports in providing noise protection and insulation for the receivers of the noise. (KRM)

  10. Temperature Dependence of Molecular Line Strengths and Fei 1565 nm Zeeman Splitting in a Sunspot

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Walton, S.; Chapman, G.; Ceja, J.; Plick, W.

    2003-03-01

    Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge-National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.

  11. The color of complexes and UV-vis spectroscopy as an analytical tool of Alfred Werner's group at the University of Zurich.

    PubMed

    Fox, Thomas; Berke, Heinz

    2014-01-01

    Two PhD theses (Alexander Gordienko, 1912; Johannes Angerstein, 1914) and a dissertation in partial fulfillment of a PhD thesis (H. S. French, Zurich, 1914) are reviewed that deal with hitherto unpublished UV-vis spectroscopy work of coordination compounds in the group of Alfred Werner. The method of measurement of UV-vis spectra at Alfred Werner's time is described in detail. Examples of spectra of complexes are given, which were partly interpreted in terms of structure (cis ↔ trans configuration, counting number of bands for structural relationships, and shift of general spectral features by consecutive replacement of ligands). A more complete interpretation of spectra was hampered at Alfred Werner's time by the lack of a light absorption theory and a correct theory of electron excitation, and the lack of a ligand field theory for coordination compounds. The experimentally difficult data acquisitions and the difficult spectral interpretations might have been reasons why this method did not experience a breakthrough in Alfred Werner's group to play a more prominent role as an important analytical method. Nevertheless the application of UV-vis spectroscopy on coordination compounds was unique and novel, and witnesses Alfred Werner's great aptitude and keenness to always try and go beyond conventional practice.

  12. Inter- and intra-observer variability of radiography and computed tomography for evaluation of Zurich cementless acetabular cup placement ex vivo.

    PubMed

    Leasure, Jessica O; Peck, Jeffrey N; Villamil, Armando; Fiore, Kara L; Tano, Cheryl A

    2016-11-23

    To evaluate the inter- and intra-observer variability in measurement of the angle of lateral opening (ALO) and version angle measurement using digital radiography and computed tomography (CT). Each hemipelvis was implanted with a cementless acetabular cup. Ventrodorsal and mediolateral radiographs were made of each pelvis, followed by CT imaging. After removal of the first cup, the pelves were implanted with an acetabular cup in the contralateral acetabulum and imaging was repeated. Three surgeons measured the ALO and version angles three times for each cup from the mediolateral radiographic projection. The same measurements were made using three-dimensional multiplanar reconstructions from CT images. Two anatomical axes were used to measure pelvic inclination in the sagittal plane, resulting in six measurements per cup. Two-way repeated measures analysis of variance evaluated inter- and intra-observer repeatability for radiographic and CT-based measurements. Version angle based on radiographic measurement did not differ within surgeons (p = 0.433), but differed between surgeons (p <0.001). Radiographic measurement of ALO differed within surgeons (p = 0.006) but not between surgeons (p = 0.989). The ALO and version angle measured on CT images did not differ with or between surgeons. Assessment of inter- and intra-observer measurement of ALO and version angle was more reproducible using CT images than conventional mediolateral radiography for a Zurich cementless acetabular cup.

  13. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yijun; Zhang, Jun; Li, Ting

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational basemore » of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.« less

  14. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    NASA Astrophysics Data System (ADS)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  15. Probability Estimates of Solar Proton Doses During Periods of Low Sunspot Number for Short Duration Missions

    NASA Technical Reports Server (NTRS)

    Atwell, William; Tylka, Allan J.; Dietrich, William F.; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper presented at ICES in 2015, we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the monthly smoothed sunspot number (SSN) was less than 30. Although such months are generally considered "solar-quiet", SPEs observed during these months even include Ground Level Events, the most energetic type of SPE. In this paper, we add to previous study those SPEs that occurred in 1973-2015 when the SSN was greater than 30 but less than 50. Based on the observable energy range of the solar protons, we classify the event as GLEs, sub-GLEs, and sub-sub-GLEs, all of which are potential contributors to the radiation hazard. We use the spectra of these events to construct a probabilistic model of the absorbed dose due to solar protons when SSN < 50 at various confidence levels for various depths of shielding and for various mission durations. We provide plots and tables of solar proton-induced absorbed dose as functions of confidence level, shielding thickness, and mission-duration that will be useful to system designers.

  16. The solar corona through the sunspot cycle: preparing for the August 21, 2017, total solar eclipse

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Seaton, Daniel; Rusin, Vojtech

    2017-01-01

    We discuss the evolution of the solar corona as seen at eclipses through the solar-activity cycle. In particular, we discuss the variations of the overall shape of the corona through the relative proportions of coronal streamers at equatorial and other latitudes vs. polar plumes. We analyze the two coronal mass ejections that we observed from Gabon at the 2013 total solar eclipse and how they apparently arose from polar crown filaments, one at each pole. We describe the change in the Ludendorff flattening index from solar maximum in one hemisphere as of the 2013 eclipse through the 2015 totality's corona we observed from Svalbard and, with diminishing sunspot and other magnetic activity in each hemisphere, through the 2016 corona we observed from Ternate, Indonesia.We discuss our observational plans for the August 21, 2017, total solar eclipse from our main site in Salem, Oregon, and subsidiary sites in Madras, OR; Carbondale, IL; and elsewhere, our main site chosen largely by its favorable rating in cloudiness statistics. We discuss the overlapping role of simultaneous spacecraft observations, including those expected not only from NASA's SDO, ESA's SWAP on PROBA2, and NRL/NASA/ESA's LASCO on SOHO but also from the new SUVI (Solar Ultraviolet Imager) aboard NOAA's GOES-R satellite, scheduled as of this writing to have been launched by the time of this January 2017 meeting.Our research on the 2013 and 2015 total solar eclipses was supported by grants from the Committee for Research and Exploration of the National Geographic Society (NG-CRE). Our research on the 2017 total solar eclipse is supported by both NG-CRE and the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation.

  17. Solar Cycle Variation and Application to the Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Kim, Myung-Hee Y.; Shinn, Judy L.; Tai, Hsiang; Cucinotta, Francis A.; Badhwar, Gautam D.; Badavi, Francis F.; Atwell, William

    1999-01-01

    The interplanetary plasma and fields are affected by the degree of disturbance that is related to the number and types of sunspots in the solar surface. Sunspot observations were improved with the introduction of the telescope in the seventeenth century, allowing observations which cover many centuries. A single quantity (sunspot number) was defined by Wolf in 1848 that is now known to be well correlated with many space observable quantities and is used herein to represent variations caused in the space radiation environment. The resultant environmental models are intended for future aircraft and space-travel-related exposure estimates.

  18. A Test of the Active-Day Fraction Method of Sunspot Group Number Calibration: Dependence on the Level of Solar Activity

    NASA Astrophysics Data System (ADS)

    Willamo, T.; Usoskin, I. G.; Kovaltsov, G. A.

    2018-04-01

    The method of active-day fraction (ADF) was proposed recently to calibrate different solar observers to standard observational conditions. The result of the calibration may depend on the overall level of solar activity during the observational period. This dependency is studied quantitatively using data of the Royal Greenwich Observatory by formally calibrating synthetic pseudo-observers to the full reference dataset. It is shown that the sunspot group number is precisely estimated by the ADF method for periods of moderate activity, may be slightly underestimated by 0.5 - 1.5 groups ({≤} 10%) for strong and very strong activity, and is strongly overestimated by up to 2.5 groups ({≤} 30%) for weak-to-moderate activity. The ADF method becomes inapplicable for the periods of grand minima of activity. In general, the ADF method tends to overestimate the overall level of activity and to reduce the long-term trends.

  19. Pure animal phobia is more specific than other specific phobias: epidemiological evidence from the Zurich Study, the ZInEP and the PsyCoLaus.

    PubMed

    Ajdacic-Gross, Vladeta; Rodgers, Stephanie; Müller, Mario; Hengartner, Michael P; Aleksandrowicz, Aleksandra; Kawohl, Wolfram; Heekeren, Karsten; Rössler, Wulf; Angst, Jules; Castelao, Enrique; Vandeleur, Caroline; Preisig, Martin

    2016-09-01

    Interest in subtypes of mental disorders is growing in parallel with continuing research progress in psychiatry. The aim of this study was to examine pure animal phobia in contrast to other specific phobias and a mixed subtype. Data from three representative Swiss community samples were analysed: PsyCoLaus (n = 3720), the ZInEP Epidemiology Survey (n = 1500) and the Zurich Study (n = 591). Pure animal phobia and mixed animal/other specific phobias consistently displayed a low age at onset of first symptoms (8-12 years) and clear preponderance of females (OR > 3). Meanwhile, other specific phobias started up to 10 years later and displayed almost a balanced sex ratio. Pure animal phobia showed no associations with any included risk factors and comorbid disorders, in contrast to numerous associations found in the mixed subtype and in other specific phobias. Across the whole range of epidemiological parameters examined in three different samples, pure animal phobia seems to represent a different entity compared to other specific phobias. The etiopathogenetic mechanisms and risk factors associated with pure animal phobias appear less clear than ever.

  20. The effect of line damping, magneto-optics and parasitic light on the derivation of sunspot vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Skumanich, A.; Lites, B. W.

    1985-01-01

    The least square fitting of Stokes observations of sunspots using a Milne-Eddington-Unno model appears to lead, in many circumstances, to various inconsistencies such as anomalously large doppler widths and, hence, small magnetic fields which are significantly below those inferred solely from the Zeeman splitting in the intensity profile. It is found that the introduction of additional physics into the model such as the inclusion of damping wings and magneto-optic birefrigence significantly improves the fit to Stokes parameters. Model fits excluding the intensity profile, i.e., of both magnitude as well as spectral shape of the polarization parameters alone, suggest that parasitic light in the intensity profile may also be a source of inconsistencies. The consequences of the physical changes on the vector properties of the field derived from the Fe I lambda 6173 line for the 17 November 1975 spot as well as on the thermodynamic state are discussed. A Doppler width delta lambda (D) - 25mA is bound to be consistent with a low spot temperature and microturbulence, and a damping constant of a = 0.2.

  1. The Harm that Underestimation of Uncertainty Does to Our Community: A Case Study Using Sunspot Area Measurements

    NASA Astrophysics Data System (ADS)

    Munoz-Jaramillo, Andres

    2017-08-01

    Data products in heliospheric physics are very often provided without clear estimates of uncertainty. From helioseismology in the solar interior, all the way to in situ solar wind measurements beyond 1AU, uncertainty estimates are typically hard for users to find (buried inside long documents that are separate from the data products), or simply non-existent.There are two main reasons why uncertainty measurements are hard to find:1. Understanding instrumental systematic errors is given a much higher priority inside instrumental teams.2. The desire to perfectly understand all sources of uncertainty postpones indefinitely the actual quantification of uncertainty in our measurements.Using the cross calibration of 200 years of sunspot area measurements as a case study, in this presentation we will discuss the negative impact that inadequate measurements of uncertainty have on users, through the appearance of toxic and unnecessary controversies, and data providers, through the creation of unrealistic expectations regarding the information that can be extracted from their data. We will discuss how empirical estimates of uncertainty represent a very good alternative to not providing any estimates at all, and finalize by discussing the bare essentials that should become our standard practice for future instruments and surveys.

  2. An econometric investigation of the sunspot number record since the year 1700 and its prediction into the 22nd century

    NASA Astrophysics Data System (ADS)

    Travaglini, Guido

    2015-09-01

    Solar activity, as measured by the yearly revisited time series of sunspot numbers (SSN) for the period 1700-2014 (Clette et al., 2014), undergoes in this paper a triple statistical and econometric checkup. The conclusions are that the SSN sequence: (1) is best modeled as a signal that features nonlinearity in mean and variance, long memory, mean reversion, 'threshold' symmetry, and stationarity; (2) is best described as a discrete damped harmonic oscillator which linearly approximates the flux-transport dynamo model; (3) its prediction well into the 22nd century testifies of a substantial fall of the SSN centered around the year 2030. In addition, the first and last Gleissberg cycles show almost the same peak number and height during the period considered, yet the former slightly prevails when measured by means of the estimated smoother. All of these conclusions are achieved by making use of modern tools developed in the field of Financial Econometrics and of two new proposed procedures for signal smoothing and prediction.

  3. Is total hip arthroplasty safely performed in lung transplant patients? Current experience from a retrospective study of the Zurich lung transplant cohort.

    PubMed

    Schmitt, Jürgen W; Benden, Christian; Dora, Claudio; Werner, Clément M L

    2016-01-01

    In recent years, the number of lung transplants has increased rapidly, with higher quality of life and improved survival rates in transplant recipients, including patients with advanced age. This, in turn, means that more transplant recipients will seek musculoskeletal care to treat degenerative joint disease and also trauma incidents. Safety concerns regarding elective and posttraumatic hip arthroplasty in transplant patients include an increased risk of infection, wound healing problems, periprosthetic fractures and loosening of the implants. Clinical outcomes and safety aspects were retrospectively reviewed for five primary total hip arthroplasties (THA) in lung transplant recipients with minimal follow-up of two years at average of 2.6 (2-11) years. Patients were recruited from the Zurich Lung Transplant Center comprising of a cohort of 253 patients between January 1st, 2004 and December 31st, 2013. All five patients subjectively reported excellent outcomes after THA with a final average Harris Hip Score of 97 (86-100). One 71-year-old patient died 26 months after THA unrelated to arthroplasty. One superficial wound healing disturbance was documented. No periprosthetic fractures, no dislocations, no periprosthetic infections, no further revision surgery, no implant loosening was observed. In conclusion, THA can be safely and successfully performed even in lung transplant patients under long-term immunosuppressive therapy and polymedication, provided a multidisciplinary approach can be granted.

  4. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): assessing the added value of probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Fundel, F.; Zappa, M.

    2012-04-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This model chain relies on deterministic (COSMO-7) and probabilistic (COSMO-LEPS) atmospheric forecasts, which are used to force a semi-distributed hydrological model (PREVAH) coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which we assessed the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added value conveyed by the probability information, a 31-month reforecast was produced for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain is of up to 2 days lead time for the catchment considered. Brier skill scores show that probabilistic hydrological forecasts outperform their deterministic counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. We finally highlight challenges for making decisions on the basis of hydrological predictions, and discuss the need for a tool to be used in addition to forecasts to compare the different mitigation actions possible in the Sihl catchment.

  5. Tinea capitis and tinea faciei in the Zurich area - an 8-year survey of trends in the epidemiology and treatment patterns.

    PubMed

    Kieliger, S; Glatz, M; Cozzio, A; Bosshard, P P

    2015-08-01

    Tinea capitis and tinea faciei are dermatophyte infections of the scalp and glabrous skin of the face affecting mainly prepubertal children. During the past 30 years, a significant increase and a change in the pattern of infectious agents has been noted for tinea capitis. The aim of this study was to determine trends in the current epidemiological situation of tinea capitis and tinea faciei in the Zurich area, Switzerland and adjacent Central and Eastern Switzerland. Consecutive cases diagnosed between 2006 and 2013 were studied retrospectively. A total of 90 tinea capitis and 40 tinea faciei cases were observed. Anthropophilic isolates (primarily Trichophyton violaceum and Microsporum audouinii) accounted for 76% of tinea capitis cases. In contrast, zoophilic isolates (primarily T. interdigitale) were responsible for 73% of tinea faciei cases. The peak incidence in both conditions was in 4-8 year-old children. While the annual number of tinea faciei cases remained stable over the past 8 years, a trend for an increase in T. violaceum-positive tinea capitis has been observed. This was mainly due to patients of African ethnicity. Anthropophilic isolates accounted for three quarters of tinea capitis and one quarter of tinea faciei cases. T. violaceum-positive tinea capitis was primarily linked to patients of African ethnicity. Tinea capitis caused by Microsporum spp. was more refractory to therapy and needed longer treatment than Trichophyton spp.-induced infection. © 2014 European Academy of Dermatology and Venereology.

  6. The dynamic relation between activities in the Northern and Southern solar hemispheres

    NASA Astrophysics Data System (ADS)

    Volobuev, D. M.; Makarenko, N. G.

    2016-12-01

    The north-south (N/S) asymmetry of solar activity is the most pronounced phenomenon during 11-year cycle minimums. The goal of this work is to try to interpret the asymmetry as a result of the generalized synchronization of two dynamic systems. It is assumed that these systems are localized in two solar hemispheres. The evolution of these systems is considered in the topological embeddings of a sunspot area time series obtained with the use of the Takens algorithm. We determine the coupling measure and estimate it on the time series of daily sunspot areas. The measurement made it possible to interpret the asymmetry as an exchangeable dynamic equation, in which the roles of the driver-slave components change in time for two hemispheres.

  7. Some characteristics of the local radio sources from the observations of the solar eclipse on the 7th of March 1970 in Cuba (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurovskii, Yu.F.; Yurovskaya, L.I.

    The analysis of the observational data received during solar eclipse on the 7th of March 1970 has shown that the sources of S-component at the wavelength 10 cm correspond to all sunspots. The maximum radio emlssion above unipolar sunspots do not show apparent displacement relative to the radius passing through the center of these sunspots. In complex groups the brightest part of radio source is displaced from the preceding sunspot to following smaller ones which are of the opposite polarity. Two sources of noise storm were found at wavelengih 1.37 m. The noise bursts regions didn't coincide on the diskmore » of Sun with the regions of continuum but were located just beside them. (auth)« less

  8. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. V. PROPERTIES AND FREQUENCY OF MERGING SATELLITES AND CENTRALS IN DIFFERENT ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipino, A.; Cibinel, A.; Tacchella, S.

    2014-12-20

    We use the Zurich Environmental Study database to investigate the environmental dependence of the merger fraction Γ and merging galaxy properties in a sample of ∼1300 group galaxies with M > 10{sup 9.2} M {sub ☉} and 0.05 < z < 0.0585. In all galaxy mass bins investigated in our study, we find that Γ decreases by a factor of ∼2-3 in groups with halo masses M {sub HALO} > 10{sup 13.5} M {sub ☉} relative to less massive systems, indicating a suppression of merger activity in large potential wells. In the fiducial case of relaxed groups only, we measuremore » a variation of ΔΓ/Δlog (M {sub HALO}) ∼ –0.07 dex{sup –1}, which is almost independent of galaxy mass and merger stage. At galaxy masses >10{sup 10.2} M {sub ☉}, most mergers are dry accretions of quenched satellites onto quenched centrals, leading to a strong increase of Γ with decreasing group-centric distance at these mass scales. Both satellite and central galaxies in these high-mass mergers do not differ in color and structural properties from a control sample of nonmerging galaxies of equal mass and rank. At galaxy masses of <10{sup 10.2} M {sub ☉} where we mostly probe satellite-satellite pairs and mergers between star-forming systems close pairs (projected distance <10-20 kpc) show instead ∼2 × enhanced (specific) star formation rates and ∼1.5 × larger sizes than similar mass, nonmerging satellites. The increase in both size and star formation rate leads to similar surface star formation densities in the merging and control-sample satellite populations.« less

  9. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Zappa, M.

    2011-01-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This models chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that COSMO-LEPS-based hydrological forecasts overall outperform their COSMO-7 based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts and used to generate high discharge scenarios. They

  10. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  11. DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE TRANSITION REGION ABOVE SUNSPOTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleint, L.; Martínez-Sykora, J.; Antolin, P.

    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to bemore » the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.« less

  12. First insights into the social organisation of Goodman's mouse lemur (Microcebus lehilahytsara)--testing predictions from socio-ecological hypotheses in the Masoala hall of Zurich Zoo.

    PubMed

    Jürges, Vivian; Kitzler, Johanne; Zingg, Robert; Radespiel, Ute

    2013-01-01

    Following current socio-ecological hypotheses, the social organisation of a species is mainly determined by resource quality and distribution. In the case of Microcebus spp., a taxon-specific socio-ecological model was formulated earlier to explain their variable social organisation. The aim of this study was to test predictions from this model in Goodman's mouse lemur based on a data set from animals living in the semi-free colony of Zurich Zoo. During a 2-month study, we observed 5 females and 5 males using radiotelemetry. We collected data on space use and social behaviour, on sleeping sites and on sleeping group composition. Predictions were only partly confirmed. As expected, Goodman's mouse lemurs were solitary foragers with an increased level of sociality due to crowding effects at the feeding stations. In contrast to the prediction, females and males formed unisexual sleeping groups, which were stable in females and of a fission-fusion type in males. Whereas the formation of sleeping groups by both sexes may be triggered by thermoregulatory benefits, the formation of unisexual sleeping groups may result from divergent interests of the sexes. We conclude that the existing model for the evolution of mouse lemur social organisation needs to be refined. Copyright © 2013 S. Karger AG, Basel.

  13. Coupling of the magnetic field and gas flows inferred from the net circular polarization in a sunspot penumbra

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdelrazek M. K.; Ichimoto, Kiyoshi

    2015-04-01

    We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk center-side of the penumbra for a negative-polarity sunspot in NOAA 10923. The positive NCP dominant in the disk center-side penumbra is essentially attributed to interflow channels instead of Evershed flow channels. The stratification of magnetic field and velocity are investigated by using SIR-JUMP inversion with a one-component atmosphere, and the NCP of spectral lines in the limb-side and disk center-side of the penumbra is successfully reproduced. The inversion results show that an increased Evershed flow is associated with a strong magnetic field located in the deep photosphere. Our result does not match with the simple two-component penumbral models in which the penumbra consists of Evershed flow and interflow channels and the global NCP is attributed only to the Evershed flow channels.

  14. Simultaneous Observations of p-mode Light Walls and Magnetic Reconnection Ejections above Sunspot Light Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Yijun; Zhang, Jun; Li, Ting

    Recent high-resolution observations from the Interface Region Imaging Spectrograph reveal bright wall-shaped structures in active regions (ARs), especially above sunspot light bridges. Their most prominent feature is the bright oscillating front in the 1400/1330 Å channel. These structures are named light walls and are often interpreted to be driven by p-mode waves. Above the light bridge of AR 12222 on 2014 December 06, we observed intermittent ejections superimposed on an oscillating light wall in the 1400 Å passband. At the base location of each ejection, the emission enhancement was detected in the Solar Dynamics Observatory 1600 Å channel. Thus, wemore » suggest that in wall bases (light bridges), in addition to the leaked p-mode waves consistently driving the oscillating light wall, magnetic reconnection could happen intermittently at some locations and eject the heated plasma upward. Similarly, in the second event occurring in AR 12371 on 2015 June 16, a jet was simultaneously detected in addition to the light wall with a wave-shaped bright front above the light bridge. At the footpoint of this jet, lasting brightening was observed, implying magnetic reconnection at the base. We propose that in these events, two mechanisms, p-mode waves and magnetic reconnection, simultaneously play roles in the light bridge, and lead to the distinct kinetic features of the light walls and the ejection-like activities, respectively. To illustrate the two mechanisms and their resulting activities above light bridges, in this study we present a cartoon model.« less

  15. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  16. STUDY OF THE POYNTING FLUX IN ACTIVE REGION 10930 USING DATA-DRIVEN MAGNETOHYDRODYNAMIC SIMULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Y. L.; Wang, H. N.; He, H.

    2011-08-10

    Powerful solar flares are closely related to the evolution of magnetic field configuration on the photosphere. We choose the Poynting flux as a parameter in the study of magnetic field changes. We use time-dependent multidimensional MHD simulations around a flare occurrence to generate the results, with the temporal variation of the bottom boundary conditions being deduced from the projected normal characteristic method. By this method, the photospheric magnetogram could be incorporated self-consistently as the bottom condition of data-driven simulations. The model is first applied to a simulation datum produced by an emerging magnetic flux rope as a test case. Then,more » the model is used to study NOAA AR 10930, which has an X3.4 flare, the data of which has been obtained by the Hinode/Solar Optical Telescope on 2006 December 13. We compute the magnitude of Poynting flux (S{sub total}), radial Poynting flux (S{sub z} ), a proxy for ideal radial Poynting flux (S{sub proxy}), Poynting flux due to plasma surface motion (S{sub sur}), and Poynting flux due to plasma emergence (S{sub emg}) and analyze their extensive properties in four selected areas: the whole sunspot, the positive sunspot, the negative sunspot, and the strong-field polarity inversion line (SPIL) area. It is found that (1) the S{sub total}, S{sub z} , and S{sub proxy} parameters show similar behaviors in the whole sunspot area and in the negative sunspot area. The evolutions of these three parameters in the positive area and the SPIL area are more volatile because of the effect of sunspot rotation and flux emergence. (2) The evolution of S{sub sur} is largely influenced by the process of sunspot rotation, especially in the positive sunspot. The evolution of S{sub emg} is greatly affected by flux emergence, especially in the SPIL area.« less

  17. RELATIONSHIPs among Geomagnetic storms, interplanetary shocks, magnetic clouds, and SUNSPOT NUMBER during 1995-2012

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Lepping, R. P.; Wu, C. C.

    2015-12-01

    During 1995-2012 Wind recorded 168 magnetic clouds (MCs), 197 magnetic cloud-like structures (MCLs), and 358 interplanetary (IP) shocks. Ninety four MCs and 56 MCLs had upstream shock waves. The following features are found: (i) Averages of solar wind speed, interplanetary magnetic field (IMF), duration (<Δt>), strength of Bzmin, and intensity of the associated geomagnetic storm/activity (Dstmin) for MCs with upstream shock waves (MCSHOCK) are higher (or stronger) than those averages for the MCs without upstream shock waves (MCNO-SHOCK). (ii) The <Δt> of MCSHOCK events (≈19.6 hr) is 9% longer than that for MCNO-SHOCK events (≈17.9 hr). (iii) For the MCSHOCK events, the average duration of the sheath (<ΔtSHEATH>) is 12.1 hrs. These findings could be very useful for space weather predictions, i.e. IP shocks driven by MCs are expected to arrive at Wind (or at 1 AU) about ~12 hours ahead of the front of the MCs on average. (iv) The occurrence frequency of IP shocks is well associated with sunspot number (SSN). The average intensity of geomagnetic storms measured by for MCSHOCK and MCNOSHOCK events is -102 and -31 nT, respectively. The is -78, -70, and -35 nT for the 358 IP shocks, 168 MCs, and 197 MCLs, respectively. These results imply that IP shocks, when they occur with MCs/MCLs, must play an important role in the strength of geomagnetic storms. We speculate as to why this is so. Yearly occurrence frequencies of MCSHOCK and IP shocks are well correlated with solar activity (e.g., SSN). Choosing the right Dstmin estimating formula for predicting the intensity of MC-associated geomagnetic storms is crucial for space weather predictions.

  18. Extending Counter-Streaming Motion from an Active Region Filament to Sunspot Light Bridge

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Rui; Deng, Na; Liu, Chang; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2017-08-01

    In this study, we analyze the high-resolution observations from the 1.6 m New Solar Telescope at Big Bear Solar Observatory that cover an entire active region filament. The southern end of the filament is well defined by a narrow lane situated in the negative magnetic polarity, while the northern end lies in the positive polarity, extending to a much larger area. Counter-streaming motions are clearly seen in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing as observed in H-alpha off-band. The apparent speed of the flow is around 10 km/s. We show that the southern end of the filament is consistent with that of a flux rope in a NLFFF extrapolation model, but the northern ends of the modeled flux rope and observed H-alpha footpoints have a significant spatial mismatch. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposite magnetic polarities, while the light bridge is between strong fields of the same polarity. We studied the correlation coefficients of image sequences of constructed Dopplergrams, and found that the filament and the section of light bridge next to it do not show oscillation motions, while a small section of light bridge shows a prominent oscillation pattern. Therefore, we conclude that the observed circulating counter-streaming motions are largely collections of physical mass flows in the transverse direction from the filament extending to a large section of the light bridge, rather than a form of periodic oscillatory mass motions in line-of-sight direction generated by perturbations omnipresent in the chromosphere.

  19. Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution

    NASA Astrophysics Data System (ADS)

    Lockwood, Mike; Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.

    2017-06-01

    Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) sunspot activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next sunspot minimum and hence for the amplitude of cycle 25.Plain Language SummaryThere is growing interest in being able to predict the evolution in solar conditions on a better basis than past experience, which is necessarily limited. Two of the key features of the solar magnetic cycle are that the polar fields reverse just after the peak of each <span class="hlt">sunspot</span> cycle and that the polar field that has accumulated by the time of each <span class="hlt">sunspot</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..788I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..788I"><span>Latitude and Power Characteristics of Solar Activity at the End of the Maunder Minimum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, V. G.; Miletsky, E. V.</p> <p>2017-12-01</p> <p>Two important sources of information about <span class="hlt">sunspots</span> in the Maunder minimum are the Spörer catalog (Spörer, 1889) and observations of the Paris observatory (Ribes and Nesme-Ribes, 1993), which cover in total the last quarter of the 17th and the first two decades of the 18th century. These data, in particular, contain information about <span class="hlt">sunspot</span> latitudes. As we showed in (Ivanov et al., 2011; Ivanov and Miletsky, 2016), dispersions of <span class="hlt">sunspot</span> latitude distributions are tightly <span class="hlt">related</span> to <span class="hlt">sunspot</span> indices, and we can estimate the level of solar activity in the past using a method which is not based on direct calculation of <span class="hlt">sunspots</span> and weakly affected by loss of observational data. The latitude distributions of <span class="hlt">sunspots</span> in the time of transition from the Maunder minimum to the regular regime of solar activity proved to be wide enough. It gives evidences in favor of, first, not very low cycle no.-3 (1712-1723) with the Wolf number in maximum W = 100 ± 50, and, second, nonzero activity in the maximum of cycle no.-4 (1700-1711) W = 60 ± 45. Therefore, the latitude distributions in the end of the Maunder minimum are in better agreement with the traditional Wolf numbers and new revisited indices of activity SN and GN (Clette et al., 2014; Svalgaard and Schatten, 2016) than with the GSN (Hoyt and Schatten, 1998); the latter provide much lower level of activity in this epoch.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000833','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000833"><span>The Global Land-Ocean Temperature Index in <span class="hlt">Relation</span> to <span class="hlt">Sunspot</span> Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.</p> <p>2013-01-01</p> <p>Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), <span class="hlt">sunspot</span> number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080043595','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080043595"><span>Using the Inflection Points and Rates of Growth and Decay to Predict Levels of Solar Activity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2008-01-01</p> <p>The ascending and descending inflection points and rates of growth and decay at specific times during the <span class="hlt">sunspot</span> cycle are examined as predictors for future activity. On average, the ascending inflection point occurs about 1-2 yr after <span class="hlt">sunspot</span> minimum amplitude (Rm) and the descending inflection point occurs about 6-7 yr after Rm. The ascending inflection point and the inferred slope (including the 12-mo moving average (12-mma) of (Delta)R (the month-to-month change in the smoothed monthly mean <span class="hlt">sunspot</span> number (R)) at the ascending inflection point provide strong indications as to the expected size of the ongoing cycle s <span class="hlt">sunspot</span> maximum amplitude (RM), while the descending inflection point appears to provide an indication as to the expected length of the ongoing cycle. The value of the 12-mma of (Delta)R at elapsed time T = 27 mo past the epoch of RM (E(RM)) seems to provide a strong indication as to the expected size of Rm for the following cycle. The expected Rm for cycle 24 is 7.6 +/- 4.4 (the 90-percent prediction interval), occurring before September 2008. Evidence is also presented for secular rises in selected cycle-<span class="hlt">related</span> parameters and for preferential grouping of <span class="hlt">sunspot</span> cycles by amplitude and/or period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH43A2806I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH43A2806I"><span>ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwai, K.; Loukitcheva, M.; Shimojo, M.; Solanki, S. K.; White, S. M.</p> <p>2017-12-01</p> <p>We report the discovery of a brightness enhancement in the center of a large <span class="hlt">sunspot</span> umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). <span class="hlt">Sunspots</span> are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large <span class="hlt">sunspot</span> within the active region AR12470, on 2015 December 16. The 3 mm map has a 300''×300'' field of view and 4.9''×2.2'' spatial resolution, which is the highest spatial resolution map of an entire <span class="hlt">sunspot</span> in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K <span class="hlt">relative</span> to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph (IRIS), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the <span class="hlt">sunspot</span> umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be <span class="hlt">related</span> to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661361-statistical-study-flare-productivity-associated-sunspot-properties-different-magnetic-types-active-regions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661361-statistical-study-flare-productivity-associated-sunspot-properties-different-magnetic-types-active-regions"><span>A STATISTICAL STUDY OF FLARE PRODUCTIVITY ASSOCIATED WITH <span class="hlt">SUNSPOT</span> PROPERTIES IN DIFFERENT MAGNETIC TYPES OF ACTIVE REGIONS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Ya-Hui; Hsieh, Min-Shiu; Yu, Hsiu-Shan</p> <p></p> <p>It is often believed that intense flares preferentially originate from the large-size active regions (ARs) with strong magnetic fields and complex magnetic configurations. This work investigates the dependence of flare activity on the AR properties and clarifies the influence of AR magnetic parameters on the flare productivity, based on two data sets of daily <span class="hlt">sunspot</span> and flare information as well as the GOES soft X-ray measurements and HMI vector magnetograms. By considering the evolution of magnetic complexity, we find that flare behaviors are quite different in the short- and long-lived complex ARs and the ARs with more complex magnetic configurationsmore » are likely to host more impulsive and intense flares. Furthermore, we investigate several magnetic quantities and perform the two-sample Kolmogorov–Smirnov test to examine the similarity/difference between two populations in different types of ARs. Our results demonstrate that the total source field strength on the photosphere has a good correlation with the flare activity in complex ARs. It is noted that intense flares tend to occur at the regions of strong source field in combination with an intermediate field-weighted shear angle. This result implies that the magnetic free energy provided by a complex AR could be high enough to trigger a flare eruption even with a moderate magnetic shear on the photosphere. We thus suggest that the magnetic free energy represented by the source field rather than the photospheric magnetic complexity is a better quantity to characterize the flare productivity of an AR, especially for the occurrence of intense flares.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrASS...5....4K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrASS...5....4K"><span>Production of <span class="hlt">sunspots</span> and their effects on the corona and solar wind: Insights from a new 3D flux-transport dynamo model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Rohit; Jouve, Laurène; Pinto, Rui F.; Rouillard, Alexis P.</p> <p>2018-01-01</p> <p>We present a three-dimensional numerical model for the generation and evolution of the magnetic field in the solar convection zone, in which <span class="hlt">sunspots</span> are produced and contribute to the cyclic reversal of the large-scale magnetic field. We then assess the impact of this dynamo-generated field on the structure of the solar corona and solar wind. This model solves the induction equation in which the velocity field is prescribed. This velocity field is a combination of a solar-like differential rotation and meridional circulation. We develop an algorithm that enables the magnetic flux produced in the interior to be buoyantly transported towards the surface to produce bipolar spots. We find that those tilted bipolar magnetic regions contain a sufficient amount of flux to periodically reverse the polar magnetic field and sustain dynamo action. We then track the evolution of these magnetic features at the surface during a few consecutive magnetic cycles and analyze their effects on the topology of the corona and on properties of the solar wind (distribution of streamers and coronal holes, and of slow and fast wind streams) in connection with current observations of the Sun.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...63K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...63K"><span>Temporal and Periodic Variations of <span class="hlt">Sunspot</span> Counts in Flaring and Non-Flaring Active Regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.</p> <p>2018-04-01</p> <p>We analyzed temporal and periodic variations of <span class="hlt">sunspot</span> counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11541945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11541945"><span>Resonance of about-weekly human heart rate rhythm with solar activity change.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cornelissen, G; Halberg, F; Wendt, H W; Bingham, C; Sothern, R B; Haus, E; Kleitman, E; Kleitman, N; Revilla, M A; Revilla, M; Breus, T K; Pimenov, K; Grigoriev, A E; Mitish, M D; Yatsyk, G V; Syutkina, E V</p> <p>1996-12-01</p> <p>In several human adults, certain solar activity rhythms may influence an about 7-day rhythm in heart rate. When no about-weekly feature was found in the rate of change in <span class="hlt">sunspot</span> area, a measure of solar activity, the double amplitude of a circadian heart rate rhythm, approximated by the fit of a 7-day cosine curve, was lower, as was heart rate corresponds to about-weekly features in solar activity and/or <span class="hlt">relates</span> to a <span class="hlt">sunspot</span> cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654467-alma-discovery-solar-umbral-brightness-enhancement-mm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654467-alma-discovery-solar-umbral-brightness-enhancement-mm"><span>ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iwai, Kazumasa; Loukitcheva, Maria; Shimojo, Masumi</p> <p></p> <p>We report the discovery of a brightness enhancement in the center of a large <span class="hlt">sunspot</span> umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). <span class="hlt">Sunspots</span> are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large <span class="hlt">sunspot</span> within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatialmore » resolution map of an entire <span class="hlt">sunspot</span> in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K <span class="hlt">relative</span> to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the <span class="hlt">sunspot</span> umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be <span class="hlt">related</span> to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011sdmi.confE..66R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011sdmi.confE..66R"><span>Effects of observation heights and atmospheric wave evolution in <span class="hlt">sunspot</span> seismology: a study using HMI and AIA (1600 A and 1700 A) data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajaguru, S. P.; Couvidaa, S.</p> <p>2011-10-01</p> <p>In achieving a high cadence and whole Sun coverage required of them, Doppler imagers such as HMI/SDO and MDI/SOHO necessarily forgo certain intricacies associated with magnetic and velocity field interactions, which require high (spectral) resolution spectropolarimetry for their accurate measurements with straightforward derivation of physical quantities (or observables). Magnetic field modified wave evolution, due to much reduced acoustic cut-off frequencies, in inclined field regions is one such situation. We first show, using a high cadence imaging spectropolarimetric observations made with IBIS instrument at NSO/Sac Peak, that significant contributions to seismically measured travel times arise from the line formation layers. We then present a comparative study of time-distance helioseismic measurements made over three <span class="hlt">sunspot</span> regions using HMI and AIA (1600 A and 1700 A) data, which provide oscillation signals from three different heights. We bring out clear signals of height dependent wave phases and hence height dependent travel times. We further show that such signatures, from their differing contributions in one way travel times (in- or out-going wave travel times), could explain a significant part of the discrepancies between time-distance and other local helioseismic measurements and inferences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PYunO...4...23G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PYunO...4...23G"><span>On the <span class="hlt">relation</span> among the solar activity, the quasi-biennial oscillation in the equatorial stratosphere and El Nino.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gul, Zhennian</p> <p></p> <p>The possibility of a <span class="hlt">relation</span> among Quasi-Biennial Oscillation (QBO) of zonal winds in the equatorial stratosphere, <span class="hlt">sunspot</span> Wolf number and SST's in the eastern Pacific during the same interval are analyzed. The band filter and the wavelet method which are capable of finding local periods and amplitudes are used in the data processing. It is shown that the coherence estimates between the series of QBO in Wolf and in lower tropical stratosphere are of order of -0.6. A possible dynamical explanation for skip a beat of QBO linked El Nino suggested by Angel and Gray is presented. Solar activity is a hypothetical mechanism of this skip.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA......744K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA......744K"><span>The cosmogenic Berryllium, solar activity and climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Komitov, B.; Nedev, P.; Minev, P.</p> <p>2003-04-01</p> <p>An analysis of 10Be production rate (Δ10Be) series in Dye-3 ice probe /Greenland/ has been made. By using of T-R periodogramm analysis a cycles of 8-14, 18-24, 40-44, 52, 66-70, 115-120, 190 and 360 years are detected. The correlation analysis of Δ10Be and group <span class="hlt">sunspot</span> numbers index /Rg/ for the period 1610-1985 point, that there is a phase shifting between the both series of 6-6.5 years. It correspond of the "cosmogenic" origin of 10Be in stratosphere by the galactic cosmic rays, wich maximal production rate is in periods of solar activity minimums and very short "resident time" of this isotope /˜1 year/. By T-R analysus of the Rg-series powerful cycles of 10-11 /Schwabe-Wolf/, 118 and 193 years has been obtained. There are weak spures of cyclity at 29-31, 38, 52 and 66-70 years too. However the magnitudes of quasy 11 and 20-22 years oscilations in Δ10Be are low. The fine structure of T-R spectra in regions 8-14 and 18-24 years is very complicate /multipletic/. In other hand there is a evidence that weack quasy 10 years cycle in Δ10Be exist during the Maunder minimum in 17th century. The fine structure of the Schwabe-Wolf cycle in Rg series is too complicate. Except the main local peak in the T-R spectra at T=11 years, there is a secondary strong maximum at T=10 years and weaker peaks at 8.5, 11.75 and 12.25 years. The <span class="hlt">relative</span> powerful 52 year cycle in Δ10Be series have an analog in <span class="hlt">sunspot</span> index of assymetry series, wich is derived on the base of <span class="hlt">Zurich</span> series after 1871 AD. It correspond of increasing and decreasing of the <span class="hlt">sunspot</span> activity in the northen hemisphere of the Sun by the same cycle. The main T-R spectra features of Δ10Be series in region of the low frecuences /powerful subcenturial and centurial cycles/ are similar to the same in large number of tree rings data series in Northern hemisphere during 15th -20th centuries /published in the International Tree Rings Data Base/. This is indirect evidence that the Δ10Be data are rather an indicator</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003092','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003092"><span>Probability Estimates of Solar Particle Event Doses During a Period of Low <span class="hlt">Sunspot</span> Number for Thinly-Shielded Spacecraft and Short Duration Missions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney</p> <p>2016-01-01</p> <p>In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the <span class="hlt">sunspot</span> number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED33A0706W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED33A0706W"><span>NASA's Global Climate Change Education (GCCE) Program: New modules</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Witiw, M. R.; Myers, R. J.; Schwerin, T. G.</p> <p>2010-12-01</p> <p>In existence for over 10 years, the Earth System Science Educational Alliance (ESSEA) through the Institute of Global Environmental Strategies (IGES) has developed a series of modules on Earth system science topics. To date, over 80 educational modules have been developed. The primary purpose of these modules is to provide graduate courses for teacher education. A typical course designed for teachers typically consists of from three to five content modules and a primer on problem-based learning. Each module is designed to take three weeks in a normal university semester. Course delivery methods vary. Some courses are completed totally online. Others are presented in the classroom. Still others are delivered using a hybrid method which combines classroom meetings with online delivery of content. Although originally designed for teachers and education students, recent changes, provide a format for general education students to use these module. In 2009, under NASA’s Global Climate Change Education (GCCE) initiative, IGES was tasked to develop 16 new modules addressing the topic of climate change. Two of the modules recently developed under this program address the topics of <span class="hlt">sunspots</span> and thermal islands. <span class="hlt">Sunspots</span> is a problem-based learning module where students are provided resources and sample investigations <span class="hlt">related</span> to <span class="hlt">sunspots</span>. The history of <span class="hlt">sunspot</span> observations, the structure of <span class="hlt">sunspots</span> and the possible role <span class="hlt">sunspots</span> may have in Earth’s climate are explored. Students are then asked to determine what effects a continued minimum in <span class="hlt">sunspot</span> activity may have on the climate system. In Thermal Islands, the topic of urban heat islands is addressed. How heat islands are produced and the role of urban heat islands in exacerbating heat waves are two of the topics covered in the resources. In this problem-based learning module, students are asked to think of mitigating strategies for these thermal islands as Earth’s urban population grows over the next 50 years</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000108881','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000108881"><span>Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Myung-Hee Y.; Wilson, John W.</p> <p>2000-01-01</p> <p><span class="hlt">Sunspot</span> numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle <span class="hlt">sunspot</span> data based on the odd-even behavior of historical <span class="hlt">sunspot</span> cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured <span class="hlt">sunspot</span> number; the improved <span class="hlt">sunspot</span> projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22520159-regularity-northsouth-asymmetry-solar-activity-revisited','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22520159-regularity-northsouth-asymmetry-solar-activity-revisited"><span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, J.; Feng, W., E-mail: fengwen69@sina.cn</p> <p></p> <p>Extended time series of Solar Activity Indices (ESAI) extended the Greenwich series of <span class="hlt">sunspot</span> area from the year 1874 back to 1821. The ESAI's yearly <span class="hlt">sunspot</span> area in the northern and southern hemispheres from 1821 to 2013 is utilized to investigate characteristics of the north–south hemispherical asymmetry of <span class="hlt">sunspot</span> activity. Periodical behavior of about 12 solar cycles is also confirmed from the ESAI data set to exist in dominant hemispheres, linear regression lines of yearly asymmetry values, and cumulative counts of yearly <span class="hlt">sunspot</span> areas in the hemispheres for solar cycles. The period is also inferred to appear in both themore » cumulative difference in the yearly <span class="hlt">sunspot</span> areas in the hemispheres over the entire time interval and in its statistical Student's t-test. The hemispherical bias of <span class="hlt">sunspot</span> activity should be regarded as an impossible stochastic phenomenon over a long time period.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-06-14/pdf/2012-14579.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-06-14/pdf/2012-14579.pdf"><span>77 FR 35680 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-06-14</p> <p>..., New York, New York 10045-0001: 1. Muhammad Habib, <span class="hlt">Zurich</span>, Switzerland; to retain a controlling interest in Maham Beteiligungsgessellschaft AG, <span class="hlt">Zurich</span>, Switzerland, and thereby indirectly retain control...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AnGeo..24..769L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AnGeo..24..769L"><span>Long-term solar activity explored with wavelet methods</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundstedt, H.; Liszka, L.; Lundin, R.; Muscheler, R.</p> <p>2006-03-01</p> <p>Long-term solar activity has been studied with a set of wavelet methods. The following indicators of long-term solar activity were used; the group <span class="hlt">sunspot</span> number, the <span class="hlt">sunspot</span> number, and the 14C production rate. Scalograms showed the very long-term scales of 2300 years (Hallstat cycle), 900-1000 years, 400-500 years, and 200 years (de Vries cycle). Scalograms of a newly-constructed 14C production rate showed interesting solar modulation during the Maunder minimum. Multi-Resolution Analysis (MRA) revealed the modulation in detail, as well as peaks of solar activity not seen in the <span class="hlt">sunspot</span> number. In both the group <span class="hlt">sunspot</span> number scalogram and the 14C production rate scalogram, a process appeared, starting or ending in late 1700. This process has not been discussed before. Its solar origin is unclear. <P style="line-height: 20px;"> The group <span class="hlt">sunspot</span> number ampligram and the <span class="hlt">sunspot</span> number ampligram showed the Maunder and the Dalton minima, and the period of high solar activity, which already started about 1900 and then decreased again after mid 1990. The decrease starts earlier for weaker components. Also, weak semiperiodic activity was found. <P style="line-height: 20px;"> Time Scale Spectra (TSS) showed both deterministic and stochastic processes behind the variability of the long-term solar activity. TSS of the 14C production rate, group <span class="hlt">sunspot</span> number and Mt. Wilson <span class="hlt">sunspot</span> index and plage index were compared in an attempt to interpret the features and processes behind the long-term variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17403211','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17403211"><span>The alchemy of training.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Egger-Biniores, Deborah</p> <p>2007-04-01</p> <p>Training in <span class="hlt">Zurich</span> has its own special character but also is marked by the very fact that it is in <span class="hlt">Zurich</span>. <span class="hlt">Zurich</span> radiates its own distinct energy and carries a specific historical significance in the world of analytical psychology. This, like all things with psychic energy, has a spectrum of meaning. This spectrum, as well as the 'spirit' of the place, will be critically examined, taking into account the 'blessings' and 'curses' of such genius loci. Training in <span class="hlt">Zurich</span> is experientially based and is first and foremost an initiation: an initiation into symbolic life, or rather life where symbol plays an important role. Training is understood to involve a transformation of one's self, much like the 8th century alchemist Morienus Romanus understood the opus as a 'human transformation system'. It is not merely an education. The requirement of 'immersion' is core to the experience of becoming an analyst in <span class="hlt">Zurich</span> and this sets up a valuable discomfort between rational intellectual learning and intuitive experience, between knowing and not-knowing. How does this dis-serve the making of an analyst? What is implicit in this immersion and its discomfort? Does it have a role in today's emphasis on clinical and empirical training? Does <span class="hlt">Zurich</span> still offer something unique and valuable in the world of training, or is it passé? From these questions, the dichotomy of what is 'urgent' and 'essential' in training will be examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150007716','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150007716"><span>Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Yang; Zhao, Junwei; Schuck, P. W.</p> <p>2012-01-01</p> <p>We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the <span class="hlt">sunspot</span> umbra and outward flows surrounding the <span class="hlt">sunspot</span>. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the <span class="hlt">sunspot</span> penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding <span class="hlt">sunspots</span>. On the other hand, most well-documented flux-emergence-<span class="hlt">related</span> flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11398626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11398626"><span>[The LORAS project and quality assurance. In four years from input- to outcome-oriented financing in public health. 2: LORAS project outcome parts 1 & 98].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lenz, M J; Hochreutener, M A</p> <p>2001-04-01</p> <p>This series of three articles is a summary of the operations, findings and results of the hospital reform projects in the Canton of <span class="hlt">Zurich</span>, termed LORAS. With the aid of the LORAS project within four years <span class="hlt">Zurich</span> hospitals have been transformed. Whereas they used to adhere to input-oriented covering of deficits they now operate with outcome-oriented prospective financing of output. Part 1 describes the whole project. Part 2 focuses on the development of outcome-measurement. Part 3 finally describes the implementation of the outcome-measurement in the canton of <span class="hlt">Zurich</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11268880','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11268880"><span>[The LORAS Project and quality assurance. In four years from input- to outcome-oriented financing in public health. 1: The LORAS Project].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lenz, M J; Hochreutener, M A</p> <p>2001-02-01</p> <p>This series of three articles is a summary of the operations, findings and results of the hospital reform projects in the Canton of <span class="hlt">Zurich</span>, termed LORAS. With the aid of the LORAS project within four years <span class="hlt">Zurich</span> hospitals have been transformed. Whereas they used to adhere to input-oriented covering of deficits they now operate with outcome-oriented prospective financing of output. Part 1 describes the whole Project. Part 2 focuses on the development of outcome-measurement. Part 3 finally describes the implementation of the outcome-measurement in the canton of <span class="hlt">Zurich</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040037780&hterms=give+talk&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTo%2Bgive%2Btalk','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040037780&hterms=give+talk&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DTo%2Bgive%2Btalk"><span>Invited Talks at Naples and Coimbra</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jordan, Stuart</p> <p>2003-01-01</p> <p>Prior to observations of the solar irradiance from space that began in 1979 there was no hope of obtaining even rough estimates of the solar irradiance variation over a solar cycle, since the space observations made since showed that the magnitude of the variation over a cycle to date is less than 0.1 %, a value too small to measure from the ground. At the same time, it would be useful to know the cycle-dependent variation over more than just the two recent cycles. Lacking a complete theory for the solar dynamo responsible for this variation, the current hope is to determine what proxy might yield the best values. Because there is an excellent database on <span class="hlt">sunspot</span> umbral and penumbral areas from the Greenwich Observatory for the years 1874-1976 (but not beyond), the possibility exists that these data could be used. This talk will summarize results of a joint study in which satellite measurements of the solar irradiance variation are compared with ground-based measurements from the Coimbra Observatory of <span class="hlt">sunspot</span> number, umbral area, and total <span class="hlt">sunspot</span> area to determine which would serve as the best proxy for using the Greenwich observations back to 1874. From the near constancy of <span class="hlt">sunspot</span> umbral magnetic fields upon which the useful parameter photometric <span class="hlt">sunspot</span> index is based, we expected that umbral area would yield the beat proxy. To our surprise, after performing a statistical study of the observations over the period 1980-1990, preliminary indications are that <span class="hlt">sunspot</span> number (a parameter available back into the 18th century) may be just as useful as the umbral area. As expected, both are quite superior as proxies to total <span class="hlt">sunspot</span> area, which includes the penumbral area. This conclusion is consistent with earlier work of Hop and Schatten, who sought a proxy by studies of the umbral-penumbral area ratio. A second motivation for pursuing this work is the possibility that <span class="hlt">relatively</span> small variations in the solar irradiance may induce larger responses in Earth</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080030106','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080030106"><span>On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the <span class="hlt">Sunspot</span> Cycle Using 12-Month Moving Averages</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2008-01-01</p> <p>For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of <span class="hlt">sunspot</span> number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhDT.........3H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhDT.........3H"><span>Understanding The Behavior Of The Sun'S Large Scale Magnetic Field And Its <span class="hlt">Relation</span> With The Meridional Flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hazra, Gopal</p> <p>2018-02-01</p> <p>In this thesis, various studies leading to better understanding of the 11-year solar cycle and its theoretical modeling with the flux transport dynamo model are performed. Although this is primarily a theoretical thesis, there is a part dealing with the analysis of observational data. The various proxies of solar activity (e.g., <span class="hlt">sunspot</span> number, <span class="hlt">sunspot</span> area and 10.7 cm radio flux) from various observatory including the <span class="hlt">sunspot</span> area records of Kodaikanal Observatory have been analyzed to study the irregular aspects of solar cycles and an analysis has been carried out on the correlation between the decay rate and the next cycle amplitude. The theoretical analysis starts with explaining how the magnetic buoyancy has been treated in the flux transport dynamo models, and advantages and disadvantages of different treatments. It is found that some of the irregular properties of the solar cycle in the decaying phase can only be well explained using a particular treatment of the magnetic buoyancy. Next, the behavior of the dynamo with the different spatial structures of the meridional flow based on recent helioseismology results has been studied. A theoretical model is constructed considering the back reaction due to the Lorentz force on the meridional flows which explains the observed variation of the meridional flow with the solar cycle. Finally, some results with 3D FTD models are presented. This 3D model is developed to handle the Babcock-Leighton mechanism and magnetic buoyancy more realistically than previous 2D models and can capture some important effects connected with the subduction of the magnetic field in polar regions, which are missed in 2D surface flux transport models. This 3D model is further used to study the evolution of the magnetic fields due to a turbulent non-axisymmetric velocity field and to compare the results with the results obtained by using a simple turbulent diffusivity coefficient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SoPh..279..427K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SoPh..279..427K"><span>Propagating Disturbances in Coronal Loops: A Detailed Analysis of Propagation Speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiddie, G.; De Moortel, I.; Del Zanna, G.; McIntosh, S. W.; Whittaker, I.</p> <p>2012-08-01</p> <p>Quasi-periodic disturbances have been observed in the outer solar atmosphere for many years. Although first interpreted as upflows (Schrijver et al., Solar Phys. 187, 261, 1999), they have been widely regarded as slow magneto-acoustic waves, due to their observed velocities and periods. However, recent observations have questioned this interpretation, as periodic disturbances in Doppler velocity, line width, and profile asymmetry were found to be in phase with the intensity oscillations (De Pontieu and McIntosh, Astrophys. J. 722, 1013, 2010; Tian, McIntosh, and De Pontieu, Astrophys. J. Lett. 727, L37, 2011), suggesting that the disturbances could be quasi-periodic upflows. Here we conduct a detailed analysis of the velocities of these disturbances across several wavelengths using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We analysed 41 examples, including both <span class="hlt">sunspot</span> and non-<span class="hlt">sunspot</span> regions of the Sun. We found that the velocities of propagating disturbances (PDs) located at <span class="hlt">sunspots</span> are more likely to be temperature dependent, whereas the velocities of PDs at non-<span class="hlt">sunspot</span> locations do not show a clear temperature dependence. This suggests an interpretation in terms of slow magneto-acoustic waves in <span class="hlt">sunspots</span> but the nature of PDs in non-<span class="hlt">sunspot</span> (plage) regions remains unclear. We also considered on what scale the underlying driver is affecting the properties of the PDs. Finally, we found that removing the contribution due to the cooler ions in the 193 Å wavelength suggests that a substantial part of the 193 Å emission of <span class="hlt">sunspot</span> PDs can be attributed to the cool component of 193 Å.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663241-hot-downflowing-model-atmosphere-umbral-flashes-physical-properties-dark-fibrils','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663241-hot-downflowing-model-atmosphere-umbral-flashes-physical-properties-dark-fibrils"><span>A Hot Downflowing Model Atmosphere for Umbral Flashes and the Physical Properties of Their Dark Fibrils</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Henriques, V. M. J.; Mathioudakis, M.; Socas-Navarro, H.</p> <p></p> <p>We perform non-LTE inversions in a large set of umbral flashes, including the dark fibrils visible within them, and in the quiescent umbra by using the inversion code NICOLE on a set of full Stokes high-resolution Ca ii λ 8542 observations of a <span class="hlt">sunspot</span> at disk center. We find that the dark structures have Stokes profiles that are distinct from those of the quiescent and flashed regions. They are best reproduced by atmospheres that are more similar to the flashed atmosphere in terms of velocities, even if with reduced amplitudes. We also find two sets of solutions that finely fitmore » the flashed profiles: a set that is upflowing, featuring a transition region that is deeper than in the quiescent case and preceded by a slight dip in temperature, and a second solution with a hotter atmosphere in the chromosphere but featuring downflows close to the speed of sound at such heights. Such downflows may be <span class="hlt">related</span>, or even dependent, on the presence of coronal loops, rooted in the umbra of <span class="hlt">sunspots</span>, as is the case in the region analyzed. Similar loops have been recently observed to have supersonic downflows in the transition region and are consistent with the earlier “<span class="hlt">sunspot</span> plumes,” which were invariably found to display strong downflows in <span class="hlt">sunspots</span>. Finally, we find, on average, a magnetic field reduction in the flashed areas, suggesting that the shock pressure is moving field lines in the upper layers.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970005489','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970005489"><span>The Magnetic Evolution of AR 6555 which led to Two Impulsive, <span class="hlt">Relatively</span> Compact, X-Type Flares</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fontenla, J. M.; Ambastha, A.; Kalman, B.; Csepura, Gy.</p> <p>1995-01-01</p> <p>We study the evolution of the vector magnetic field and the <span class="hlt">sunspot</span> motions observed in AR 6555 during 1991 March 23-26. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in <span class="hlt">relation</span> to the large flares in the first location. These flares occurred around the same included polarity and have very similar characteristics (soft X-ray light curves, energies, etc,). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear <span class="hlt">related</span> to the occurrence of these flares: (1) The flares occurred near regions of large magnetic 'shear' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and <span class="hlt">sunspot</span> motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenia and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Earth+AND+space&pg=6&id=EJ1046112','ERIC'); return false;" href="https://eric.ed.gov/?q=Earth+AND+space&pg=6&id=EJ1046112"><span>Modeling <span class="hlt">Sunspots</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Oh, Phil Seok; Oh, Sung Jin</p> <p>2013-01-01</p> <p>Modeling in science has been studied by education researchers for decades and is now being applied broadly in school. It is among the scientific practices featured in the "Next Generation Science Standards" ("NGSS") (Achieve Inc. 2013). This article describes modeling activities in an extracurricular science club in a high…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016yCat..35990131L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016yCat..35990131L"><span>VizieR Online Data Catalog: Butterfly diagram wings (Leussu+, 2017)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Mursula, K.</p> <p>2016-11-01</p> <p>fig1data.dat contains the separated wings in a butterfly diagram for <span class="hlt">sunspot</span> groups from three different origins: <span class="hlt">Sunspot</span> observations by S.H. Schwabe and G. Spoerer, and the RGO/SOON compilation. The latitudes for <span class="hlt">sunspot</span> groups from the Schwabe and Spoerer data are given as size-weighted averages from <span class="hlt">sunspots</span> belonging to each group. Latitudes for the RGO compilation are given as they are stated in the original data. The columns report the year, month, day, date [yr], latitude [deg], cycle, hemisphere, and data set tag. Northern hemisphere wings are tagged with "1" and southern hemisphere wings with "2". The data set tag is "1" for Schwabe data, "2" for Spoerer data and "3" for RGO data. (1 data file).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016A%26A...590A..63D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016A%26A...590A..63D"><span>Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.</p> <p>2016-05-01</p> <p>Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging <span class="hlt">sunspot</span> groups. Methods: The record of <span class="hlt">sunspot</span> group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of <span class="hlt">sunspot</span> group emergence, such as the latitude, area, and tilt angle, and the <span class="hlt">sunspot</span> cycle strength and phase to produce semi-synthetic <span class="hlt">sunspot</span> group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (<span class="hlt">sunspots</span> and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the <span class="hlt">sunspot</span> cycles through the <span class="hlt">sunspot</span> number. The magnetic flux in each surface component (<span class="hlt">sunspots</span>, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.692D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.692D"><span>The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deniz Goker, Umit</p> <p>2016-07-01</p> <p>A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international <span class="hlt">sunspot</span> number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, <span class="hlt">sunspots/sunspot</span> groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small <span class="hlt">sunspots</span>, contrary to this, these terms in large <span class="hlt">sunspot</span> groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of <span class="hlt">sunspots/sunspot</span> groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=corona&pg=2&id=EJ148853','ERIC'); return false;" href="https://eric.ed.gov/?q=corona&pg=2&id=EJ148853"><span>The Turbulent Sun</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lindsay, Sally, Ed.</p> <p>1976-01-01</p> <p>Six articles review current understanding and research in solar physics. Included are topics on <span class="hlt">sunspots</span>, the corona, solar flares, solar waves, and solar-energy generation. Also included is a resume of physical data <span class="hlt">relating</span> to the sun. (SL)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016nova.pres.1070K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016nova.pres.1070K"><span>2016 SPD: Day 2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, Susanna</p> <p>2016-06-01</p> <p>Editors note:This week were in Boulder, Colorado at the 47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!Todays press conference provided an excellent overview of some of the highlights of this weeks SPD meeting. Four speakers provided their views on some of the hottest topics in solar physics at the moment, including stealth coronal mass ejections (CMEs), <span class="hlt">sunspot</span> formation, long-term solar-activity trends, and the largest solar telescope ever built.Stealth CMEsSolar and Heliospheric Observatory (SOHO) composite image of a coronal mass ejection. [ESA/NASA/SOHO]First up, Nathalia Alzate (Aberystwyth University) talked about recent success in solving the mystery of so-called stealth CMEs, massive solar storms that dont exhibit the usual clues to their origin. Most CMEs have low-coronal signatures like flares, filament eruptions, jets, etc. that reveal the origin of the CME at the Sun. But stealth CMEs appear without warning, and seem to have no evidence of low-coronal signatures.But are these signatures not there? Or could we just be missing them? Alzate and her collaborator Huw Morgan used advanced image processing techniques to search for low-coronal signatures associated with 40 CMEs that have been classified as stealth CMEs. Their techniques enhance the observed structure down to fine spatial scales, and help reveal very faint dynamic events.Sure enough, these processing techniques consistently revealed low-coronal signatures for every single supposed stealth CME they examined. This suggests that all CMEs exhibit some signatures in the low corona its only a matter of being able to process the images well enough to detect them!Spectacular <span class="hlt">Sunspot</span> SimulationsStill image from a simulation studying <span class="hlt">sunspot</span> formation. Compare to the cover image of <span class="hlt">sunspot</span> observations! [Feng Chen, Matthias Rempel, Yuhong Fan]Next up, Feng Chen (High Altitude Observatory) described recent computational</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA233797','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA233797"><span>The Effect of the Ionosphere on Radiowave Signals and Systems Performance Based on Ionospheric Effects Symposium Held on 1-3 May 1990</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1990-05-03</p> <p>winter and a minimum in summer ; in contrast, at <span class="hlt">sunspot</span> maximum the seasonal peaks tend to occur around the equinoxes and the minima in summer . ’riis is...more clearly seen in Figures 4(b) ahnd 4(c). Note that around <span class="hlt">sunspot</span> maximum the summer noon value may be less than the summer midnight value. (3) The...seasonal variation of the midnight values show summer peaks and winter minima with high values near the peaks of the <span class="hlt">sunspot</span> cycles and low values</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://medlineplus.gov/ency/article/002958.htm','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/ency/article/002958.htm"><span>Laser surgery - skin</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>Surgery using a laser ... used is directly <span class="hlt">related</span> to the type of surgery being performed and the color of the tissue ... Laser surgery can be used to: Close small blood vessels to reduce blood loss Remove warts , moles , <span class="hlt">sunspots</span>, and ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SSRv...94...75W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SSRv...94...75W"><span>Data From the Precision Solar Photometric Telescope (Pspt) in Hawaii From March 1998 to March 1999</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, Oran R.; Fox, Peter A.; Meisner, Randy; Rast, Mark P.; Yasukawa, Eric; Koon, Darryl; Rice, Crystal; Lin, Haosheng; Kuhn, Jeff; Coulter, Roy</p> <p>2000-11-01</p> <p>Two Precision Solar Photometric Telescopes (PSPT) designed and built at the U.S. National Solar Observatory (NSO) are in operation in Rome and Hawaii. A third PSPT is now in operation the NSO at <span class="hlt">Sunspot</span>, NM. The PSPT system records full disk solar images at three wavelengths: K line at 393.3 nm and two continua at 409 nm and 607 nm throughout the observing day. We currently study properties of limb darkening, <span class="hlt">sunspots</span>, and network in these images with particular emphasis on data taken in July and September 1998. During this period, the number of observations per month was high enough to show directional properties of the radiation field surrounding <span class="hlt">sunspots</span>. We show examples of our PSPT images and describe our study of bright rings around <span class="hlt">sunspots</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH31B2546K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH31B2546K"><span>Solar Flare Activities before Carrington event based on Low-Latitude-Aurora Survey with Historical Documents from Eastern Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawamura, A. D.; Hayakawa, H.; Iwahashi, K.; Tamazawa, H.; Miyahara, H.; Mitsuma, Y.; Takei, M.; Fujiwara, Y.; Kataoka, R.; Isobe, H.</p> <p>2016-12-01</p> <p>For discussions of solar activities in terms of long time period or rare occurrence, our scientific observations of about 400-year history for <span class="hlt">sunspots</span> and about 150-year history for flares are sometimes not sufficient simply because of the shortness on temporal scale. To complement our scientific records, historical records of aurora observations in traditional manner could be helpful. Especially, the records of low-latitude auroras as results of huge Coronal Mass Ejections (CMEs) hitting the Earth magnetosphere could be a good indicator of extreme solar activities beyond our scientific observation history. In this reason, we focus on Eastern Asia where magnetic latitude is <span class="hlt">relatively</span> low and there exits a rich tradition of text-based records for thousands of years. In this presentation, we discuss the solar activities of 17th to 19th centuries when <span class="hlt">sunspot</span> observations are available but no solar flare observation had been done yet. Our discussion is mainly based on the official history of Qīng dynasty on China, and some historical documents from Japan with <span class="hlt">sunspot</span> numbers and western aurora observations as references. We also briefly introduce our project of aurora survey based on historical documents beyond Qīng dynasty.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002532','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002532"><span>Transition-Region/Coronal Signatures of Penumbral Microjets: Hi-C, SDO/AIA and Hinode (SOT/FG) Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tiwari, Sanjiv K.; Alpert, Shane E.; Moore, Ronald L.; Winebarger, Amy R.</p> <p>2014-01-01</p> <p>Penumbral microjets are bright, transient features seen in the chromosphere of <span class="hlt">sunspot</span> penumbrae. Katsuaka et al. (2007) noted their ubiquity and characterized them using the Ca II H-line filter on Hinode's Solar Optical Telescope (SOT). The jets are 1000{4000 km in length, 300{400 km in width, and last less than one minute. It was proposed that these penumbral microjets could contribute to the transition-region and coronal heating above <span class="hlt">sunspots</span>. We examine whether these microjets appear in the transition-region (TR) and/or corona or are <span class="hlt">related</span>{ temporally and spatially{ to similar brightenings in the TR and/or corona. First, we identify penumbral microjets with the SOT's Ca II H-line filter. The chosen <span class="hlt">sunspot</span> is observed on July 11, 2012 from 18:50:00 UT to 20:00:00 UT at approx. 14 inches, -30 inches. We then examine the <span class="hlt">sunspot</span> in the same field of view and at the same time in other wavelengths. We use the High Resolution Coronal Imager Telescope (Hi-C) at 193A and the 1600A, 304A, 171A, 193A, and 94A passbands of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. We include examples of these jets and where they should appear in the other passbands, but find no signifcant association, except for a few jets with longer lifetimes and bigger sizes seen at locations in the penumbra with repeated stronger brightenings. We conclude that the normal microjets are not heated to transition-region/coronal temperatures, but the larger jets are.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522461-minimum-solar-cycle-deep-could','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522461-minimum-solar-cycle-deep-could"><span>THE MINIMUM OF SOLAR CYCLE 23: AS DEEP AS IT COULD BE?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Muñoz-Jaramillo, Andrés; Longcope, Dana W.; Senkpeil, Ryan R.</p> <p>2015-05-01</p> <p>In this work we introduce a new way of binning <span class="hlt">sunspot</span> group data with the purpose of better understanding the impact of the solar cycle on <span class="hlt">sunspot</span> properties and how this defined the characteristics of the extended minimum of cycle 23. Our approach assumes that the statistical properties of <span class="hlt">sunspots</span> are completely determined by the strength of the underlying large-scale field and have no additional time dependencies. We use the amplitude of the cycle at any given moment (something we refer to as activity level) as a proxy for the strength of this deep-seated magnetic field. We find that themore » <span class="hlt">sunspot</span> size distribution is composed of two populations: one population of groups and active regions and a second population of pores and ephemeral regions. When fits are performed at periods of different activity level, only the statistical properties of the former population, the active regions, are found to vary. Finally, we study the <span class="hlt">relative</span> contribution of each component (small-scale versus large-scale) to solar magnetism. We find that when hemispheres are treated separately, almost every one of the past 12 solar minima reaches a point where the main contribution to magnetism comes from the small-scale component. However, due to asymmetries in cycle phase, this state is very rarely reached by both hemispheres at the same time. From this we infer that even though each hemisphere did reach the magnetic baseline, from a heliospheric point of view the minimum of cycle 23 was not as deep as it could have been.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750009202','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750009202"><span>Solar radio continuum storms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1974-01-01</p> <p>Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying <span class="hlt">sunspot</span> groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of <span class="hlt">sunspot</span> magnetic fields, are the sources of the radio emissions. A model is considered to explain the <span class="hlt">relation</span> of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their <span class="hlt">relation</span> to their own stabilizing effects are important in interpreting both of these storms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26504778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26504778"><span>Worksite Tobacco Prevention: A Randomized, Controlled Trial of Adoption, Dissemination Strategies, and Aggregated Health-<span class="hlt">Related</span> Outcomes across Companies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Friedrich, Verena; Brügger, Adrian; Bauer, Georg F</p> <p>2015-01-01</p> <p>Evidence based public health requires knowledge about successful dissemination of public health measures. This study analyses (a) the changes in worksite tobacco prevention (TP) in the Canton of <span class="hlt">Zurich</span>, Switzerland, between 2007 and 2009; (b1) the results of a multistep versus a "brochure only" dissemination strategy; (b2) the results of a monothematic versus a comprehensive dissemination strategy that aim to get companies to adopt TP measures; and (c) whether worksite TP is associated with health-<span class="hlt">related</span> outcomes. A longitudinal design with randomized control groups was applied. Data on worksite TP and health-<span class="hlt">related</span> outcomes were gathered by a written questionnaire (baseline n = 1627; follow-up n = 1452) and analysed using descriptive statistics, nonparametric procedures, and ordinal regression models. TP measures at worksites improved slightly between 2007 and 2009. The multistep dissemination was superior to the "brochure only" condition. No significant differences between the monothematic and the comprehensive dissemination strategies were observed. However, improvements in TP measures at worksites were associated with improvements in health-<span class="hlt">related</span> outcomes. Although dissemination was approached at a mass scale, little change in the advocated adoption of TP measures was observed, suggesting the need for even more aggressive outreach or an acceptance that these channels do not seem to be sufficiently effective.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4609337','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4609337"><span>Worksite Tobacco Prevention: A Randomized, Controlled Trial of Adoption, Dissemination Strategies, and Aggregated Health-<span class="hlt">Related</span> Outcomes across Companies</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Friedrich, Verena; Brügger, Adrian; Bauer, Georg F.</p> <p>2015-01-01</p> <p>Evidence based public health requires knowledge about successful dissemination of public health measures. This study analyses (a) the changes in worksite tobacco prevention (TP) in the Canton of <span class="hlt">Zurich</span>, Switzerland, between 2007 and 2009; (b1) the results of a multistep versus a “brochure only” dissemination strategy; (b2) the results of a monothematic versus a comprehensive dissemination strategy that aim to get companies to adopt TP measures; and (c) whether worksite TP is associated with health-<span class="hlt">related</span> outcomes. A longitudinal design with randomized control groups was applied. Data on worksite TP and health-<span class="hlt">related</span> outcomes were gathered by a written questionnaire (baseline n = 1627; follow-up n = 1452) and analysed using descriptive statistics, nonparametric procedures, and ordinal regression models. TP measures at worksites improved slightly between 2007 and 2009. The multistep dissemination was superior to the “brochure only” condition. No significant differences between the monothematic and the comprehensive dissemination strategies were observed. However, improvements in TP measures at worksites were associated with improvements in health-<span class="hlt">related</span> outcomes. Although dissemination was approached at a mass scale, little change in the advocated adoption of TP measures was observed, suggesting the need for even more aggressive outreach or an acceptance that these channels do not seem to be sufficiently effective. PMID:26504778</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014987','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014987"><span>Classification</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oza, Nikunj C.</p> <p>2011-01-01</p> <p>A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. In supervised learning, a set of training examples---examples with known output values---is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. For example, we may have data consisting of observations of <span class="hlt">sunspots</span>. In a classification learning task, our goal may be to learn to classify <span class="hlt">sunspots</span> into one of several types. Each example may correspond to one candidate <span class="hlt">sunspot</span> with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of <span class="hlt">sunspot</span>. This model can then be used to classify previously unseen <span class="hlt">sunspots</span> based on the candidate's measurements. This chapter discusses methods to perform machine learning, with examples involving astronomy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859....7R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859....7R"><span>Statistical Analysis of Acoustic Wave Power and Flows around Solar Active Regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.</p> <p>2018-05-01</p> <p>We analyze the effect of a <span class="hlt">sunspot</span> in its quiet surroundings applying a helioseismic technique on almost three years of Helioseismic and Magnetic Imager (HMI) observations obtained during solar cycle 24 to further study the <span class="hlt">sunspot</span> structure below the solar surface. The attenuation of acoustic waves with frequencies lower than 4.2 mHz depends more strongly on the wave direction at a distance of 6°–7° from the <span class="hlt">sunspot</span> center. The amplification of higher frequency waves is highest 6° away from the active region and is largely independent of the wave’s direction. We observe a mean clockwise flow around active regions, the angular speed of which decreases exponentially with distance and has a coefficient close to ‑0.7 degree‑1. The observed horizontal flow in the direction of the nearby active region agrees with a large-scale circulation around the <span class="hlt">sunspot</span> in the shape of cylindrical shell. The center of the shell seems to be centered around 7° from the <span class="hlt">sunspot</span> center, where we observe an inflow close to the surface down to ∼2 Mm, followed by an outflow at deeper layers until at least 7 Mm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15.1215K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15.1215K"><span>Ms. Hisako Koyama: From Amateur Astronomer to Long-Term Solar Observer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knipp, Delores; Liu, Huixin; Hayakawa, Hisashi</p> <p>2017-10-01</p> <p>The path to science for a girl of any nationality born in the early twentieth century was formidable-to-nonexistent. Yet paths were forged by a few. We present the little-known story of one of Japan's premier solar observers and her contribution to the world's understanding of <span class="hlt">sunspots</span> and space weather cycles. Ms. Hisako Koyama, born in Tokyo in 1916, became a passionate amateur astronomer, a dedicated solar observer, and a long-serving staff member of the National Museum of Nature and Science, Tokyo. As a writer for amateur astronomy journals she advised many on the details and joys of sky viewing. She created a consistent, extended record of <span class="hlt">sunspots</span>. Her multidecade archive of <span class="hlt">sunspot</span> drawings is one of the "backbones" for the recent international recalibration of the <span class="hlt">sunspot</span> record that provides insight into space weather reaching back to the early 1600s. We detail her contributions to the citizens of Japan as an ambassador of astronomy and her international contribution to understanding the symmetries and asymmetries of the solar cycle. We comment on the value of her continuous record of <span class="hlt">sunspots</span> and on her tenacity in promoting a science that links to space weather.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518908-detection-fast-moving-waves-propagating-outward-along-sunspots-radial-direction-photosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518908-detection-fast-moving-waves-propagating-outward-along-sunspots-radial-direction-photosphere"><span>DETECTION OF FAST-MOVING WAVES PROPAGATING OUTWARD ALONG SUNSPOTS’ RADIAL DIRECTION IN THE PHOTOSPHERE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Junwei; Chen, Ruizhu; Hartlep, Thomas</p> <p>2015-08-10</p> <p>Helioseismic and magnetohydrodynamic waves are abundant in and above <span class="hlt">sunspots</span>. Through cross-correlating oscillation signals in the photosphere observed by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, we reconstruct how waves propagate away from virtual wave sources located inside a <span class="hlt">sunspot</span>. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot’s radial direction from the umbra to about 15 Mm beyond the <span class="hlt">sunspot</span> boundary. The wave has a frequency range of 2.5–4.0 mHz with a phase velocity of 45.3 km s{sup −1}, substantially faster than the typical speeds of Alfvén and magnetoacoustic waves in themore » photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the <span class="hlt">sunspot</span>. Its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot’s surface, will help open a new window for studying the internal structure and dynamics of <span class="hlt">sunspots</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24150532','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24150532"><span>Patient- and physician-<span class="hlt">related</span> risk factors for hyperkalaemia in potassium-increasing drug-drug interactions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eschmann, Emmanuel; Beeler, Patrick E; Kaplan, Vladimir; Schneemann, Markus; Zünd, Gregor; Blaser, Jürg</p> <p>2014-02-01</p> <p>Hyperkalaemia due to potassium-increasing drug-drug interactions (DDIs) is a clinically important adverse drug event. The purpose of this study was to identify patient- and physician-<span class="hlt">related</span> risk factors for the development of hyperkalaemia. The risk for adult patients hospitalised in the University Hospital <span class="hlt">Zurich</span> between 1 December 2009 and 31 December 2011 of developing hyperkalaemia was correlated with patient characteristics, number, type and duration of potassium-increasing DDIs and frequency of serum potassium monitoring. The 76,467 patients included in this study were prescribed 8,413 potentially severe potassium-increasing DDIs. Patient-<span class="hlt">related</span> characteristics associated with the development of hyperkalaemia were pulmonary allograft [<span class="hlt">relative</span> risk (RR) 5.1; p < 0.0001), impaired renal function (RR 2.7; p < 0.0001), diabetes mellitus (RR 1.6; p = 0.002) and female gender (RR 1.5; p = 0.007). Risk factors associated with medication were number of concurrently administered potassium-increasing drugs (RR 3.3 per additional drug; p < 0.0001) and longer duration of the DDI (RR 4.9 for duration ≥6 days; p < 0.0001). Physician-<span class="hlt">related</span> factors associated with the development of hyperkalaemia were undetermined or elevated serum potassium level before treatment initiation (RR 2.2; p < 0.001) and infrequent monitoring of serum potassium during a DDI (interval >48 h: RR 1.6; p < 0.01). Strategies for reducing the risk of hyperkalaemia during potassium-increasing DDIs should consider both patient- and physician-<span class="hlt">related</span> risk factors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26368057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26368057"><span>Management of Children with Travel-<span class="hlt">related</span> Illness Evaluated in a Pediatric Emergency Room.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leuthard, Deborah; Berger, Christoph; Staubli, Georg; Nadal, David; Schmid, Sabine; Hamer, David; Weber, Rainer; Schlagenhauf, Patricia</p> <p>2015-12-01</p> <p>Children travelling are potentially exposed to a wide spectrum of illness, which includes not only mild self-limiting disease but also severe illness requiring hospitalization. Risk factors for hospitalization need to be analyzed to inform prevention and treatment strategies for travel-<span class="hlt">related</span> disease, to make travelling for children-from a medical perspective-more secure. We performed a cross-sectional analysis on children with travel-<span class="hlt">related</span> disease presenting at the Emergency Room of University of <span class="hlt">Zurich</span> Children's Hospital between July 2007 and December 2012. The profile of children being hospitalized was compared with that of children treated as outpatients. Eight hundred and one children (57.4% male) were included in the study. Eighty-three children (10.4%) were treated as inpatients. Compared with outpatients, inpatients were significantly more likely to be male, to have travelled to Southern Asia, to have a diagnosis of Salmonella typhi or Salmonella paratyphi (3.6 % vs. 0.1%, P < 0.0001), pyogenic abscess (3.6% vs. 0.1 %, P < 0.0001) or malaria (1.4 % vs. 0.2%, P = 0.0384). Neurologic diagnoses (such as seizure disorder: 3.6% vs. 0.4%, P < 0.0001) were diagnosed more often among inpatients. Furthermore, inpatients presented more often with nonspecific findings such as dehydration (8.5% vs. 0.6%, P < 0.0001). No correlation with inpatient care was seen for visiting friends and <span class="hlt">relatives</span>/immigrant travel. Children acquire a wide spectrum of travel-<span class="hlt">related</span> illness. A careful, detailed travel history is important in children presenting in the emergency room with symptoms suggesting infectious disease.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AAS...22432304R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AAS...22432304R"><span>Chromospheric umbral dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reardon, Kevin P.; Vecchio, Antonio; Cauzzi, Gianna; Tritschler, Alexandra</p> <p>2014-06-01</p> <p>The chromosphere above <span class="hlt">sunspots</span> is seen to undergo dynamical driving from perturbations from lower layers of the atmosphere. Umbral flashes have long been understood to be the result of acoustic shocks due to the drop in density in the <span class="hlt">sunspot</span> chromosphere. Detailed observations of the umbral waves and flashes may help reveal the nature of the <span class="hlt">sunspot</span> structure in the upper atmosphere. We report on high-resolution observations of umbral dynamics observed in the Ca II 8542 line by IBIS at the Dunn Solar Telescope. We use a principal component decomposition technique (POD) to isolate different components of the observed oscillations. We are able to explore temporal and spatial evolution of the umbral flashes. We find significant variation in the nature of the flashes over the <span class="hlt">sunspot</span>, indicating that the chromospheric magnetic topology can strongly modify the nature of the umbral intensity and velocity oscillations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...833L..21W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...833L..21W"><span>Role of the Coronal Alfvén Speed in Modulating the Solar-wind Helium Abundance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.-M.</p> <p>2016-12-01</p> <p>The helium abundance He/H in the solar wind is <span class="hlt">relatively</span> constant at ˜0.04 in high-speed streams, but varies in phase with the <span class="hlt">sunspot</span> number in slow wind, from ˜0.01 at solar minimum to ˜0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995-2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v A in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v A near the source surface; resonance with Alfvén waves, with v A and the <span class="hlt">relative</span> speed of α-particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from <span class="hlt">sunspot</span> minimum, when this wind is concentrated around the source-surface neutral line, to <span class="hlt">sunspot</span> maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003787&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcycles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003787&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcycles"><span>Predictions of Solar Cycle 24: How are We Doing?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pesnell, William D.</p> <p>2016-01-01</p> <p>Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average <span class="hlt">sunspot</span> number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual <span class="hlt">sunspot</span> number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average <span class="hlt">sunspot</span> cycle. There were peaks in the daily and monthly averaged <span class="hlt">sunspot</span> number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next <span class="hlt">sunspot</span> cycle. But predictions based only on the statistics of the <span class="hlt">sunspot</span> number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28886241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28886241"><span>Mentha suaveolens Ehrh. Chemotypes in Eastern Iberian Peninsula: Essential Oil Variation and <span class="hlt">Relation</span> with Ecological Factors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Llorens-Molina, Juan Antonio; Rivera Seclén, Cynthia Fiorella; Vacas Gonzalez, Sandra; Boira Tortajada, Herminio</p> <p>2017-12-01</p> <p>Essential oil (EO) extracts coming from two representative populations of Mentha suaveolens Ehrh. subesp. suaveolens in Eastern Iberian Peninsula were analyzed by gas chromatography coupled with mass spectrometry and flame ion detector. Plant sampling was carried out in the morning and evening in order to study diurnal variation in EO profiles. Likewise, leaves and inflorescences were analyzed separately. Two chemotypes corresponding to each one of the populations were identified, with piperitenone oxide (35.2 - 74.3%) and piperitone oxide (83.9 - 91.3%), respectively, as major compounds. Once different chemotypes were identified, canonical correspondence analysis was employed to evaluate the effect of the bioclimatic and edaphic factors recorded in each location on the observed differences. Statistical analysis suggested that these chemotypes were closely <span class="hlt">related</span> to specific environmental factors, mainly the bioclimatic ones. Concretely, piperitenone oxide chemotype can be associated to supramediterranean bioclimatic conditions and soils with major salinity and water field capacity. On the other hand, the most volatile fraction (hydrocarbon monoterpenes) reached its higher level in the morning; specifically, a noticeable amount of limonene was found in morning samples of flowers (4.8 - 10.6%). This fact can be <span class="hlt">related</span> to ecological role of volatile compounds in order to attract pollinator insects. © 2017 Wiley-VHCA AG, <span class="hlt">Zurich</span>, Switzerland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364697-active-region-tilt-angles-magnetic-versus-white-light-determinations-joy-law','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364697-active-region-tilt-angles-magnetic-versus-white-light-determinations-joy-law"><span>ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.</p> <p>2015-01-01</p> <p>The axes of solar active regions are inclined <span class="hlt">relative</span> to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of <span class="hlt">sunspot</span> groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magneticmore » data. We confirm this effect by comparing <span class="hlt">sunspot</span>-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to <span class="hlt">sunspots</span> of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent <span class="hlt">sunspots</span>. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1032326','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1032326"><span>2016 Microbial Stress Response GRC/GRS</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-09-13</p> <p>Holyoke College South Hadley, MA Chairs: Eduardo A. Groisman & Dianne K. Newman Vice Chairs: Petra A. Levin & William W. Navarre Contributors...by Discussion Leader 9:10 am - 9:35 am Martin Ackermann (ETH <span class="hlt">Zurich</span>, Switzerland) "History-Dependence in Bacterial Stress Response – Scaling up from...Government. Microbial Stress Response GRC – Registration List Ackermann, Martin ETH <span class="hlt">Zurich</span> Speaker Registered Andersson, Dan I Uppsala</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA492891','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA492891"><span>Fundamental Investigations of the Tribological Properties of Biological Interfaces</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-11-28</p> <p>D Spencer 5e. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ETH <span class="hlt">Zurich</span> Wolfgang - Pauli -Strasse 10 Zürich CH-8093...Chiara Perrino, Seunghwan Lee and Nicholas D. Spencer Laboratory for Surface Science and Technology, Department of Materials, ETH <span class="hlt">Zurich</span>, Wolfgang ... Pauli -Strasse 10, CH-8093, Switzerland Abstract: Comb-like graft copolymers with carbohydrate side chains have been developed as aqueous</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5518764','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5518764"><span>Coronal and heliospheric magnetic flux circulation and its <span class="hlt">relation</span> to open solar flux evolution</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Owens, Mathew J.; Imber, Suzanne M.; James, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.</p> <p>2017-01-01</p> <p>Abstract Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) <span class="hlt">sunspot</span> activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next <span class="hlt">sunspot</span> minimum and hence for the amplitude of cycle 25. PMID:28781930</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28781930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28781930"><span>Coronal and heliospheric magnetic flux circulation and its <span class="hlt">relation</span> to open solar flux evolution.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lockwood, Mike; Owens, Mathew J; Imber, Suzanne M; James, Matthew K; Bunce, Emma J; Yeoman, Timothy K</p> <p>2017-06-01</p> <p>Solar cycle 24 is notable for three features that can be found in previous cycles but which have been unusually prominent: (1) <span class="hlt">sunspot</span> activity was considerably greater in the northern/southern hemisphere during the rising/declining phase; (2) accumulation of open solar flux (OSF) during the rising phase was modest, but rapid in the early declining phase; (3) the heliospheric current sheet (HCS) tilt showed large fluctuations. We show that these features had a major influence on the progression of the cycle. All flux emergence causes a rise then a fall in OSF, but only OSF with foot points in opposing hemispheres progresses the solar cycle via the evolution of the polar fields. Emergence in one hemisphere, or symmetric emergence without some form of foot point exchange across the heliographic equator, causes poleward migrating fields of both polarities in one or both (respectively) hemispheres which temporarily enhance OSF but do not advance the polar field cycle. The heliospheric field observed near Mercury and Earth reflects the asymmetries in emergence. Using magnetograms, we find evidence that the poleward magnetic flux transport (of both polarities) is modulated by the HCS tilt, revealing an effect on OSF loss rate. The declining phase rise in OSF was caused by strong emergence in the southern hemisphere with an anomalously low HCS tilt. This implies the recent fall in the southern polar field will be sustained and that the peak OSF has limited implications for the polar field at the next <span class="hlt">sunspot</span> minimum and hence for the amplitude of cycle 25.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654184-tracing-mode-waves-from-photosphere-corona-active-regions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654184-tracing-mode-waves-from-photosphere-corona-active-regions"><span>TRACING p -MODE WAVES FROM THE PHOTOSPHERE TO THE CORONA IN ACTIVE REGIONS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhao, Junwei; Chen, Ruizhu; Felipe, Tobías</p> <p></p> <p>Atmosphere above <span class="hlt">sunspots</span> is abundant with different types of waves. Among these waves are running penumbral waves in the chromosphere, quasi-periodic oscillations in the lower coronal loops, and recently reported running waves in sunspots’ photosphere, all of which were interpreted as magnetoacoustic waves by some authors. Are these waves in different atmospheric layers <span class="hlt">related</span> to each other, what is the nature of these waves, and where are the ultimate sources of these waves? Applying a time–distance helioseismic analysis over a suite of multi-wavelength observations above a <span class="hlt">sunspot</span>, we demonstrate that the helioseismic p -mode waves are able to channel upmore » from the photosphere through the chromosphere and transition region into the corona, and that the magnetoacoustic waves observed in different atmospheric layers are a same wave originating from the photosphere but exhibiting differently under different physical conditions. We also show waves of different frequencies travel along different paths, which can be used to derive the physical properties of the atmosphere above <span class="hlt">sunspots</span>. Our numerical simulation of traveling of waves from a subphotospheric source qualitatively resembles the observed properties of the waves and offers an interpretation of the shapes of the wavefronts above the photosphere.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5129659-model-sunspot-chromosphere-based-oso-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5129659-model-sunspot-chromosphere-based-oso-observations"><span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lites, B.W.; Skumanich, A.</p> <p></p> <p>OSO 8 observations of the profiles of the resonance lines of H I, Mg II, and Ca II obtained with the Laboratorie de Physique Stellaire et Planetaire de Centre National de la Recherche Scientifique (LPSP-CNRS) spectrometer (by A.S.) and of C IV obtained with the University of Colorado (CU) spectrometer (by B.W.L.) for a large quiet <span class="hlt">sunspot</span> (1975 November 16--17) are analyzed along with near-simultaneous ground-based Stokes measurements obtained in a collaborative arrangement with L. L. House and T. Baur (HAO-NCAR) to yield an umbral chromosphere and transition region model. Features of this model include: (1) a chromosphere that ismore » effectively thin in the important chromsopheric resonance lines of H I and Mg II and saturated in Ca II; (2) an upper chromospheric structure similar to quiet-Sun models; (3) penetration of the <span class="hlt">sunspot</span> photospheric ''cooling wave'' to higher altitudes in the <span class="hlt">sunspot</span> chromosphere than in quiet-Sun models, i.e., a more extended temperature minimum region in the <span class="hlt">sunspot</span> atomphere; (4) a lower pressure corona above the <span class="hlt">sunspot</span> umbra than above a typical quiet region; (5) very low nonthermal broadening in the umbral chromosphere; (6) a moderately strong downdraft; (7) chromospheric radiative loss rates not significantly different from their corresponding quiet-Sun values; (8) a temperature gradient in the transitons region near 10/sup 5/ Kapprox.0.1 times the corresponding quiet-Sun value. The Balmer continuum radiation from the photospheric areas outside the <span class="hlt">sunspot</span> umbra controls the hydrogen ionization, and hence the electron density, in the chromosphere above the umbra.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..APRP20001F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..APRP20001F"><span>A Staged Reading of the Play: TRANSCENDENCE: <span class="hlt">Relativity</span> and Its Discontents by Robert Marc Friedman</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedman, Robert Marc</p> <p>2015-04-01</p> <p>TRANSCENDENCE explores aspects of Einstein's life and his general theory of <span class="hlt">relativity</span> at the time of the theory's creation and initial reception. While being faithful to historical scholarship, the play creates its own theatrical reality aiming to engage emotions and intellect. Those who strive for transcendence must nevertheless also confront the harsh realities of living in specific time-bound social contexts. Universal constants that anchor physical theory in an objective reality, as Einstein believed, do not readily have equivalents in notions of identity, duty, loyalty, and excellence. In November 1915 after toiling for years in <span class="hlt">Zurich</span>, Prague, and now Berlin, Einstein achieved his general theory of <span class="hlt">relativity</span>. When in 1919 British astronomers announced evidence for the bending of starlight by the sun as Einstein had predicted, he soon surprisingly found himself an international celebrity. Expectations arose that he would be called to Stockholm. But the Nobel Committee for Physics refused to acknowledge ``speculations'' such Einstein's. The dismissal of <span class="hlt">relativity</span> entailed principled and biased opposition, and not simply mistakes in evaluation. Several committee members agreed that Einstein must not receive a Prize. Join us for a dramatic staged reading of TRANSCENDENCE, a play by the science historian Robert Marc Friedman (http://www.hf.uio.no/iakh/english/people/aca/robertfr/index.html) and directed by James Glossman, Lecturer in Directing and Shakespeare, Johns Hopkins University. After the performance, the playwright, director and actors will be available for a talk-back audience discussion.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA446422','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA446422"><span>The Antemortem Detection and Conformational Switches of Prion Proteins</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2005-07-01</p> <p>temperature. After washing 4 times, the signal was detected with the Super Signal West Pico ECL kit (Pierce) and x-ray film (Hyperfilm ECL, GE Healthcare ...object lens and a digital color imaging system (Spot Insight, Diagnostic Instruments, Inc. MI). The needle-like crystals on the surface of the cells...Bordeaux 2, 33077 Bordeaux Cedex, France. 3ETH <span class="hlt">Zurich</span>, Physical Chemistry, ETH Honggerberg, 8093 <span class="hlt">Zurich</span>, Switzerland . *These authors contributed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA393758','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA393758"><span>Air Bursting Munition ABM Medium Calibre Applications</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2001-04-18</p> <p>NDIA 45th Annual Fuze Conference - Long Beach, CA - April 16-18, 2001 Folie 1 P2 15548 BB, P-VP/FD/11, © 2001 Oerlikon Contraves AG, Zürich...Switzerland Air Bursting Munition ABM Medium Calibre Applications Allan Buckley & Pierre Freymond Oerlikon Contraves Pyrotec AG CH-8050 <span class="hlt">Zurich</span>...Project Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Oerlikon Contraves Pyrotec AG CH-8050 <span class="hlt">Zurich</span> / Switzerland</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24942564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24942564"><span>The ZInEP Epidemiology Survey: background, design and methods.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ajdacic-Gross, Vladeta; Müller, Mario; Rodgers, Stephanie; Warnke, Inge; Hengartner, Michael P; Landolt, Karin; Hagenmuller, Florence; Meier, Magali; Tse, Lee-Ting; Aleksandrowicz, Aleksandra; Passardi, Marco; Knöpfli, Daniel; Schönfelder, Herdis; Eisele, Jochen; Rüsch, Nicolas; Haker, Helene; Kawohl, Wolfram; Rössler, Wulf</p> <p>2014-12-01</p> <p>This article introduces the design, sampling, field procedures and instruments used in the ZInEP Epidemiology Survey. This survey is one of six ZInEP projects (Zürcher Impulsprogramm zur nachhaltigen Entwicklung der Psychiatrie, i.e. the "<span class="hlt">Zurich</span> Program for Sustainable Development of Mental Health Services"). It parallels the longitudinal <span class="hlt">Zurich</span> Study with a sample comparable in age and gender, and with similar methodology, including identical instruments. Thus, it is aimed at assessing the change of prevalence rates of common mental disorders and the use of professional help and psychiatric sevices. Moreover, the current survey widens the spectrum of topics by including sociopsychiatric questionnaires on stigma, stress <span class="hlt">related</span> biological measures such as load and cortisol levels, electroencephalographic (EEG) and near-infrared spectroscopy (NIRS) examinations with various paradigms, and sociophysiological tests. The structure of the ZInEP Epidemiology Survey entails four subprojects: a short telephone screening using the SCL-27 (n of nearly 10,000), a comprehensive face-to-face interview based on the SPIKE (Structured Psychopathological Interview and Rating of the Social Consequences for Epidemiology: the main instrument of the <span class="hlt">Zurich</span> Study) with a stratified sample (n = 1500), tests in the Center for Neurophysiology and Sociophysiology (n = 227), and a prospective study with up to three follow-up interviews and further measures (n = 157). In sum, the four subprojects of the ZInEP Epidemiology Survey deliver a large interdisciplinary database. Copyright © 2014 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPD....4820001T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPD....4820001T"><span>Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori</p> <p>2017-08-01</p> <p>Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-<span class="hlt">sunspots</span> and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller <span class="hlt">sunspot</span> areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large <span class="hlt">sunspots</span>, and spot-satellite, where a newly-emerging flux next to a mature <span class="hlt">sunspot</span> triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-<span class="hlt">sunspot</span> formation and discuss the evolution processes of flaring ARs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrASS...5...17M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrASS...5...17M"><span>Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles - a review</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Sara F.</p> <p>2018-05-01</p> <p>Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their <span class="hlt">sunspots</span> during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; <span class="hlt">sunspots</span> form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3-4 Mm below <span class="hlt">sunspots</span> as well as long-observed downflows from chromospheric/coronal arch filaments into <span class="hlt">sunspots</span> from their earliest appearance. Time-distance helioseismology has been effective in revealing flows <span class="hlt">related</span> to <span class="hlt">sunspots</span> to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or sometimes not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42-75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of large active</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22536109','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22536109"><span>Occurrence and assemblage composition of millipedes (Myriapoda, Diplopoda) and terrestrial isopods (Crustacea, Isopoda, Oniscidea) in urban areas of Switzerland.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vilisics, Ferenc; Bogyó, Dávid; Sattler, Thomas; Moretti, Marco</p> <p>2012-01-01</p> <p>Terrestrial isopods and millipedes, members of the invertebrate macro-decomposer guild, were collected through pitfall traps in three Swiss cities (<span class="hlt">Zurich</span>, Lucerne, Lugano). A total of 7,198 individuals of 17 isopod species (7093 ind.), and 10 millipede species (105 ind.) were captured. Besides the Alpine endemic isopod (Trichoniscus alemannicus) and millipede (Cylindroiulus verhoeffi), urban assemblages were mainly composed of widespread, native European and even cosmopolitan species, which are frequent in anthropogenic areas. Overall species richness (isopods and millipedes combined) was similar in <span class="hlt">Zurich</span> (17 species) and Lucerne (16), while only 13 species were sampled in Lugano. According to the Sørensen index of similarity, species composition of <span class="hlt">Zurich</span> and Lucerne were more alike, while the one of Lugano was more distinct from the other two cities. This result can be explained by the spatial proximity of <span class="hlt">Zurich</span> and Lucerne in the north of the Alps compared to Lugano, which is located more distantly and in the south of the Alps. Dominant isopods and millipedes in <span class="hlt">Zurich</span> and Lucerne were found to be widespread synanthropic species in temperate Europe(Porcellio scaber, Trachelipus rathkii and Ophyiulus pilosus) while the dominant isopod in Lugano (Trachelipus razzautii) is a species with a north-eastern Mediterranean distribution. Our study reveals that the urban millipede and isopod fauna in Swiss cities mainly consists of widespread species, but species of narrower distribution (e.g. Trichoniscus alemannicus, Cylindroiulus verhoeffi) may also find suitable habitats in cities. Despite some signs of biotic homogenization, our study also found compositional differences of millipede and isopod assemblages between northern and southern cities that suggest geographical effects of the regional species pool.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3335415','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3335415"><span>Occurrence and assemblage composition of millipedes (Myriapoda, Diplopoda) and terrestrial isopods (Crustacea, Isopoda, Oniscidea) in urban areas of Switzerland</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vilisics, Ferenc; Bogyó, Dávid; Sattler, Thomas; Moretti, Marco</p> <p>2012-01-01</p> <p>Abstract Terrestrial isopods and millipedes, members of the invertebrate macro-decomposer guild, were collected through pitfall traps in three Swiss cities (<span class="hlt">Zurich</span>, Lucerne, Lugano). A total of 7,198 individuals of 17 isopod species (7093 ind.), and 10 millipede species (105 ind.) were captured. Besides the Alpine endemic isopod (Trichoniscus alemannicus) and millipede (Cylindroiulus verhoeffi), urban assemblages were mainly composed of widespread, native European and even cosmopolitan species, which are frequent in anthropogenic areas. Overall species richness (isopods and millipedes combined) was similar in <span class="hlt">Zurich</span> (17 species) and Lucerne (16), while only 13 species were sampled in Lugano. According to the Sørensen index of similarity, species composition of <span class="hlt">Zurich</span> and Lucerne were more alike, while the one of Lugano was more distinct from the other two cities. This result can be explained by the spatial proximity of <span class="hlt">Zurich</span> and Lucerne in the north of the Alps compared to Lugano, which is located more distantly and in the south of the Alps. Dominant isopods and millipedes in <span class="hlt">Zurich</span> and Lucerne were found to be widespread synanthropic species in temperate Europe(Porcellio scaber, Trachelipus rathkii and Ophyiulus pilosus) while the dominant isopod in Lugano (Trachelipus razzautii) is a species with a north-eastern Mediterranean distribution. Our study reveals that the urban millipede and isopod fauna in Swiss cities mainly consists of widespread species, but species of narrower distribution (e.g. Trichoniscus alemannicus, Cylindroiulus verhoeffi) may also find suitable habitats in cities. Despite some signs of biotic homogenization, our study also found compositional differences of millipede and isopod assemblages between northern and southern cities that suggest geographical effects of the regional species pool. PMID:22536109</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA51B2398S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA51B2398S"><span>Reconstruction of Solar EUV Flux 1740-2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svalgaard, L.</p> <p>2015-12-01</p> <p>Solar Extreme Ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo ionization of molecular Oxygen. Solar heating of the ionosphere creates thermal winds which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and sets with the Sun and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us the deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the 'Magnetic Crusade' of the 1830s and less reliable, but still usable, data are available for portions of the hundred years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F10.7 flux and the <span class="hlt">sunspot</span> number, and find that the reconstructed EUV flux reproduces the F10.7 flux with great accuracy. On the other hand, it appears that the <span class="hlt">Relative</span> <span class="hlt">Sunspot</span> Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and <span class="hlt">related</span> indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every <span class="hlt">sunspot</span> minimum (possibly including Grand Minima), representing an invariant 'solar magnetic ground state'.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SoPh..291.2981S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SoPh..291.2981S"><span>Reconstruction of Solar Extreme Ultraviolet Flux 1740 - 2015</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svalgaard, Leif</p> <p>2016-11-01</p> <p>Solar extreme ultraviolet (EUV) radiation creates the conducting E-layer of the ionosphere, mainly by photo-ionization of molecular oxygen. Solar heating of the ionosphere creates thermal winds, which by dynamo action induce an electric field driving an electric current having a magnetic effect observable on the ground, as was discovered by G. Graham in 1722. The current rises and falls with the Sun, and thus causes a readily observable diurnal variation of the geomagnetic field, allowing us to deduce the conductivity and thus the EUV flux as far back as reliable magnetic data reach. High-quality data go back to the "Magnetic Crusade" of the 1830s and less reliable, but still usable, data are available for portions of the 100 years before that. J.R. Wolf and, independently, J.-A. Gautier discovered the dependence of the diurnal variation on solar activity, and today we understand and can invert that relationship to construct a reliable record of the EUV flux from the geomagnetic record. We compare that to the F_{10.7} flux and the <span class="hlt">sunspot</span> number, and we find that the reconstructed EUV flux reproduces the F_{10.7} flux with great accuracy. On the other hand, it appears that the <span class="hlt">Relative</span> <span class="hlt">Sunspot</span> Number as currently defined is beginning to no longer be a faithful representation of solar magnetic activity, at least as measured by the EUV and <span class="hlt">related</span> indices. The reconstruction suggests that the EUV flux reaches the same low (but non-zero) value at every <span class="hlt">sunspot</span> minimum (possibly including Grand Minima), representing an invariant "solar magnetic ground state".</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.172..122G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.172..122G"><span>Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulyaeva, T. L.; Arikan, F.; Sezen, U.; Poustovalova, L. V.</p> <p>2018-07-01</p> <p>In view of the recent recalibration of the <span class="hlt">sunspot</span> number time series SSN2, a need has arisen to re-evaluate solar and ionospheric indices in the International Reference Ionosphere, IRI, and its extension to the Plasmasphere, IRI-Plas models, which are developed using the predecessor SSN1 index. To improve efficiency of the model, eight solar proxy indices are introduced in IRI-Plas system: the daily measured solar emissions, the Ottawa 10.7-cm radio flux F10.7 and the H Lyman-α line at 121.6 nm; the core-to-wing ratio of the magnesium ion h and k lines at 279.56 and 280.27 nm, MgII index; <span class="hlt">sunspot</span> number SSN1 observed before 05.2015 and modelled afterwards; re-calibrated SSN2 <span class="hlt">sunspots</span> time series; the ionosonde foF2-based global IG-index and the Global Electron Content, GEC, index, the new ionospheric TEC-noon index based on GPS-derived Total Electron Content measurements at 288 IGS stations for 1994-2018. The regression <span class="hlt">relations</span> are deduced between the different solar and ionospheric proxy indices smoothed by 12-month sliding window. The IG, TEC and GEC saturation or amplification effect is observed towards the solar maximum. The SSN1 and F10.7 data serve as a default IRI-Plas input while the rest indices are scaled to SSN1 units envisaged by the F2 layer peak maps. Relevant subroutines are incorporated in IRI-Plas system for automatic conversion of user's predefined index to other <span class="hlt">related</span> indices which are applied by the different model procedures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654136-role-coronal-alfven-speed-modulating-solar-wind-helium-abundance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654136-role-coronal-alfven-speed-modulating-solar-wind-helium-abundance"><span>ROLE OF THE CORONAL ALFVÉN SPEED IN MODULATING THE SOLAR-WIND HELIUM ABUNDANCE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil</p> <p></p> <p>The helium abundance He/H in the solar wind is <span class="hlt">relatively</span> constant at ∼0.04 in high-speed streams, but varies in phase with the <span class="hlt">sunspot</span> number in slow wind, from ∼0.01 at solar minimum to ∼0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995–2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v {sub A} in the outer corona, while being onlymore » weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v {sub A} near the source surface; resonance with Alfvén waves, with v {sub A} and the <span class="hlt">relative</span> speed of α -particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from <span class="hlt">sunspot</span> minimum, when this wind is concentrated around the source-surface neutral line, to <span class="hlt">sunspot</span> maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NewA...23...73E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NewA...23...73E"><span>Observations and analysis of NOAA AR 11429 at KSU-Astronomical Observatory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elmhamdi, Abouazza; Kordi, A. S.; Al-Trabulsy, H. A.; El-Nawawy, M.; Ibrahim, A. A.; Ben Nessib, N.; Abdel-Sabour, M. A.; Al-Mostafa, Z. A.</p> <p>2013-10-01</p> <p>We study the evolution of the <span class="hlt">sunspots</span> in the recent super active region NOAA 11429, which spawned a powerful X5.4/3B flare on March 07, 2012 (2nd on record occurred since 2010), associated with a wide and fast Coronal Mass Ejection (CME; Halo/070036) and a large proton flux event (6530 p.f.u). The <span class="hlt">sunspot</span> group consists a rare example of "Island Delta" in βγδ- magnetic configuration. This active region dominated the Solar activities on the northern hemisphere during the period March 03-15, 2012, of the present Solar Cycle 24, erupting 2 X-class flares, 13 M-class flares, and about 32 C-class flares. We analyze white-light images, wavelengths around 540 nm, observed at the Astronomical Observatory of King Saud University (AOKSU). The observations are part of a campaign conducted locally since early 2012, for monitoring Solar activities on a daily basis. The observations and data reduction are presented and discussed. We examine the main properties of AR 11429 (i.e. structure, growth and decay) by computing its daily "area" and "tilt- & trend-" angles, and infer information about its development and dynamics. The area curve is found to show three distinguishable phases, nicely fitted adopting double-Gaussian distribution. A close <span class="hlt">relation</span> between <span class="hlt">sunspot</span> group area and tilt-angle with the major March 07 powerful flare can be noticed from the current results, that certainly necessitates deep and careful inspections through studying large sample of events. The follow-up of the <span class="hlt">sunspot</span> group the period it inhabits the Solar photosphere, permits exploiting the proper motion of four long-lived individual spots, as well as tracing the local surface differential rotation, found to be consistent with empirical results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016usc..confE.112C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016usc..confE.112C"><span>Emergence of magnetic flux generated in a solar convective dynamo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Feng; Rempel, Feng, Matthias; Fan, Yuhong</p> <p>2016-10-01</p> <p>We present a realistic numerical model of <span class="hlt">sunspot</span> and active region formation through the emergence of flux tubes generated in a solar convective dynamo. The magnetic and velocity fields in a horizontal layer near the top boundary of the solar convective dynamo simulation are used as a time-dependent bottom boundary to drive the radiation magnetohydrodynamic simulations of the emergence of the flux tubes through the upper most layer of the convection zone to the photosphere. The emerging flux tubes interact with the convection and break into small scale magnetic elements that further rise to the photosphere. At the photosphere, several bipolar pairs of <span class="hlt">sunspots</span> are formed through the coalescence of the small scale magnetic elements. The <span class="hlt">sunspot</span> pairs in the simulation successfully reproduce the fundamental observed properties of solar active regions, including the more coherent leading spots with a stronger field strength, and the correct tilts of the bipolar pairs. These asymmetries originate from the intrinsic asymmetries in the emerging fields imposed at the bottom boundary, where the horizontal fields are already tilted. The leading sides of the emerging flux tubes are up against the downdraft lanes of the giant cells and strongly sheared downward. This leads to the stronger field strength of the leading polarity fields. We find a prograde flow in the emerging flux tube, which is naturally inherited from the solar convective dynamo simulation. The prograde flow gradually becomes a diverging flow as the flux tube rises. The emerging speed is similar to upflow speed of convective motions. The azimuthal average of the flows around a (leading) <span class="hlt">sunspot</span> reveals a predominant down flow inside the <span class="hlt">sunspots</span> and a large-scale horizontal inflow at the depth of about 10 Mm. The inflow pattern becomes an outflow in upper most convection zone in the vicinity of the <span class="hlt">sunspot</span>, which could be considered as moat flows.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...59R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...59R"><span>Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner</p> <p>2018-04-01</p> <p><span class="hlt">Sunspot</span> position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) <span class="hlt">sunspot</span> drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of <span class="hlt">sunspot</span> groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using <span class="hlt">sunspots</span> as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990064112&hterms=faraday&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfaraday','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990064112&hterms=faraday&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dfaraday"><span>Effects of Faraday Rotation Observed in Filter Magnetograph Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hagyard, Mona J.; Adams, Mitzi L.; Smith, J. E.; West, Edward A.</p> <p>1999-01-01</p> <p>In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple <span class="hlt">sunspot</span> observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the <span class="hlt">sunspot</span>. At selected locations in the <span class="hlt">sunspot</span>, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the <span class="hlt">sunspot</span>'s field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780039118&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780039118&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DKrieger"><span>The gross energy balance of solar active regions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evans, K. D.; Pye, J. P.; Hutcheon, R. J.; Gerassimenko, M.; Krieger, A. S.; Davis, J. M.; Vesecky, J. F.</p> <p>1977-01-01</p> <p>Parker's (1974) model in which <span class="hlt">sunspots</span> denote regions of increased heat transport from the convection zone is briefly described. The amount of excess mechanically transported power supposed to be delivered to the atmosphere is estimated for a typical active region, and the total radiative power output of the active-region atmosphere is computed. It is found that only a very small fraction (about 0.001) of the <span class="hlt">sunspot</span> 'missing flux' can be accounted for by radiative emission from the atmosphere above a spot group in the manner suggested by Parker. The power-loss mechanism associated with mass loss to the solar wind is briefly considered and shown not to be sufficient to account for the <span class="hlt">sunspot</span> missing flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4408405-solar-cycle-influence-lunar-magnetic-variation-istanbul','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4408405-solar-cycle-influence-lunar-magnetic-variation-istanbul"><span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Isikara, A.M.</p> <p></p> <p>The dependence of the amplitude of the lunar daily geomagnetic variation on <span class="hlt">sunspot</span> number and magnetic activity is investigated using data from Istanbul for the years 1952 to 1968. Annual and seasonal values of the amplitudes of the lunar semi-diurnal variation are determined, and compared with <span class="hlt">sunspot</span> number and magnetic activity using partial correlation techniques. (auth)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH53A2553H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH53A2553H"><span><span class="hlt">Relative</span> Contributions of Coronal Mass Ejections and High-speed Streams to the Long-term Variation of Annual Geomagnetic Activity: Solar Cycle Variation and Latitudinal Differences</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holappa, L.; Mursula, K.</p> <p>2017-12-01</p> <p>Coronal mass ejections (CMEs) and high-speed solar wind streams (HSSs) are the most important large-scale solar wind structures driving geomagnetic activity. It is well known that CMEs cause the strongest geomagnetic storms, while HSSs drive mainly moderate or small storms. Here we study the spatial-temporal distribution of geomagnetic activity at annual resolution using local geomagnetic indices from a wide range of latitudes in 1966-2014. We show that the overall contribution of HSSs to geomagnetic activity exceeds that of CMEs at all latitudes. Only in a few <span class="hlt">sunspot</span> maximum years CMEs have a comparable contribution to HSSs. While the <span class="hlt">relative</span> contribution of HSSs maximizes at high latitudes, the <span class="hlt">relative</span> contribution of CMEs maximizes at subauroral and low latitudes. We show that this is <span class="hlt">related</span> to different latitudinal distribution of CME and HSS-driven substorms. We also show that the contributions of CMEs and HSSs to annual geomagnetic activity are highly correlated with the intensity of the interplanetary magnetic field and the solar wind speed, respectively. Thus, a very large fraction of the long-term variability in annual geomagnetic activity is described only by the variation of IMF strength and solar wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060021461&hterms=probability+statistical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dprobability%2Bstatistical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060021461&hterms=probability+statistical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dprobability%2Bstatistical"><span>The Projection of Space Radiation Environments with a Solar Cycle Statistical Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.</p> <p>2006-01-01</p> <p>A solar cycle statistical model has been developed to project <span class="hlt">sunspot</span> numbers which represent the variations in the space radiation environment. The resultant projection of <span class="hlt">sunspot</span> numbers in near future were coupled to space-<span class="hlt">related</span> quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of <span class="hlt">sunspot</span> number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060050130','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060050130"><span>Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2006-01-01</p> <p>The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as <span class="hlt">related</span> to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and <span class="hlt">sunspot</span> number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of <span class="hlt">sunspot</span> cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of <span class="hlt">sunspot</span> cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SoPh..288..157E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SoPh..288..157E"><span>The Greenwich Photo-heliographic Results (1874 - 1976): Initial Corrections to the Printed Publications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erwin, E. H.; Coffey, H. E.; Denig, W. F.; Willis, D. M.; Henwood, R.; Wild, M. N.</p> <p>2013-11-01</p> <p>A new <span class="hlt">sunspot</span> and faculae digital dataset for the interval 1874 - 1955 has been prepared under the auspices of the NOAA National Geophysical Data Center (NGDC). This digital dataset contains measurements of the positions and areas of both <span class="hlt">sunspots</span> and faculae published initially by the Royal Observatory, Greenwich, and subsequently by the Royal Greenwich Observatory (RGO), under the title Greenwich Photo-heliographic Results ( GPR) , 1874 - 1976. Quality control (QC) procedures based on logical consistency have been used to identify the more obvious errors in the RGO publications. Typical examples of identifiable errors are North versus South errors in specifying heliographic latitude, errors in specifying heliographic (Carrington) longitude, errors in the dates and times, errors in <span class="hlt">sunspot</span> group numbers, arithmetic errors in the summation process, and the occasional omission of solar ephemerides. Although the number of errors in the RGO publications is remarkably small, an initial table of necessary corrections is provided for the interval 1874 - 1917. Moreover, as noted in the preceding companion papers, the existence of two independently prepared digital datasets, which both contain information on <span class="hlt">sunspot</span> positions and areas, makes it possible to outline a preliminary strategy for the development of an even more accurate digital dataset. Further work is in progress to generate an extremely reliable <span class="hlt">sunspot</span> digital dataset, based on the long programme of solar observations supported first by the Royal Observatory, Greenwich, and then by the Royal Greenwich Observatory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SoPh..165..181H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SoPh..165..181H"><span>How Well Was the Sun Observed during the Maunder Minimum?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoyt, Douglas V.; Schatten, Kenneth H.</p> <p>1996-04-01</p> <p>In this paper we examine how well the Sun and <span class="hlt">sunspots</span> were observed during the Maunder Minimum from 1645 to 1715. Recent research has given us the dates of observations by Hevelius, Picard, La Hire, Flamsteed, and about 70 other observers. These specific observations allow a ‘lower estimate’ of the fraction of the time the Sun was observed to be deduced. It is found that 52.7% of the days have recorded observations. There are additional 12 observers who provide general statements that no <span class="hlt">sunspots</span> were observed during specific years or intervals despite diligent efforts. Taking these statements to mean, unrealistically, that every day during these intervals was observed, gives an ‘upper estimate’ of 98% of the days. If the general statements are relaxed by assuming that 100 ± 50 days per year were actually observed by these diligent observers, than our ‘best estimate’ is that 68%±7% of the days during the Maunder Minimum were observed. In short, this supports the view that the Maunder Minimum existed and was not an artifact of few observations. Some <span class="hlt">sunspots</span> are probably still missed in modern compilations, but the existence of a prolonged <span class="hlt">sunspot</span> minimum would not be threatened by their discovery in future research. Additional support for intense scrutiny of the Sun comes from a report of a white-light flare in 1705 and from the numerous reports of new <span class="hlt">sunspots</span> entering the disk of the Sun.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22004541-evolution-spinning-braiding-helicity-fluxes-solar-active-region-noaa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22004541-evolution-spinning-braiding-helicity-fluxes-solar-active-region-noaa"><span>EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio, E-mail: ravindra@iiap.res.in, E-mail: yosimura@solar.physics.montana.edu, E-mail: dasso@df.uba.ar</p> <p>2011-12-10</p> <p>The line-of-sight magnetograms from Solar Optical Telescope Narrowband Filter Imager observations of NOAA Active Region 10930 have been used to study the evolution of spinning and braiding helicities over a period of five days starting from 2006 December 9. The north (N) polarity <span class="hlt">sunspot</span> was the follower and the south (S) polarity <span class="hlt">sunspot</span> was the leader. The N-polarity <span class="hlt">sunspot</span> in the active region was rotating in the counterclockwise direction. The rate of rotation was small during the first two days of observations and it increased up to 8 Degree-Sign hr{sup -1} on the third day of the observations. On themore » fourth and fifth days it remained at 4 Degree-Sign hr{sup -1} with small undulations in its magnitude. The <span class="hlt">sunspot</span> rotated about 260 Degree-Sign in the last three days. The S-polarity <span class="hlt">sunspot</span> did not complete more than 20 Degree-Sign in five days. However, it changed its direction of rotation five times over a period of five days and injected both the positive and negative type of spin helicity fluxes into the corona. Through the five days, both the positive and negative <span class="hlt">sunspot</span> regions injected equal amounts of spin helicity. The total injected helicity is predominantly negative in sign. However, the sign of the spin and braiding helicity fluxes computed over all the regions were reversed from negative to positive five times during the five-day period of observations. The reversal in spinning helicity flux was found before the onset of the X3.4-class flare, too. Though, the rotating <span class="hlt">sunspot</span> has been observed in this active region, the braiding helicity has contributed more to the total accumulated helicity than the spinning helicity. The accumulated helicity is in excess of -7 Multiplication-Sign 10{sup 43} Mx{sup 2} over a period of five days. Before the X3.4-class flare that occurred on 2006 December 13, the rotation speed and spin helicity flux increased in the S-polarity <span class="hlt">sunspot</span>. Before the flare, the total injected helicity was larger than -6</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080043593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080043593"><span>Using the Modified Precursor Method to Estimate the Size of Cycle 24</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2008-01-01</p> <p>Modified geomagnetic precursor techniques for predicting the size of the following <span class="hlt">sunspot</span> cycle are developed, where these techniques use the 12-month moving averages of the number of disturbed days (when Ap greater than or equals 25), the Ap index, the aa index, and the aaI index at about 4 yr during the declining portion of the preceding <span class="hlt">sunspot</span> cycle. For cycle 24, these techniques suggest that its RM will measure about 130 +/- 14, a value outside the consensus prediction interval of the low prediction (90 +/- 10) given by the NOAA Solar Cycle 24 Prediction Panel. Furthermore, cycle 24 is predicted to be a fast-rising cycle (ASC = 44 +/- 5 months), peaking before April 2012, presuming the official start of cycle 24 in March 2008. Also discussed are the variation of solar cycle lengths and Hale cycle effects, as <span class="hlt">related</span> to cycles 23 and 24.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012amld.book..505O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012amld.book..505O"><span>Classification</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oza, Nikunj</p> <p>2012-03-01</p> <p>A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. A set of training examples— examples with known output values—is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. For example, we may have data consisting of observations of <span class="hlt">sunspots</span>. In a classification learning task, our goal may be to learn to classify <span class="hlt">sunspots</span> into one of several types. Each example may correspond to one candidate <span class="hlt">sunspot</span> with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of <span class="hlt">sunspot</span>. This model can then be used to classify previously unseen <span class="hlt">sunspots</span> based on the candidate’s measurements. The generalization performance of a learned model (how closely the target outputs and the model’s predicted outputs agree for patterns that have not been presented to the learning algorithm) would provide an indication of how well the model has learned the desired mapping. More formally, a classification learning algorithm L takes a training set T as its input. The training set consists of |T| examples or instances. It is assumed that there is a probability distribution D from which all training examples are drawn independently—that is, all the training examples are independently and identically distributed (i.i.d.). The ith training example is of the form (x_i, y_i), where x_i is a vector of values of several features and y_i represents the class to be predicted.* In the <span class="hlt">sunspot</span> classification example given above, each training example</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22654142-coronal-dynamic-activities-declining-phase-solar-cycle','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22654142-coronal-dynamic-activities-declining-phase-solar-cycle"><span>CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jang, Minhwan; Choe, G. S.; Woods, T. N.</p> <p>2016-12-10</p> <p>It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in <span class="hlt">sunspot</span> number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the <span class="hlt">sunspot</span> cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the <span class="hlt">sunspot</span> minimum, in which polar CHs prevail, it shows a comparable secondmore » maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the <span class="hlt">sunspot</span> cycle.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22520170-formation-magnetic-structures-active-region-filaments-observed-nvst-sdo-hinode','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22520170-formation-magnetic-structures-active-region-filaments-observed-nvst-sdo-hinode"><span>THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yan, X. L.; Xue, Z. K.; Wang, J. C.</p> <p>2015-08-15</p> <p>To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small <span class="hlt">sunspots</span> with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small <span class="hlt">sunspot</span> with negative polarity. The small <span class="hlt">sunspot</span> rotated not only around another small sunspotmore » with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The <span class="hlt">sunspot</span> rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760007441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760007441"><span>Relationships between solar activity and climate change</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, W. O.</p> <p>1975-01-01</p> <p>The relationship between recurrent droughts in the High Plains of the United States and the double <span class="hlt">sunspot</span> cycle is discussed in detail. It is suggested that high solar activity is generally <span class="hlt">related</span> to an increase in meridional circulation and blocking patterns at high and intermediate latitudes, especially in winter, and the effect is <span class="hlt">related</span> to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000AcHA...11...81S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000AcHA...11...81S"><span>Solar physics in Potsdam. (German Title: Sonnenphysik in Potsdam)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staude, Jürgen</p> <p></p> <p>Solar research initiated the establishment of the Astrophysical Observatory Potsdam (AOP) in 1874. The present contribution outlines the development of solar physics in Potsdam from the early history of the AOP to this day. The main topics are the work of Karl Schwarzschild, the investigations <span class="hlt">related</span> to the general theory of <span class="hlt">relativity</span>, the foundation of the Einstein tower, Walter Grotrian's founding of modern coronal physics, and the investigations of <span class="hlt">sunspot</span> magnetic fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.634D"><span>Total solar irradiance reconstruction since 1700 using a flux transport model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie</p> <p></p> <p>Reconstructions of solar irradiance into the past are crucial for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic fields have been most successful in reproducing the measured irradiance variations. Daily magnetograms, such as those from MDI and HMI, provide the most detailed information on the changing distribution of the photospheric magnetic fields. Since such magnetograms are only available from 1974, we used a surface flux transport model to describe the evolution of the magnetic fields on the solar surface due to the effects of differential rotation, meridional circulation, and turbulent diffusivity, before 1974. In this model, the sources of magnetic flux are the active regions, which are introduced based on <span class="hlt">sunspot</span> group areas, positions, and tilt angles. The RGO record is, however, only available since 1874. Here we present a model of solar irradiance since 1700, which is based on a semi-synthetic <span class="hlt">sunspot</span> record. The semi-synthetic record was obtained using statistical relationships between <span class="hlt">sunspot</span> group properties (areas, positions, tilt angles) derived from the RGO record on one hand, and the cycle strength and phase derived from the <span class="hlt">sunspot</span> group number (Rg) on the other. These relationships were employed to produce daily records of <span class="hlt">sunspot</span> group positions, areas, and tilt angles before 1874. The semi-synthetic records were fed into the surface flux transport model to simulate daily magnetograms since 1700. By combining the simulated magnetograms with a SATIRE-type model, we then reconstructed total solar irradiance since 1700.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950058980&hterms=discussion+english&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddiscussion%2Benglish','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950058980&hterms=discussion+english&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddiscussion%2Benglish"><span>A discussion of plausible solar irradiance variations, 1700-1992</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoyt, Douglas V.; Schatten, Kenneth H.</p> <p>1993-01-01</p> <p>From satellite observations the solar total irradiance is known to vary. <span class="hlt">Sunspot</span> blocking, facular emission, and network emission are three identified causes for the variations. In this paper we examine several different solar indices measured over the past century that are potential proxy measures for the Sun's irradiance. These indices are (1) the equatorial solar rotation rate, (2) the <span class="hlt">sunspot</span> structure, the decay rate of individual <span class="hlt">sunspots</span>, and the number of <span class="hlt">sunspots</span> without umbrae, and (3) the length and decay rate of the <span class="hlt">sunspot</span> cycle. Each index can be used to develop a model for the Sun's total irradiance as seen at the Earth. Three solar indices allow the irradiance to be modeled back to the mid-1700s. The indices are (1) the length of the solar cycle, (2) the normalized decay rate of the solar cycle, and (3) the mean level of solar activity. All the indices are well correlated, and one possible explanation for their nearly simultaneous variations is changes in the Sun's convective energy transport. Although changes in the Sun's convective energy transport are outside the realm of normal stellar structure theory (e.g., mixing length theory), one can imagine variations arising from even the simplest view of <span class="hlt">sunspots</span> as vertical tubes of magnetic flux, which would serve as rigid pillas affecting the energy flow patterns by ensuring larger-scale eddies. A composite solar irradiance model, based upon these proxies, is compared to the northern hemisphere temperature depatures for 1700-1992. Approximately 71% of the decadal variance in the last century can be modeled with these solar indices, although this analysis does not include anthropogenic or other variations which would affect the results. Over the entire three centuries, approx. 50% of the variance is modeled. Both this analysis and previous similar analyses have correlations of model solar irradiances and measured Earth surface temperatures that are significant at better than the 95% confidence level</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAVSO..41R.149H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAVSO..41R.149H"><span>AAVSO Solar Observers Worldwide</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howe, R.</p> <p>2013-06-01</p> <p>(Abstract only) For visual solar observers there has been no biological change in the "detector" (human eye) - at century scales (eye + visual cortex) does not change much over time. Our capacity to "integrate" seeing distortions is not just simple averaging! The visual cortex plays an essential role, and until recently only the SDO-HMI (Solar Dynamics Observatory, Helioseismic and Magnetic Imager) has had the capacity to detect the smallest <span class="hlt">sunspots</span>, called pores. Prior to this the eye was superior to photography and CCD. Imaged data are not directly comparable or substitutable to counts by eye, as the effects of sensor/optical resolution and seeing will have a different influence on the resulting <span class="hlt">sunspot</span> counts for images when compared to the human eye. Also contributing to the complex task of counting <span class="hlt">sunspots</span> is differentiating between a <span class="hlt">sunspot</span> (which is usually defined as having a darker center (umbra) and lighter outer ring (penumbra)) and a pore, made even more complex by the conflicting definitions of the word "pore" in the solar context: "pore" can mean a small spot without penumbra or "pore" can mean a random intergranular blemish that is not a true <span class="hlt">sunspot</span>. The overall agreement is that the smallest spot size is near 2,000 km or ~3 arc sec, (Loughhead, R. E. and Bray, R. J. 1961, Australian J. Phys., 14, 347). <span class="hlt">Sunspot</span> size is dictated by granulation dynamics rather than spot size (cancellation of convective motion), and by the lifetime of the pore, which averages from 10 to 30 minutes. There is no specific aperture required for AAVSO observers contributing <span class="hlt">sunspot</span> observations. However, the detection of the smallest spots is influenced by the resolution of the telescope. Two factors to consider are the theoretical optical resolution (unobstructed aperture), Rayleigh criterion: theta = 138 / D(mm), and Dawes criterion: theta = 116 / D(mm) (http://www.telescope-optics.net/telescope_resolution.htm). However, seeing is variable with time; daytime range will</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21207.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21207.html"><span>Almost Spotless</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-11-30</p> <p>This week the sun was hitting its lowest level of solar activity since 2011 (Nov. 14-18, 2016) as it gradually marches toward solar minimum. This activity is usually measured by <span class="hlt">sunspot</span> count and over the past several days the sun has been almost spotless. The sun has a pendulum-like pattern of solar cycle of activity that extends over about an 11-year period. The last peak of activity was in early 2014. At this point in time, the <span class="hlt">sunspot</span> numbers seem to be sliding downwards faster than expected, though the solar minimum level should not occur until 2021. No doubt more and larger <span class="hlt">sunspots</span> will inevitably appear, but we'll just have to wait and see. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21207</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011sdmi.confE..16C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011sdmi.confE..16C"><span>Review and New Results of Local Helioseismology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, Dean-Yi</p> <p>2011-10-01</p> <p>We briefly review various methods used in local helioseismology, and discuss our recent results on the acoustic waves scattered by <span class="hlt">sunspots</span>. We use a deconvolution method to obtain the 2-D wavefunction of the scattered wave from the cross correlations between the incident wave and the signal at various points on the surface. The wavefunctions of scattered waves associated with various incident waves could be used to probe the <span class="hlt">sunspot</span>. The interference fringes between the scattered wave and the incident wave are detected because the coherent time of the incident wave is of the order of wave period. These interference fringes play the same role as a hologram in optics. We demonstrate that these interference fringes (hologram) can be used to reconstruct the 2-D scattered wavefield of the <span class="hlt">sunspot</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040000097','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040000097"><span>Gauging the Nearness and Size of Cycle Maximum</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Robert M.; Hathaway, David H.</p> <p>2003-01-01</p> <p>A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing <span class="hlt">sunspot</span> cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international <span class="hlt">sunspot</span> number and the maximum value of the 2-mo moving average of monthly mean <span class="hlt">sunspot</span> number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...846...99M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...846...99M"><span>The Starspots of HAT-P-11: Evidence for a Solar-like Dynamo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morris, Brett M.; Hebb, Leslie; Davenport, James R. A.; Rohn, Graeme; Hawley, Suzanne L.</p> <p>2017-09-01</p> <p>We measure the starspot radii and latitude distribution on the K4 dwarf HAT-P-11 from Kepler short-cadence photometry. We take advantage of starspot occultations by HAT-P-11’s highly misaligned planet to compare the spot size and latitude distributions to those of <span class="hlt">sunspots</span>. We find that HAT-P-11’s spots are distributed in latitude much like <span class="hlt">sunspots</span> near the solar activity maximum, with a mean spot latitude of ≈16° ± 1°. The majority of HAT-P-11’s starspots have physical sizes that closely resemble the sizes of <span class="hlt">sunspots</span> at solar maximum. We estimate the mean spotted area coverage on HAT-P-11 to be {3}-1+6 % , roughly two orders of magnitude greater than the typical solar spotted area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRA..110.8106R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRA..110.8106R"><span>Reexamination of the coronal index of solar activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rybanský, M.; Rušin, V.; Minarovjech, M.; Klocok, L.; Cliver, E. W.</p> <p>2005-08-01</p> <p>The coronal index (CI) of solar activity is the irradiance of the Sun as a star in the coronal green line (Fe XIV, 530.3 nm or 5303 Å). It is derived from ground-based observations of the green corona made by the network of coronal stations (currently Kislovodsk, Lomnický Štít, Norikura, and Sacramento Peak). The CI was introduced by Rybanský (1975) to facilitate comparison of ground-based green line measurements with satellite-based extreme ultraviolet and soft X-ray observations. The CI since 1965 is based on the Lomnický Štít photometric scale; the CI was extended to earlier years by Rybanský et al. (1994) based on cross-calibrations of Lomnický Štít data with measurements made at Pic du Midi and Arosa. The resultant 1939-1992 CI had the interesting property that its value at the peak of the 11-year cycle increased more or less monotonically from cycle 18 through cycle 22 even though the peak <span class="hlt">sunspot</span> number of cycle 20 exhibited a significant local minimum between that of cycles 19 and 21. Rušin and Rybanský (2002) recently showed that the green line intensity and photospheric magnetic field strength were highly correlated from 1976 to 1999. Since the photospheric magnetic field strength is highly correlated with <span class="hlt">sunspot</span> number, the lack of close correspondence between the <span class="hlt">sunspot</span> number and the CI from 1939 to 2002 is puzzling. Here we show that the CI and <span class="hlt">sunspot</span> number are highly correlated only after 1965, calling the previously-computed coronal index for earlier years (1939-1965) into question. We can use the correlation between the CI and <span class="hlt">sunspot</span> number (also the 2800 MHz radio flux and the cosmic ray intensity) to recompute daily values of the CI for years before 1966. In fact, this method can be used to obtain CI values as far back as we have reliable <span class="hlt">sunspot</span> observations (˜1850). The net result of this exercise is a CI that closely tracks the <span class="hlt">sunspot</span> number at all times. We can use the <span class="hlt">sunspot</span>-CI relationship (for 1966-2002) to identify</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008RELEA...6...21A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008RELEA...6...21A"><span><span class="hlt">Sunspots</span> and the Newcomb-Benford Law. (Spanish Title: Manchas Solares y la Ley de Newcomb-Benford.) Manchas Solares e a Lei de Newcomb-Benford</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alves, Mauro A.; Lyra, Cássia S.</p> <p>2008-12-01</p> <p>The Newcomb-Benford's Law (LNB) of first digits is introduced to high school students in an extracurricular activity through the study of <span class="hlt">sunspots</span>. The LNB establishes that the first digits of various sets of data describing natural occurrences are not distributed uniformly, but according to a logarithmic distribution of probability. The LNB is counter-intuitive and is a good example of how mathematics applied to the study of natural phenomena can provide surprising and unexpected results serving also as a motivating agent in the study of physical sciences. En este trabajo se describe una actividad extracurricular donde se presenta a los estudiantes la ley de los primeros dígitos de Newcomb-Benford (LNB) con el estudio de manchas solares. La LNB establece que los primeros dígitos de algunos tipos de dados de ocurrencia natural no están distribuidos en manera uniforme, pero sí de acuerdo con una distribución logarítmica de probabilidad. La LNB es contra-intuitiva y es un excelente ejemplo de como las matemáticas aplicadas al estudio de fenómenos naturales pueden sorprender al estudiante, sirviendo también como elemento motivador en la educación de ciencias y de matemáticas. Este trabalho descreve uma atividade extracurricular na qual a lei dos primeiros dígitos de Newcomb-Benford (LNB) é introduzida a estudantes através do estudo de manchas solares. A LNB estabelece que os primeiros dígitos de vários tipos de conjunto de dados de ocorrência natural não são distribuídos de maneira uniforme, mas sim de acordo com uma distribuição logarítmica de probabilidade. A LNB é contra-intuitiva e é um ótimo exemplo de como a matemática aplicada ao estudo de fenômenos naturais pode fornecer resultados surpreendentes e inesperados, servindo também como um agente motivador no ensino de ciências e matemática.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...606A..72P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...606A..72P"><span>Solar differential rotation in the period 1964-2016 determined by the Kanzelhöhe data set</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poljančić Beljan, I.; Jurdana-Šepić, R.; Brajša, R.; Sudar, D.; Ruždjak, D.; Hržina, D.; Pötzi, W.; Hanslmeier, A.; Veronig, A.; Skokić, I.; Wöhl, H.</p> <p>2017-10-01</p> <p>Context. Kanzelhöhe Observatory for Solar and Environmental Research (KSO) provides daily multispectral synoptic observations of the Sun using several telescopes. In this work we made use of <span class="hlt">sunspot</span> drawings and full disk white light CCD images. Aims: The main aim of this work is to determine the solar differential rotation by tracing <span class="hlt">sunspot</span> groups during the period 1964-2016, using the KSO <span class="hlt">sunspot</span> drawings and white light images. We also compare the differential rotation parameters derived in this paper from the KSO with those collected fromf other data sets and present an investigation of the north - south rotational asymmetry. Methods: Two procedures for the determination of the heliographic positions were applied: an interactive procedure on the KSO <span class="hlt">sunspot</span> drawings (1964-2008, solar cycles Nos. 20-23) and an automatic procedure on the KSO white light images (2009-2016, solar cycle No. 24). For the determination of the synodic angular rotation velocities two different methods have been used: a daily shift (DS) method and a robust linear least-squares fit (rLSQ) method. Afterwards, the rotation velocities had to be converted from synodic to sidereal, which were then used in the least-squares fitting for the solar differential rotation law. A comparison of the interactive and automatic procedures was performed for the year 2014. Results: The interactive procedure of position determination is fairly accurate but time consuming. In the case of the much faster automatic procedure for position determination, we found the rLSQ method for calculating rotational velocities to be more reliable than the DS method. For the test data from 2014, the rLSQ method gives a <span class="hlt">relative</span> standard error for the differential rotation parameter B that is three times smaller than the corresponding <span class="hlt">relative</span> standard error derived for the DS method. The best fit solar differential rotation profile for the whole time period is ω(b) = (14.47 ± 0.01)-(2.66 ± 0.10)sin2b (deg/day) for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090005029&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorona','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090005029&hterms=corona&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcorona"><span>Recent Studies of the Behavior of the Sun's White-Light Corona Over Time</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>SaintCyr, O. C.; Young, D. E.; Pesnell, W. D.; Lecinski, A.; Eddy, J.</p> <p>2008-01-01</p> <p>Predictions of upcoming solar cycles are often <span class="hlt">related</span> to the nature and dynamics of the Sun's polar magnetic field and its influence on the corona. For the past 30 years we have a more-or-less continuous record of the Sun's white-light corona from groundbased and spacebased coronagraphs. Over that interval, the large scale features of the corona have varied in what we now consider a 'predictable' fashion--complex, showing multiple streamers at all latitudes during solar activity maximum; and a simple dipolar shape aligned with the rotational pole during solar minimum. Over the past three decades the white-light corona appears to be a better indicator of 'true' solar minimum than <span class="hlt">sunspot</span> number since <span class="hlt">sunspots</span> disappear for months (even years) at solar minimum. Since almost all predictions of the timing of the next solar maximum depend on the timing of solar minimum, the white-light corona is a potentially important observational discriminator for future predictors. In this contribution we describe recent work quantifying the large-scale appearance of the Sun's corona to correlate it with the <span class="hlt">sunspot</span> record, especially around solar minimum. These three decades can be expanded with the HAO archive of eclipse photographs which, although sparse compared to the coronagraphic coverage, extends back to 1869. A more extensive understanding of this proxy would give researchers confidence in using the white-light corona as an indicator of solar minimum conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>