Sample records for zymogen granule membrane

  1. Isolation of zymogen granules from rat pancreas.

    PubMed

    Rindler, Michael J

    2006-01-01

    This unit describes methods for preparing zymogen granules from rat pancreas. Zymogen granules are storage organelles in pancreatic acinar cells containing digestive enzymes that are released into the pancreatic duct. The protocols in this unit take advantage of the large size (up to 1 microm diameter) and high density (>1.20 g/cm(3) on sucrose gradients) of the granules as compared to other cellular organelles. They use a combination of differential sedimentation and density gradient separation to accomplish the purification. Similar procedures can be used to isolate zymogen granules from mouse pancreas and canine pancreas. A protocol for preparing zymogen granules from dog pancreas is also included.

  2. Identification of SNAREs that mediate zymogen granule exocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, James A.; Campos-Toimil, Manuel; Thomas, Paul

    2007-08-03

    A secretagogue-stimulated pancreatic acinar cell releases digestive enzymes from its apical pole. We attempted to identify the SNAREs involved in zymogen granule exocytosis. Antibodies against syntaxins 2 and 3, SNAP-23 and VAMP 8, and the corresponding recombinant SNAREs, inhibited amylase secretion from streptolysin O-permeabilised acini; other anti-SNARE antibodies and SNAREs had no effect. Botulinum neurotoxin C, which cleaved syntaxin 2 and (to a lesser extent) syntaxin 3, but not syntaxins 4, 7 or 8, also inhibited exocytosis. We propose that syntaxin 2, SNAP-23 and VAMP 8 mediate primary granule-plasma membrane fusion. Syntaxin 3 may be involved in secondary granule-granule fusion.

  3. Dual modulation of chloride conductance by nucleotides in pancreatic and parotid zymogen granules.

    PubMed Central

    Thévenod, F; Gasser, K W; Hopfer, U

    1990-01-01

    The regulation of Cl- conductance by cytoplasmic nucleotides was investigated in pancreatic and parotid zymogen granules. Cl- conductance was assayed by measuring the rate of cation-ionophore-induced osmotic lysis of granules suspended in iso-osmotic salt solutions. Both inhibition and stimulation were observed, depending on the type and concentration of nucleotide. Under optimal conditions, the average inhibition measured in different preparations was 1.6-fold, whereas the average stimulation was 4.4-fold. ATP was inhibitory at 1-10 microM but stimulated Cl- conductance above 50 microM. Stimulation by ATP was more pronounced in granules with low endogenous Cl- conductance. The potency of nucleotides in terms of inhibition was ATP greater than adenosine 5'-[gamma-thio]triphosphate (ATP[S]) greater than UTP much greater than or equal to CTP much greater than or equal to GTP much greater than or equal to guanosine 5'-[gamma-thio]triphosphate (GTP[S]) much greater than or equal to ITP. The potency with respect to stimulation had the following order: adenosine 5'-[beta gamma-methylene]triphosphate (App[CH2]p) greater than ATP greater than guanosine 5'-[beta-thio]diphosphate (GDP[S]). Adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p) was also stimulatory, and was more potent than ATP in the parotid granules, but less potent in the pancreatic granules. Aluminium fluoride stimulated Cl- conductance maximally at 15-30 microM-Al3+ and 10-15 mM-F. F was less effective at higher concentrations. Protein phosphorylation by kinases was apparently not involved, since the nucleotide effects (1) could be mimicked by non-hydrolysable analogues of ATP and GTP, (2) showed reversibility, and (3) were not abolished by the protein kinase inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H-7) or staurosporine. The data suggest the presence of at least two binding sites for nucleotides, whereby occupancy of one induces inhibition and occupancy of the other induces stimulation

  4. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.

    PubMed

    Hammel, Ilan; Anaby, Debbie

    2007-09-01

    The introduction of wet SEM imaging technology permits electron microscopy of wet samples. Samples are placed in sealed specimen capsules and are insulated from the vacuum in the SEM chamber by an impermeable, electron-transparent membrane. The complete insulation of the sample from the vacuum allows direct imaging of fully hydrated, whole-mount tissue. In the current work, we demonstrate direct inspection of thick pancreatic tissue slices (above 400 mum). In the case of scanning of the pancreatic surface, the boundaries of intracellular features are seen directly. Thus no unfolding is required to ascertain the actual particle size distribution based on the sizes of the sections. This method enabled us to investigate the true granule size distribution and confirm early studies of improved conformity to a Poisson-like distribution, suggesting that the homotypic granule growth results from a mechanism, which favors the addition of a single unit granule to mature granules.

  5. COMPOSITION OF CELLULAR MEMBRANES IN THE PANCREAS OF THE GUINEA PIG

    PubMed Central

    Meldolesi, J.; Jamieson, J. D.; Palade, G. E.

    1971-01-01

    The lipid composition of rough and smooth microsomal membranes, zymogen granule membranes, and a plasmalemmal fraction from the guinea pig pancreatic exocrine cell has been determined. As a group, membranes of the smooth variety (i.e., smooth microsomes, zymogen granule membranes, and the plasmalemma) were similar in their content of phospholipids, cholesterol and neutral lipids, and in the ratio of total lipids to membrane proteins. In contrast, rough microsomal membranes contained much less sphingomyelin and cholesterol and possessed a smaller lipid/protein ratio. All membrane fractions were unusually high in their content of lysolecithin (up to ∼20% of the total phospholipids) and of neutral lipids, especially fatty acids. The lysolecithin content was shown to be due to the hydrolysis of membrane lecithin by pancreatic lipase; the fatty acids, liberated by the action of lipase on endogenous triglyceride stores, are apparently scavenged by the membranes from the suspending media. Similar artifactually high levels of lysolecithin and fatty acids were noted in hepatic microsomes incubated with pancreatic postmicrosomal supernatant. E 600, an inhibitor of lipase, largely prevented the appearance of lysolecithin and fatty acids in pancreatic microsomes and in liver microsomes treated with pancreatic supernatant. PMID:5555573

  6. Phosphatidylinositol kinase. A component of the chromaffin-granule membrane

    PubMed Central

    Phillips, John H.

    1973-01-01

    Phosphorylation of bovine chromaffin granules by ATP leads to the formation of diphosphoinositide in the granule membrane. Both phosphatidylinositol kinase and its substrate are components of this membrane, and triphosphoinositide is not formed under the conditions of the assay. The reaction is Mg2+-dependent and is stimulated by Mn2+ and F− ions. The initial reaction is rapid, with a broad pH profile and a `transition' temperature for its activation energy at 27°C. The apparent Km for ATP is 5μm. ATP, N-ethylmaleimide, Cu2+ ions and NaIO4 are inhibitory. The phospholipids of chromaffin-granule membranes have been analysed: 6.8% of the lipid P is found in phosphatidylinositol, and only 2–3% in phosphatidylserine. Comparison of the rate of phosphorylation of intact and lysed granules suggests that the sites for phosphorylation are on the outer (cytoplasmic) surface of the granules, and diphosphoinositide may therefore make an important contribution to the charge of the chromaffin granule in vivo. PMID:4360713

  7. Common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R.S.; Cameron, P.L.; Castle, J.D.

    1986-10-01

    A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues - pancreatic, lacrimal, and submandibular - from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pImore » and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.« less

  8. Glycoconjugate pattern of membranes in the acinar cell of the rat pancreas.

    PubMed

    Willemer, S; Köhler, H; Naumann, R; Kern, H F; Adler, G

    1990-01-01

    Lectin-binding studies were performed at the ultrastructural level to characterize glycoconjugate patterns on membrane systems in pancreatic acinar cells of the rat. Five lectins reacting with different sugar moieties were applied to ultrathin frozen sections: concanavalin A (ConA): glucose, mannose; wheat-germ agglutinin (WGA): N-acetylglucosamine, sialic acid; Ricinus communis agglutinin I (RCA I): galactose; Ulex europaeus agglutinin I (UEA I): L-fucose; soybean agglutinin (SBA): N-acetylgalactosamine). Binding sites of lectins were visualized either by direct conjugation to colloidal gold or by the use of a three-step procedure involving additional immune reactions. The rough endoplasmic reticulum and the nuclear envelope of acinar cells was selectively labelled for ConA. The membranes of the Golgi apparatus bound all lectins applied with an increasing intensity proceeding from the cis- to the trans-Golgi area for SBA, UEA I and WGA. In contrast RCA I selectively labelled the trans-Golgi cisternae. The membranes of condensing vacuoles and zymogen granules were labelled for all lectins used although the density of the label differed between the lectins. In contrast the content of zymogen granules failed to bind SBA and WGA. Lysosomal bodies (membranes and content) revealed binding sites for all lectins used. The plasma membranes were heavily labelled by all lectins except for SBA which showed only a weak binding to the lateral and the apical plasma membrane. These results are in accordance to current biochemical knowledge of the successive steps in the glycosylation of membrane proteins. It could be demonstrated, that the cryo-section technique is suitable for the fine structural localisation of surface glycoconjugates of plasma membranes and internal membranes in pancreatic acinar cells using plant lectins.

  9. Membrane interactions between secretion granules and plasmalemma in three exocrine glands

    PubMed Central

    Tanaka, Y; De Camilli, P; Meldolesi, J

    1980-01-01

    Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically

  10. Ectopic expression of syncollin in INS-1 beta-cells sorts it into granules and impairs regulated secretion.

    PubMed

    Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong

    2005-03-22

    Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.

  11. Intracellular proteolysis of pancreatic zymogens.

    PubMed Central

    Gorelick, F. S.; Modlin, I. M.; Leach, S. D.; Carangelo, R.; Katz, M.

    1992-01-01

    Activation of pancreatic digestive zymogens within the pancreatic acinar cell may be an early event in the development of pancreatitis. To detect such activation, an immunoblot assay has been developed that measures the relative amounts of inactive zymogens and their respective active enzyme forms. Using this assay, high doses of cholecystokinin or carbachol were found to stimulate the intracellular conversion of at least three zymogens (procarboxypeptidase A1, procarboxypeptidase B, and chymotrypsinogen 2) to their active forms. Thus, this conversion may be a generalized phenomenon of pancreatic zymogens. The conversion is detected within ten minutes of treatment and is not associated with changes in acinar cell morphology; it has been predicted that the lysosomal thiol protease, cathepsin B, may initiate this conversion. Small amounts of cathepsin B are found in the secretory pathway, and cathepsin B can activate trypsinogen in vitro; however, exposure of acini to a thiol protease inhibitor (E64) did not block this conversion. Conversion was inhibited by the serine protease inhibitor, benzamidine, and by raising the intracellular pH, using chloroquine or monensin. This limited proteolytic conversion appears to require a low pH compartment and a serine protease activity. After long periods of treatment (60 minutes), the amounts of the active enzyme forms began to decrease; this observation suggested that the active enzyme forms were being degraded. Treatment of acini with E64 reduced this late decrease in active enzyme forms, suggesting that thiol proteases, including lysosomal hydrolases, may be involved in the degradation of the active enzyme forms. These findings indicate that pathways for zymogen activation as well as degradation of active enzyme forms are present within the pancreatic acinar cell. Images FIG. 1 FIG. 6 PMID:1340058

  12. Proliferative capability of parietal and zymogen cells.

    PubMed Central

    Chen, K Y; Withers, H R

    1975-01-01

    Six to eight week old male mice of C3Hf/Bu strain were killed and studied at various times from 30 minutes to 30 days after tritiated thymidine (3H-TdR) injection. Labelling of parietal and zymogen cells was observed in autoradiographic histological specimens. There were 590 +/- 22 gastric glands per circumference at the body of the stomach. Parietal cells were counted as 16-2 (14-0-18-4) per gland or 9600 per circumference. There were 11-4 (9-4-13-7) zymogen cells per gland or 6700 per circumference. Two labelled immature parietal cells per circumference were seen 30 minutes after 3H-TdR injection, equivalent to a ratio of 1:5000; more mature labelled parietal cells were seen at later times up to 30 days. There was evidence for proliferation during maturation and downward migration of cells toward the body and the lower part of the gastric gland. Our data support earlier evidence that immature parietal cells constantly supply mature parietal cells through migration from a proliferative zone. Whether the parietal cells are derived from the same stem cell compartment as surface epithelium cells is unclear at the present time. An average of 2-6 zymogen cells per circumference, or 1:2500, was found to be labelled. While most zymogen cells were not proliferating, cells entered the proliferating cycle at random. Based on the findings reported in this paper and the radiation responses of both parietal and zymogen cells, it is postulated that they form part of a slow renewal system. Images Fig. 1 (cont.) Fig. 1 (cont.) Fig. 1 (cont.) Fig. 1 Fig. 2 (cont.) Fig. 2 (cont.) Fig. 2 PMID:1213947

  13. Alcohols enhance caerulein-induced zymogen activation in pancreatic acinar cells

    PubMed Central

    LU, ZHAO; KARNE, SURESH; KOLODECIK, THOMAS; GORELICK, FRED S.

    2010-01-01

    Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10−10 to 10−7 M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of ≥2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation. PMID:11842000

  14. Deficiency of Sbds in the mouse pancreas leads to features of Shwachman-Diamond syndrome, with loss of zymogen granules.

    PubMed

    Tourlakis, Marina E; Zhong, Jian; Gandhi, Rikesh; Zhang, Siyi; Chen, Lingling; Durie, Peter R; Rommens, Johanna M

    2012-08-01

    Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. On the so-called membrane coating granules in keratinized lichen planus lesions of the buccal mucosa.

    PubMed

    El-Labban, N G; Wood, R D

    1982-11-01

    Serial sections of the so-called membrane-coating granules have been examined in keratinized oral epithelium of lichen planus lesions. As with 'granules' apparent in non-keratinized epithelium, it is found they do not represent specialized intra-cytoplasmic organelles, but are the result of sectioning at different areas, levels and planes through the plasma membrane of interdigitating cell processes. Such 'granules' appear mostly in the superficial, but not deep, part of the cytoplasm of the upper prickle cells. This is considered to be due to topographic differences between the upper and under surfaces of these cells and the presence of narrower intercellular spaces than those between deeper epithelial cells. Such arrangement often results in cell processes in sections appearing free in the superficial part of the cell below. The appearance of 'granules' arises when the plane of section is not at right angles to the two plasma membranes surrounding these processes.

  16. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako

    Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less

  17. Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury.

    PubMed

    Grady, T; Mah'Moud, M; Otani, T; Rhee, S; Lerch, M M; Gorelick, F S

    1998-11-01

    The pathological activation of digestive zymogens within the pancreatic acinar cell probably plays a central role in initiating many forms of pancreatitis. To examine the relationship between zymogen activation and acinar cell injury, we investigated the effects of secretagogue treatment on isolated pancreatic acini. Immunofluorescence studies using antibodies to the trypsinogen-activation peptide demonstrated that both CCK (10(-7) M) hyperstimulation and bombesin (10(-5) M) stimulation of isolated acini resulted in trypsinogen processing to trypsin. These treatments also induced the proteolytic processing of procarboxypeptidase A1 to carboxypeptidase A1 (CA1). After CCK hyperstimulation, most CA1 remained in the acinar cell. In contrast, the CA1 generated by bombesin was released from the acinar cell. CCK hyperstimulation of acini was associated with cellular injury, whereas bombesin treatment did not induce injury. These studies suggest that 1) proteolytic zymogen processing occurs within the pancreatic acinar cell and 2) both zymogen activation and the retention of enzymes within the acinar cell may be required to induce injury.

  18. Imaging Ca2+-triggered exocytosis of single secretory granules on plasma membrane lawns from neuroendocrine cells.

    PubMed

    Lang, Thorsten

    2008-01-01

    This cell-free assay for exocytosis is particularly useful when spatial information about exocytotic sites and biochemical access to the plasma membrane within less than a minute is required. It is based on the study of plasma membrane lawns from secretory cells exhibiting secretory granules filled with neuropeptide Y-green fluorescent protein (NPY-GFP). The sample is prepared by subjecting NPY-GFP-expressing cells to a brief ultrasound pulse, leaving behind a basal, flat plasma membrane with fluorescent attached secretory organelles. These sheets can then be incubated in defined solutions with the benefit that complete solution changes can be achieved in less than 1 min. Individual secretory granules are monitored in the docked state and during exocytosis by video microscopy.

  19. The life cycle of platelet granules.

    PubMed

    Sharda, Anish; Flaumenhaft, Robert

    2018-01-01

    Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.

  20. The Rab27a effector exophilin7 promotes fusion of secretory granules that have not been docked to the plasma membrane.

    PubMed

    Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro

    2013-02-01

    Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.

  1. GRA12, a Toxoplasma dense granule protein associated with the intravacuolar membranous nanotubular network.

    PubMed

    Michelin, Adeline; Bittame, Amina; Bordat, Yann; Travier, Laetitia; Mercier, Corinne; Dubremetz, Jean-François; Lebrun, Maryse

    2009-02-01

    The intracellular protozoan parasite Toxoplasma gondii develops within the parasitophorous vacuole (PV), an intracellular niche in which it secretes proteins from secretory organelles named dense granules and rhoptries. Here, we describe a new dense granule protein that should now be referred to as GRA12, and that displays no homology with other proteins. Immunofluorescence and immuno-electron microscopy showed that GRA12 behaves similarly to both GRA2 and GRA6. It is secreted into the PV from the anterior pole of the parasite soon after the beginning of invasion, transits to the posterior invaginated pocket of the parasite where a membranous tubulovesicular network is first assembled, and finally resides throughout the vacuolar space, associated with the mature membranous nanotubular network. GRA12 fails to localise at the parasite posterior end in the absence of GRA2. Within the vacuolar space, like the other GRA proteins, GRA12 exists in both a soluble and a membrane-associated form. Using affinity chromatography experiments, we showed that in both the parasite and the PV soluble fractions, GRA12 is purified with the complex of GRA proteins associated with a tagged version of GRA2 and that this association is lost in the PV membranous fraction.

  2. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    PubMed

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  3. Structure and dynamics of zymogen human blood coagulation factor X.

    PubMed

    Venkateswarlu, Divi; Perera, Lalith; Darden, Tom; Pedersen, Lee G

    2002-03-01

    The solution structure and dynamics of the human coagulation factor X (FX) have been investigated to understand the key structural elements in the zymogenic form that participates in the activation process. The model was constructed based on the 2.3-A-resolution x-ray crystallographic structure of active-site inhibited human FXa (PDB:1XKA). The missing gamma-carboxyglutamic acid (GLA) and part of epidermal growth factor 1 (EGF1) domains of the light chain were modeled based on the template of GLA-EGF1 domains of the tissue factor (TF)-bound FVIIa structure (PDB:1DAN). The activation peptide and other missing segments of FX were introduced using homology modeling. The full calcium-bound model of FX was subjected to 6.2 ns of molecular dynamics simulation in aqueous medium using the AMBER6.0 package. We observed significant reorientation of the serine-protease (SP) domain upon activation leading to a compact multi-domain structure. The solution structure of zymogen appears to be in a well-extended conformation with the distance between the calcium ions in the GLA domain and the catalytic residues estimated to be approximately 95 A in contrast to approximately 83 A in the activated form. The latter is in close agreement with fluorescence studies on FXa. The S1-specificity residues near the catalytic triad show significant differences between the zymogen and activated structures.

  4. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.

    PubMed

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-05-25

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.

  5. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  6. Matriptase shedding is closely coupled with matriptase zymogen activation and requires de novo proteolytic cleavage likely involving its own activity

    PubMed Central

    Barndt, Robert; Gu, Yayun; Chen, Chien-Yu; Tseng, I-Chu; Su, Sheng-Fang; Wang, Jehng-Kang; Johnson, Michael D.

    2017-01-01

    The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs via a de novo proteolytic cleavage at sites located between the SEA domain and the CUB domain. Point or combined mutations at the four positively charged amino acid residues in the region following the SEA domain allowed Arg-186 to be identified as the primary cleavage site responsible for matriptase shedding. Kinetic studies further demonstrate that matriptase shedding is temporally coupled with matriptase zymogen activation. The onset of matriptase shedding lags one minute behind matriptase zymogen activation. Studies with active site triad Ser-805 point mutated matriptase, which no longer undergoes zymogen activation or shedding, further suggests that matriptase shedding depends on matriptase zymogen activation, and that matriptase proteolytic activity may be involved in its own shedding. Our studies uncover an autonomous mechanism coupling matriptase zymogen activation, proteolytic activity, and shedding such that a proportion of newly generated active matriptase escapes HAI-1-mediated rapid inhibition by shedding into the extracellular milieu. PMID:28829816

  7. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation.

    PubMed

    Kasai, Kazuo; Ohara-Imaizumi, Mica; Takahashi, Noriko; Mizutani, Shin; Zhao, Shengli; Kikuta, Toshiteru; Kasai, Haruo; Nagamatsu, Shinya; Gomi, Hiroshi; Izumi, Tetsuro

    2005-02-01

    The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic beta cells.

  8. Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury.

    PubMed

    Muili, Kamaldeen A; Ahmad, Mahwish; Orabi, Abrahim I; Mahmood, Syeda M; Shah, Ahsan U; Molkentin, Jeffery D; Husain, Sohail Z

    2012-04-15

    Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca(2+) is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca(2+) signaling is the Ca(2+)-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ-/-) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis.

  9. Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury

    PubMed Central

    Muili, Kamaldeen A.; Ahmad, Mahwish; Orabi, Abrahim I.; Mahmood, Syeda M.; Shah, Ahsan U.; Molkentin, Jeffery D.

    2012-01-01

    Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca2+ is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca2+ signaling is the Ca2+-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ−/−) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis. PMID:22323127

  10. Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin.

    PubMed Central

    Leach, S D; Modlin, I M; Scheele, G A; Gorelick, F S

    1991-01-01

    The mechanism by which digestive zymogens become activated during acute pancreatitis remains poorly understood. Given the ability for cholecystokinin (CCK) to induce pancreatitis in vivo, the effects of high dose CCK on preparations of isolated pancreatic acini were examined. Using an immunologic technique for the detection of zymogen activation, CCK was found to stimulate the conversion of procarboxypeptidase A1 to a 35-kD form having the same net charge and electrophoretic mobility as purified recombinant carboxypeptidase A1. This enhanced conversion was proportional to the dose of CCK (maximal at 100 nM), and time dependent. CCK also produced changes in the electrophoretic mobility of procarboxypeptidase B and chymotrypsinogen 2 immunoreactivity, consistent with activation of these zymogens. These events were detectable only within acinar cell pellets and not in the incubation medium, suggesting an intracellular site of conversion. The conversion of procarboxypeptidase A1 to its active form was inhibited by pretreatment with the weak base chloroquine (40 microM) and the protonophore monensin (10 microM). This conversion was also inhibited by pretreatment with the serine protease inhibitor benzamidine (10 mM) but not the cysteine protease inhibitor E64 (100 microM). The results suggest that high dose CCK stimulates the intracellular activation of digestive zymogens within isolated pancreatic acini. This event appears to require an acidic subcellular compartment and serine protease activity. Images PMID:1985109

  11. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.

    PubMed

    Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2008-07-01

    We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.

  12. Roles of CUB and LDL receptor class A domain repeats of a transmembrane serine protease matriptase in its zymogen activation

    PubMed Central

    Inouye, Kuniyo; Tomoishi, Marie; Yasumoto, Makoto; Miyake, Yuka; Kojima, Kenji; Tsuzuki, Satoshi; Fushiki, Tohru

    2013-01-01

    Matriptase is a type II transmembrane serine protease containing two complement proteases C1r/C1s–urchin embryonic growth factor–bone morphogenetic protein domains (CUB repeat) and four low-density lipoprotein receptor class A domains (LDLRA repeat). The single-chain zymogen of matriptase has been found to exhibit substantial protease activity, possibly causing its own activation (i.e. conversion to a disulfide-linked two-chain fully active form), although the activation seems to be mediated predominantly by two-chain molecules. Our aim was to assess the roles of CUB and LDLRA repeats in zymogen activation. Transient expression studies of soluble truncated constructs of recombinant matriptase in COS-1 cells showed that the CUB repeat had an inhibitory effect on zymogen activation, possibly because it facilitated the interaction of two-chain molecules with a matriptase inhibitor, hepatocyte growth factor activator inhibitor type-1. By contrast, the LDLRA repeat had a promoting effect on zymogen activation. The effect of the LDLRA repeat seems to reflect its ability to increase zymogen activity. The proteolytic activities were higher in pseudozymogen forms of recombinant matriptase containing the LDLRA repeat than in a pseudozymogen without the repeat. Our findings provide new insights into the roles of these non-catalytic domains in the generation of active matriptase. PMID:23038671

  13. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blotmore » analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a

  14. Secretory granule formation and membrane recycling by the trans-Golgi network in adipokinetic cells of Locusta migratoria in relation to flight and rest.

    PubMed

    Diederen, J H; Vullings, H G

    1995-03-01

    The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the trans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horse-radish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.

  15. Secretagogue-triggered Transfer of Membrane Proteins from Neuroendocrine Secretory Granules to Synaptic-like Microvesicles

    PubMed Central

    Strasser, Jane E.; Arribas, Monica; Blagoveshchenskaya, Anastasia D.; Cutler, Daniel F.

    1999-01-01

    The membrane proteins of all regulated secretory organelles (RSOs) recycle after exocytosis. However, the recycling of those membrane proteins that are targeted to both dense core granules (DCGs) and synaptic-like microvesicles (SLMVs) has not been addressed. Since neuroendocrine cells contain both RSOs, and the recycling routes that lead to either organelle overlap, transfer between the two pools of membrane proteins could occur during recycling. We have previously demonstrated that a chimeric protein containing the cytosolic and transmembrane domains of P-selectin coupled to horseradish peroxidase is targeted to both the DCG and the SLMV in PC12 cells. Using this chimera, we have characterized secretagogue-induced traffic in PC12 cells. After stimulation, this chimeric protein traffics from DCGs to the cell surface, internalizes into transferrin receptor (TFnR)-positive endosomes and thence to a population of secretagogue-responsive SLMVs. We therefore find a secretagogue-dependent rise in levels of HRP within SLMVs. In addition, the levels within SLMVs of the endogenous membrane protein, synaptotagmin, as well as a green fluorescent protein-tagged version of vesicle-associated membrane protein (VAMP)/synaptobrevin, also show a secretagogue-dependent increase. PMID:10436017

  16. PtdIns(4,5)P2 is not required for secretory granule docking.

    PubMed

    Omar-Hmeadi, Muhmmad; Gandasi, Nikhil R; Barg, Sebastian

    2018-06-01

    Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P 2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca 2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P 2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. rab3 mediates cortical granule exocytosis in the sea urchin egg.

    PubMed

    Conner, S; Wessel, G M

    1998-11-15

    Egg activation at fertilization in the sea urchin results in the exocytosis of approximately 15,000 cortical granules that are docked at the plasma membrane. Previously, we reported that several integral membrane proteins modeled in the SNARE hypothesis, synaptotagmin, VAMP, and syntaxin, in addition to a small GTPase of the ras superfamily, rab3, were present on cortical granules (Conner, S., Leaf, D., and Wessel, G., Mol. Reprod. Dev. 48, 1-13, 1997). Here we report that rab3 is associated with cortical granules throughout oogenesis, during cortical granule translocation, and while docked at the egg plasma membrane. Following cortical granule exocytosis, however, rab3 reassociates with a different population of vesicles, at least some of which are of endocytic origin. Because of its selective association with cortical granules in eggs and oocytes, we hypothesize that rab3 functions in cortical granule exocytosis. To test this hypothesis, we used a strategy of interfering with rab3 function by peptide competition with its effector domain, a conserved region within specific rab types. We first identified the effector domain sequence in Lytechinus variegatus eggs and find the sequence 94% identical to the effector domain of rab3 in Stronglocentrotus purpuratus. Then, with synthetic peptides to different regions of the rab3 protein, we find that cortical granule exocytosis is inhibited in eggs injected with effector domain peptides, but not with peptides from the hypervariable region or with a scrambled effector peptide. Additionally, effector-peptide-injected eggs injected with IP3 are blocked in their ability to exocytose cortical granules, suggesting that the inhibition is directly on the membrane fusion event and not the result of interference with the signal transduction mechanism leading to calcium release. We interpret these results to mean that rab3 functions in the regulation of cortical granule exocytosis following vesicle docking. Copyright 1998 Academic

  18. Distribution Profile of Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channels in α and β Cells of Pancreas: Dominant Localization in Secretory Granules and Common Error in Identification of Secretory Granule Membranes.

    PubMed

    Hur, Yong Suk; Yoo, Seung Hyun

    2015-01-01

    The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.

  19. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation.more » These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.« less

  20. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells

    PubMed Central

    Guo, Liang; Lichten, Louis A.; Ryu, Moon-Suhn; Liuzzi, Juan P.; Wang, Fudi; Cousins, Robert J.

    2010-01-01

    The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking. PMID:20133611

  1. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  2. Charge-Triggered Membrane Insertion of Matrix Metalloproteinase-7, Supporter of Innate Immunity and Tumors.

    PubMed

    Prior, Stephen H; Fulcher, Yan G; Koppisetti, Rama K; Jurkevich, Alexander; Van Doren, Steven R

    2015-11-03

    Matrix metalloproteinase-7 (MMP-7) sheds signaling proteins from cell surfaces to activate bacterial killing, wound healing, and tumorigenesis. The mechanism targeting soluble MMP-7 to membranes has been investigated. Nuclear magnetic resonance structures of the zymogen, free and bound to membrane mimics without and with anionic lipid, reveal peripheral binding to bilayers through paramagnetic relaxation enhancements. Addition of cholesterol sulfate partially embeds the protease in the bilayer, restricts its diffusion, and tips the active site away from the bilayer. Its insertion of hydrophobic residues organizes the lipids, pushing the head groups and sterol sulfate outward toward the enzyme's positive charge on the periphery of the enlarged interface. Fluorescence probing demonstrates a similar mode of binding to plasma membranes and internalized vesicles of colon cancer cells. Binding of bilayered micelles induces allosteric activation and conformational change in the auto-inhibitory peptide and the adjacent scissile site, illustrating a potential intermediate in the activation of the zymogen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comparison and Analysis of Membrane Fouling between Flocculent Sludge Membrane Bioreactor and Granular Sludge Membrane Bioreactor

    PubMed Central

    Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang

    2012-01-01

    The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954

  4. Chromaffin granules in the rat adrenal medulla release their secretory content in a particulate fashion.

    PubMed

    Crivellato, Enrico; Belloni, Anna; Nico, Beatrice; Nussdorfer, Gastone G; Ribatti, Domenico

    2004-03-01

    Exocytosis is considered the main route of granule discharge in chromaffin cells. We recently provided ultrastructural evidence suggesting that piecemeal degranulation (PMD) occurs in mouse adrenal chromaffin cells. In the present study, we processed rat adrenal glands for transmission electron microscopy (TEM), and examined chromaffin cells for changes characteristic of PMD. Both adrenaline (A)- and noradrenaline (NA)-storing cells express ultrastructural features suggestive of a slow and particulate mode of granule discharge. In adrenaline-containing cells, some granules present enlarged dimensions accompanied by eroded or dissolved matrices. Likewise, a number of granules in NA-releasing cells show content reduction with variably expanded granule chambers. Dilated, empty granule containers are recognizable in the cytoplasm of both cell types. Characteristically, altered granules and empty containers are seen intermingled with normal, resting granules. In addition, chromaffin granules often show irregular profiles, with budding or tail-like projections of their limiting membranes. Thirty 150-nm-diameter membrane-bound vesicles with a moderately electron-dense or -lucent internal structure are observable in the cytoplasm of both cell types. These vesicles are seen among the granules and some of them are fused with the perigranule membranes in the process of attachment to or budding from the granules. These data add further support to the concept that PMD may be an alternative secretory pathway in adrenal chromaffin cells. Copyright 2004 Wiley-Liss, Inc.

  5. Characteristics of a Bacteriocin Derived from Streptococcus faecalis var. zymogenes Antagonistic to Diplococcus peumoniae

    PubMed Central

    Bottone, Edward; Allerhand, Jona; Pisano, Michael A.

    1971-01-01

    A bacteriocin-producing strain of Streptococcus faecalis var. zymogenes (E-1) was isolated from clinical material (conjunctiva). The active substance differed from bacteriocins described by other investigators primarily in its spectrum of antibacterial activity, especially by its marked inhibition of Diplococcus pneumoniae. The E-1 bacteriocin also inhibited nonhemolytic strains of enterococci as well as one-third of the Viridans group of streptococcal strains investigated. The degree of inhibition, however, as indicated by the size of the zones against the latter organisms, was significantly reduced. No activity was detected against any of the strains belonging to the following groups of bacteria: hemolytic enterococci, beta-hemolytic streptococci, nonhemolytic streptococci, staphylococci, and various gram-negative species. Similarly, three strains each of Bacillus cereus and Listeria monocytogenes and one strain of Erysipelothrix insidiosa were not inhibited. The bacteriocin was able to diffuse through bacterial membranes as well as cellulose dialyzer tubing. It was inactivated by heating to 80 C for 20 min but resisted inactivation by either trypsin or chloroform. Images PMID:4398532

  6. Nucleotide and bivalent cation specificity of the insulin-granule proton translocase.

    PubMed Central

    Hutton, J C; Peshavaria, M

    1983-01-01

    1. The nucleotide and bivalent cation specificity of the proton translocase activity of insulin secretory granules was investigated by assessing the inhibitor-sensitive rates of nucleotide hydrolysis by these organelles in relation to their chemiosmotic properties. 2. The relative rates of nucleotide hydrolysis by freeze/thawed granule preparations were: Mg2+ATP (100%) greater than Mg2+GTP (55%) greater than Mg2+UTP (48%) greater than Mg2+ITP (44%) greater than Mg2+CTP (23%) greater than Mg2+TTP (20%), and by intact granules were: Mg2+ATP (100%) greater than Mg2+ITP (74%) greater than Mg2+GTP (60%) greater than Mg2+CTP (35%). Mg2+ATP, Mg2+GTP and Mg2+ITP hydrolyses were inhibited by tributyltin and stimulated, in intact granules, by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone; Mg2+CTP hydrolysis was not markedly affected by these compounds. Correspondingly, only Mg2+ATP, Mg2+GTP and Mg2+ITP produced large changes in the delta psi and delta mu H+ across the granule membrane. 3. The relative rates of maximal ATPase activity stimulated by bivalent cations in freeze/thawed granule preparations were: Mg2+ (100%) greater than Mn2+ (82%) greater than Ca2+ (40%) greater than Co2+ (36%) greater than Zn2+ (0%), and in intact granules were: Mg2+ (100%) greater than Mn2+ (85%) greater than Co2+ (61%) greater than Ca2+ (42%). Tributyltin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone affected Mg2+-, Mn2+- and Co2+-activated, but not Ca2+-activated, ATP hydrolysis. Correspondingly, only Mg2+, Mn2+ and Co2+ supported the generation of a delta psi and delta mu H+ across granule membranes in the presence of ATP. 4. The results were consistent with a single proton translocase that had its catalytic site exposed on the external face of the granule membrane. The indicated specificity (Mg2+ATP = Mn2+ATP greater than Co2+ATP greater than Mg2+GTP greater than Mg2+ITP) was similar to that of enzymes described in membrane fractions prepared from

  7. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    PubMed

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The integrity of the RRGDL sequence of the proprotein convertase PC1 is critical for its zymogen and C-terminal processing and for its cellular trafficking.

    PubMed Central

    Lusson, J; Benjannet, S; Hamelin, J; Savaria, D; Chrétien, M; Seidah, N G

    1997-01-01

    In order to define the functional importance of the conserved RRGDL motif in the P-domain of the mammalian proprotein convertases(PCs) we generated and cellularly expressed three mutant PC1 vaccinia-virus (VV) recombinants: ARGDL-PC1, RAGDL-PC1 and RRGEL-PC1. Functionally, these mutants caused a decreased level of processing of pro-opiomelanocortin (POMC) into beta-lipotropic pituitary hormone (beta-LPH), especially in the constitutively secreting BSC40 cells. Pulse-chase analyses demonstrated that, in part, this effect was due to both an increased degradation of the mutant PC1s within the endoplasmic reticulum and to a diminished level of zymogen processing in the same compartment. In addition, within cells containing secretory granules such as PC12 and GH4C1 cells, such mutations prevented the C-terminal auto-processing of PC1 into the fully mature 66 kDa form stored in the secretory granules of regulated cells. Since the 66 kDa PC1 is the most active form of the enzyme, it is proposed that the RRGDL sequence is critical for the generation of maximal intracellular PC1 activity. In regulated cells, co-expression of POMC with PC1 or its mutants together with the general PC inhibitor alpha1-antitrypsin Portland (alpha1-PDX), which acts primarily within the constitutive secretory pathway, demonstrated that the latter completely inhibited the formation of beta-LPH by PC1 mutants, whereas it only partially inhibited the ability of wild-type PC1 to process POMC. This suggests that RRGDL mutations prevent PC1 from entering secretory granules and hence the formation of the 66 kDa PC1, and result in the mis-sorting of PC1 mutants towards the constitutive secretory pathway. This conclusion was further supported by immunocytochemical data demonstrating that RRGDL mutants exhibit an intracellular localization pattern different from that of the granule-associated wild-type PC1,but similar to that of the Golgi-localized convertase PC5-B. PMID:9307023

  9. Physicochemical characteristics of insulin secretion granules

    PubMed Central

    Coore, H. G.; Hellman, B.; Pihl, E.; Täljedal, I.-B.

    1969-01-01

    β-Granules were prepared from micro-dissected pancreatic islets of obese–hyperglycaemic mice. This fraction contained 60% of the insulin, 30% of the cytochrome oxidase, 16% of the acid phosphatase activity and 20% of the protein present in whole islets. The isolated granules retained a heavy metal during fractionation. Optimum conditions for granule stability were low ionic strength and pH6, the granules being unexpectedly fragile at pH7·4. The stability of the granules was unaffected by sucrose in the concentration range 50–320mm, but 1% (w/v) sodium deoxycholate released all insulin. A solubilizing effect was also noted with ATP and citrate. Spinning through 1·6m-sucrose yielded a further purification in relation to mitochondria and acid-phosphatase-carrying particles but virtually no purification in relation to protein. Electron microscopy revealed that the major contaminants were rough-surfaced vesicles and membranes. A separation of granules from acid phosphatase was achieved by phase distribution in polyethylene glycol and dextran. The location of the enzyme to the interphase was so pronounced in systems buffered with lithium phosphate that the technique may be used for future purification of acid-phosphatase-carrying particles from the β-cells. ImagesPLATE 1 PMID:4887194

  10. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    NASA Astrophysics Data System (ADS)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  11. TPC2 mediates new mechanisms of platelet dense granule membrane dynamics through regulation of Ca2+ release

    PubMed Central

    Ambrosio, Andrea L.; Boyle, Judith A.; Di Pietro, Santiago M.

    2015-01-01

    Platelet dense granules (PDGs) are acidic calcium stores essential for normal hemostasis. They develop from late endosomal compartments upon receiving PDG-specific proteins through vesicular trafficking, but their maturation process is not well understood. Here we show that two-pore channel 2 (TPC2) is a component of the PDG membrane that regulates PDG luminal pH and the pool of releasable Ca2+. Using a genetically encoded Ca2+ biosensor and a pore mutant TPC2, we establish the function of TPC2 in Ca2+ release from PDGs and the formation of perigranular Ca2+ nanodomains. For the first time, Ca2+ spikes around PDGs—or any organelle of the endolysosome family—are visualized in real time and revealed to precisely mark organelle “kiss-and-run” events. Further, the presence of membranous tubules transiently connecting PDGs is revealed and shown to be dramatically enhanced by TPC2 in a mechanism that requires ion flux through TPC2. “Kiss-and-run” events and tubule connections mediate transfer of membrane proteins and luminal content between PDGs. The results show that PDGs use previously unknown mechanisms of membrane dynamics and content exchange that are regulated by TPC2. PMID:26202466

  12. Specific lignin accumulation in granulated juice sacs of Citrus maxima.

    PubMed

    Wu, Jia-Ling; Pan, Teng-Fei; Guo, Zhi-Xiong; Pan, Dong-Ming

    2014-12-17

    Juice sac granulation occurring in pummelo fruits [Citrus maxima (Burm.) Merr.] is an undesirable trait, and the underlying mechanism remains unresolved. Previous studies have shown that lignin metabolism is closely associated with the process of juice sac granulation. Here, a method suitable for lignin isolation from pummelo tissues is established. Acetylated lignins from different pummelo tissues and cultivars were analyzed by HSQC NMR. The results showed that lignins in granulated juice sacs were characterized by an extremely high abundance of guaiacyl units (91.13-96.82%), in contrast to lignins from other tissues, including leaves, stems, and segment membranes. The abnormally accumulated lignins in granulated juice sacs were specific and mainly polymerized from coniferyl alcohol. No significant difference was found in lignin types among various cultivars. These findings indicated that the mechanism of juice sac granulation might be similar among various cultivars, although very different degrees of juice sac granulation can be observed.

  13. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells.

    PubMed

    Olofsson, Charlotta S; Göpel, Sven O; Barg, Sebastian; Galvanovskis, Juris; Ma, Xiaosong; Salehi, Albert; Rorsman, Patrik; Eliasson, Lena

    2002-05-01

    A readily releasable pool (RRP) of granules has been proposed to underlie the first phase of insulin secretion. In the present study we combined electron microscopy, insulin secretion measurements and recordings of cell capacitance in an attempt to define this pool ultrastructurally. Mouse pancreatic B-cells contain approximately 9,000 granules, of which 7% are docked below the plasma membrane. The number of docked granules was reduced by 30% (200 granules) during 10 min stimulation with high K+. This stimulus depolarized the cell to -10 mV, elevated cytosolic [Ca2+] ([Ca2+](i)) from a basal concentration of 130 nM to a peak of 1.3 microM and released 0.5 ng insulin/islet, corresponding to 200-300 granules/cell. The Ca2+ transient decayed towards the prestimulatory concentration within approximately 200 s, presumably reflecting Ca2+ channel inactivation. Renewed stimulation with high K+ failed to stimulate insulin secretion when applied in the absence of glucose. The size of the RRP, derived from the insulin measurements, is similar to that estimated from the increase in cell capacitance elicited by photolytic release of caged Ca2+. We propose that the RRP represents a subset of the docked pool of granules and that replenishment of RRP can be accounted for largely by chemical modification of granules already in place or situated close to the plasma membrane.

  14. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    PubMed Central

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-01-01

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. PMID:27314394

  15. Biogenesis of zinc storage granules in Drosophila melanogaster.

    PubMed

    Tejeda-Guzmán, Carlos; Rosas-Arellano, Abraham; Kroll, Thomas; Webb, Samuel M; Barajas-Aceves, Martha; Osorio, Beatriz; Missirlis, Fanis

    2018-03-19

    Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers. © 2018. Published by The Company of Biologists Ltd.

  16. The Zymogen-Enteropeptidase System: A Practical Approach to Study the Regulation of Enzyme Activity by Proteolytic Cleavage

    ERIC Educational Resources Information Center

    Pizauro, Joao M., Jr.; Ferro, Jesus A.; de Lima, Andrea C. F.; Routman, Karina S.; Portella, Maria Celia

    2004-01-01

    The present research describes an efficient procedure to obtain high levels of trypsinogen and chymotrypsinogen by using a simple, rapid, and easily reproducible method. The extraction process and the time-course of activation of zymogens can be carried out in a single laboratory period, without sophisticated equipment. The main objective was to…

  17. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  18. Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.

    PubMed

    Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof

    2007-09-01

    beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.

  19. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets.

    PubMed

    Straub, Susanne G; Shanmugam, Geetha; Sharp, Geoffrey W G

    2004-12-01

    Electron microscopy and quantitative stereological techniques were used to study the dynamics of the docked granule pool in the rat pancreatic beta-cell. The mean number of granules per beta-cell was 11,136. After equilibration in RPMI containing 5.6 mmol/l glucose, 6.4% of the granules (approximately 700) were docked at the plasma membrane (also measured as [means +/- SE] 4.3 +/- 0.6 docked granules per 10 microm of plasma membrane at the perimeter of the cell sections). After a 40-min exposure to 16.7 mmol/l glucose, 10.2% of the granules (approximately 1,060) were docked (6.4 +/- 0.8 granules per 10 microm of plasma membrane). Thus, the docked pool increased by 50% during stimulation with glucose. Islets were also exposed to 16.7 mmol/l glucose in the absence or presence of 10 micromol/l nitrendipine. In the absence and presence of nitrendipine, there were 6.1 +/- 0.7 and 6.3 +/- 0.6 granules per 10 microm of membrane, respectively. Thus, glucose increased granule docking independently of increased [Ca2+]i and exocytosis. The data suggest a limit to the number of docking sites. As the rate of docking exceeded the rate of exocytosis, docking is not rate limiting for insulin release. Only with extremely high release rates, glucose stimulation after a 4-h incubation with a high concentration of fatty acid-free BSA, was the docked granule pool reduced in size.

  20. A Role for Serglycin Proteoglycan in Mast Cell Apoptosis Induced by a Secretory Granule-mediated Pathway*

    PubMed Central

    Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar

    2011-01-01

    Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167

  1. A Model for Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  2. Correlation between loose density and compactibility of granules prepared by various granulation methods.

    PubMed

    Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M

    2001-03-23

    The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.

  3. Detection of component segregation in granules manufactured by high shear granulation with over-granulation conditions using near-infrared chemical imaging.

    PubMed

    Koide, Tatsuo; Nagato, Takuya; Kanou, Yoshiyuki; Matsui, Kou; Natsuyama, Susumu; Kawanishi, Toru; Hiyama, Yukio

    2013-01-30

    The objective of this study was to evaluate the high shear granulation process using near-infrared (NIR) chemical imaging technique and to make the findings available for pharmaceutical development. We prepared granules and tablets made under appropriate- and over-granulation conditions with high shear granulation and observed these granules and tablets using NIR chemical imaging system. We found an interesting phenomenon: lactose agglomeration and segregation of ingredients occurred in experimental tablets when over-granulation conditions, including greater impeller rotation speeds and longer granulation times, were employed. Granules prepared using over-granulation conditions were larger and had progressed to the consolidation stage; segregation between ethenzamide and lactose occurred within larger granules. The segregation observed here is not detectable using conventional analytical technologies such as high pressure liquid chromatography (HPLC) because the content of the granules remained uniform despite the segregation. Therefore, granule visualization using NIR chemical imaging is an effective method for investigating and evaluating the granulation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.

    PubMed

    Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C

    2007-01-01

    At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.

  5. Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory Burst

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Luerman, Gregory C.; Barati, Michelle T.; Ward, Richard A.; Nauseef, William M.; McLeish, Kenneth R.

    2013-01-01

    The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT–SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT–SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT–SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT–SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT–SNAP-23 inhibited the increase in plasma membrane expression of gp91phox in TNF-α–primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase. PMID:21642540

  6. Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis.

    PubMed

    Koseoglu, Secil; Dilks, James R; Peters, Christian G; Fitch-Tewfik, Jennifer L; Fadel, Nathalie A; Jasuja, Reema; Italiano, Joseph E; Haynes, Christy L; Flaumenhaft, Robert

    2013-03-01

    Platelet granule exocytosis serves a central role in hemostasis and thrombosis. Recently, single-cell amperometry has shown that platelet membrane fusion during granule exocytosis results in the formation of a fusion pore that subsequently expands to enable the extrusion of granule contents. However, the molecular mechanisms that control platelet fusion pore expansion and collapse are not known. We identified dynamin-related protein-1 (Drp1) in platelets and found that an inhibitor of Drp1, mdivi-1, blocked exocytosis of both platelet dense and α-granules. We used single-cell amperometry to monitor serotonin release from individual dense granules and, thereby, measured the effect of Drp1 inhibition on fusion pore dynamics. Inhibition of Drp1 increased spike width and decreased prespike foot events, indicating that Drp1 influences fusion pore formation and expansion. Platelet-mediated thrombus formation in vivo after laser-induced injury of mouse cremaster arterioles was impaired after infusion of mdivi-1. These results demonstrate that inhibition of Drp1 disrupts platelet fusion pore dynamics and indicate that Drp1 can be targeted to control thrombus formation in vivo.

  7. The timing of cortical granule fusion, content dispersal, and endocytosis during fertilization of the hamster egg: an electrophysiological and histochemical study.

    PubMed

    Kline, D; Stewart-Savage, J

    1994-03-01

    To determine the temporal relationship between cortical granule exocytosis and the repetitive calcium transients, which are characteristic of mammalian fertilization, we monitored membrane addition from exocytosis during fertilization of hamster eggs. Continuous measurement of membrane capacitance by applying a 3.1-nA alternating current at 375 Hz showed addition of cortical granule membrane. Simultaneous measurement of membrane potential revealed each calcium transient by the appearance of transient hyperpolarizing responses due to calcium-activated potassium channels in the egg. The initial membrane capacitance of the eggs averaged 736 +/- 44 pF (mean +/- SD; n = 7) and an increase in capacitance of 61 +/- 19 pF occurred within 4 sec of the start of the first hyperpolarizing response (HR) after fertilization. Immediately after the first increase in capacitance there was a gradual decline in membrane capacitance in all eggs and in five/seven eggs the capacitance returned to the unfertilized level in 7.8 +/- 4.4 min. The gradual decline in capacitance after the first increase indicated endocytosis, which was confirmed by the internalization of fluorescently labeled dextran. Superimposed on the gradual decline in membrane capacitance were smaller increases in capacitance that occurred with the second and later HRs. The total increase in capacitance from the first three events averaged 72 +/- 19 pF, representing an average increase in capacitance of about 10% of the capacitance of the unfertilized egg. By labeling eggs before and after permeabilization with two different fluorochromes attached to Lens culinaris agglutinin, we demonstrate that the dispersal of the cortical granules contents does not occur immediately after exocytosis. Our results demonstrate that cortical granule exocytosis in hamster eggs is closely coupled to the periodic increases in calcium, that the contents of the cortical granules are slow to disperse, and that after exocytosis, the surface

  8. The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator.

    PubMed

    Briens, Lauren; Logan, Ryan

    2011-12-01

    Chopper presence and then chopper speed was varied during wet high shear granulation of a placebo formulation using a PMA-1 granulator while also varying the impeller speed. The granules were extensively analyzed for differences due to the chopper. The effect of the chopper on the granules varied with impeller speed from no effect at a low impeller speed of 300 rpm to flow interruptions at an impeller speed of 700 rpm to minimal impact at very high impeller speeds as caking at the bowl perimeter obscured the effect of the chopper on the flow pattern. Differences in the granule flowability were minimal. However, it was concluded that the largest fraction of optimal granules would be obtained at an impeller speed of 700 rpm with the chopper at 1,000 rpm allowing balances between flow establishment, segregation, and centrifugal forces.

  9. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    PubMed

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Granule swelling and cleavage of mitogen-activated protein kinases in human neutrophils undergoing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko

    2009-04-10

    Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.

  11. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    PubMed

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  12. Three novel proteins co-localise with polyhydroxybutyrate (PHB) granules in Rhodospirillum rubrum S1.

    PubMed

    Narancic, Tanja; Scollica, Elisa; Cagney, Gerard; O'Connor, Kevin E

    2018-04-01

    Polyhydroxybutyrate (PHB), a biodegradable polymer accumulated by bacteria is deposited intracellularly in the form of inclusion bodies often called granules. The granules are supramolecular complexes harbouring a varied number of proteins on their surface, which have specific but incompletely characterised functions. By comparison with other organisms that produce biodegradable polymers, only two phasins have been described to date for Rhodosprillum rubrum, raising the possibility that more await discovery. Using a comparative proteomics strategy to compare the granules of wild-type R. rubrum with a PHB-negative mutant housing artificial PHB granules, we identified four potential PHB granules' associated proteins. These were: Q2RSI4, an uncharacterised protein; Q2RWU9, annotated as an extracellular solute-binding protein; Q2RQL4, annotated as basic membrane lipoprotein; and Q2RQ51, annotated as glucose-6-phosphate isomerase. In silico analysis revealed that Q2RSI4 harbours a Phasin_2 family domain and shares low identity with a single-strand DNA-binding protein from Sphaerochaeta coccoides. Fluorescence microscopy found that three proteins Q2RSI4, Q2EWU9 and Q2RQL4 co-localised with PHB granules. This work adds three potential new granule associated proteins to the repertoire of factors involved in bacterial storage granule formation, and confirms that proteomics screens are an effective strategy for discovery of novel granule associated proteins.

  13. Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.

    PubMed

    Currie, Erin; King, Brian; Lawrenson, Andrea L; Schroeder, Lena K; Kershner, Aaron M; Hermann, Greg J

    2007-11-01

    Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.

  14. High-shear granulation as a manufacturing method for cocrystal granules.

    PubMed

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka; Rades, Thomas; Leopold, Claudia S

    2013-11-01

    Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation as a manufacturing method for cocrystal granules on a batch scale. Furthermore, the cocrystal granules were characterized regarding their mechanical properties as well as their dissolution behavior. High-shear wet granulation was found to be a feasible manufacturing method for cocrystal granules. Cocrystal formation depended on the exposure time of the solids to the granulation liquid (water), the amount of liquid, the impeller speed of the granulator, and on the excipients (hydroxyl propylcellulose, microcrystalline cellulose, calcium hydrogenphosphate) used in the formulation. Storage stability was strongly influenced by the excipients, since in presence of calcium hydrogenphosphate, the poorly water-soluble salt calcium tartrate monohydrate was formed at high relative humidity. Interestingly, compactability was increased by cocrystal formation compared to that of the reference granules (piracetam and the respective excipients). The drug release was slightly decreased by cocrystal formation, most likely due to the lower solubility of the cocrystal. In the presence of calcium hydrogenphosphate however, no influence of cocrystal formation on either compactability or on drug release were observed, compared with the reference tablets. It was concluded that high-shear wet granulation is a valuable, however complex, manufacturing method for cocrystals. Cocrystal formation may influence compactability and drug release and thus affect drug performance and should be investigated during pre-formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Compressibility and compactibility of granules produced by wet and dry granulation.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-06-24

    The bulk properties, compactibility and compressibility of granules produced by wet and dry granulation were compared applying a rotary tablet press, three different morphological forms of calcium carbonate and two particle sizes of sorbitol. Granules from both granulation methods possessed acceptable flow properties; however, the ground (Mikhart) and cubic (Scoralite) calcium carbonate demonstrated better die-filling abilities in the tablet press than the scalenhedral calcium carbonate (Sturcal). The wet processed granules showed in general larger compression properties. This was explained as these granules were mechanical stronger and had a higher initial porosity. In some cases, a large particle surface area of calcium carbonate and sorbitol resulted in a small, insignificant improvement of the consolidation characteristics. A correlation between the compression and compaction characteristics was demonstrated.

  16. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  17. Granule mobility, fusion frequency and insulin secretion are differentially affected by insulinotropic stimuli.

    PubMed

    Schumacher, Kirstin; Matz, Magnus; Brüning, Dennis; Baumann, Knut; Rustenbeck, Ingo

    2015-05-01

    The pre-exocytotic behavior of insulin granules was studied against the background of the entirety of submembrane granules in MIN6 cells, and the characteristics were compared with the macroscopic secretion pattern and the cytosolic Ca(2+) concentration of MIN6 pseudo-islets at 22°C, 32°C and 37°C. The mobility of granules labeled by insulin-EGFP and the fusion events were assessed by TIRF microscopy utilizing an observer-independent algorithm. In the z-dimension, 40 mm K(+) or 30 mm glucose increased the granule turnover. The effect of high K(+) was quickly reversible. The increase by glucose was more sustained and modified the efficacy of a subsequent K(+) stimulus. The effect size of glucose increased with physiological temperature whereas that of high K(+) did not. The mobility in the x/y-dimension and the fusion rates were little affected by the stimuli, in contrast to secretion. Fusion and secretion, however, had the same temperature dependence. Granules that appeared and fused within one image sequence had significantly larger caging diameters than pre-existent granules that underwent fusion. These in turn had a different mobility than residence-matched non-fusing granules. In conclusion, delivery to the membrane, tethering and fusion of granules are differently affected by insulinotropic stimuli. Fusion rates and secretion do not appear to be tightly coupled. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis

    PubMed Central

    Naskar, Pieu

    2017-01-01

    ABSTRACT Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr102) and two induced (Ser95 and Ser120) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr102 in its initial membrane association, and of induced phosphorylation at Ser95 and Ser120 in its internal membrane association, during MC exocytosis. PMID:28784843

  19. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis.

    PubMed

    Naskar, Pieu; Puri, Niti

    2017-09-15

    Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr 102 ) and two induced (Ser 95 and Ser 120 ) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr 102 in its initial membrane association, and of induced phosphorylation at Ser 95 and Ser 120 in its internal membrane association, during MC exocytosis. © 2017. Published by The Company of Biologists Ltd.

  20. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  1. Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis.

    PubMed

    Dolai, Subhankar; Liang, Tao; Orabi, Abrahim I; Holmyard, Douglas; Xie, Li; Greitzer-Antes, Dafna; Kang, Youhou; Xie, Huanli; Javed, Tanveer A; Lam, Patrick P; Rubin, Deborah C; Thorn, Peter; Gaisano, Herbert Y

    2018-05-01

    Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-μm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2 +/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca 2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of

  2. Granulation of fine powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching-Fong

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to formmore » a dense compact with a higher density and more uniform pore size distribution.« less

  3. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis

    NASA Technical Reports Server (NTRS)

    Donelan, Matthew J.; Morfini, Gerardo; Julyan, Richard; Sommers, Scott; Hays, Lori; Kajio, Hiroshi; Briaud, Isabelle; Easom, Richard A.; Molkentin, Jeffery D.; Brady, Scott T.; hide

    2002-01-01

    The specific biochemical steps required for glucose-regulated insulin exocytosis from beta-cells are not well defined. Elevation of glucose leads to increases in cytosolic [Ca2+]i and biphasic release of insulin from both a readily releasable and a storage pool of beta-granules. The effect of elevated [Ca2+]i on phosphorylation of isolated beta-granule membrane proteins was evaluated, and the phosphorylation of four proteins was found to be altered by [Ca2+]i. One (a 18/20-kDa doublet) was a Ca2+-dependent increase in phosphorylation, and, surprisingly, three others (138, 42, and 36 kDa) were Ca2+-dependent dephosphorylations. The 138-kDa beta-granule phosphoprotein was found to be kinesin heavy chain (KHC). At low levels of [Ca2+]i KHC was phosphorylated by casein kinase 2, but KHC was rapidly dephosphorylated by protein phosphatase 2B beta (PP2Bbeta) as [Ca2+]i increased. Inhibitors of PP2B specifically reduced the second, microtubule-dependent, phase of insulin secretion, suggesting that dephosphorylation of KHC was required for transport of beta-granules from the storage pool to replenish the readily releasable pool of beta-granules. This is distinct from synaptic vesicle exocytosis, because neurotransmitter release from synaptosomes did not require a Ca2+-dependent KHC dephosphorylation. These results suggest a novel mechanism for regulating KHC function and beta-granule transport in beta-cells that is mediated by casein kinase 2 and PP2B. They also implicate a novel regulatory role for PP2B/calcineurin in the control of insulin secretion downstream of a rise in [Ca2+]i.

  4. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3

    PubMed Central

    Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine

    2016-01-01

    RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198

  5. Influence of metronidazole particle properties on granules prepared in a high-shear mixer-granulator.

    PubMed

    Di Martino, Piera; Censi, Roberta; Malaj, Ledjan; Martelli, Sante; Joiris, Etienne; Barthélémy, Christine

    2007-02-01

    Metronidazole is a good example of high-dose drug substance with poor granulating and tableting properties. Tablets are generally produced by liquid granulation; however, the technological process failure is quite frequent. In order to verify how the metronidazole particle characteristics can influence granule properties, three metronidazole batches differing for crystal habit, mean particle size, BET surface area and wettability were selected, primarily designed according to their different elongation ratio: needle-shaped, stick-shaped, and isodimensional. In the presence of lactose monohydrate and pregelatinized maize starch, respectively as diluent and binder, they were included in a formula for wet granulation in a high-shear mixer-granulator. In order to render the process comparable as far as possible, all parameters and experimental conditions were maintained constant. Four granule batches were obtained: granules from placebo (G-placebo), granules from needle-shaped crystals (G-needle-shaped), granules from stick-shaped crystals (G-stick-shaped), and granules from isodimensional crystals (G-isodimensional). Different granule properties were considered, in particular concerning porosity, friability, loss on drying (LOD), and flowability. In order to study their tabletability and compressibility, the different granules obtained were then compressed in a rotary press. The best tabletability was obtained with the isodimensional batch, while the poorest was exhibited by the stick-shaped one. Differences in tabletability are in good accordance with compressibility results: to a better tabletability corresponds an important granule ability to undergo a volume reduction as a result of an applied pressure. In particular, it was proposed that the greatest compressibility of the G-isodimensional must be related to the greatest granule porosity percentage.

  6. Intracellular production of hydrogels and synthetic RNA granules by multivalent enhancers

    PubMed Central

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allison; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; DeRose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Non-membrane bound, hydrogel-like entities, such as RNA granules, nucleate essential cellular functions through their unique physico-chemical properties. However, these intracellular hydrogels have not been as extensively studied as their extracellular counterparts, primarily due to technical challenges in probing these materials in situ. Here, by taking advantage of a chemically inducible dimerization paradigm, we developed iPOLYMER, a strategy for rapid induction of protein-based hydrogels inside living cells. A series of biochemical and biophysical characterizations, in conjunction with computational modeling, revealed that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that behaves as a size-dependent molecular sieve. We studied several properties of the gel and functionalized it with RNA binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. Therefore, we here demonstrate that iPOLYMER presents a unique and powerful approach to synthetically reconstitute hydrogel-like structures including RNA granules in intact cells. PMID:29115293

  7. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

  8. Distribution of binder in granules produced by means of twin screw granulation.

    PubMed

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas

    2014-02-28

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2.

    PubMed

    Rayman, Joseph B; Karl, Kevin A; Kandel, Eric R

    2018-01-02

    Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn 2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn 2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. ELLI-1, a novel germline protein, modulates RNAi activity and P-granule accumulation in Caenorhabditis elegans

    PubMed Central

    Andralojc, Karolina M.; Kelly, Ashley L.; Tanner, Paige C.

    2017-01-01

    Germ cells contain non-membrane bound cytoplasmic organelles that help maintain germline integrity. In C. elegans they are called P granules; without them, the germline undergoes partial masculinization and aberrant differentiation. One key P-granule component is the Argonaute CSR-1, a small-RNA binding protein that antagonizes accumulation of sperm-specific transcripts in developing oocytes and fine-tunes expression of proteins critical to early embryogenesis. Loss of CSR-1 complex components results in a very specific, enlarged P-granule phenotype. In a forward screen to identify mutants with abnormal P granules, ten alleles were recovered with a csr-1 P-granule phenotype, eight of which contain mutations in known components of the CSR-1 complex (csr-1, ego-1, ekl-1, and drh-3). The remaining two alleles are in a novel gene now called elli-1 (enlarged germline granules). ELLI-1 is first expressed in primordial germ cells during mid-embryogenesis, and continues to be expressed in the adult germline. While ELLI-1 forms cytoplasmic aggregates, they occasionally dock, but do not co-localize with P granules. Instead, the majority of ELLI-1 aggregates accumulate in the shared germline cytoplasm. In elli-1 mutants, several genes that promote RNAi and P-granule accumulation are upregulated, and embryonic lethality, sterility, and RNAi resistance in a hypomorphic drh-3 allele is enhanced, suggesting that ELLI-1 functions with CSR-1 to modulate RNAi activity, P-granule accumulation, and post-transcriptional expression in the germline. PMID:28182654

  11. Modification of drug release from acetaminophen granules by melt granulation technique - consideration of release kinetics.

    PubMed

    Uhumwangho, M U; Okor, R S

    2006-01-01

    Acetaminophen granules have been formed by a melt granulation process with the objective of retarding drug release for prolonged action formulations. The waxes used were goat wax, carnuba wax and glyceryl monostearate. In the melt granulation procedure, acetaminophen powder was triturated with the melted waxes and passed through a sieve of mesh 10 (aperture size 710 microm). The content of wax in resulting granules ranged from 10 to 40%w/w. Acetaminophen granules were also formed by the convectional method of wet granulation with starch mucilage (20%w/w). The granules were subjected to in-vitro drug release tests. The release data were subjected to analysis by three different well-established mathematical models (release kinetics) namely, - zero order flux, first order, and the Higuchi square root of time relationship. The convectional granules exhibited an initial zero order flux (first 55%) followed by a first order release profile (the remaining 45%). The pattern of drug release from the melt granulations was consistent with the first order kinetic and the Higuchi square root of time relationship, indicating a diffusion-controlled release mechanism. The first order release rate constant of the convectional granules was 1.95 +/- 0.02 h(-1). After melt granulation (wax content, 20%w/w) the rate constants dropped drastically to 0.130+/-0.001 h(-1) (goat wax), 0.120+/-0.003 h(-1) (carnuba wax), and 0.130+/-0.002 h(-1) (glyceryl monosterate) indicating that all three waxes were equivalent in retarding drug release from the melt granulations.

  12. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    PubMed

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  13. Cytoplasmic RNA Granules in Somatic Maintenance.

    PubMed

    Moujaber, Ossama; Stochaj, Ursula

    2018-05-30

    Cytoplasmic RNA granules represent subcellular compartments that are enriched in protein-bound RNA species. RNA granules are produced by evolutionary divergent eukaryotes, including yeast, mammals, and plants. The functions of cytoplasmic RNA granules differ widely. They are dictated by the cell type and physiological state, which in turn is determined by intrinsic cell properties and environmental factors. RNA granules provide diverse cellular functions. However, all of the granules contribute to aspects of RNA metabolism. This is exemplified by transcription, RNA storage, silencing, and degradation, as well as mRNP remodeling and regulated translation. Several forms of cytoplasmic mRNA granules are linked to normal physiological processes. For instance, they may coordinate protein synthesis and thereby serve as posttranscriptional "operons". RNA granules also participate in cytoplasmic mRNA trafficking, a process particularly well understood for neurons. Many forms of RNA granules support the preservation of somatic cell performance under normal and stress conditions. On the other hand, severe insults or disease can cause the formation and persistence of RNA granules that contribute to cellular dysfunction, especially in the nervous system. Neurodegeneration and many other diseases linked to RNA granules are associated with aging. Nevertheless, information related to the impact of aging on the various types of RNA granules is presently very limited. This review concentrates on cytoplasmic RNA granules and their role in somatic cell maintenance. We summarize the current knowledge on different types of RNA granules in the cytoplasm, their assembly and function under normal, stress, or disease conditions. Specifically, we discuss processing bodies, neuronal granules, stress granules, and other less characterized cytoplasmic RNA granules. Our focus is primarily on mammalian and yeast models, because they have been critical to unravel the physiological role of various

  14. Comparative Proteome Analysis Reveals Four Novel Polyhydroxybutyrate (PHB) Granule-Associated Proteins in Ralstonia eutropha H16

    PubMed Central

    Sznajder, Anna; Pfeiffer, Daniel

    2014-01-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. PMID:25548058

  15. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release.

    PubMed

    Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard

    2010-09-30

    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca(2+) rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on

  16. Clostridium perfringens Epsilon Toxin Targets Granule Cells in the Mouse Cerebellum and Stimulates Glutamate Release

    PubMed Central

    Lonchamp, Etienne; Dupont, Jean-Luc; Wioland, Laetitia; Courjaret, Raphaël; Mbebi-Liegeois, Corinne; Jover, Emmanuel; Doussau, Frédéric; Popoff, Michel R.; Bossu, Jean-Louis; de Barry, Jean; Poulain, Bernard

    2010-01-01

    Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons

  17. Influence of granulating method on physical and mechanical properties, compression behavior, and compactibility of lactose and microcrystalline cellulose granules.

    PubMed

    Horisawa, E; Danjo, K; Sunada, H

    2000-06-01

    The physical and mechanical properties of lactose (LC) and microcrystalline cellulose (MCC) granules prepared by various granulating methods were determined, and their effects on the compression and strength of the tablets were examined. From the force-displacement curve obtained in a crushing test on a single granule, all LC granules appeared brittle, and MCC granules were somewhat plastically deformable. Inter-granular porosity epsilon inter clearly decreased with greater spherical granule shape for both materials. Decrease in intragranular porosity epsilon intra enhanced the crushing force of a single granule Fg. Agitating granulation brought about the most compactness and hardness of granules. In granule compression tests, the initial slope of Heckel plots K1 appeared closely related to ease of filling voids in a granule bed by the slippage or rolling of granules. The reciprocal of the slope in the succeeding step 1/K2 in compression of MCC granules indicated positive correlation to Fg, while in LC granules, no such obvious relation was evident. 1/K2 differed only slightly among granulating methods. Tensile strength of tablets Tt obtained by compression of various LC granules was low as a whole and was little influenced by granulating method. For MCC granules, which are plastically deformable, tablet strength greatly depended on granulation. Granules prepared by extruding or dry granulation gave strong tablets. Tablets prepared from granules made by the agitating method showed particularly low Tt. From stereomicroscopic observation, the contact area between granule particles in a tablet appeared smaller; this would explain the decrease in inter-granular bond formation.

  18. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments.

    PubMed

    Obruca, Stanislav; Sedlacek, Petr; Mravec, Filip; Krzyzanek, Vladislav; Nebesarova, Jana; Samek, Ota; Kucera, Dan; Benesova, Pavla; Hrubanova, Kamila; Milerova, Miluse; Marova, Ivana

    2017-10-25

    Numerous prokaryotes accumulate polyhydroxybutyrate (PHB) intracellularly as a storage material. It has also been proposed that PHB accumulation improves bacterial stress resistance. Cupriavidus necator and its PHB non-accumulating mutant were employed to investigate the protective role of PHB under hypertonic conditions. The presence of PHB granules enhanced survival of the bacteria after exposure to hypertonic conditions. Surprisingly, when coping with such conditions, the bacteria did not utilize PHB to harvest carbon or energy, suggesting that, in the osmotic upshock of C. necator, the protective mechanism of PHB granules is not associated with their hydrolysis. The presence of PHB granules influenced the overall properties of the cells, since challenged PHB-free cells underwent massive plasmolysis accompanied by damage to the cell membrane and the leakage of cytoplasm content, while no such effects were observed in PHB containing bacteria. Moreover, PHB granules demonstrated "liquid-like" properties indicating that they can partially repair and stabilize cell membranes by plugging small gaps formed during plasmolysis. In addition, the level of dehydration and changes in intracellular pH in osmotically challenged cells were less pronounced for PHB-containing cultures, demonstrating the important role of PHB for bacterial survival under hyperosmotic conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Protein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells.

    PubMed

    Shah, Khyati H; Nostramo, Regina; Zhang, Bo; Varia, Sapna N; Klett, Bethany M; Herman, Paul K

    2014-12-01

    The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighted by studies linking them to human disorders like amyotrophic lateral sclerosis. However, relatively little is known about the diversity, composition, and physiological roles of these cytoplasmic structures. To begin to address these issues, we examined the cytoplasmic granules formed by a key set of signaling molecules, the protein kinases of the budding yeast Saccharomyces cerevisiae. Interestingly, a significant fraction of these proteins, almost 20%, was recruited to cytoplasmic foci specifically as cells entered into the G0-like quiescent state, stationary phase. Colocalization studies demonstrated that these foci corresponded to eight different granules, including four that had not been reported previously. All of these granules were found to rapidly disassemble upon the resumption of growth, and the presence of each was correlated with cell viability in the quiescent cultures. Finally, this work also identified new constituents of known RNP granules, including the well-characterized processing body and stress granule. The composition of these latter structures is therefore more varied than previously thought and could be an indicator of additional biological activities being associated with these complexes. Altogether, these observations indicate that quiescent yeast cells contain multiple distinct cytoplasmic granules that may make important contributions to their long-term survival. Copyright © 2014 by the Genetics Society of America.

  1. Platelet geometry sensing spatially regulates α-granule secretion to enable matrix self-deposition

    PubMed Central

    Sakurai, Yumiko; Fitch-Tewfik, Jennifer L.; Qiu, Yongzhi; Ahn, Byungwook; Myers, David R.; Tran, Reginald; Fay, Meredith E.; Ding, Lingmei; Spearman, Paul W.; Michelson, Alan D.; Flaumenhaft, Robert

    2015-01-01

    Although the biology of platelet adhesion on subendothelial matrix after vascular injury is well characterized, how the matrix biophysical properties affect platelet physiology is unknown. Here we demonstrate that geometric orientation of the matrix itself regulates platelet α-granule secretion, a key component of platelet activation. Using protein microcontact printing, we show that platelets spread beyond the geometric constraints of fibrinogen or collagen micropatterns with <5-µm features. Interestingly, α-granule exocytosis and deposition of the α-granule contents such as fibrinogen and fibronectin were primarily observed in those areas of platelet extension beyond the matrix protein micropatterns. This enables platelets to “self-deposit” additional matrix, provide more cellular membrane to extend spreading, and reinforce platelet-platelet connections. Mechanistically, this phenomenon is mediated by actin polymerization, Rac1 activation, and αIIbβ3 integrin redistribution and activation, and is attenuated in gray platelet syndrome platelets, which lack α-granules, and Wiskott-Aldrich syndrome platelets, which have cytoskeletal defects. Overall, these studies demonstrate how platelets transduce geometric cues of the underlying matrix geometry into intracellular signals to extend spreading, which endows platelets spatial flexibility when spreading onto small sites of exposed subendothelium. PMID:25964667

  2. Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis.

    PubMed

    Mendez, Carlos F; Leibiger, Ingo B; Leibiger, Barbara; Høy, Marianne; Gromada, Jesper; Berggren, Per-Olof; Bertorello, Alejandro M

    2003-11-07

    Glucose-dependent exocytosis of insulin requires activation of protein kinase C (PKC). However, because of the great variety of isoforms and their ubiquitous distribution within the beta-cell, it is difficult to predict the importance of a particular isoform and its mode of action. Previous data revealed that two PKC isoforms (alpha and epsilon) translocate to membranes in response to glucose (Zaitzev, S. V., Efendic, S., Arkhammar, P., Bertorello, A. M., and Berggren, P. O. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9712-9716). Using confocal microscopy, we have now established that in response to glucose, PKC-epsilon but not PKC-alpha associates with insulin granules and that green fluorescent protein-tagged PKC-epsilon changes its distribution within the cell periphery upon stimulation of beta-cells with glucose. Definite evidence of PKC-epsilon requirement during insulin granule exocytosis was obtained by using a dominant negative mutant of this isoform. The presence of this mutant abolished glucose-induced insulin secretion, whereas transient expression of the wild-type PKC-epsilon led to a significant increase in insulin exocytosis. These results suggest that association of PKC-epsilon with insulin granule membranes represents an important component of the secretory network because it is essential for insulin exocytosis in response to glucose.

  3. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.

    PubMed

    Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M

    2008-02-12

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.

  4. [Preparation and evaluation of taste masked orally disintegrating tablets with granules made by the wet granulation method].

    PubMed

    Kawano, Yayoi; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu; Onishi, Hiraku

    2010-12-01

    Using furosemide (FU) as a model drug, we examined the wet granulation method as a way to improve the taste masking and physical characteristics of orally disintegrating tablets (ODTs). In the wet granulation method, yogurt powder (YO) was used as a corrective and maltitol (MA) was used as a binding agent. The taste masked FU tablets were prepared using the direct compression method. Microcrystalline cellulose (Avicel® PH-302) and mannitol were added as excipients at a mixing ratio of 1/1 by weight. Based on the results of sensory test on taste, the prepared granules markedly improved the taste of FU, and a sufficient masking effect was obtained at the YO/FU ratio of 1 or more. Furthermore, it was found that the masking effect achieved by YO granules made with the wet granulation method was similar to or better than that produced by the granules made with dry granulation method. All types of tablets displayed sufficient hardness (over 3.5×10(-2) kN), and rapidly disintegrating tablets were obtained with YO granules produced at a mixing ratio of FU/YO=1/1, which disintegrated within 20 s. Disintegration time lengthened as the mixing ratio of YO to FU increased. In the mixing ratio of FU/YO=1/1, the hardness of tablets with granules made by the wet granulation method exceeded that of tablets with granules made by the dry granulation method, with minimal differences in disintegration time. The hardness and disintegration time of the tablets with granules made by the wet granulation method could be controlled by varying the compression force. In conclusion, YO was found to be a useful additive for masking unpleasant tastes. FU ODTs with improved taste, rapid disintegration and greater hardness could be prepared with YO-containing granules made by the wet granulation method using MA as a binding agent.

  5. RhoG protein regulates platelet granule secretion and thrombus formation in mice.

    PubMed

    Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W

    2013-11-22

    Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.

  6. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L.

    PubMed

    Aich, Pulakesh; Biswas, Sampa

    2018-06-01

    Pro-domain of a cysteine cathepsin contains a highly conserved Ex 2 Rx 2 Fx 2 Nx 3 Ix 3 N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg → Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder "Pycnodysostosis". In the present study, we have characterized in vitro Arg → Trp mutant of hCTSK and the same mutant of hCTSL. The R → W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.

  7. Evidence that electrostatic interactions between vesicle-associated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane.

    PubMed

    Williams, Dumaine; Vicôgne, Jérome; Zaitseva, Irina; McLaughlin, Stuart; Pessin, Jeffrey E

    2009-12-01

    The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.

  8. Adrenal Chromaffin Cells Exposed to 5-ns Pulses Require Higher Electric Fields to Porate Intracellular Membranes than the Plasma Membrane: An Experimental and Modeling Study.

    PubMed

    Zaklit, Josette; Craviso, Gale L; Leblanc, Normand; Yang, Lisha; Vernier, P Thomas; Chatterjee, Indira

    2017-10-01

    Nanosecond-duration electric pulses (NEPs) can permeabilize the endoplasmic reticulum (ER), causing release of Ca 2+ into the cytoplasm. This study used experimentation coupled with numerical modeling to understand the lack of Ca 2+ mobilization from Ca 2+ -storing organelles in catecholamine-secreting adrenal chromaffin cells exposed to 5-ns pulses. Fluorescence imaging determined a threshold electric (E) field of 8 MV/m for mobilizing intracellular Ca 2+ whereas whole-cell recordings of membrane conductance determined a threshold E-field of 3 MV/m for causing plasma membrane permeabilization. In contrast, a 2D numerical model of a chromaffin cell, which was constructed with internal structures representing a nucleus, mitochondrion, ER, and secretory granule, predicted that exposing the cell to the same 5-ns pulse electroporated the plasma and ER membranes at the same E-field amplitude, 3-4 MV/m. Agreement of the numerical simulations with the experimental results was obtained only when the ER interior conductivity was 30-fold lower than that of the cytoplasm and the ER membrane permittivity was twice that of the plasma membrane. A more realistic intracellular geometry for chromaffin cells in which structures representing multiple secretory granules and an ER showed slight differences in the thresholds necessary to porate the membranes of the secretory granules. We conclude that more sophisticated cell models together with knowledge of accurate dielectric properties are needed to understand the effects of NEPs on intracellular membranes in chromaffin cells, information that will be important for elucidating how NEPs porate organelle membranes in other cell types having a similarly complex cytoplasmic ultrastructure.

  9. Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16.

    PubMed

    Sznajder, Anna; Pfeiffer, Daniel; Jendrossek, Dieter

    2015-03-01

    Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase isoenzymes (PhaZa2 to PhaZa5, PhaZd1, and PhaZd2) and none of the two known 3-hydroxybutyrate oligomer hydrolases (PhaZb and PhaZc) were significantly present in isolated PHB granules. Four polypeptides were found that had not yet been identified in PHB granules. Three of the novel proteins are putative α/β-hydrolases, and two of those (A0671 and B1632) have a PHB synthase/depolymerase signature. The third novel protein (A0225) is a patatin-like phospholipase, a type of enzyme that has not been described for PHB granules of any PHB-accumulating species. No function has been ascribed to the fourth protein (A2001), but its encoding gene forms an operon with phaB2 (acetoacetyl-coenzyme A [CoA] reductase) and phaC2 (PHB synthase), and this is in line with a putative function in PHB metabolism. The localization of the four new proteins at the PHB granule surface was confirmed in vivo by fluorescence microscopy of constructed fusion proteins with enhanced yellow fluorescent protein (eYFP). Deletion of A0671 and B1632 had a minor but detectable effect on the PHB mobilization ability in the stationary growth phase of nutrient broth (NB)-gluconate cells, confirming the functional involvement of both proteins in PHB metabolism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules V. Release properties of ethylcellulose layered matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2008-04-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.

  11. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Nayar, S.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.

  13. Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons.

    PubMed

    Gopal, Pallavi P; Nirschl, Jeffrey J; Klinman, Eva; Holzbaur, Erika L F

    2017-03-21

    Ribonucleoprotein (RNP) granules are enriched in specific RNAs and RNA-binding proteins (RBPs) and mediate critical cellular processes. Purified RBPs form liquid droplets in vitro through liquid-liquid phase separation and liquid-like non-membrane-bound structures in cells. Mutations in the human RBPs TAR-DNA binding protein 43 (TDP-43) and RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), but the biophysical properties of these proteins have not yet been studied in neurons. Here, we show that TDP-43 RNP granules in axons of rodent primary cortical neurons display liquid-like properties, including fusion with rapid relaxation to circular shape, shear stress-induced deformation, and rapid fluorescence recovery after photobleaching. RNP granules formed from wild-type TDP-43 show distinct biophysical properties depending on axonal location, suggesting maturation to a more stabilized structure is dependent on subcellular context, including local density and aging. Superresolution microscopy demonstrates that the stabilized population of TDP-43 RNP granules in the proximal axon is less circular and shows spiculated edges, whereas more distal granules are both more spherical and more dynamic. RNP granules formed by ALS-linked mutant TDP-43 are more viscous and exhibit disrupted transport dynamics. We propose these altered properties may confer toxic gain of function and reflect differential propensity for pathological transformation.

  14. Gastroretentive extended-release floating granules prepared using a novel fluidized hot melt granulation (FHMG) technique.

    PubMed

    Zhai, H; Jones, D S; McCoy, C P; Madi, A M; Tian, Y; Andrews, G P

    2014-10-06

    The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.

  15. ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function

    PubMed Central

    Murakami, Tetsuro; Qamar, Seema; Lin, Julie Qiaojin; Schierle, Gabriele S. Kaminski; Rees, Eric; Miyashita, Akinori; Costa, Ana R.; Dodd, Roger B.; Chan, Fiona T.S.; Michel, Claire H.; Kronenberg-Versteeg, Deborah; Li, Yi; Yang, Seung-Pil; Wakutani, Yosuke; Meadows, William; Ferry, Rodylyn Rose; Dong, Liang; Tartaglia, Gian Gaetano; Favrin, Giorgio; Lin, Wen-Lang; Dickson, Dennis W.; Zhen, Mei; Ron, David; Schmitt-Ulms, Gerold; Fraser, Paul E.; Shneider, Neil A.; Holt, Christine; Vendruscolo, Michele; Kaminski, Clemens F.; St George-Hyslop, Peter

    2015-01-01

    Summary The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins. PMID:26526393

  16. Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis.

    PubMed

    Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng

    2010-02-25

    Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Published by Elsevier B.V.

  17. Glucokinase is an integral component of the insulin granules in glucose-responsive insulin secretory cells and does not translocate during glucose stimulation.

    PubMed

    Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne

    2004-09-01

    The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.

  18. A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells.

    PubMed

    Yang, Yan; Gillis, Kevin D

    2004-12-01

    We have used membrane capacitance measurements and carbon-fiber amperometry to assay exocytosis triggered by photorelease of caged Ca(2+) to directly measure the Ca(2+) sensitivity of exocytosis from the INS-1 insulin-secreting cell line. We find heterogeneity of the Ca(2+) sensitivity of release in that a small proportion of granules makes up a highly Ca(2+)-sensitive pool (HCSP), whereas the bulk of granules have a lower sensitivity to Ca(2+). A substantial HCSP remains after brief membrane depolarization, suggesting that the majority of granules with high sensitivity to Ca(2+) are not located close to Ca(2+) channels. The HCSP is enhanced in size by glucose, cAMP, and a phorbol ester, whereas the Ca(2+)-sensitive rate constant of exocytosis from the HCSP is unaffected by cAMP and phorbol ester. The effects of cAMP and phorbol ester on the HCSP are mediated by PKA and PKC, respectively, because they can be blocked with specific protein kinase inhibitors. The size of the HCSP can be enhanced by glucose even in the presence of high concentrations of phorbol ester or cAMP, suggesting that glucose can increase granule pool sizes independently of activation of PKA or PKC. The effects of PKA and PKC on the size of the HCSP are not additive, suggesting they converge on a common mechanism. Carbon-fiber amperometry was used to assay quantal exocytosis of serotonin (5-HT) from insulin-containing granules following preincubation of INS-1 cells with 5-HT and a precursor. The amount or kinetics of release of 5-HT from each granule is not significantly different between granules with higher or lower sensitivity to Ca(2+), suggesting that granules in these two pools do not differ in morphology or fusion kinetics. We conclude that glucose and second messengers can modulate insulin release triggered by a high-affinity Ca(2+) sensor that is poised to respond to modest, global elevations of [Ca(2+)](i).

  19. Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties.

    PubMed

    Chevalier, E; Viana, M; Cazalbou, S; Chulia, D

    2009-10-01

    Calcium phosphate porous ceramics present a great interest not only as complex bone defect fillers but also as drug delivery systems. Most of the methods described in the literature to fabricate pellets are based on compaction, casting into spherical molds, or on processes such as liquid immiscibility or foaming. Despite wet granulation is used in a wide range of applications in pharmaceuticals, food, detergents, fertilizers, and minerals, it is not applied in the biomaterial field to produce granules. In this study physicochemical and in vitro drug delivery properties of implantable calcium phosphate granules, produced by two wet agglomeration processes, were compared. Pellets obtained by high shear granulation (granulation in a Mi-Pro apparatus) were shown to be more spherical and less friable than granules elaborated by low shear process (granulation in a Kenwood apparatus). Although Mi-Pro pellets had a slightly lower porosity compared to Kenwood granules, ibuprofen loading efficiency and dissolution profiles were not statistically different and the release mechanism was mainly controlled by diffusion, in both cases. Mi-Pro pellets appeared to be better candidates as bone defect fillers and local drug delivery systems as far as they were more spherical and less friable than Kenwood agglomerates.

  20. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    PubMed

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ca2+ influx does not trigger glucose-induced traffic of the insulin granules and alteration of their distribution.

    PubMed

    Niki, Ichiro; Niwa, Tae; Yu, Wei; Budzko, Dorota; Miki, Takashi; Senda, Takao

    2003-11-01

    This study investigated mechanisms by which glucose increases readily releasable secretory granules via acting on preexocytotic steps, i.e., intracellular granule movement and granule access to the plasma membrane using a pancreatic beta-cell line, MIN6. Glucose-induced activation of the movement occurred at a substimulatory concentration with regard to insulin output. Glucose activation of the movement was inhibited by pretreatment with thapsigargin plus acetylcholine to suppress intracellular Ca2+ mobilization. Inhibitors of calmodulin and myosin light chain kinase also suppressed glucose activation of the movement. Simultaneous addition of glucose with Ca2+ channel blockers or the ATP-sensitive K+ channel opener diazoxide failed to suppress the traffic activation, and addition of these substances on top of glucose stimulation resulted in a further increase. Although stimulatory glucose had minimal changes in the intracellular granule distribution, inhibition of Ca2+ influx revealed increases by glucose of the granules in the cell periphery. In contrast, high K+ depolarization decreased the peripheral granules. Glucose-induced granule margination was abolished when the protein kinase C activity was downregulated. These findings indicate that preexocytotic control of insulin release is regulated by distinct mechanisms from Ca2+ influx, which triggers insulin exocytosis. The nature of the regulation by glucose may explain a part of potentiating effects of the hexose independent of the closure of the ATP-sensitive K+ channel.

  2. Ultra-structural study of insulin granules in pancreatic β-cells of db/db mouse by scanning transmission electron microscopy tomography.

    PubMed

    Xue, Yanhong; Zhao, Wei; Du, Wen; Zhang, Xiang; Ji, Gang; Ying, Wang; Xu, Tao

    2012-07-01

    Insulin granule trafficking is a key step in the secretion of glucose-stimulated insulin from pancreatic β-cells. The main feature of type 2 diabetes (T2D) is the failure of pancreatic β-cells to secrete sufficient amounts of insulin to maintain normal blood glucose levels. In this work, we developed and applied tomography based on scanning transmission electron microscopy (STEM) to image intact insulin granules in the β-cells of mouse pancreatic islets. Using three-dimensional (3D) reconstruction, we found decreases in both the number and the grey level of insulin granules in db/db mouse pancreatic β-cells. Moreover, insulin granules were closer to the plasma membrane in diabetic β-cells than in control cells. Thus, 3D ultra-structural tomography may provide new insights into the pathology of insulin secretion in T2D.

  3. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    PubMed

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  4. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    PubMed

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  5. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells.

    PubMed

    Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio

    2011-04-01

    Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.

  6. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.

    PubMed

    De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T

    2018-03-30

    Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator

  7. Segregation of large granules from close-packed cluster of small granules due to buoyancy.

    PubMed

    Yang, Xian-qing; Zhou, Kun; Qiu, Kang; Zhao, Yue-min

    2006-03-01

    Segregation of large granules in a vibrofluidized granular bed with inhomogeneous granular number density distribution is studied by an event-driven algorithm. Simulation results show that the mean vertical position of large granules decreases with the increase of the density ration of the large granules to the small ones. This conclusion is consistent with the explanation that the net pressure due to the small surrounding particle impacts balances the large granular weight, and indict that the upward movement of the large granules is driven by the buoyancy. The values of temperature, density, and pressure of the systems are also computed by changing the conditions such as heating temperature on the bottom and restitution coefficient of particles. These results indicate that the segregation of large granules also happen in the systems with density inversion or even close-packed cluster of particles floating on a low-density fluid, due to the buoyancy. An equation of state is proposed to explain the buoyancy.

  8. Differential Alterations in Excitatory and Inhibitory Networks Involving Dentate Granule Cells Following Chronic Treatment with Distinct Classes of NMDAR Antagonists in Hippocampal Slice Cultures

    DTIC Science & Technology

    2010-03-08

    1992; Jung and McNaughton, 1993); (2) low incidence of recurrent excitatory synapses between granule cells (Molnar and Nadler, 1999; Okazaki et al...neurons, dentate granule cells have a relatively more negative resting membrane potential and exhibit low-frequency firing (Staley et al., 1992; Jung ...inhibition plays a dual role in brain function and possibly seizure occurrence through balancing excitation and synchronizing neuronal firing. An

  9. A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans

    PubMed Central

    Updike, Dustin L.; Strome, Susan

    2009-01-01

    P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813

  10. Investigation of the effect of impeller speed on granules formed using a PMA-1 high shear granulator.

    PubMed

    Logan, R; Briens, L

    2012-11-01

    Impeller speed was varied from 300 to 1500 rpm during the wet high shear granulation of a placebo formulation using a new vertical shaft PharmaMATRIX-1 granulator. The resulting granules were extensively analysed for differences caused by the varying impeller speed with emphasis on flowability. Microscopy showed that initial granules were formed primarily from microcrystalline cellulose at all tested impeller speeds. At low impeller speed of 300 rpm in the "bumpy" flow regime, forces from the impeller were insufficient to incorporate all the components of the formulation into the granules and to promote granule growth to a size that significantly improved flowability. The "roping" flow regime at higher impeller speeds promoted granule growth to a median particle size of at least 100 µm that improved the flowability of the mixture. Particle size distribution measurements and advanced indicators based on avalanching behavior, however, showed that an impeller speed of 700 rpm produced the largest fraction of optimal granules with the best flowability potential. This impeller speed allowed good development of "roping" flow for sufficient mixing, collision rates and kinetic energy for collisions while minimizing excessive centrifugal forces that promote buildup around the bowl perimeter.

  11. Extended-release mesalamine granules for ulcerative colitis.

    PubMed

    Love, Bryan L; Miller, April D

    2012-11-01

    To evaluate the efficacy and safety of extended-release mesalamine granules in the maintenance of remission in ulcerative colitis (UC). Literature was obtained through searches of MEDLINE (1990-June 2012) using the terms mesalamine granules, ulcerative colitis, Apriso, and Salofalk. Bibliographies from retrieved articles were searched for additional citations. All English-language articles reporting on use of extended-release mesalamine granules in humans identified through the search were evaluated and included. The preferred initial treatment for induction and maintenance of remission in mild to moderate UC is agents from the 5-aminosalicylate class (balsalazide, mesalamine, olsalazine, sulfasalazine). Mesalamine granules are available as an encapsulated product in the US and as a nonencapsulated formulation in Europe. Data evaluating encapsulated mesalamine granules for induction of remission are lacking; however, the European mesalamine granule formulation has been evaluated for induction of remission. Patients receiving mesalamine granules for induction achieved clinical and endoscopic remission more frequently than those receiving placebo. Two pivotal, randomized, double-blind, placebo-controlled, multicenter studies have evaluated encapsulated mesalamine granules for maintenance in 562 adults in remission from UC. In both studies, the proportion of patients who remained relapse-free at 6 months was higher for those receiving encapsulated mesalamine granules than placebo. Mesalamine granules are well tolerated, with headache, nausea, and upper respiratory infections being the most frequently reported adverse effects. Current evidence supports the use of extended-release mesalamine granules for maintenance of remission in mild to moderate UC. Further studies are necessary to examine the ideal dose and regimen of encapsulated mesalamine granules for induction of remission in UC.

  12. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    PubMed

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All

  13. Corin mutations K317E and S472G from preeclamptic patients alter zymogen activation and cell surface targeting. [Corrected].

    PubMed

    Dong, Ningzheng; Zhou, Tiantian; Zhang, Yue; Liu, Meng; Li, Hui; Huang, Xiaoyi; Liu, Zhenzhen; Wu, Yi; Fukuda, Koichi; Qin, Jun; Wu, Qingyu

    2014-06-20

    Corin is a membrane-bound serine protease that acts as the atrial natriuretic peptide (ANP) convertase in the heart. Recent studies show that corin also activates ANP in the pregnant uterus to promote spiral artery remodeling and prevent pregnancy-induced hypertension. Two CORIN gene mutations, K317E and S472G, were identified in preeclamptic patients and shown to have reduced activity in vitro. In this study, we carried out molecular modeling and biochemical experiments to understand how these mutations impair corin function. By molecular modeling, the mutation K317E was predicted to alter corin LDL receptor-2 module conformation. Western blot analysis of K317E mutant in HEK293 cells showed that the mutation did not block corin expression on the cell surface but inhibited corin zymogen activation. In contrast, the mutation S472G was predicted to abolish a β-sheet critical for corin frizzled-2 module structure. In Western blot analysis and flow cytometry, S472G mutant was not detected on the cell surface in transfected HEK293 cells. By immunostaining, the S472G mutant was found in the ER, indicating that the mutation S472G disrupted the β-sheet, causing corin misfolding and ER retention. Thus, these results show that mutations in the CORIN gene may impair corin function by entirely different mechanisms. Together, our data provide important insights into the molecular basis underlying corin mutations that may contribute to preeclampsia in patients. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed Central

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-01-01

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033

  15. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-07-15

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.

  16. Reprint of: Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis.

    PubMed

    Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X; Loh, Y Peng

    2010-11-30

    Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. Copyright © 2010. Published by Elsevier B.V.

  17. Reprint of: Chromogranin A: A new proposal for trafficking, processing and induction of granule biogenesis☆

    PubMed Central

    Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X.; Loh, Y. Peng

    2014-01-01

    Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro) endocrine cells which are summarized in this review. CgA is a “prohormone” that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells. PMID:20920534

  18. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome

    PubMed Central

    2011-01-01

    Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies)" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases) are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya). Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam) database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA). Conclusion The importance of the V-H+PPase function and the evolutionary dynamics of these

  19. Pharmaceutical production of tableting granules in an ultra-small-scale high-shear granulator as a pre-formulation study.

    PubMed

    Ogawa, Tatsuya; Uchino, Tomohiro; Takahashi, Daisuke; Izumi, Tsuyoshi; Otsuka, Makoto

    2012-11-01

    In some of drug developments, the amount of bulk drug powder to use in early stages is limited and it is not easy to supply a sufficient drug amount for conventional preparation methods. Therefore, an ultra-small-scale high-shear granulator (less than 5 g) (USG) was developed and applied to small-scale granulation as a pre-formulation. The sample powder consisted of 66.5% lactose, 28.5% microcrystalline cellulose and 5.0% hydroxypropylcellulose. The granules were obtained to agitate 5 g of the sample powder with 1.0 mL of water at 300 rpm for 5 min after pre-powder mixing for 3 min by the USG and the manual hand (HM) methods. The granules were evaluated by the 10% and 90% accumulated particle size and the recoveries of the granules and the powder solid. Median particle size for the USG and the HM methods was 159.2 ± 2.3 and 270.9 ± 14.9 µm, respectively. The USG method had a narrower particle size distribution than those by the HM method. The recovery of the granules by USG was significantly larger than that by the HM method. Characteristics of all of the granules indicated that the USG method could produce higher quality granules within a shorter time than the HM methods.

  20. Evaluation of beta-lactose, PVP K12 and PVP K90 as excipients to prepare piroxicam granules using two wet granulation techniques.

    PubMed

    Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; González-Rodríguez, M L; Rodriguez, Lorenzo

    2003-11-01

    The present investigation aimed at evaluating the use of different excipients, beta-lactose and polyvinylpyrrolidone of two molecular weights (PVP K12 and PVP K90), in the production of improved release piroxicam granules, by wet granulation using both water and steam as granulation liquid. The formulations examined were: piroxicam (Px)/beta-lactose; Px/PVP K12 and Px/PVP K90, each one at a 1:9 weight ratio. The most significant difference between beta-lactose and PVP is that, using the first excipient, both steam and water granules were produced while, when PVP were employed, only steam granules were obtained. Image analysis revealed that beta-lactose steam granules had a larger surface area with respect to water granules, whereas lower values of this parameter were observed in PVP-s granules, confirming the Scanning Electron Microscopy micrographs and the fractal analysis results. As regards the enhancement of the dissolution profiles, the best result was obtained using beta-lactose steam granules followed by PVP K12 ones, even if the reactive dimension values indicated that during the dissolution process PVP K12 granules modified the surface more than beta-lactose granules. As regards PVP K90, this excipient was the one less influencing the granule morphology and the dissolution behaviour. Differential Scanning Calorimetry analysis suggested the partial amorphisation of the drug in the granules containing the three excipients. This result was then confirmed by X-ray powder diffraction analysis. Therefore, beta-lactose and PVP K12 could be proposed as useful excipients to enhance the dissolution rate of Px from granules prepared using the steam granulation technique.

  1. Cellular stress induces cytoplasmic RNA granules in fission yeast.

    PubMed

    Nilsson, Daniel; Sunnerhagen, Per

    2011-01-01

    Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.

  2. Azurophil Granule Proteins Constitute the Major Mycobactericidal Proteins in Human Neutrophils and Enhance the Killing of Mycobacteria in Macrophages

    PubMed Central

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar; Kallert, Stephanie; Morgelin, Matthias; Lindstrøm, Thomas; Borregaard, Niels; Stenger, Steffen

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages. PMID:23251364

  3. Joint Effects of Granule Size and Degree of Substitution on Octenylsuccinated Sweet Potato Starch Granules As Pickering Emulsion Stabilizers.

    PubMed

    Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua

    2018-05-02

    The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.

  4. The influence of granulation on super disintegrant performance.

    PubMed

    Zhao, Na; Augsburger, Larry L

    2006-02-01

    The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.

  5. The morphology of solar granulations and dark networks

    NASA Astrophysics Data System (ADS)

    Graves, J. Elon; Pierce, A. Keith

    1986-08-01

    Solar granules are classified into four groups based on shape and splitting by sharp rifts crossing them. Grains are classified as: single granules varying in size from 1/8 to 3 in., single granules embayed by a broad dark area or possessing a central darkening, single granules split by very narrow rifts which are significantly narrower than the intergranular lanes, and complexes of granules displaying a daisy pattern. The formation and growth of 'white-light dark networks' are also discussed

  6. Chromogranin A: A New Proposal for Trafficking, Processing and Induction of Granule Biogenesis

    PubMed Central

    Koshimizu, Hisatsugu; Kim, Taeyoon; Cawley, Niamh X.; Loh, Y. Peng

    2009-01-01

    Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a “prohormone” that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in the formation and regulation, respectively, of granule biogenesis in (neuro)endocrine cells. PMID:20006653

  7. Preparation of orally disintegrating tablets with taste-masking function: masking effect in granules prepared with correctives using the dry granulation method and evaluation of tablets prepared using the taste-masked granules.

    PubMed

    Kawano, Yayoi; Ito, Akihiko; Sasatsu, Masanaho; Machida, Yoshiharu

    2010-01-01

    We investigated several methods of taste masking in the preparation of orally disintegrating tablets (ODTs), using furosemide (FU) as a model drug. Four types of FU preparations were prepared: granules with maltitol (MA), granules with yogurt powder (YO), a physical mixture of FU and MA, and a physical mixture of FU and YO. All taste-masking granules were prepared using the dry granulation method. The taste of each type of preparation was evaluated. All four preparations markedly improved the taste of the FU tablets, but the mixing ratios of the correctives did not affect the masking effect. No difference in masking effect was found between MA and YO in the physical mixtures, but the masking effect in the granules with YO was superior to that of the granules with MA. Taste-masked FU tablets were prepared using the direct compression method; crystalline cellulose (Avicel PH-302) and mannitol were added as excipients at the mixing ratio of 1/1. All four types of tablets displayed sufficient hardness, but MA-containing tablets were harder than YO-containing tablets. The hardness of the tablets prepared from YO granules increased as the YO content increased. The most rapidly disintegrating tablets were those of YO granules prepared at a mixing ratio of FU/YO=1/1, which disintegrated within 20 s, followed by the tablets of MA granules prepared at a mixing ratio of FU/MA=1/1. The disintegration times of the tablets made from physical mixtures, in contrast, were longer than 200 s. Disintegration time lengthened as the mixing ratio of YO or MA increased. The hardness and disintegration time of these tablets could be controlled by varying the compression pressure. We found that YO is more useful than MA in masking unpleasant tastes and confirmed that orally disintegrating tablets with taste-masking function can be prepared using granules of YO prepared using the dry granulation method as a new corrective.

  8. Autophagy meets fused in sarcoma-positive stress granules.

    PubMed

    Matus, Soledad; Bosco, Daryl A; Hetz, Claudio

    2014-12-01

    Mutations in fused in sarcoma and/or translocated in liposarcoma (FUS, TLS or FUS) are linked to familial cases of amyotrophic lateral sclerosis (ALS). Mutant FUS selectively accumulates into discrete cytosolic structures known as stress granules under various stress conditions. In addition, mutant FUS expression can alter the dynamics and morphology of stress granules. Although the link between mutant FUS and stress granules is well established, the mechanisms modulating stress granule formation and disassembly in the context of ALS are poorly understood. In this issue of Neurobiology of Aging, Ryu et al. uncover the impact of autophagy on the potential toxicity of mutant FUS-positive stress granules. The authors provide evidence indicating that enhanced autophagy activity reduces the number of stress granules, which in the case of cells containing mutant FUS-positive stress granules, is neuroprotective. Overall, this study identifies an intersection between the proteostasis network and alterations in RNA metabolism in ALS through the dynamic assembly and disassembly of stress granules. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittame, Amina; Université Grenoble Alpes, 38042 Grenoble; Effantin, Grégory

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressedmore » in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.« less

  10. Measuring changes in the mass of single subcellular organelles using x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Goncz, Kaarin K.; Moronne, Mario M.; Lin, W.; Rothman, Stephen S.

    1993-01-01

    Using quantitative scanning transmission x-ray microscopy, zymogen granules isolated from pancreatic acinar cells were observed suspended in aqueous medium at 50 nm resolution. From 3.64 nm x-ray absorption data, the protein content and rate of protein efflux from individual granules were determined. This was accomplished with a specially designed silicon nitride based wet-cell that allowed continuous perfusion and monitoring of individual granules in a variety of different aqueous environments. Granules suspended in 300 mM sucrose, 5 mM phosphate buffer (pH 6.0) were observed to continuously decrease in size and protein content over a period of several hours. Sudden lysis of the granules was not observed. From the flux data, the apparent protein permeability coefficients for individual granules were determined to range from 1 - 10 X 10-10 cm/sec with an average of 4.78 +/- 3.0 X 10-10 cm/sec. We believe this is the first quantitative population profile determined for a subcellular organelle developed from measurements of individual members of the population.

  11. Osseointegration of alumina bioceramic granules: A comparative experimental study

    NASA Astrophysics Data System (ADS)

    Rerikh, V. V.; Avetisyan, A. R.; Zaydman, A. M.; Anikin, K. A.; Bataev, V. A.; Nikulina, A. A.; Sadovoy, M. A.; Aronov, A. M.; Semantsova, E. S.

    2016-08-01

    To perform a comparative analysis of osseointegration of bioceramic alumina-based granules, hydroxyapatite-based granules, and deproteinized bone granules. The experiment was conducted on 52 adult male Kyoto-Wistar rats weighing 350 to 520 g. The animals were divided into five matched groups that differed only in the type of an implanted material. The granules were implanted in the lumbar vertebral bodies and in the distal right femur of each laboratory animal. Two months after surgery, the animals were euthanized, followed by tissue sampling for morphological studies. An examination of specimens from the groups with implanted alumina granules revealed the newly formed trabecular bone with remodeling signs. The bone tissue filled the intragranular space, tightly adhering to the granule surface. There was no connective tissue capsule on the border between bone tissue and alumina granules. Cylindrical bioceramic alumina-based granules with an open internal channel have a higher strength surpassing than that of analogs and the osseointegration ability close to that of hydroxyapatite and deproteinized bone granules.

  12. Perforin Rapidly Induces Plasma Membrane Phospholipid Flip-Flop

    PubMed Central

    Metkar, Sunil S.; Wang, Baikun; Catalan, Elena; Anderluh, Gregor; Gilbert, Robert J. C.; Pardo, Julian; Froelich, Christopher J.

    2011-01-01

    The cytotoxic cell granule secretory pathway is essential for host defense. This pathway is fundamentally a form of intracellular protein delivery where granule proteases (granzymes) from cytotoxic lymphocytes are thought to diffuse through barrel stave pores generated in the plasma membrane of the target cell by the pore forming protein perforin (PFN) and mediate apoptotic as well as additional biological effects. While recent electron microscopy and structural analyses indicate that recombinant PFN oligomerizes to form pores containing 20 monomers (20 nm) when applied to liposomal membranes, these pores are not observed by propidium iodide uptake in target cells. Instead, concentrations of human PFN that encourage granzyme-mediated apoptosis are associated with pore structures that unexpectedly favor phosphatidylserine flip-flop measured by Annexin-V and Lactadherin. Efforts that reduce PFN mediated Ca influx in targets did not reduce Annexin-V reactivity. Antigen specific mouse CD8 cells initiate a similar rapid flip-flop in target cells. A lipid that augments plasma membrane curvature as well as cholesterol depletion in target cells enhance flip-flop. Annexin-V staining highly correlated with apoptosis after Granzyme B (GzmB) treatment. We propose the structures that PFN oligomers form in the membrane bilayer may include arcs previously observed by electron microscopy and that these unusual structures represent an incomplete mixture of plasma membrane lipid and PFN oligomers that may act as a flexible gateway for GzmB to translocate across the bilayer to the cytosolic leaflet of target cells. PMID:21931672

  13. Increased Neutrophil Secretion Induced by NLRP3 Mutation Links the Inflammasome to Azurophilic Granule Exocytosis

    PubMed Central

    Johnson, Jennifer L.; Ramadass, Mahalakshmi; Haimovich, Ariela; McGeough, Matthew D.; Zhang, Jinzhong; Hoffman, Hal M.; Catz, Sergio D.

    2017-01-01

    Heterozygous mutations in the NLRP3 gene in patients with cryopyrin associated periodic syndrome (CAPS) lead to hyper-responsive inflammasome function. CAPS is a systemic auto-inflammatory syndrome characterized by the activation of the innate immune system induced by elevated pro-inflammatory cytokines, but the involvement of selective innate immune cells in this process is not fully understood. Neutrophil secretion and the toxic components of their granules are mediators of inflammation associated with several human diseases and inflammatory conditions. Here, using the Nlrp3A350V inducible mouse model (MWS CreT) that recapitulates human patients with the A352V mutation in NLRP3 observed in the Muckle-Wells sub-phenotype of CAPS, we studied the relationship between hyper-activation of the inflammasome and neutrophil exocytosis. Using a flow cytometry approach, we show that Nlrp3A350V (MWS) neutrophils express normal basal levels of CD11b at the plasma membrane and that the upregulation of CD11b from secretory vesicles in response to several plasma membrane or endocytic agonist including the bacterial-derived mimetic peptide formyl-Leu-Met-Phe (fMLF) and the unmethylated oligonucleotide CpG is normal in MWS neutrophils. Significant but modest CD11b upregulation in MWS neutrophils compared to wild type was only observed in response to GM-CSF and CpG. The same pattern was observed for the secretion of matrix metalloproteinase-9 (MMP-9) from gelatinase granules in that MMP-9 secretion in MWS neutrophils was not different from that observed in wild-type neutrophils except when stimulated with GM-CSF and CpG. In contrast, azurophilic granule secretion, whose cargoes constitute the most toxic secretory and pro-inflammatory factors of the neutrophil, was markedly dysregulated in MWS neutrophils under both basal and stimulated conditions. This could not be attributed to paracrine effects of secretory cytokines because IL-1β secretion by neutrophils was undetectable under

  14. THE MEMBRANE CAPACITANCE OF THE SEA URCHIN EGG

    PubMed Central

    Rothschild, Lord

    1957-01-01

    1. The surface of the unfertilized sea urchin egg is folded and the folds are reversibly eliminated by exposing the egg to hypotonic sea water. If the plasma membrane is outside the layer of cortical granules, unfolding may explain why the membrane capacitance per unit area decreases (and does not increase) when a sea urchin egg is put into hypotonic sea water. 2. The degree of surface folding markedly increases after fertilization, which provides an explanation for the increase in membrane capacitance per unit area observed after fertilization. 3. The percentage reduction in membrane folding in fertilized eggs after immersion in hypotonic sea water is probably sufficient to explain the decrease in membrane capacitance per unit area observed in these conditions. PMID:13416315

  15. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins

    PubMed Central

    Mezzina, Mariela P.

    2016-01-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. PMID:27287326

  16. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the

  17. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule "ghost" integrity.

    PubMed

    Debet, Martine R; Gidley, Michael J

    2007-06-13

    After gelatinization in water, starch granules persist in swollen hydrated forms known as ghosts. Three potential mechanisms for ghost formation are tested. Proteins and lipids on the granule surface are found to be a determinant of ghost robustness, but not ghost formation. Proteins inside pre-made maize or wheat starch ghosts are degraded extensively by proteases without any apparent change in ghost properties, making an internal protein cross-linking mechanism unlikely. Waxy maize mutants with a range of amylose contents have ghost integrities that correlate with (low) apparent amylose levels. It is hypothesized that ghost formation is due to cross-linking of polysaccharide chains within swollen granules, most likely involving double helices formed from polymer chains that become free to move following heat-induced granule swelling. The size and robustness of granule ghosts is proposed to be determined by the relative rates of swelling and cross-linking, modulated by surface non-polysaccharide components.

  18. Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment.

    PubMed

    Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing

    2012-10-01

    Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins.

    PubMed

    Mezzina, Mariela P; Pettinari, M Julia

    2016-09-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  1. Enhancement of ibuprofen dissolution via wet granulation with beta-cyclodextrin.

    PubMed

    Ghorab, M K; Adeyeye, M C

    2001-08-01

    The purpose was to investigate the effect of wet granulation with beta-cyclodextrin (betaCD) on the enhancement of ibuprofen (IBU) dissolution. The effect of the granulation variables on the physical properties as well as the dissolution of tablets prepared from these granules was also examined. Granulation was performed using three granulating solvents: water, ethanol (95 vol%), and isopropanol. Granules were either oven-dried for 2 h or air-dried for 3 days. The granules or respective physical mixtures were compressed into tablets. Powder X-ray diffraction showed that oven-dried granulation resulted in less amorphous entities thatfacilitated IBU-betaCD complexation in solution and enhanced the dissolution of the corresponding tablets compared to the physical mixture with or without oven drying. In contrast, air-dried granulation did not cause any differences in the X-ray diffraction pattern (crystallinity) or the dissolution compared to the physical mixture without drying. Isopropanol and water, as granulating solvents, enhanced the dissolution of the oven-dried batches more than ethanol. The Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA) data showed that tablets prepared from oven-dried granules, but not air-dried granules, had lower AH values and percent loss in weight, respectively, than those prepared from the physical mixture as a result of the expulsion of the water molecules from the betaCD cavity and enhancement of the complexation in solution. These results showed that oven-dried granulation of IBU and betaCD provided faster IBU dissolution than the physical mixture; air-dried granulation did not substantially affect the dissolution of IBU.

  2. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    PubMed

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets.

    PubMed

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-06-01

    In a previous study a change of the fill-level in the barrel exerted a huge influence on the twin-screw granulation (TSG) process of a high drug loaded, simplified formulation. The present work investigated this influence systematically. The specific feed load (SFL) indicating the mass per revolution as surrogate parameter for the fill-level was applied and the correlation to the real volumetric fill level of an extruder could be demonstrated by a newly developed method. A design of experiments was conducted to examine the combined influence of SFL and screw speed on the process and on critical quality attributes of granules and tablets. The same formulation was granulated at constant liquid level with the same screw configuration and led to distinctively different results by only changing the fill-level and the screw speed. The power consumption of the extruder increased at higher SFLs with hardly any influence of screw speed. At low SFL the median residence time was mainly fill-level dependent and at higher SFL mainly screw speed dependent. Optimal values for the product characteristics were found at medium values for the SFL. Granule size distributions shifted from mono-modal and narrow shape to broader and even bimodal distributions of larger median granule sizes, when exceeding or falling below a certain fill-level. Deviating from the optimum fill-level, tensile strength of tablets decreased by about 25% and disintegration times of tablets increased for more than one third. At low fill-levels, material accumulation in front of the kneading zone was detected by pressure measurements and was assumed to be responsible for the unfavored product performance. At high fill-levels, granule consolidation due to higher propensity of contact with the result of higher material temperature was accounted for inferior product performance. The fill-level was found to be an important factor in assessment and development of twin-screw granulation processes as it impacted

  4. Clarithromycin highly-loaded gastro-floating fine granules prepared by high-shear melt granulation can enhance the efficacy of Helicobacter pylori eradication.

    PubMed

    Aoki, Hajime; Iwao, Yasunori; Mizoguchi, Midori; Noguchi, Shuji; Itai, Shigeru

    2015-05-01

    In an effort to develop a new gastro-retentive drug delivery system (GRDDS) without a large amount of additives, 75% clarithromycin (CAM) loaded fine granules were prepared with three different hydrophobic binders by high-shear melt granulation and their properties were evaluated. Granules containing the higher hydrophobic binder showed sustained drug release and were able to float over 24h. The synchrotron X-ray CT measurement indicated that both the high hydrophobicity of the binder and the void space inside the granules might be involved in their buoyancy. In an in vivo experiment, the floating granules more effectively eradicated Helicobacter pylori than a CAM suspension by remaining in the stomach for a longer period. In short, CAM highly-loaded gastro-floating fine granules can enhance the eradication efficiency of H. pylori compared with CAM alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Studies on the transport of secretory granules in the magnocellular hypothalamic neurons of the rat. II. Action of vincristine on axonal flow and neurotubules in the paraventricular and supraoptic nuclei.

    PubMed

    Flament-Durand, J; Couck, A M; Dustin, P

    1975-11-26

    Intrathecal administration of 20 mug of vincristine sulphate in the rat induced in vivo the formation of paracrystalline inclusions mainly in axonal processes. This is associated with an impairment in the migration of neurosecretory granules as shown by their accumulation in the perikarya of the magnocellular neurons. The granules are intermixed with numerous dense bodies of various shape, sometimes with a fibrillar content, and probably of lysosomal origin. In addition to the impairment of the flow of neurosecretory granules, there is also a striking accumulation of mitochondria and synaptic vesicles, and an apparent proliferation of the smooth endoplasmic reticulum. In the posterior lobe, the axonal endings contain a large number of neurosecretory granules, intermingled with bodies of varying shapes and electron density. Occasionally, a dense membrane surrounding a group of elementary granules is observed, reacting positively for acid phosphatase. This suggests an attempted crinophagia.

  6. Effect of different excipients on the physical characteristics of granules and tablets with carbamazepine prepared with polyethylene glycol 6000 by fluidized hot-melt granulation (FHMG).

    PubMed

    Kraciuk, Radosław; Sznitowska, Malgorzata

    2011-12-01

    The objective of this study was to investigate the properties of granules and tablets with carbamazepine which were prepared employing a fluidized hot-melt granulation (FHMG) technique. The FHMG process was carried out at 65°C. Macrogol 6000 (PEG 6000) was used as a binder at the content 10% (w/w) of the granulated mass. Granules containing up to 70% (w/w) of the drug and 20-90% (w/w) of a filler (lactose, mannitol, calcium hydrogen phosphate (Di-Cafos), pregelatinized starch, and microcrystalline cellulose (MCC)) were produced. When the drug content was 30% (w/w), the yield of the process was satisfying (>95%) and flowability of the granules was better than placebo granules or drug-loaded granules prepared by wet granulation. Type of a filler had strong impact on physical properties of granules, and size distribution of the particles was the most homogenous when lactose or Di-Cafos were used. The FHMG technique enabled preparation of granules with better compressability compared with the wet-granulated product or with non-granulated powders. Tablets with shorter disintegration time than 10 min were obtained with 2.0% crospovidone added as a disintegrant. In comparison to tablets prepared from the wet-granulated mass, employment of the FHMG method resulted in tablets with faster dissolution of carbamazepine (more than 80% of the drug released within 15 min). This was achieved with mannitol or lactose/MCC, as fillers.

  7. Topographic and age-related changes of the retinal epithelium and Bruch's membrane of rhesus monkeys.

    PubMed

    Gouras, Peter; Ivert, Lena; Neuringer, Martha; Mattison, Julie A

    2010-07-01

    To examine structural differences in the retinal pigmented epithelium (RPE) and Bruch's membrane of rhesus monkeys (Macaca mulatta) as a function of topography and age. The retinas of two old (24 and 26 years old) and two young (1 and 6 years old) female monkeys were examined by light fluorescence and electron microscopy at the macula, equator, and ora serrata. All monkeys lacked fluorescence and lipofuscin granules in the RPE at the ora serrata where photoreceptors are absent. The equator and macula showed intense fluorescence and many lipofuscin granules in the RPE of the old but not the young monkeys. At the ora, the RPE contained many dense round melanin granules throughout the cell. At the equator and macula, melanin granules were more apical, less frequent, and often elongated. Mitochondria were clustered at the basal side of the RPE cell near infolds of the plasma membrane. Both mitochondria and infolds tended to increase toward the macula. In all regions, the basal lamina of the RPE did not penetrate the extracellular space adjacent to infolds. The elastin layer of Bruch's membrane was wide at the ora and equator and thinner at the macula. In the old monkeys, drusen were found at all retinal regions between the basal lamina and the internal collagen layer of Bruch's membrane. The drusen were often membrane-bound with a basal lamina and contained material resembling structures in the RPE. Lack of fluorescence and lipofuscin in the RPE at the ora serrata, where photoreceptors are absent, confirms that RPE fluorescence occurs only where outer segments are phagocytized. Mitochondrial clustering indicates that the basal side of the RPE cell uses the most energy and this becomes maximal at the macula. The presence of age-related degenerative changes and drusen at all retinal locations in the older monkeys, even at the ora where RPE lipofuscin was absent, indicates that these processes are not dependent on local lipofuscin accumulation. Therefore lipofuscin

  8. Adsorption mechanism for xanthene dyes to cellulose granules.

    PubMed

    Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu

    2012-01-01

    The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.

  9. Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland.

    PubMed

    Uetake, Jun; Tanaka, Sota; Segawa, Takahiro; Takeuchi, Nozomu; Nagatsuka, Naoko; Motoyama, Hideaki; Aoki, Teruo

    2016-09-01

    Cryoconite granules are aggregations of microorganisms with mineral particles that form on glacier surfaces. To understand the processes by which the granules develop, this study focused on the altitudinal distribution of the granules and photosynthetic microorganisms on the glacier, bacterial community variation with granules size and environmental factors affecting the growth of the granules. Size-sorted cryoconite granules collected from five different sites on Qaanaaq Glacier were analyzed. C and N contents were significantly higher in large (diameter greater than 250 μm) granules than in smaller (diameter 30-249 μm) granules. Bacterial community structures, based on 16S rRNA gene amplicon sequencing, were different between the smaller and larger granules. The filamentous cyanobacterium Phormidesmis priestleyi was the dominant bacterial species in larger granules. Multivariate analysis suggests that the abundance of mineral particles on the glacier surface is the main factor controlling growth of these cyanobacteria. These results show that the supply of mineral particles on the glacier enhances granule development, that P. priestleyi is likely the key species for primary production and the formation of the granules and that the bacterial community in the granules changes over the course of the granule development. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The biological significance of storage granules in rat parathyroid cells.

    PubMed

    Setoguti, T; Inoue, Y; Wild, P

    1995-10-01

    Both prosecretory and storage granules are concomitantly formed at the trans Golgi network including the innermost Golgi cisterna. Prosecretory granules develop into small secretory granules that release their contents by exocytosis finely regulated by a complex mechanism for maintaining calcium homeostasis. In the rat parathyroid cells, storage granules are large secretory granules storing parathyroid hormone for an emergency supply. The hormone is rapidly discharged by exocytosis when serum calcium concentration is decreased. The granules are constantly produced even under conditions of low serum calcium concentration in the regions of 8 mg/dl. The granule content is constantly hydrolyzed when not discharged, leading to a decreased core and finally to the formation of vacuolar bodies. The fate of the vacuolar bodies is unknown. Hypercalcemic conditions accelerate hydrolysis. The threshold value of calcium concentration required for the release of storage granule contents is between 8.0 and 7.5 mg/dl and that of calcium concentration for accelerating degradation of storage granules is about 11.5 mg/dl. Sympathetic stimulation causes storage granules to be discharged regardless of hypercalcemia or hypocalcemia. Parasympathetic stimulation accelerates hydrolysis. The degradation of storage granules seems to be closely associated with an intracellular regulatory mechanism for parathyroid hormone secretion.

  11. Morphologic characterization of specific granules in Greyhound eosinophils.

    PubMed

    Iazbik, M C; Couto, C G

    2005-06-01

    "Vacuolated" eosinophils (ie, eosinophils with empty, nonstaining granules) have been described previously in normal Greyhounds. However, to our knowledge, detailed studies of granules in vacuolated and normal eosinophils in this breed have not been performed. The objective of this prospective study was to characterize some of the morphologic, ultrastructural, and cytochemical staining features of specific (primary) granules in both normal and vacuolated eosinophils in Greyhound blood. Morphologic features of eosinophils in Wright's- and Diff-Quik-stained peripheral blood smears from 49 Greyhounds were compared with 200 blood smears from non-Greyhound dogs. Transmission electron microscopy was done on blood from 3 Greyhounds with vacuolated eosinophils and 3 with normal eosinophil granules. Blood smears from 4 of these dogs also were stained cytochemically with alkaline phosphatase (AP), chloracetate esterase (CAE), and alpha naphthyl butyrate esterase (ANBE). The morphologic features and tinctorial properties of vacuolated and normal eosinophils were compared. Twenty-six Greyhounds (53%) had vacuolated eosinophils and 23 (47%) had normal granulated eosinophils in smears stained with Wright's stain. Only 1% of eosinophils were vacuolated in non-Greyhound dogs. Twenty of the 23 (85%) Greyhounds with normal granulated eosinophils on Wright's-stained smears had vacuolated eosinophils in smears stained with Diff-Quik. Ultrastructurally, no morphologic differences were observed between granules of vacuolated and normal eosinophils. Both vacuolated and normal eosinophils in Greyhounds were positive for AP and negative for CAE and ANBE, as expected for normal dogs. Vacuolated eosinophils in Greyhounds likely reflect, at least in part, differential staining properties of the specific granules with different hematologic stains. Ultrastuctural and cytochemical features of eosinophil granules were similar in normal and vacuolated eosinophils from Greyhounds.

  12. Cerebellar granule cells encode the expectation of reward

    PubMed Central

    Wagner, Mark J; Kim, Tony Hyun; Savall, Joan; Schnitzer, Mark J; Luo, Liqun

    2017-01-01

    The human brain contains ~60 billion cerebellar granule cells1, which outnumber all other neurons combined. Classical theories posit that a large, diverse population of granule cells allows for highly detailed representations of sensorimotor context, enabling downstream Purkinje cells to sense fine contextual changes2–6. Although evidence suggests a role for cerebellum in cognition7–10, granule cells are known to encode only sensory11–13 and motor14 context. Using two-photon calcium imaging in behaving mice, here we show that granule cells convey information about the expectation of reward. Mice initiated voluntary forelimb movements for delayed water reward. Some granule cells responded preferentially to reward or reward omission, whereas others selectively encoded reward anticipation. Reward responses were not restricted to forelimb movement, as a Pavlovian task evoked similar responses. Compared to predictable rewards, unexpected rewards elicited markedly different granule cell activity despite identical stimuli and licking responses. In both tasks, reward signals were widespread throughout multiple cerebellar lobules. Tracking the same granule cells over several days of learning revealed that cells with reward-anticipating responses emerged from those that responded at the start of learning to reward delivery, whereas reward omission responses grew stronger as learning progressed. The discovery of predictive, non-sensorimotor encoding in granule cells is a major departure from current understanding of these neurons and dramatically enriches contextual information available to postsynaptic Purkinje cells, with important implications for cognitive processing in the cerebellum. PMID:28321129

  13. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-05-29

    The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.

  14. Carbon, nitrogen and phosphorus removal mechanisms of aerobic granules.

    PubMed

    Sarma, Saurabh Jyoti; Tay, Joo-Hwa

    2018-04-10

    Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.

  15. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance π1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  16. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance ~1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  17. The use of Rheology Combined with Differential Scanning Calorimetry to Elucidate the Granulation Mechanism of an Immiscible Formulation During Continuous Twin-Screw Melt Granulation.

    PubMed

    Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas

    2016-10-01

    Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.

  18. Evaluation of the physicochemical properties and compaction behavior of melt granules produced in microwave-induced and conventional melt granulation in a single pot high shear processor.

    PubMed

    Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V

    2011-12-01

    Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.

  19. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    PubMed

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Downstream processing from melt granulation towards tablets: In-depth analysis of a continuous twin-screw melt granulation process using polymeric binders.

    PubMed

    Grymonpré, W; Verstraete, G; Vanhoorne, V; Remon, J P; De Beer, T; Vervaet, C

    2018-03-01

    The concept of twin-screw melt granulation (TSMG) has steadily (re)-gained interest in pharmaceutical formulation development as an intermediate step during tablet manufacturing. However, to be considered as a viable processing option for solid oral dosage forms there is a need to understand all critical sources of variability which could affect this granulation technique. The purpose of this study was to provide an in-depth analysis of the continuous TSMG process in order to expose the critical process parameters (CPP) and elucidate the impact of process and formulation parameters on the critical quality attributes (CQA) of granules and tablets during continuous TSMG. A first part of the study dealt with the screening of various amorphous polymers as binder for producing high-dosed melt granules of two model drug (i.e. acetaminophen and hydrochlorothiazide). The second part of this study described a quality-by-design (QbD) approach for melt granulation of hydrochlorothiazide in order to thoroughly evaluate TSMG, milling and tableting stage of the continuous TSMG line. Using amorphous polymeric binders resulted in melt granules with high milling efficiency due to their brittle behaviour without producing excessive amounts of fines, providing high granule yields with low friability. Therefore, it makes them extremely suitable for further downstream processing. One of the most important CPP during TSMG with polymeric binders was the granulation-torque, which - in case of polymers with high T g - increased during longer granulation runs to critical levels endangering the continuous process flow. However, by optimizing both screw speed and throughput or changing to polymeric binders with lower T g it was possible to significantly reduce this risk. This research paper highlighted that TSMG must be considered as a viable option during formulation development of solid oral dosage forms based on the robustness of the CQA of both melt granules and tablets. Copyright © 2017

  1. HIGH-SHEAR GRANULATION PROCESS: INFLUENCE OF PROCESSING PARAMETERS ON CRITICAL QUALITY ATTRIBUTES OF ACETAMINOPHEN GRANULES AND TABLETS USING DESIGN OF EXPERIMENT APPROACH.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shedfat, Ramadan I

    2017-01-01

    Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.

  2. Short-term block of Na+/K+-ATPase in neuro-glial cell cultures of cerebellum induces glutamate dependent damage of granule cells.

    PubMed

    Stelmashook, E V; Weih, M; Zorov, D; Victorov, I; Dirnagl, U; Isaev, N

    1999-07-30

    Granule cells in a dissociated neuro-glial cell culture of cerebellum when exposed to ouabain (10(-3) M) for 25 min apparently swell, increase their [Ca2+]i with obvious depolarization of the mitochondrial membrane. In 3 h after ouabain was omitted from the solution, 62 +/- 3% of granule cells had pycnotic nuclei. The supplement of a solution with competitive specific antagonist of NMDA receptors, L-2-amino-7-phosphonoheptanoate (10(-4) M, APH) together with ouabain prevented cells from swelling, mitochondrial deenergization, neuronal death and increase of [Ca2+]i. These data suggest that cellular Na+/K+-ATPase inactivation in neuro-glial cell cultures of cerebellum leads to glutamate (Glu) accumulation, hyperstimulation of glutamate receptors, higher Ca2+ and Na+ influxes into the cells through the channels activated by Glu. This process leads to cell swelling, mitochondrial deenergization and death of granule cells. Possibly, the decrease of Na+/K+-ATPase activity in brain cells can lead to the onset of at least some chronic neurological disorders.

  3. Detection and Analysis of the Quality of Ibuprofen Granules

    NASA Astrophysics Data System (ADS)

    Yu-bin, Ji; Xin, LI; Guo-song, Xin; Qin-bing, Xue

    2017-12-01

    The Ibuprofen Granules comprehensive quality testing to ensure that it is in accordance with the provisions of Chinese pharmacopoeia. With reference of Chinese pharmacopoeia, the Ibuprofen Granules is tested by UV, HPLC, in terms of grain size checking, volume deviation, weight loss on drying detection, dissolution rate detection, and quality evaluation. Results indicated that Ibuprofen Granules conform to the standards. The Ibuprofen Granules are qualified and should be permitted to be marketed.

  4. Sodium phenylbutyrate coated granules (Pheburane). Defective urea synthesis: a welcome formulation.

    PubMed

    2015-02-01

    Compared with Ammonaps granules, Pheburane coated granules mask the unpleasant taste of sodium phenylbutyrate. A more precise dosing device is provided with the coated granules than with the uncoated granules (Ammonaps).

  5. Effect of suspension property on granule morphology and compaction behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hae-Weon Lee, Guesup Song, In-Sik Suk

    1995-12-31

    Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.

  6. Granulation of snow: From tumbler experiments to discrete element simulations

    NASA Astrophysics Data System (ADS)

    Steinkogler, Walter; Gaume, Johan; Löwe, Henning; Sovilla, Betty; Lehning, Michael

    2015-06-01

    It is well known that snow avalanches exhibit granulation phenomena, i.e., the formation of large and apparently stable snow granules during the flow. The size distribution of the granules has an influence on flow behavior which, in turn, affects runout distances and avalanche velocities. The underlying mechanisms of granule formation are notoriously difficult to investigate within large-scale field experiments, due to limitations in the scope for measuring temperatures, velocities, and size distributions. To address this issue we present experiments with a concrete tumbler, which provide an appropriate means to investigate granule formation of snow. In a set of experiments at constant rotation velocity with varying temperatures and water content, we demonstrate that temperature has a major impact on the formation of granules. The experiments showed that granules only formed when the snow temperature exceeded -1∘C. No evolution in the granule size was observed at colder temperatures. Depending on the conditions, different granulation regimes are obtained, which are qualitatively classified according to their persistence and size distribution. The potential of granulation of snow in a tumbler is further demonstrated by showing that generic features of the experiments can be reproduced by cohesive discrete element simulations. The proposed discrete element model mimics the competition between cohesive forces, which promote aggregation, and impact forces, which induce fragmentation, and supports the interpretation of the granule regime classification obtained from the tumbler experiments. Generalizations, implications for flow dynamics, and experimental and model limitations as well as suggestions for future work are discussed.

  7. Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis.

    PubMed

    Laplagne, Diego A; Kamienkowski, Juan E; Espósito, M Soledad; Piatti, Verónica C; Zhao, Chunmei; Gage, Fred H; Schinder, Alejandro F

    2007-05-01

    Neurogenesis in the dentate gyrus of the hippocampus follows a unique temporal pattern that begins during embryonic development, peaks during the early postnatal stages and persists through adult life. We have recently shown that dentate granule cells born in early postnatal and adult mice acquire a remarkably similar afferent connectivity and firing behavior, suggesting that they constitute a homogeneous functional population [Laplagne et al. (2006)PLoS Biol., 4, e409]. Here we extend our previous study by comparing mature neurons born in the embryonic and adult hippocampus, with a focus on intrinsic membrane properties and gamma-aminobutyric acid (GABA)ergic synaptic inputs. For this purpose, dividing neuroblasts of the ventricular wall were retrovirally labeled with green fluorescent protein at embryonic day 15 (E15), and progenitor cells of the subgranular zone were labeled with red fluorescent protein in the same mice at postnatal day 42 (P42, adulthood). Electrophysiological properties of mature neurons born at either stage were then compared in the same brain slices. Evoked and spontaneous GABAergic postsynaptic responses of perisomatic and dendritic origin displayed similar characteristics in both neuronal populations. Miniature GABAergic inputs also showed similar functional properties and pharmacological profile. A comparative analysis of the present data with our previous observations rendered no significant differences among GABAergic inputs recorded from neurons born in the embryonic, early postnatal and adult mice. Yet, embryo-born neurons showed a reduced membrane excitability, suggesting a lower engagement in network activity. Our results demonstrate that granule cells of different age, location and degree of excitability receive GABAergic inputs of equivalent functional characteristics.

  8. Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals

    PubMed Central

    Milberg, Oleg; Shitara, Akiko; Ebrahim, Seham; Tora, Muhibullah; Tran, Duy T.; Chen, Yun; Conti, Mary Anne; Ten Hagen, Kelly G.

    2017-01-01

    Membrane remodeling plays a fundamental role during a variety of biological events. However, the dynamics and the molecular mechanisms regulating this process within cells in mammalian tissues in situ remain largely unknown. In this study, we use intravital subcellular microscopy in live mice to study the role of the actomyosin cytoskeleton in driving the remodeling of membranes of large secretory granules, which are integrated into the plasma membrane during regulated exocytosis. We show that two isoforms of nonmuscle myosin II, NMIIA and NMIIB, control distinct steps of the integration process. Furthermore, we find that F-actin is not essential for the recruitment of NMII to the secretory granules but plays a key role in the assembly and activation of NMII into contractile filaments. Our data support a dual role for the actomyosin cytoskeleton in providing the mechanical forces required to remodel the lipid bilayer and serving as a scaffold to recruit key regulatory molecules. PMID:28600434

  9. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity.

    PubMed

    Tuli, Amit; Thiery, Jerome; James, Ashley M; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B; Orange, Jordan S; Lieberman, Judy; Brenner, Michael B

    2013-12-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.

  10. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell–mediated cytotoxicity

    PubMed Central

    Tuli, Amit; Thiery, Jerome; James, Ashley M.; Michelet, Xavier; Sharma, Mahak; Garg, Salil; Sanborn, Keri B.; Orange, Jordan S.; Lieberman, Judy; Brenner, Michael B.

    2013-01-01

    Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell–mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity. PMID:24088571

  11. Optimization for blast furnace slag dry cooling granulation device

    NASA Astrophysics Data System (ADS)

    Dazhan, Sheng; Yali, Wang; Ruiyun, Wang; Suping, Cui; Xiaoyu, Ma

    2017-03-01

    Since the large accumulation amount of blast furnace slag (BFS) with recycling value, it has become a hot topic for recovery utilization. Compared with the existing various BFS granulation process, the dry granulation process can promote the use of blast furnace granulated slag as cement substitute and concrete admixtures. Our research group developed a novel dry cooling granulation experiment device to treat BFS. However, there are still some problems to be solved. The purpose of this research is to improve the cooling and granulation efficiency of the existing dry type cooling equipment. This topic uses the FLUENT simulation software to study the impact of the number of air inlet on the cooling effect of the device. The simulation result is that the device possessing eight air inlets can increase the number of hot and cold gas exchanged, resulting in a better cooling effect. According to the power consumption, LCA analysis was carried out on the cooling granulation process. The results show that the device equipped eight air inlets not only improved the original equipment cooling granulation effect, but also increased resource utilization ratio, realized energy-saving and emission reduction.

  12. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  13. Second Harmonic Generation Mediated by Aligned Water in Starch Granules.

    PubMed

    Cisek, Richard; Tokarz, Danielle; Krouglov, Serguei; Steup, Martin; Emes, Michael J; Tetlow, Ian J; Barzda, Virginijus

    2014-12-26

    The origin of second harmonic generation (SHG) in starch granules was investigated using ab initio quantum mechanical modeling and experimentally examined using polarization-in, polarization-out (PIPO) second harmonic generation microscopy. Ab initio calculations revealed that the largest contribution to the SHG signal from A- and B-type allomorphs of starch originates from the anisotropic organization of hydroxide and hydrogen bonds mediated by aligned water found in the polymers. The hypothesis was experimentally tested by imaging maize starch granules under various hydration and heat treatment conditions that alter the hydrogen bond network. The highest SHG intensity was found in fully hydrated starch granules, and heat treatment diminished the SHG intensity. The PIPO SHG imaging showed that dried starch granules have a much higher nonlinear optical susceptibility component ratio than fully hydrated granules. In contrast, deuterated starch granules showed a smaller susceptibility component ratio demonstrating that SHG is highly sensitive to the organization of the hydroxyl and hydrogen bond network. The polarization SHG imaging results of potato starch granules, representing starch allomorph B, were compared to those of maize starch granules representing allomorph A. The results showed that the amount of aligned water was higher in the maize granules. Nonlinear microscopy of starch granules provides evidence that varying hydration conditions leads to significant changes in the nonlinear susceptibility ratio as well as the SHG intensity, supporting the hypothesis from ab initio calculations that the dominant contribution to SHG is due to the ordered hydroxide and hydrogen bond network.

  14. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion

    PubMed Central

    Boswell, Kristin L.; James, Declan J.; Esquibel, Joseph M.; Bruinsma, Stephen; Shirakawa, Ryutaro; Horiuchi, Hisanori

    2012-01-01

    Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca2+, but Ca2+-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca2+ and restored Ca2+-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca2+-binding residues in C2A and C2B. Munc13-4 exhibited Ca2+-stimulated SNARE interactions dependent on C2A and Ca2+-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca2+-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca2+-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca2+ sensor at rate-limiting priming steps in granule exocytosis. PMID:22508512

  15. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion.

    PubMed

    Boswell, Kristin L; James, Declan J; Esquibel, Joseph M; Bruinsma, Stephen; Shirakawa, Ryutaro; Horiuchi, Hisanori; Martin, Thomas F J

    2012-04-16

    Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca(2+), but Ca(2+)-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca(2+) and restored Ca(2+)-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca(2+)-binding residues in C2A and C2B. Munc13-4 exhibited Ca(2+)-stimulated SNARE interactions dependent on C2A and Ca(2+)-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca(2+)-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca(2+)-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca(2+) sensor at rate-limiting priming steps in granule exocytosis.

  16. State of the art of aerobic granulation in continuous flow bioreactors.

    PubMed

    Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu

    In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of

  17. Regulation of platelet granule exocytosis by S-nitrosylation

    PubMed Central

    Morrell, Craig N.; Matsushita, Kenji; Chiles, Kelly; Scharpf, Robert B.; Yamakuchi, Munekazu; Mason, Rebecca J. A.; Bergmeier, Wolfgang; Mankowski, Joseph L.; Baldwin, William M.; Faraday, Nauder; Lowenstein, Charles J.

    2005-01-01

    Nitric oxide (NO) regulates platelet activation by cGMP-dependent mechanisms and by mechanisms that are not completely defined. Platelet activation includes exocytosis of platelet granules, releasing mediators that regulate interactions between platelets, leukocytes, and endothelial cells. Exocytosis is mediated in part by N-ethylmaleimide-sensitive factor (NSF), an ATPase that disassembles complexes of soluble NSF attachment protein receptors. We now demonstrate that NO inhibits exocytosis of dense granules, lysosomal granules, and α-granules from human platelets by S-nitrosylation of NSF. Platelets lacking endothelial NO synthase show increased rolling on venules, increased thrombosis in arterioles, and increased exocytosis in vivo. Regulation of exocytosis is thus a mechanism by which NO regulates thrombosis. PMID:15738422

  18. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  19. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shdefat, Ramadan I

    2017-10-01

    The aim of this work was to study the application of design of experiment (DoE) approach in defining design space for granulation and tableting processes using a novel gentle-wing high-shear granulator. According to quality-by-design (QbD) prospective, critical attributes of granules, and tablets should be ensured by manufacturing process design. A face-centered central composite design has been employed in order to investigate the effect of water amount (X 1 ), impeller speed (X 2 ), wet massing time (X 3 ), and water addition rate (X 4 ) as independent process variables on granules and tablets characteristics. Acetaminophen was used as a model drug and granulation experiments were carried out using dry addition of povidone k30. The dried granules have been analyzed for their size distribution, density, and flow pattern. Additionally, the produced tablets have been investigated for; weight uniformity, breaking force, friability and percent capping, disintegration time, and drug dissolution. Results of regression analysis showed that water amount, impeller speed and wet massing time have significant (p < .05) effect on granules and tablets characteristics. However, the water amount had the most pronounced effect as indicated by its higher parameter estimate. On the other hand, water addition rate showed a minimal impact on granules and tablets properties. In conclusion, water amount, impeller speed, and wet massing time could be considered as critical process variables. Thus, understanding the relationship between these variables and quality attributes of granules and corresponding tablets provides the basis for adjusting granulation variables in order to optimize product performance.

  20. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    PubMed

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. High organic loading influences the physical characteristics of aerobic sludge granules.

    PubMed

    Moy, B Y-P; Tay, J-H; Toh, S-K; Liu, Y; Tay, S T-L

    2002-01-01

    The effect of high organic loading rate (OLR) on the physical characteristics of aerobic granules was studied. Two column-type sequential aerobic sludge blanket reactors were fed with either glucose or acetate as the main carbon source, and the OLR was gradually raised from 6 to 9, 12 and 15 kg chemical oxygen demand (COD) m(-3) d(-1). Glucose-fed granules could sustain the maximum OLR tested. At a low OLR, these granules exhibited a loose fluffy morphology dominated by filamentous bacteria. At higher OLRs, these granules became irregularly shaped, with folds, crevices and depressions. In contrast, acetate-fed granules had a compact spherical morphology at OLRs of 6 and 9 kg COD m(-3) d(-1), with better settling and strength characteristics than glucose-fed granules at similar OLRs. However, acetate-fed granules could not sustain high OLRs and disintegrated when the OLR reached 9 kg COD m(-3) d(-1). The compact regular microstructure of the acetate-fed granules appeared to limit mass transfer of nutrients at an OLR of 9 kg COD m(-3) d(-1). The looser filamentous microstructure of the glucose-fed granules and the subsequent irregular morphology delayed the onset of diffusion limitation and allowed significantly higher OLRs to be attained. SIGNIFICNACE AND IMPACT OF THE STUDY: High organic loading rates are possible with aerobic granules. This research would be helpful in the development of aerobic granule-based systems for high-strength wastewaters.

  2. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loo, Jr., Billy W.

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the majormore » intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.« less

  3. Localization of DNA and RNA in eosinophil secretory granules.

    PubMed

    Behzad, Ali R; Walker, David C; Abraham, Thomas; McDonough, John; Mahmudi-Azer, Salahadin; Chu, Fanny; Shaheen, Furquan; Hogg, James C; Paré, Peter D

    2010-01-01

    Although the accepted paradigm is that the proteins stored in eosinophil crystalloid granules are translated from messenger RNA transcribed in the cell nucleus, recent ultrastructural evidence suggests that protein synthesis may also take place within eosinophilic granules. We used 2 different methods to detect the presence of DNA and RNA in eosinophil secretory granules. Using bromodeoxyuridine, a thymidine analogue, and bromouridine, a uracil analogue, we labeled the DNA and RNA in eosinophils in vivo in rabbits. Immunoelectron microscopy to localize these molecules was performed on ultrathin sections of blood and bone marrow eosinophils using monoclonal anti-bromodeoxyuridine antibody with IgG as a control. The immunogold grain density was measured in each subcellular compartment within the eosinophils and analyzed using image analysis software. A combination of DNA/CD63 immunofluorescence staining and a fluorescently labeled molecular probe that stains RNA was used to examine the presence of DNA and RNA in the secretory granules of human blood eosinophils. The mean density of bromodeoxyuridine-labeled DNA and bromouridine-labeled RNA immunogold grains in the secretory granules of blood and bone marrow eosinophils were significantly higher (p < 0.0005) than cytoplasmic or background staining. We also demonstrated the existence of DNA and RNA in the CD63-positive secretory granules of human peripheral blood eosinophils by means of immunofluorescent staining and a fluorescently labeled molecular probe. These results provide evidence that eosinophil granules are the site of DNA and RNA synthesis and suggest the potential for a new role(s) for eosinophil-secretory granules. Copyright 2009 S. Karger AG, Basel.

  4. Layered growth with bottom-spray granulation for spray deposition of drug.

    PubMed

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  5. Stable aerobic granules in continuous-flow bioreactor with self-forming dynamic membrane.

    PubMed

    Liu, Hongbo; Li, Yajie; Yang, Changzhu; Pu, Wenhong; He, Liu; Bo, Fu

    2012-10-01

    A novel continuous-flow bioreactor with aerobic granular sludge and self-forming dynamic membrane (CGSFDMBR) was developed for efficient wastewater treatment. Under continuous-flow operation, aerobic granular sludge was successfully cultivated and characterized with small particle size of about 0.1-1.0mm, low settling velocity of about 15-25 m/h, loose structure and high water content of about 96-98%. To maintain the stability of aerobic granular sludge, strategies based on the differences of settling velocity and particle-size between granular and flocculent sludge were implemented. Moreover, in CGSFDMBR, membrane fouling was greatly relieved. Dynamic membrane was just cleaned once in more than 45 days' operation. CGSFDMBR presented good performance in treating septic tank wastewater, obtaining average COD, NH(4)(+)-N, TN and TP removal rates of 83.3%, 73.3%, 67.3% and 60%, respectively, which was more efficient than conventional bioreactors since that carbon, nitrogen and phosphorus were simultaneously removed in a single aerobic reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy.

    PubMed

    Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya

    2002-04-01

    The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.

  7. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  8. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  9. Chromospheric impact of an exploding solar granule

    NASA Astrophysics Data System (ADS)

    Fischer, C. E.; Bello González, N.; Rezaei, R.

    2017-06-01

    Context. Observations of multi-wavelength and therefore height-dependent information following events throughout the solar atmosphere and unambiguously assigning a relation between these rapidly evolving layers are rare and difficult to obtain. Yet, they are crucial for our understanding of the physical processes that couple the different regimes in the solar atmosphere. Aims: We characterize the exploding granule event with simultaneous observations of Hinode spectroplarimetric data in the solar photosphere and Hinode broadband Ca II H images combined with Interface Region Imaging Spectrograph (IRIS) slit spectra. We follow the evolution of an exploding granule and its connectivity throughout the atmosphere and analyze the dynamics of a magnetic element that has been affected by the abnormal granule. Methods: In addition to magnetic flux maps we use a local correlation tracking method to infer the horizontal velocity flows in the photosphere and apply a wavelet analysis on several IRIS chromospheric emission features such as Mg II k2v and Mg II k3 to detect oscillatory phenomena indicating wave propagation. Results: During the vigorous expansion of the abnormal granule we detect radially outward horizontal flows, causing, together with the horizontal flows from the surrounding granules, the magnetic elements in the bordering intergranular lanes to be squeezed and elongated. In reaction to the squeezing, we detect a chromospheric intensity and velocity oscillation pulse which we identify as an upward traveling hot shock front propagating clearly through the IRIS spectral line diagnostics of Mg II h&k. Conclusions: Exploding granules can trigger upward-propagating shock fronts that dissipate in the chromosphere. Movies associated to Figs. A.1 and A.2 are available in electronic form at http://www.aanda.org

  10. Granulated lead oxides with teflon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, O.

    An improvement in the production of tube electrodes for lead storage batteries comprising mixing a small amount (0.1 to 3 weight percent) of polytetrafluoroethylene (Ptfe) with lead powder, the mixture is heated and shear stresses are applied thereto sufficient to convert substantially all of the ptfe in the mixture to fibrous form and to form a non-powdery dough. The dough is then granulated and the doughy granules about 100 mu to 500 mu in major dimension are used for filling tube elctrodes a lead-acid storage battery.

  11. The dynamics of plasma membrane PtdIns(4,5)P(2) at fertilization of mouse eggs.

    PubMed

    Halet, Guillaume; Tunwell, Richard; Balla, Tamas; Swann, Karl; Carroll, John

    2002-05-15

    A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Using confocal imaging to simultaneously monitor Ca2+ and plasma membrane PtdIns(4,5)P(2) in single living mouse eggs we have sought to establish the relationship between the kinetics of PtdIns(4,5)P(2) metabolism and the Ca2+ oscillations at fertilization. We report that there is no detectable net loss of plasma membrane PtdIns(4,5)P(2) either during the latent period or during the subsequent Ca2+ oscillations. When phosphatidylinositol 4-kinase is inhibited with micromolar wortmannin a limited decrease in plasma membrane PtdIns(4,5)P(2) is detected in half the eggs studied. Although we were unable to detect a widespread loss of PtdIns(4,5)P(2), we found that fertilization triggers a net increase in plasma membrane PtdIns(4,5)P(2) that is localized to the vegetal cortex. The fertilization-induced increase in PtdIns(4,5)P(2) follows the increase in Ca2+, is blocked by Ca2+ buffers and can be mimicked, albeit with slower kinetics, by photoreleasing Ins(1,4,5)P(3). Inhibition of Ca2+-dependent exocytosis of cortical granules, without interfering with Ca2+ transients, inhibits the PtdIns(4,5)P(2) increase. The increase appears to be due to de novo synthesis since it is inhibited by micromolar wortmannin. Finally, there is no increase in PtdIns(4,5)P(2) in immature oocytes that are not competent to extrude cortical granules. These studies suggest that fertilization does not deplete plasma membrane PtdIns(4,5)P(2) and that one of the pathways for increasing PtdIns(4,5)P(2) at fertilization is invoked by exocytosis of cortical granules.

  12. Protein Mobility within Secretory Granules

    PubMed Central

    Weiss, Annita Ngatchou; Bittner, Mary A.; Holz, Ronald W.; Axelrod, Daniel

    2014-01-01

    We investigated the basis for previous observations that fluorescent-labeled neuropeptide Y (NPY) is usually released within 200 ms after fusion, whereas labeled tissue plasminogen activator (tPA) is often discharged over many seconds. We found that tPA and NPY are endogenously expressed in small and different subpopulations of bovine chromaffin cells in culture. We measured the mobility of these proteins (tagged with fluorophore) within the lumen of individual secretory granules in living chromaffin cells, and related their mobilities to postfusion release kinetics. A method was developed that is not limited by standard optical resolution, in which a bright flash of strongly decaying evanescent field (∼64 nm exponential decay constant) produced by total internal reflection (TIR) selectively bleaches cerulean-labeled protein proximal to the glass coverslip within individual granules. Fluorescence recovery occurred as unbleached protein from distal regions within the 300 nm granule diffused into the bleached proximal regions. The fractional bleaching of tPA-cerulean (tPA-cer) was greater when subsequently probed with TIR excitation than with epifluorescence, indicating that tPA-cer mobility was low. The almost equal NPY-cer bleaching when probed with TIR and epifluorescence indicated that NPY-cer equilibrated within the 300 ms bleach pulse, and therefore had a greater mobility than tPA-cer. TIR-fluorescence recovery after photobleaching revealed a significant recovery of tPA-cer (but not NPY-cer) fluorescence within several hundred milliseconds after bleaching. Numerical simulations, which take into account bleach duration, granule diameter, and the limited number of fluorophores in a granule, are consistent with tPA-cer being 100% mobile, with a diffusion coefficient of 2 × 10−10 cm2/s (∼1/3000 of that for a protein of similar size in aqueous solution). However, the low diffusive mobility of tPA cannot alone explain its slow postfusion release. In the

  13. Effect of mechanical cleaning with granular material on the permeability of submerged membranes in the MBR process.

    PubMed

    Siembida, B; Cornel, P; Krause, S; Zimmermann, B

    2010-07-01

    The research on fouling reduction and permeability loss in membrane bioreactors (MBRs) was carried out at two MBR pilot plants with synthetic and real wastewater. On the one hand, the effect of mechanical cleaning with an abrasive granular material on the performance of a submerged MBR process was tested. Additionally, scanning electron microscopy (SEM) measurements and integrity tests were conducted to check whether the membrane material was damaged by the granulate.The results indicate that the fouling layer formation was significantly reduced by abrasion using the granular material. This technique allowed a long-term operation of more than 600 days at a flux up to 40 L/(m2 h) without chemical cleaning of the membranes. Moreover, it was demonstrated that the membrane bioreactor (MBR) with granulate could be operated with more than 20% higher flux compared to a conventional MBR operation. SEM images and integrity tests showed that in consequence of abrasive cleaning, the granular material left brush marks on the membrane surface, however, the membrane function was not affected.In a parallel experimental set up, the impact of the operationally defined "truly soluble fraction" <0.04 microm from wastewater and activated sludge on the ultrafiltration membrane fouling characteristics was investigated. It was shown that the permeability loss was caused predominantly by the colloidal fraction >0.04 microm rather than by the dissolved fraction of wastewater and activated sludge.

  14. 21 CFR 520.905b - Fenbendazole granules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Fenbendazole granules. 520.905b Section 520.905b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905b Fenbendazole granules...

  15. Carbon granule probe microphone for leak detection. [recovery boilers

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P. (Inventor)

    1985-01-01

    A microphone which is not subject to corrosion is provided by employing carbon granules to sense sound waves. The granules are packed into a ceramic tube and no diaphragm is used. A pair of electrodes is located in the tube adjacent the carbon granules and are coupled to a sensing circuit. Sound waves cause pressure changes on the carbon granules which results in a change in resistance in the electrical path between the electrodes. This change in resistance is detected by the sensing circuit. The microphone is suitable for use as a leak detection probe in recovery boilers, where it provides reliable operation without corrosion problems associated with conventional microphones.

  16. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Study of sintering temperature on the structure of silicon carbide membrane

    NASA Astrophysics Data System (ADS)

    Sadighzadeh, A.; Mashayekhan, Sh.; Nedaie, B.; Ghorashi, A. H.

    2014-09-01

    Study of the microstructure of silicon carbide (SiC) membrane as a function of sintering temperature and the percentage amount of additive kaolin is the outcome of the experimental fabrications presented in this paper. The SEM micrographs are used to investigate the impact of above parameters on the porosity of membrane. The experimental results show that the rise in the temperature causes more sintering of powder particles, growing granules, augmentation of the number of pores and consequently increasing the total porosity of membrane. Using XRD analyses, it is found that SiC amorphous phase is highly sensitive to the temperature and its crystallization physically grows with temperature increase.

  18. Preparation and evaluation of gelling granules to improve oral administration.

    PubMed

    Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae

    2015-06-01

    We investigated the preparation of oral granules that are solid when stored and that will swell and gel via water absorption, to address problems experienced by patients when taking medication. Important physical properties of gelling granules include elasticity that is normally smooth, quick water absorption and swelling properties that allow easy swallowing. We selected gelatin (GEL), succinylated gelatin (SUC-GEL) and ι-carrageenan (CAR) as matrix polymers that can undergo gelation at room temperature or at cold temperatures. Saccharide and polyethylene glycol (PEG) were added to prepare the experimental granules. The best matrix gelling granule was SUC-GEL. When xylitol (XYL), sorbitol (SOR) and maltitol (MAL) were added, elasticity was improved, and PEG improved the granule's water absorption behavior, which is an important element involved in gelation. The best granules were prepared by selecting SUC-GEL as the matrix and adding a small amount of PEG and XYL in amounts equal to that of SUC-GEL.

  19. Granule Formation Mechanisms within an Aerobic Wastewater System for Phosphorus Removal▿ †

    PubMed Central

    Barr, Jeremy J.; Cook, Andrew E.; Bond, Phillip L.

    2010-01-01

    Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechanisms for granule formation as observed in three laboratory scale sequencing batch reactors operating for biological phosphorus removal and treating two different types of wastewater. During the initial stages of granulation, two distinct granule types (white and yellow) were distinguished within the mixed microbial population. White granules appeared as compact, smooth, dense aggregates dominated by 97.5% “Candidatus Accumulibacter phosphatis,” and yellow granules appeared as loose, rough, irregular aggregates with a mixed microbial population of 12.3% “Candidatus Accumulibacter phosphatis” and 57.9% “Candidatus Competibacter phosphatis,” among other bacteria. Microscopy showed white granules as homogeneous microbial aggregates and yellow granules as segregated, microcolony-like aggregates, with phylogenetic analysis suggesting that the granule types are likely not a result of strain-associated differences. The microbial community composition and arrangement suggest different formation mechanisms occur for each granule type. White granules are hypothesized to form by outgrowth from a single microcolony into a granule dominated by one bacterial type, while yellow granules are hypothesized to form via multiple microcolony aggregation into a microcolony-segregated granule with a mixed microbial population. Further understanding and application of these mechanisms and the associated microbial ecology may provide conceptual information benefiting start-up procedures for full-scale granular-sludge reactors. PMID:20851963

  20. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules.

    PubMed

    Xu, Heng; Gong, Shufen; Sun, Yuanzi; Ma, Hailing; Zheng, Mingyue; Wang, Kaijun

    2015-01-01

    Hydrogenotrophic methanogenesis has been proved to be a feasible biological method for biogas upgrading. To improve its performance, the feasibility of typical anaerobic granules as the inoculum was investigated in both batch and continuous experiments. The results from batch experiments showed that glucose-acclimated granules seemed to perform better than granules acclimated to acidified products (AP, i.e. acetate, propionate and ethanol) in in situ biogas upgrading systems and a slightly higher H2 consumption rate (1.5 mmol H2 g VSS(-1) h(-1)) was obtained for glucose-acclimated granules. For AP-acclimated granules, the inhibition on anaerobic digestion and pH increase (up to 9.55±0.16) took place, and the upgrading performance was adversely affected. In contrast, better performance for AP-acclimated granules was observed in ex situ systems, possibly due to their higher hydrogenotrophic methanogenic activities (HMA). Moreover, when gas-liquid mass transfer limitations were alleviated, the upgrading performance was significantly improved (three-fold) for both glucose-acclimated and AP-acclimated granules. The HMA of anaerobic granules could be further enhanced to improve biogas upgrading performance via continuous cultivation with H2/CO2 as the sole substrate. During the three months' cultivation, secondary granulation and microbial population shift were observed, but anaerobic granules still remained intact and their HMA increased from 0.2 to 0.6 g COD g VSS(-1) d(-1). It indicated that the formation of hydrogenotrophic methanogenic granules, a new type of anaerobic granules specialized for high-rate hydrogenotrophic methanogenesis and biogas upgrading, might be possible. Conclusively, anaerobic granules showed great potential for biogas upgrading.

  1. Preparation of the cortical reaction: maturation-dependent migration of SNARE proteins, clathrin, and complexin to the porcine oocyte's surface blocks membrane traffic until fertilization.

    PubMed

    Tsai, Pei-Shiue; van Haeften, Theo; Gadella, Bart M

    2011-02-01

    The cortical reaction is a calcium-dependent exocytotic process in which the content of secretory granules is released into the perivitellin space immediately after fertilization, which serves to prevent polyspermic fertilization. In this study, we investigated the involvement and the organization of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins in the docking and fusion of the cortical granule membrane with the oolemma in porcine oocytes. During meiotic maturation, secretory vesicles that were labeled with a granule-specific binding lectin, peanut agglutinin (PNA), migrated toward the oocyte's surface. This surface-orientated redistribution behavior was also observed for the oocyte-specific SNARE proteins SNAP23 and VAMP1 that colocalized with the PNA-labeled structures in the cortex area just under the oolemma and with the exclusive localization area of complexin (a trans-SNARE complex-stabilizing protein). The coming together of these proteins serves to prevent the spontaneous secretion of the docked cortical granules and to prepare the oocyte's surface for the cortical reaction, which should probably be immediately compensated for by a clathrin-mediated endocytosis. In vitro fertilization resulted in the secretion of the cortical granule content and the concomitant release of complexin and clathrin into the oocyte's cytosol, and this is considered to stimulate the observed endocytosis of SNARE-containing membrane vesicles.

  2. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity

    NASA Technical Reports Server (NTRS)

    Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

    1988-01-01

    In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

  3. Behavior of hollow balls containing granules bouncing repeatedly off the ground

    NASA Astrophysics Data System (ADS)

    Hu, Min; Mu, Qing-song; Luo, Ning; Li, Gang; Peng, Ning-bo

    2013-07-01

    An experimental study of the behavior of hollow balls filled with some granules (mung beans or millets) bouncing repeatedly off a static flat horizontal surface is presented. We observed that the bounce number of the ball is limited and decreases regularly with an increasing number of granules. Moreover, for two balls containing a different kind of granules, their bounce numbers are basically equal when the two balls have the same mass of granules. While there is no clear relationship between the first rebound height of one ball and the number of granules, there appears an exponential decay of the second rebound height with an increase of the granule number. Furthermore, a two-dimensional numerical model has been created to find out the law of the ball's rebound height and the dissipation law of the granule nested system. A generalized prediction equation to reasonably explain the law of the bounce number has also been proposed.

  4. Sustained-release progesterone vaginal suppositories 1--development of sustained-release granule--.

    PubMed

    Nakayama, Ayako; Sunada, Hisakazu; Okamoto, Hirokazu; Furuhashi, Kaoru; Ohno, Yukiko; Ito, Mikio

    2009-02-01

    Progesterone (P) is an important hormone for the establishment of pregnancy, and its administration is useful for luteal insufficiency. Considering the problems of commercially available oral and injection drugs, hospital-formulated vaginal suppositories are clinically used. However, since the half-life of P suppositories is short, it is difficult to maintain its constant blood concentration. To sustain drug efficacy and prevent side-effects, we are attempting to develop sustained-release suppositories by examining the degree of sustained-release of active ingredients. In this study, we examined the combinations of granulation methods and release systems for the preparation of sustained-release granules of P, and produced 13 types of sustained-release granules. We also examined the diameter, content, and dissolution of each type of granules, and confirmed that the sustained-release of all types of granules was satisfactory. Among the sustained-release granules, we selected granules with a content and a degree of sustained-release suitable for sustained-release suppositories.

  5. Pseudomonas fluorescens lipopolysaccharide inhibits both delayed rectifier and transient A-type K+ channels of cultured rat cerebellar granule neurons.

    PubMed

    Mezghani-Abdelmoula, Sana; Chevalier, Sylvie; Lesouhaitier, Olivier; Orange, Nicole; Feuilloley, Marc G J; Cazin, Lionel

    2003-09-05

    Pseudomonas fluorescens is a Gram-negative bacillus closely related to the pathogen P. aeruginosa known to provoke infectious disorders in the central nervous system (CNS). The endotoxin lipopolysaccharide (LPS) expressed by the bacteria is the first infectious factor that can interact with the plasma membrane of host cells. In the present study, LPS extracted from P. fluorescens MF37 was examined for its actions on delayed rectifier and A-type K(+) channels, two of the main types of voltage-activated K(+) channels involved in the action potential firing. Current recordings were performed in cultured rat cerebellar granule neurons at days 7 or 8, using the whole-cell patch-clamp technique. A 3-h incubation with LPS (200 ng/ml) markedly depressed both the delayed rectifier (I(KV)) and transient A-type (I(A)) K(+) currents evoked by depolarizations above 0 and -40 mV, respectively. The percent decrease of I(KV) and I(A) ( approximately 30%) did not vary with membrane potential, suggesting that inhibition of both types of K(+) channels by LPS was voltage-insensitive. The endotoxin did neither modify the steady-state voltage-dependent activation properties of I(KV) and I(A) nor the steady-state inactivation of I(A). The present results suggest that, by inhibiting I(KV) and I(A), LPS applied extracellulary increases the action potential firing in cerebellar granule neurons. It is concluded that P. fluorescens MF37 may provoke in the CNS disorders associated with sever alterations of membrane ionic channel functions.

  6. Evaluating scale-up rules of a high-shear wet granulation process.

    PubMed

    Tao, Jing; Pandey, Preetanshu; Bindra, Dilbir S; Gao, Julia Z; Narang, Ajit S

    2015-07-01

    This work aimed to evaluate the commonly used scale-up rules for high-shear wet granulation process using a microcrystalline cellulose-lactose-based low drug loading formulation. Granule properties such as particle size, porosity, flow, and tabletability, and tablet dissolution were compared across scales using scale-up rules based on different impeller speed calculations or extended wet massing time. Constant tip speed rule was observed to produce slightly less granulated material at the larger scales. Longer wet massing time can be used to compensate for the lower shear experienced by the granules at the larger scales. Constant Froude number and constant empirical stress rules yielded granules that were more comparable across different scales in terms of compaction performance and tablet dissolution. Granule porosity was shown to correlate well with blend tabletability and tablet dissolution, indicating the importance of monitoring granule densification (porosity) during scale-up. It was shown that different routes can be chosen during scale-up to achieve comparable granule growth and densification by altering one of the three parameters: water amount, impeller speed, and wet massing time. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha.

    PubMed

    Wahl, Andreas; Schuth, Nora; Pfeiffer, Daniel; Nussberger, Stephan; Jendrossek, Dieter

    2012-11-16

    Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5.

  8. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm

    PubMed Central

    Xing, Shihai; Meng, Xiaoxi; Zhou, Lihui; Mujahid, Hana; Zhao, Chunfang; Zhang, Yadong; Wang, Cailin; Peng, Zhaohua

    2016-01-01

    Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins. PMID:27992503

  9. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    PubMed

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  10. Proteome Profile of Starch Granules Purified from Rice (Oryza sativa) Endosperm.

    PubMed

    Xing, Shihai; Meng, Xiaoxi; Zhou, Lihui; Mujahid, Hana; Zhao, Chunfang; Zhang, Yadong; Wang, Cailin; Peng, Zhaohua

    2016-01-01

    Starch is the most important food energy source in cereals. Many of the known enzymes involved in starch biosynthesis are partially or entirely granule-associated in the endosperm. Studying the proteome of rice starch granules is critical for us to further understand the mechanisms underlying starch biosynthesis and packaging of starch granules in rice amyloplasts, consequently for the improvement of rice grain quality. In this article, we developed a protocol to purify starch granules from mature rice endosperm and verified the quality of purified starch granules by microscopy observations, I2 staining, and Western blot analyses. In addition, we found the phenol extraction method was superior to Tris-HCl buffer extraction method with respect to the efficiency in recovery of starch granule associated proteins. LC-MS/MS analysis showed identification of already known starch granule associated proteins with high confidence. Several proteins reported to be involved in starch synthesis in prior genetic studies in plants were also shown to be enriched with starch granules, either directly or indirectly, in our studies. In addition, our results suggested that a few additional candidate proteins may also be involved in starch synthesis. Furthermore, our results indicated that some starch synthesis pathway proteins are subject to protein acetylation modification. GO analysis and KEGG pathway enrichment analysis showed that the identified proteins were mainly located in plastids and involved in carbohydrate metabolism. This study substantially advances the understanding of the starch granule associated proteome in rice and post translational regulation of some starch granule associated proteins.

  11. Surface Localization of Zein Storage Proteins in Starch Granules from Maize Endosperm1

    PubMed Central

    Mu-Forster, Chen; Wasserman, Bruce P.

    1998-01-01

    Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix. PMID:9536075

  12. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  13. Antimicrobial-Coated Granules for Disinfecting Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  14. Internal structure of normal maize starch granules revealed by chemical surface gelatinization.

    PubMed

    Pan, D D; Jane, J I

    2000-01-01

    Normal maize starch was fractionated into two sizes: large granules with diameters more than 5 microns and small granules with diameters less than 5 microns. The large granules were surface gelatinized by treating them with an aqueous LiCl solution (13 M) at 22-23 degrees C. Surface-gelatinized remaining granules were obtained by mechanical blending, and gelatinized surface starch was obtained by grinding with a mortar and a pestle. Starches of different granular sizes and radial locations, obtained after different degrees of surface gelatinization, were subjected to scanning electron microscopy, iodine potentiometric titration, gel-permeation chromatography, and amylopectin branch chain length analysis. Results showed that the remaining granules had a rough surface with a lamella structure. Amylose was more concentrated at the periphery than at the core of the granule. Amylopectin had longer long B-chains at the core than at the periphery of the granule. Greater proportions of the long B-chains were present at the core than at the periphery of the granule.

  15. New Class of Cargo Protein in Tetrahymena thermophila Dense Core Secretory Granules

    PubMed Central

    Haddad, Alex; Bowman, Grant R.; Turkewitz, Aaron P.

    2002-01-01

    Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules. PMID:12456006

  16. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-11-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  17. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-01-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  18. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    PubMed

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  19. Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation.

    PubMed

    Kim, Taeyoon; Loh, Y Peng

    2006-02-01

    Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation.

  20. Protease Nexin-1 Promotes Secretory Granule Biogenesis by Preventing Granule Protein Degradation

    PubMed Central

    Kim, Taeyoon; Loh, Y. Peng

    2006-01-01

    Dense-core secretory granule (DCG) biogenesis is a prerequisite step for the sorting, processing, and secretion of neuropeptides and hormones in (neuro)endocrine cells. Previously, chromogranin A (CgA) has been shown to play a key role in the regulation of DCG biogenesis in vitro and in vivo. However, the underlying mechanism of CgA-mediated DCG biogenesis has not been explored. In this study, we have uncovered a novel mechanism for the regulation of CgA-mediated DCG biogenesis. Transfection of CgA into endocrine 6T3 cells lacking CgA and DCGs not only recovered DCG formation and regulated secretion but also prevented granule protein degradation. Genetic profiling of CgA-expressing 6T3 versus CgA- and DCG-deficient 6T3 cells, followed by real-time reverse transcription-polymerase chain reaction and Western blotting analyses, revealed that a serine protease inhibitor, protease nexin-1 (PN-1), was significantly up-regulated in CgA-expressing 6T3 cells. Overexpression of PN-1 in CgA-deficient 6T3 cells prevented degradation of DCG proteins at the Golgi apparatus, enhanced DCG biogenesis, and recovered regulated secretion. Moreover, depletion of PN-1 by antisense RNAs in CgA-expressing 6T3 cells resulted in the specific degradation of DCG proteins. We conclude that CgA increases DCG biogenesis in endocrine cells by up-regulating PN-1 expression to stabilize granule proteins against degradation. PMID:16319172

  1. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell

    2014-12-01

    The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean

  2. Continuous twin screw granulation of controlled release formulations with various HPMC grades.

    PubMed

    Vanhoorne, V; Janssens, L; Vercruysse, J; De Beer, T; Remon, J P; Vervaet, C

    2016-09-25

    HPMC is a popular matrix former to formulate tablets with extended drug release. Tablets with HPMC are preferentially produced by direct compression. However, granulation is often required prior to tableting to overcome poor flowability of the formulation. While continuous twin screw granulation has been extensively evaluated for granulation of immediate release formulations, twin screw granulation of controlled release formulations including the dissolution behavior of the formulations received little attention. Therefore, the influence of the HPMC grade (viscosity and substitution degree) and the particle size of theophylline on critical quality attributes of granules (continuously produced via twin screw granulation) and tablets was investigated in the current study. Formulations with 20 or 40% HPMC, 20% theophylline and lactose were granulated with water at fixed process parameters via twin screw granulation. The torque was influenced by the viscosity and substitution degree of HPMC, but was not a limiting factor for the granulation process. An optimal L/S ratio was selected for each formulation based on the granule size distribution. The granule size distributions were influenced by the substitution degree and concentration of HPMC and the particle size of theophylline. Raman and UV spectroscopic analysis on 8 sieve fractions of granules indicated an inhomogeneous distribution of theophylline over the size fractions. However, this phenomenon was not correlated with the hydration rate or viscosity of HPMC. Controlled release of theophylline could be obtained over 24h with release profiles close to zero-order. The release of theophylline could be tailored via selection of the substitution degree and viscosity of HPMC. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha

    PubMed Central

    2012-01-01

    Background Poly(3-hydroxybutyrate) (PHB) granules are important storage compounds of carbon and energy in many prokaryotes which allow survival of the cells in the absence of suitable carbon sources. Formation and subcellular localization of PHB granules was previously assumed to occur randomly in the cytoplasm of PHB accumulating bacteria. However, contradictionary results on subcellular localization of PHB granules in Ralstonia eutropha were published, recently. Results Here, we provide evidence by transmission electron microscopy that PHB granules are localized in close contact to the nucleoid region in R. eutropha during growth on nutrient broth. Binding of PHB granules to the nucleoid is mediated by PhaM, a PHB granule associated protein with phasin-like properties that is also able to bind to DNA and to phasin PhaP5. Over-expression of PhaM resulted in formation of many small PHB granules that were always attached to the nucleoid region. In contrast, PHB granules of ∆phaM strains became very large and distribution of granules to daughter cells was impaired. Association of PHB granules to the nucleoid region was prevented by over-expression of PhaP5 and clusters of several PHB granules were mainly localized near the cell poles. Conclusion Subcellular localization of PHB granules is controlled in R. eutropha and depends on the presence and concentrations of at least two PHB granule associated proteins, PhaM and PhaP5. PMID:23157596

  4. Laughing headache with giant pacchionian granulations.

    PubMed

    Giraud, Pierric; Segal, Olivier; Chauvet, Sylvie

    2013-04-01

    Laughing is recognized as a provoking factor for headache, certainly underestimated among the general population and few cases have been published to date. We report a single case of severe headache, provoked almost exclusively by outbursts of laughing, where venous magnetic resonance imaging revealed the presence of giant Pacchioni granulations in both right and transverse sinuses. Reviewing published cases of laughing headache, we discuss possible mechanisms of pain and the role of giant Pacchionian granulations. © 2013 American Headache Society.

  5. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    PubMed

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  6. Depolarization- and transmitter-induced changes in intracellular Ca2+ of rat cerebellar granule cells in explant cultures.

    PubMed

    Connor, J A; Tseng, H Y; Hockberger, P E

    1987-05-01

    Digital imaging of the Ca indicator fura-2 has been used to study the responses of developing granule cells in culture to depolarization and transmitter action. Unstimulated cells bathed in Krebs saline exhibited cytoplasmic Ca ion concentrations, [Ca2+], that were generally in the 30-60 nM range. Exposure of cells to high-potassium (25 mM) saline depolarized the membrane potential and produced an immediate rise in [Ca2+] that recovered within 2-3 min in normal saline. The response grew progressively larger over the first 20 d in culture. Transient increases in [Ca2+] to levels greater than 1 microM were observed after 12-14 d in vitro, at which time the cells displayed intense electrical activity when exposed to high K. At this stage, the increases were attenuated by blocking action potential activity with TTX. In TTX-treated or immature cells, in which the transient phase of the Ca change was relatively small, a second exposure to high K typically produced a much larger Ca response that the initial exposure. The duration of this facilitation of the response persisted for periods longer than 5 min. Application of the neurotransmitter GABA induced a transient increase in membrane conductance, with a reversal potential near resting potential (approx. -60 mV), and caused an intracellular Ca2+ increase that outlasted the exposure to GABA by several minutes. Glutamate, or kainate, induced an increase in membrane conductance but with a reversal potential more positive than spike threshold. These agents also elevated intracellular Ca2+, but unlike the case with GABA, this Ca response reversed rapidly upon removal of the transmitter. The facilitatory effect of repeated exposures to high-K saline, as well as the persistent Ca elevation following a brief GABA application, suggests that granule cells possess the capability of displaying activity-dependent changes in Ca levels in culture.

  7. Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract

    PubMed Central

    Singh, Arvind R.; Ferosekhan, S.; Kothari, Dushyant C.; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna

    2013-01-01

    Exogenous proteolytic enzyme supplementation is required in certain disease conditions in humans and animals and due to compelling reasons on use of more plant protein ingredients and profitability in animal feed industry. However, limitations on their utility in diet are imposed by their pH specificity, thermolabile nature, inhibition due to a variety of factors and the possibility of intestinal damage. For enhancing the efficacy and safety of exogenous trypsin, an efficient chitosan (0.04%) nanoencapsulation-based controlled delivery system was developed. An experiment was conducted for 45 days to evaluate nanoencapsulated trypsin (0.01% and 0.02%) along with 0.02% bare trypsin and 0.4% chitosan nanoparticles against a control diet on productive efficiency (growth rate, feed conversion and protein efficiency ratio), organo-somatic indices, nutrient digestibility, tissue enzyme activities, hematic parameters and intestinal histology of the fish Labeo rohita. All the synthesized nanoparticles were of desired characteristics. Enhanced fish productive efficiency using nanoencapsulated trypsin over its bare form was noticed, which corresponded with enhanced (P<0.01) nutrient digestibility, activity of intestinal protease, liver and muscle tissue transaminases (alanine and aspartate) and dehydrogenases (lactate and malate), serum blood urea nitrogen and serum protein profile. Intestinal tissues of fish fed with 0.02% bare trypsin showed broadened, marked foamy cells with lipid vacuoles. However, villi were healthier in appearance with improved morphological features in fish fed with nanoencapsulated trypsin than with bare trypsin, and the villi were longer in fish fed with 0.01% nanoencapsulated trypsin than with 0.02% nanoencapsulated trypsin. The result of this premier experiment shows that nanoencapsulated trypsin mimics zymogen-like proteolytic activity via controlled release, and hence the use of 0.01% nanoencapsulated trypsin (in chitosan nanoparticles) over bare

  8. Chitosan nanoencapsulated exogenous trypsin biomimics zymogen-like enzyme in fish gastrointestinal tract.

    PubMed

    Kumari, Rakhi; Gupta, Subodh; Singh, Arvind R; Ferosekhan, S; Kothari, Dushyant C; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna

    2013-01-01

    Exogenous proteolytic enzyme supplementation is required in certain disease conditions in humans and animals and due to compelling reasons on use of more plant protein ingredients and profitability in animal feed industry. However, limitations on their utility in diet are imposed by their pH specificity, thermolabile nature, inhibition due to a variety of factors and the possibility of intestinal damage. For enhancing the efficacy and safety of exogenous trypsin, an efficient chitosan (0.04%) nanoencapsulation-based controlled delivery system was developed. An experiment was conducted for 45 days to evaluate nanoencapsulated trypsin (0.01% and 0.02%) along with 0.02% bare trypsin and 0.4% chitosan nanoparticles against a control diet on productive efficiency (growth rate, feed conversion and protein efficiency ratio), organo-somatic indices, nutrient digestibility, tissue enzyme activities, hematic parameters and intestinal histology of the fish Labeo rohita. All the synthesized nanoparticles were of desired characteristics. Enhanced fish productive efficiency using nanoencapsulated trypsin over its bare form was noticed, which corresponded with enhanced (P<0.01) nutrient digestibility, activity of intestinal protease, liver and muscle tissue transaminases (alanine and aspartate) and dehydrogenases (lactate and malate), serum blood urea nitrogen and serum protein profile. Intestinal tissues of fish fed with 0.02% bare trypsin showed broadened, marked foamy cells with lipid vacuoles. However, villi were healthier in appearance with improved morphological features in fish fed with nanoencapsulated trypsin than with bare trypsin, and the villi were longer in fish fed with 0.01% nanoencapsulated trypsin than with 0.02% nanoencapsulated trypsin. The result of this premier experiment shows that nanoencapsulated trypsin mimics zymogen-like proteolytic activity via controlled release, and hence the use of 0.01% nanoencapsulated trypsin (in chitosan nanoparticles) over bare

  9. Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous-Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules?

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-04-01

    The influence of raw material particle morphology on the tabletabilty of dry granules was investigated. Therefore, dibasic calcium phosphate anhydrous was used as a model material. One milled grade, 2 agglomerated grades with different porosities, and a functionalized structure, that is, an agglomerate formed by very small primary particles, were included. Particle size, density, and specific surface area of raw materials were measured. The starting materials and 2 fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force, granule size, and lubrication on tablet tensile strength was evaluated. All materials showed a loss in tabletability induced by a previous compaction step but to a varying extent. Only in case of the functionalized calcium phosphate morphology, this effect depended on the specific compaction force. In contrast to the other materials, the tabletability of functionalized calcium phosphate was influenced by the granule size. This effect was not related to an overlubrication as internal and external lubrication resulted in similar tensile strengths. A clear influence of the particle morphology on tablet strength was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. The functionalized dibasic calcium phosphate and the more porous agglomerate performed as potential filler/binder in the field of roll compaction/dry granulation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. 4-aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons.

    PubMed

    Hu, Chang-Long; Liu, Zheng; Zeng, Xi-Min; Liu, Zi-Qiang; Chen, Xian-Hua; Zhang, Zhi-Hong; Mei, Yan-Ai

    2006-09-01

    Compelling evidence indicates that excessive potassium (K+) efflux and intracellular K+ depletion are the key early steps in apoptosis. Previously, we reported that apoptosis of cerebellar granule neurons induced by incubation in low-K+ (5 mM) and serum-free medium was associated with an increase in A-type transient inactivation of K+ channel current (IA) amplitude and modulation of channels' gating properties. Here, we showed that a classic K+ channel blocker, 4-aminopyradine (4-AP), significantly inhibited IA amplitude in a concentration-dependent manner (reduction of current by 10 microM and 10 mM 4-AP was 11.4+/-1.3% and 72.2+/-3.3%, respectively). Moreover, 4-AP modified the steady-state activation and inactivation kinetics of IA channels, such that the activation and inactivation curves were shifted to the right about 20 mV and 17 mV, respectively. Fluorescence staining showed that 4-AP dramatically increased the viability of cells undergoing apoptosis in a dose-dependent manner. That is, while 5 mM 4-AP was present, cell viability was 84.9+/-5.2%. Consistent with the cell viability analysis, internucleosomal DNA fragmentation by gel electrophoresis analysis showed that 5 mM 4-AP also protected against neuronal apoptosis. Furthermore, 4-AP significantly inhibited cytochrome c release and caspase-3 activity induced by low-K+/serum-free incubation. Finally, current-clamp analysis indicated that 5 mM 4-AP did not significantly depolarize the membrane potential. These results suggest that 4-AP has robust neuroprotective effects on apoptotic granule cells. The neuroprotective effect of 4-AP is likely not due to membrane depolarization, but rather that 4-AP may modulate the gating properties of IA channels in an anti-apoptotic manner.

  11. Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules

    PubMed Central

    Semenova, Irina; Gupta, Dipika; Usui, Takeo; Hayakawa, Ichiro; Cowan, Ann; Rodionov, Vladimir

    2017-01-01

    Microtubule (MT)-based transport can be regulated through changes in organization of MT transport tracks, but the mechanisms that regulate these changes are poorly understood. In Xenopus melanophores, aggregation of pigment granules in the cell center involves their capture by the tips of MTs growing toward the cell periphery, and granule aggregation signals facilitate capture by increasing the number of growing MT tips. This increase could be explained by stimulation of MT nucleation either on the centrosome or on the aggregate of pigment granules that gradually forms in the cell center. We blocked movement of pigment granules to the cell center and compared the MT-nucleation activity of the centrosome in the same cells in two signaling states. We found that granule aggregation signals did not stimulate MT nucleation on the centrosome but did increase MT nucleation activity of pigment granules. Elevation of MT-nucleation activity correlated with the recruitment to pigment granules of a major component of MT-nucleation templates, γ-tubulin, and was suppressed by γ-tubulin inhibitors. We conclude that generation of new MT transport tracks by concentration of the leading pigment granules provides a positive feedback loop that enhances delivery of trailing granules to the cell center. PMID:28381426

  12. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation

    NASA Technical Reports Server (NTRS)

    Krichevsky, A. M.; Kosik, K. S.

    2001-01-01

    RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.

  13. Granulation for Coking Wastewater Treatment in a Coupled Anaerobic-Aerobic Reactor

    NASA Astrophysics Data System (ADS)

    Dong, Chunjuan; Lv, Bingnan

    2018-06-01

    A coupled anaerobic-aerobic granular bio-film reactor was employed with two operation stages: Stage I, granular sludge was formed from digestion sludge using brewery wastewater, and Stage II, granular sludge was acclimatized using coking wastewater. Two oxygenation methods (i.e. A and B) were employed to acclimatize the granules. For method A, dissolved O 2 was supplied through a continuous oxygenation way of 800-15000ml-min-1 . And for method B, dissolved O2 was supplied of 800-15000ml-min-1 18-12 times at 20-60min intervals, 1h each time. The experimental results showed that granules could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules lack of nutrition, and it was the key factor for granules forming to add little loose granules. It took only about 6 months for granules acclimation using coking wastewater. Both oxygenation methods could run well when acclimatizing the granules. However, method A could have comparatively high and stable operation effect. The actual coking wastewater had distinct inhibition effect on the granules, but the supplement of some oxygen could promote the recovery of SMA, and NaHCO3 supplement could also weaken the inhibition effect of the CWW. Method A had more strongly activity recovery ability than method B.

  14. A novel solubility-modulated granules through porosity osmotic pump for controlled carvedilol delivery.

    PubMed

    Song, Qun-Li; Li, Ping; Li, Yu-Min

    2012-01-01

    A method for the preparation of porosity osmotic pump granules was obtained by modulating carvedilol solubility with tartaric acid. Controlled porosity of the membrane was accomplished by the use of pore-forming agent in the coating. In this study, carvedilol was chosen as a model drug with an aim to develop a zero-order release system; tartaric acid was used as the solubility promoter; NaCl was used as the osmotic agent; cellulose acetate (CA) was used as the materials of semipermeable membrane; and PEG-400 was used as the pore-forming agent in the semipermeable membrane. The influence of different factors or levels on the in vitro release was studied. In order to simulate the gastrointestinal tract environments, two kinds of pH media (pH 1.5 and 6.8) on drug release were studied in this research, respectively. This porosity osmotic pump was optimized by single factor design experiments, and it was found to deliver carvedilol at a zero-order rate within 12 h and controlled release for 24 h. We drew a conclusion that the solubility-modulated porosity osmotic pump system is simple to prepare and might be used for the preparation of osmotic pump system of other poorly water-soluble drugs with alkaline or acid groups.

  15. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.

    PubMed

    Vanhoorne, V; Bekaert, B; Peeters, E; De Beer, T; Remon, J-P; Vervaet, C

    2016-06-15

    In most formulations processed via continuous twin screw granulation microcrystalline cellulose (MCC) and/or lactose are used as excipients, but mannitol is also a preferred excipient for wet granulation and tableting due to its non-hygroscopicity and inertness. Therefore, the aim of the current study was to investigate the influence of process parameters on critical quality attributes of granules (moisture content, solid state, morphology, size distribution, specific surface area, friability, flowability and hygroscopicity) and tablets (tensile strength and friability) after twin screw granulation of δ-mannitol. The δ-polymorph was selected since a moisture-induced transformation to β-mannitol was observed during batch wet granulation, which exhibited a unique morphology with a large surface area and improved tabletability. A full factorial experimental design was performed, varying screw speed (400-900rpm), granulation temperature (25-40°C), number of kneading elements (6 or 12) and liquid-to-solid (L/S) ratio, on the granulation unit of a ConsiGma™-25 line (a continuous powder-to-tablet manufacturing system). After tray drying the granules were milled and tableted. The results showed that the polymorphic transition from δ- to β-mannitol also occurred during twin screw granulation, although the residence time and L/S ratios were much lower in continuous twin screw granulation compared to batch processing. However, the polymorphic transition was not complete in all experiments and depended on the L/S ratio, screw speed and number of kneading elements. Nevertheless all granules exhibited the unique morphology linked to the polymorphic transition and had a superior tabletability compared to granules produced with β-mannitol as starting material. This was attributed to enhanced plastic deformation of the granules manufactured using δ-mannitol as starting material. In addition, it was concluded that mannitol was granulated via a different mechanism than

  16. Identification of human cysteine-rich secretory protein 3 (CRISP-3) as a matrix protein in a subset of peroxidase-negative granules of neutrophils and in the granules of eosinophils.

    PubMed

    Udby, Lene; Calafat, Jero; Sørensen, Ole E; Borregaard, Niels; Kjeldsen, Lars

    2002-09-01

    Cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) was originally discovered in human neutrophilic granulocytes. We have recently developed a sensitive sandwich enzyme-linked immunosorbent assay for CRISP-3 and demonstrated the presence of CRISP-3 in exocrine secretions. To investigate the subcellular localization and mobilization of CRISP-3 in human neutrophils, we performed subcellular fractionation of resting and activated neutrophils on three-layer Percoll density gradients, release-studies of granule proteins in response to different secretagogues, and double-labeling immunogold electron microscopy. CRISP-3 was found to be localized in a subset of granules with overlapping characteristics of specific and gelatinase granules and mobilized accordingly, thus confirming the hypothesis that peroxidase-negative granules exist as a continuum from specific to gelatinase granules regarding protein content and mobilization. CRISP-3 was found to be a matrix protein, which is stored in granules as glycosylated and as unglycosylated protein. The subcellular distribution of the two forms of CRISP-3 was identical. In addition, CRISP-3 was found as a granule protein in eosinophilic granulocytes. The presence of CRISP-3 in peroxidase-negative granules of neutrophils, in granules of eosinophils, and in exocrine secretions indicates a role in the innate host defense.

  17. Evaluation of the composition of the binder bridges in matrix granules prepared with a small-scale high-shear granulator.

    PubMed

    Bajdik, János; Baki, Gabriella; Szent-Királlyi, Zsuzsanna; Knop, Klaus; Kleinebudde, Peter; Pintye-Hódi, Klára

    2008-11-04

    The aim of this work was to evaluate the binder bridges which can form in hydrophilic matrix granules prepared with a small-scale high-shear granulator. Matrices contained hydroxypropyl methylcellulose (HPMC) as a matrix-forming agent, together with lactose monohydrate and microcrystalline cellulose as filler. Water was used as granulating liquid. A 2(4) full factorial design was used to evaluate the effects of the operational parameters (impeller speed, chopper speed, dosing speed and wet massing time) on the granulation process. The temperature of the sample increased relevantly during the preparation in the small-scale apparatus. The same setup induced different temperature increases for different amounts of powder. This alteration enhances the solubility of lactose and decreases that of HPMC, and thus the quantities of the dissolved components can vary. Accordingly, changes in composition of the binder bridge can occur. Since exact determination of the dissolution of these materials during granulation is difficult, the consequences of the changes in solubility were examined. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and X-ray diffraction (XRD) measurements were made to evaluate the films prepared from liquids with different ratios of soluble materials. The DSC and XRD measurements confirmed that the lactose lost its crystalline state in the film. The TMA tests revealed that increase of the quantity of lactose in the film decreased the glass transition temperature of the film; this may be attributed to the interaction of the additives. At a lactose content of 37.5%, a second glass transition appeared. This phenomenon may be indicative of a separate amorphous lactose phase.

  18. Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity.

    PubMed

    Gilmer, Jesse I; Person, Abigail L

    2017-12-13

    Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing. SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs

  19. Drosophila germ granules are structured and contain homotypic mRNA clusters

    PubMed Central

    Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothée; Lehmann, Ruth

    2015-01-01

    Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into ‘homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323

  20. Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane.

    PubMed

    Huet, Sébastien; Fanget, Isabelle; Jouannot, Ouardane; Meireles, Patricia; Zeiske, Tim; Larochette, Nathanaël; Darchen, François; Desnos, Claire

    2012-02-15

    Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.

  1. Stochastic Seeding Coupled with mRNA Self-Recruitment Generates Heterogeneous Drosophila Germ Granules.

    PubMed

    Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R

    2018-06-18

    The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. HIGH SHEAR GRANULATION PROCESS: ASSESSING IMPACT OF FORMULATION VARIABLES ON GRANULES AND TABLETS CHARACTERISTICS OF HIGH DRUG LOADING FORMULATION USING DESIGN OF EXPERIMENT METHODOLOGY.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Ali, Bahaa E

    2017-03-01

    High shear wet granulation is a significant component procedure in the pharmaceutical industry. The objective of the study was to investigate the influence of two independent formulation variables; polyvinypyrrolidone (PVP) as a binder (X,) and croscarmellose sodium (CCS) as a disintegrant (X2) on the crit- ical quality attributes of acetaminophen granules and their corresponding tablets using design of experiment (DoE) approach. A two factor, three level (32) full factorial design has been applied; each variable was investi- gated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their density, granule size and flowability. Additionally, the produced tablets have been investigated for: break- ing force, friability, disintegration time and t. of drug dissolution. The analysis of variance (ANOVA) showed that the two variables had a significant impact (p < 0.05) on granules and tablets characteristics, while only the binder concentration influenced the tablets friability. Furthermore, significant interactions (p < 0.05) between the two variables, for granules and tablets attributes, were also found. However, variables interaction showed minimal effect for granules flowability as well as tablets friability. Desirability function was carried out to opti- mize the variables under study to obtain product within the USP limit. It was found that the higher desirability (0.985) could be obtained at the medium level of PVP and low level of CCS. Ultimately, this study supplies the formulator with beneficial tools in selecting the proper level of binder and disintegrant to attain product with desired characteristics.

  3. AIDS and the pancreas in the HAART era: a cross sectional study

    PubMed Central

    2013-01-01

    Backgrounds The aim of this study is identify the main morphological patterns of the pancreas in AIDS patients in use of Higly Active Antiretorviral Therapy (HAART). Methods We conducted a cross sectional study in the year of 2010. The inclusion criteria were patients older than 18 years who died of AIDS with the use of HAART (2006–2009) and underwent to autopsy . They were compared with a group of 109 patients who died of AIDS in 1995 before the HAART therapy. All the autopsies were made in the Death Verification Service of São Paulo. Results The HAART group presented pancreas abnormalities lighter than no HAART users. In the HAART group, histology shows: reduction of zymogen granules in the acinar cells (ZG) higher percentage of cases, “dysplasia-like” presents lower and pancreatic acinar atrophy, presents higher percentage of cases compared to no HAART group. The exocrine pancreas in treated patients was distinguished by the high level of atrophy, sharp reduction of zymogen granules and high level of apoptosis, reflecting degeneration and lower level of protein-caloric malnutrition. Conclusions The islets of Langerhans in HAART group were increased in number and volume and with high level of nuclear dysplasia. The antiviral therapy and a longer survival resulted in a higher atrophy and reduction of enzymes, increasing the apoptosis and generated important changes in the pancreatic islets, probably resulting in clinical laboratory repercussion. We found no evidence of pancreatic histopathological lesions secondary to antiretroviral therapy. PMID:23856035

  4. NEW METHODOLOGY FOR DEVELOPMENT OF ORODISPERSIBLE TABLETS USING HIGH-SHEAR GRANULATION PROCESS.

    PubMed

    Ali, Bahaa E; Al-Shedfat, Ramadan I; Fayed, Mohamed H; Alanazi, Fars K

    2017-05-01

    Development of orodispersible delivery system of high mechanical properties and low disintegration time is a big challenge. The aim of the current work was to assess and optimize the high shear granulation process as a new methodology for development of orodispersible tablets of high quality attributes using design of experiment approach. A two factor, three levels (32), full factorial design was carried out to investigate the main and interaction effects of independent variables, water amount (XI) and granulation time (X2) on the characteristics of granules and final product, tablet. The produced granules were analyzed for their granule size, density and flowability. Furthermore, the produced tablets were tested for: weight variation, breaking force/ crushing strength, friability, disintegration time and drug dissolution. Regression analysis results of multiple linear models showed a high correlation between the adjusted R-squared and predicted R-squared for all granules and tablets characteristics, the difference is less than 0.2. All dependent responses of granules and tablets were found to be impacted significantly (p < 0.05) by the two independent variables. However, water amount demonstrated the most dominant effect for all granules and tablet characteristics as shown by higher its coefficient estimate for all selected responses. Numerical optimization using desirability function was performed to optimize the variables under study to provide orodispersible system within the USP limit with respect of mechanical properties and disintegration time. It was found that the higher desirability (0.915) could be attained at the low level pf water (180 g) and short granulation time (1.65 min). Eventually, this study provides the formulator with helpful information in selecting the proper level of water and granulation time to provide an orodispersible system of high crushing strength and very low disintegration time, when high shear granulation methodology was used as

  5. Localization of SERBP1 in stress granules and nucleoli.

    PubMed

    Lee, Yu-Jen; Wei, Hung-Ming; Chen, Ling-Yun; Li, Chuan

    2014-01-01

    SERPINE1 mRNA-binding protein 1 (SERBP1) is an arginine-methylated RNA-binding protein whose modification affects protein interaction and intracellular localization. In the present study, we show that, under normal growth conditions without stress, SERBP1 interacts with arginine-methylated and stress granule-associated proteins such as heterogeneous nuclear ribonucleoprotein A1, fragile X mental retardation protein and fragile X mental retardation syndrome-related protein 1 in an RNA-dependent manner. We also show that, after arsenite treatment, a proportion of full-length SERBP1 protein co-localizes with the typical stress granule marker T-cell intracellular antigen-1 in the cytoplasmic stress granules. Truncated SERBP1 with an N-terminal, central RG or C-terminal deletion, or single-domain segments comprising the N-terminal, central or C-terminal region, were recruited to stress granules upon arsenite treatment but with reduced efficiency. In addition, upon arsenite treatment, the localization of SERBP1 changed from a diffuse cytoplasmic localization to nuclear-dominant (concentrated in the nucleolus) A similar distribution was observed when cells were treated with the methylation inhibitor adenosine periodate, and was also detected for N- or C-terminal domain deletions and all three single-domain fragments even without stress induction. We further demonstrate that adenosine periodate treatment delays the association/dissociation of SERBP1 with stress granules. Hypomethylation retains SERBP1 in the nucleus/nucleolus regardless of arsenite treatment. Our study indicates that arginine methylation is correlated with recruitment of SERBP to stress granules and nucleoli and its retention therein. To our knowledge, this is the first report of an RNA-binding protein that is shifted simultaneously to cytoplasmic stress granules and nucleoli, two ribonucleoprotein-enriched subcellular compartments, upon stress. © 2013 FEBS.

  6. Modeling of lithium granule injection in NSTX using M3D-C1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fil, A.; Kolemen, E.; Ferraro, N.

    In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting themore » granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.« less

  7. Modeling of lithium granule injection in NSTX using M3D-C1

    DOE PAGES

    Fil, A.; Kolemen, E.; Ferraro, N.; ...

    2017-04-06

    In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting themore » granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.« less

  8. On-line monitoring of fluid bed granulation by photometric imaging.

    PubMed

    Soppela, Ira; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2014-11-01

    This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them. Also key process parameters were recorded. The images provided direct real-time information on the growth, attrition and packing behaviour of the batches. Moreover, decreasing image brightness in the drying phase was found to indicate granule drying. The changes observed in the image data were also linked to the moisture and temperature profiles of the processes. Combined with complementary process analytical tools, photometric imaging opens up possibilities for improved real-time evaluation fluid bed granulation. Furthermore, images can give valuable insight into the behaviour of excipients or formulations during product development. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Impact of Granule Density on Tabletting and Pharmaceutical Product Performance.

    PubMed

    van den Ban, Sander; Goodwin, Daniel J

    2017-05-01

    The impact of granule densification in high-shear wet granulation on tabletting and product performance was investigated, at pharmaceutical production scale. Product performance criteria need to be balanced with the need to deliver manufacturability criteria to assure robust industrial scale tablet manufacturing processes. A Quality by Design approach was used to determine in-process control specifications for tabletting, propose a design space for disintegration and dissolution, and to understand the permitted operating limits and required controls for an industrial tabletting process. Granules of varying density (filling density) were made by varying water amount added, spray rate, and wet massing time in a design of experiment (DoE) approach. Granules were compressed into tablets to a range of thicknesses to obtain tablets of varying breaking force. Disintegration and dissolution performance was evaluated for the tablets made. The impact of granule filling density on tabletting was rationalised with compressibility, tabletability and compactibility. Tabletting and product performance criteria provided competing requirements for porosity. An increase in granule filling density impacted tabletability and compactability and limited the ability to achieve tablets of adequate mechanical strength. An increase in tablet solid fraction (decreased porosity) impacted disintegration and dissolution. An attribute-based design space for disintegration and dissolution was specified to achieve both product performance and manufacturability. The method of granulation and resulting granule filling density is a key design consideration to achieve both product performance and manufacturability required for modern industrial scale pharmaceutical product manufacture and distribution.

  10. [Study on spray-drier preparation technology of weitai granules using orthogonal experiments].

    PubMed

    Qu, Cai-Hong; Yang, Li; Chen, Zhi-Liang

    2006-04-01

    To screen preparation technique in order to raise the end-product and economical efficiency of spray-drier preparation technology of weitai granules. Newly Fluid-bed-spray-drier-granulation technique was adoped and taken extracting technique, temperature of exit and entry and the matching of accessories as inspecting factors, two levels of each factors, end-product and the water content of semi-finished weitai granules as inspecting marker, the best preparation technique of weitai granules was screened by orthogonal desing. Among the 3 factors, the matching of accessories was most notalbe (P < 0.01), next was the temperature of exit and entry (P < 0.05). However, the extracting technique was of little importance (P > 0.05). The optimum spray-drier granulation technique of weitai granules is A3B1C3.

  11. [Pharmacological availability of erythromycin granules for children's use].

    PubMed

    Korenev, S V; Garsheva, G B; Nesterova, L Ia; Grakovskaia, L K; Tentsova, A I

    1990-08-01

    Pharmaceutical availability of erythromycin granules with polymeric coating of different composition+ was studied. With an account of the ++anatomo-physiological features of a child organism and the properties of the antibiotic, acetylphthalyl cellulose in combination with hydroxypropyl methylcellulose or methyl cellulose was used as a film forming agent. The coated granules were estimated by such parameters as the time of disintegration and the rate of dissolution in various media. The results of the study showed that coating of the erythromycin granules with the film composed of acetylphthalyl cellulose and hydroxypropyl methylcellulose in the ratio of 8 to 2 provided the required protection of the antibiotic in acid media and high pharmaceutical availability of the drug.

  12. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    PubMed

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Tang Wang Ming Mu Granule Attenuates Diabetic Retinopathy in Type 2 Diabetes Rats.

    PubMed

    Chen, Mingxia; Lv, Haibo; Gan, Jiakuan; Ren, Junguo; Liu, Jianxun

    2017-01-01

    Aims: This study aimed to determine the influence of Tang Wang Ming Mu granule (TWMM) on the diabetic retinopathy of diabetic rats. Methods: Male Wistar rats were divided into seven groups: normal control, diabetes model(DM), diabetes with TWMM (3.6, 7.2, and 14.4 g/kg) treatment, the positive control treatment groups of Qi Ming granules and Calcium dobesilate capsules. All rats were treated for 8 weeks. The levels of body weight, fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) in blood were measured to evaluate the antihyperglycemic activity of TWMM. Furthermore, malondialdehyde (MDA), intracellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) in serum were measured to study effects of TWMM on oxidative stress and inflammatory in DM2 rats. VEGF, JAK/STAT signaling pathway and SOCS3 in retina was detected by immunohistochemistry. Results: TWMM and the positive control drugs Qi Ming and Calcium dobesilate showed a remarkable suppression of retinal neovascularization and amelioration of retinal internal limiting membrane morphology. Moreover, TWMM significantly decreased HbA1c, MDA, ICAM-1, and VEGF levels in serum of diabetic rats. However, Qi Ming granules showed significantly reduced MDA and VEGF levels ( P < 0.01, and P < 0.05, respectively), Calcium dobesilate showed significantly reduced MDA and ICAM-1levels ( P < 0.01 and P < 0.05, respectively) in serum. All drug- treated DM2 rats showed significantly lower levels of VEGF, JAK2, P-JAK2, STAT3, and P-STAT3 in retina than DM group, while TWMM and Calcium dobesilate significantly increased SOCS3 in retina. Conclusion: Our data suggest that the diabetic retina protective effect of TWMM might be related to antiinflammatory, antioxidative, upregulation of SOCS3 expression, inhibition of the JAK/STAT/VEGF signaling pathway.

  14. Tang Wang Ming Mu Granule Attenuates Diabetic Retinopathy in Type 2 Diabetes Rats

    PubMed Central

    Chen, Mingxia; Lv, Haibo; Gan, Jiakuan; Ren, Junguo; Liu, Jianxun

    2017-01-01

    Aims: This study aimed to determine the influence of Tang Wang Ming Mu granule (TWMM) on the diabetic retinopathy of diabetic rats. Methods: Male Wistar rats were divided into seven groups: normal control, diabetes model(DM), diabetes with TWMM (3.6, 7.2, and 14.4 g/kg) treatment, the positive control treatment groups of Qi Ming granules and Calcium dobesilate capsules. All rats were treated for 8 weeks. The levels of body weight, fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) in blood were measured to evaluate the antihyperglycemic activity of TWMM. Furthermore, malondialdehyde (MDA), intracellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) in serum were measured to study effects of TWMM on oxidative stress and inflammatory in DM2 rats. VEGF, JAK/STAT signaling pathway and SOCS3 in retina was detected by immunohistochemistry. Results: TWMM and the positive control drugs Qi Ming and Calcium dobesilate showed a remarkable suppression of retinal neovascularization and amelioration of retinal internal limiting membrane morphology. Moreover, TWMM significantly decreased HbA1c, MDA, ICAM-1, and VEGF levels in serum of diabetic rats. However, Qi Ming granules showed significantly reduced MDA and VEGF levels (P < 0.01, and P < 0.05, respectively), Calcium dobesilate showed significantly reduced MDA and ICAM-1levels (P < 0.01 and P < 0.05, respectively) in serum. All drug- treated DM2 rats showed significantly lower levels of VEGF, JAK2, P-JAK2, STAT3, and P-STAT3 in retina than DM group, while TWMM and Calcium dobesilate significantly increased SOCS3 in retina. Conclusion: Our data suggest that the diabetic retina protective effect of TWMM might be related to antiinflammatory, antioxidative, upregulation of SOCS3 expression, inhibition of the JAK/STAT/VEGF signaling pathway. PMID:29311988

  15. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    PubMed

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy.

    PubMed

    Koyama, Ryuta; Tao, Kentaro; Sasaki, Takuya; Ichikawa, Junya; Miyamoto, Daisuke; Muramatsu, Rieko; Matsuki, Norio; Ikegaya, Yuji

    2012-08-01

    Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood. Febrile seizures induced an upregulation of GABA(A) receptors (GABA(A)-Rs) in neonatally generated granule cells, and hyperactivation of excitatory GABA(A)-Rs caused a reversal in the direction of granule cell migration. This abnormal migration was prevented by RNAi-mediated knockdown of the Na(+)K(+)2Cl(-) co-transporter (NKCC1), which regulates the excitatory action of GABA. NKCC1 inhibition with bumetanide after febrile seizures rescued the granule cell ectopia, susceptibility to limbic seizures and development of epilepsy. Thus, this work identifies a previously unknown pathogenic role of excitatory GABA(A)-R signaling and highlights NKCC1 as a potential therapeutic target for preventing granule cell ectopia and the development of epilepsy after febrile seizures.

  17. Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.

    PubMed

    Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang

    2013-08-01

    This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Tarbell, T. D.; Topka, K. P.; Ferguson, S. H.; Shine, R. A.

    1989-01-01

    Computer algorithms and statistical techniques were used to identify, measure, and quantify the properties of solar granulation derived from movies collected by the Solar Optical Universal Polarimeter on Spacelab 2. The results show that there is neither a typical solar granule nor a typical granule evolution. A granule's evolution is dependent on local magnetic flux density, its position with respect to the active region plage, its position in the mesogranulation pattern, and the evolution of granules in its immediate neighborhood.

  19. Investigation on the pitting of potato starch granules during high frequency ultrasound treatment.

    PubMed

    Bai, Wenzhe; Hébraud, Pascal; Ashokkumar, Muthupandian; Hemar, Yacine

    2017-03-01

    In this paper, the pitting of potato starch granules in aqueous suspensions (1%) by high-frequency high-power ultrasound (850kHz at a power of 0.2W, 2W or 3.7W; and also 500kHz and 1MHz at a power of 2W) is reported. The number of pits per starch granules was found to be independent of the amylose content of starches, and the surface properties of starch granules as modified through SDS and ethanol washing. At 850kHz, the maximum number of pits per starch granule, for both normal and waxy starches, did not exceed 11. However, a close inspection of fractionated starch granules based on their sizes showed that there is an optimum granule size for which a maximum pit number is obtained. For example, starch granules with diameter size range of ∼15 to ∼30μm had a maximum pit number (between 10 and 20 pits per granule) when sonicated (2W, 850kHz and 30min); while sonication of small (<10μm) and very large (>45μm) granules resulted in a smaller number of pits per granule (∼5). Further, the maximum number of pits per granules is also found to be proportional to the ultrasound frequency, with values of approximately 7, 10 and 11 at 0.50, 0.85, and 1MHz, respectively. FTIR measurements did not show any breakup of starch molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The transformation from anammox granules to deammonification granules in micro-aerobic system by facilitating indigenous ammonia oxidizing bacteria.

    PubMed

    Wang, Xiaolong; Gao, Dawen

    2018-02-01

    Granular deammonification process is a good way to retain aerobic and anaerobic ammonia oxidizing bacteria (AOB and anammox bacteria) and exhaust flocculent nitrite oxidizing bacteria (NOB). In this study, to facilitate indigenous AOB growth on anammox granules, by stepwise reducing influent nitrite, anammox granules were effectively transformed into deammonification granules in a micro-aerobic EGSB in 100 days. Total nitrogen removal efficiency of 90% and nitrogen removal rate of 2.3 g N/L/d were reached at stable deammonification stage. High influent FA and limited oxygen supply contributed suppression for Nitrospira-like NOB. In transition stages, Proteobacteria and Chloroflexi were always dominated. Anammox abundance decreased, while AOB abundance grew fast. Anammox bacteria and AOB were dominated by Brocadia fulgida and Nitrosomonas europaea, respectively. Denitrification activity and bacteria existed although without influent organic. The final AOB abundance was about 4.55-13.8 times more than anammox bacteria abundance, with almost equal potential activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tendmore » to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules

  2. An evaluation of fluid bed drying of aqueous granulations.

    PubMed

    Hlinak, A J; Saleki-Gerhardt, A

    2000-01-01

    The purpose of the work described was twofold: (a) to apply heat and mass balance approaches to evaluate the fluid bed drying cycle of an aqueous granulation, and (b) to determine the effect of the temperature and relative humidity of the drying air on the ability to meet a predetermined moisture content specification. Water content determinations were performed using Karl Fischer titration, and Computrac and Mark 1 moisture analyzers. The water vapor sorption isotherms were measured using a gravimetric moisture sorption apparatus with vacuum-drying capability. Temperature, relative humidity, and air flow were measured during the drying cycle of a production-scale fluid bed dryer. Heat and mass balance equations were used to calculate the evaporation rates. Evaporation rates calculated from heat and mass balance equations agreed well with the experimental data, whereas equilibrium moisture content values provided useful information for determination of the upper limit for inlet air humidity. Increasing the air flow rate and inlet temperature reduced the drying time through the effect on the primary driving force. As expected, additional drying of granules during the equilibration period did not show a significant impact on reducing the final moisture content of granules. Reducing the drying temperature resulted in measurement of higher equilibrium moisture content for the granules, which was in good agreement with the water vapor sorption data. Heat and mass balance equations can be used to successfully model the fluid bed drying cycle of aqueous granulations. The water vapor sorption characteristics of granules dictate the final moisture content at a given temperature and relative humidity.

  3. A sugar-template manufacturing method for microsystem ion-exchange membranes

    NASA Astrophysics Data System (ADS)

    Festarini, Rio V.; Pham, Minh-Hao; Liu, Xinyue; Barz, Dominik P. J.

    2017-07-01

    In this work, we report on a novel method for producing ion-exchange membranes that can be integrated directly into polydimethylsiloxane-based micro devices. Ionomers such as NafionTM, a copolymer with high conductivity and selectivity to small cations, are generally incompatible with common micro device materials due to the chemical inertness of the tetrafluoroethylene-based skeleton and the swelling in aqueous solutions. Hence, we introduce a microfabrication concept where we use consolidated sugar granules as a template to produce a porous polydimethylsiloxane scaffold. Ionomer and scaffold are combined to a composite membrane where the cohesion of these incompatible materials is of rather mechanical nature; i.e. the ionomer is physically entrapped in the scaffold. Electrochemical impedance spectroscopy measurements reveal the excellent membrane conductivity for the upper electrolyte concentrations tested in this work.

  4. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa.

    PubMed

    Kramer, Susanne

    2014-01-01

    Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules. © 2013 John Wiley & Sons, Ltd.

  5. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Homologs of PROTEIN TARGETING TO STARCH Control Starch Granule Initiation in Arabidopsis Leaves[OPEN

    PubMed Central

    David, Laure C.; Abt, Melanie; Lu, Kuan-Jen

    2017-01-01

    The molecular mechanism that initiates the synthesis of starch granules is poorly understood. Here, we discovered two plastidial proteins involved in granule initiation in Arabidopsis thaliana leaves. Both contain coiled coils and a family-48 carbohydrate binding module (CBM48) and are homologs of the PROTEIN TARGETING TO STARCH (PTST) protein; thus, we named them PTST2 and PTST3. Chloroplasts in mesophyll cells typically contain five to seven granules, but remarkably, most chloroplasts in ptst2 mutants contained zero or one large granule. Chloroplasts in ptst3 had a slight reduction in granule number compared with the wild type, while those of the ptst2 ptst3 double mutant contained even fewer granules than ptst2. The ptst2 granules were larger but similar in morphology to wild-type granules, but those of the double mutant had an aberrant morphology. Immunoprecipitation showed that PTST2 interacts with STARCH SYNTHASE4 (SS4), which influences granule initiation and morphology. Overexpression of PTST2 resulted in chloroplasts containing many small granules, an effect that was dependent on the presence of SS4. Furthermore, isothermal titration calorimetry revealed that the CBM48 domain of PTST2, which is essential for its function, interacts with long maltooligosaccharides. We propose that PTST2 and PTST3 are critical during granule initiation, as they bind and deliver suitable maltooligosaccharide primers to SS4. PMID:28684429

  7. Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions.

    PubMed

    Nelson, Emily V; Schmidt, Kristina M; Deflubé, Laure R; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip; Mühlberger, Elke

    2016-08-15

    A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by

  8. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins).

    PubMed

    Tumlirsch, Tony; Jendrossek, Dieter

    2017-04-01

    On the basis of bioinformatic evidence, we suspected that proteins with a CYTH ( Cy aB th iamine triphosphatase) domain and/or a CHAD ( c onserved h istidine α -helical d omain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins ( pho sphate), analogous to pha sins and oleo sins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively. IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular

  9. Two Distinct Waxy Alleles Impact the Granule-Bound Starch Synthase in Sorghum

    USDA-ARS?s Scientific Manuscript database

    The granule-bound starch synthase (GBSS) is the enzyme responsible for amylose synthesis in starch granules. Loss of GBSS activity results in starch granules containing mostly amylopectin and little or no amylose, a phenotype described as waxy. Previously, two phenotypic classes of waxy alleles we...

  10. Incorporation of a circulating protein into megakaryocyte and platelet granules

    NASA Technical Reports Server (NTRS)

    Handagama, P. J.; George, J. N.; Shuman, M. A.; McEver, R. P.; Bainton, D. F.

    1987-01-01

    To determine whether or not proteins circulating in plasma can be incorporated into megakaryocytes and platelets, horseradish peroxidase (HRP) was injected intravenously into guinea pigs and these cells were examined for its uptake by electron microscopy and cytochemistry. Enriched samples of megakaryocytes enabled ultrastructural analysis of large numbers of these rare cells. In megakaryocytes, 50% of alpha granules contained HRP between 75 min and 7 hr after injection. At 24 hr, 25% of the megakaryocyte granules were peroxidase-positive, less were positive by 48 hr, and there were none at 4 days. Thus, the findings demonstrate that a circulating protein can be endocytosed by megakaryocytes and rapidly packaged into alpha granules. Platelet granules also contain HRP by 7 hr after injection, and they can secrete it in response to thrombin. Unfortunately, our present studies do not allow us to distinguish between direct endocytosis by the platelet and/or shedding of new platelets from recently labeled megakaryocytes. It is concluded that while some alpha granule proteins are synthesized by megakaryocytes, others may be acquired from plasma by endocytosis. In addition to providing evidence that some of the proteins of alpha granules may be of exogenous origin, this study has allowed the definition of a pathway whereby plasma proteins may be temporarily sequestered in megakaryocytes before reentering the circulation in platelets.

  11. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  12. Constitutively polarized granules prime KHYG-1 NK cells.

    PubMed

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  13. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm

    PubMed Central

    Li, Sanfeng; Wei, Xiangjin; Ren, Yulong; Qiu, Jiehua; Jiao, Guiai; Guo, Xiuping; Tang, Shaoqing; Wan, Jianmin; Hu, Peisong

    2017-01-01

    Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules. PMID:28054650

  14. Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.

    PubMed

    Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong

    2014-04-01

    A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Starch-Branching Enzymes Preferentially Associated with A-Type Starch Granules in Wheat Endosperm1

    PubMed Central

    Peng, Mingsheng; Gao, Ming; Båga, Monica; Hucl, Pierre; Chibbar, Ravindra N.

    2000-01-01

    Two starch granule-bound proteins (SGP), SGP-140 and SGP-145, were preferentially associated with A-type starch granules (>10 μm) in developing and mature wheat (Triticum aestivum) kernels. Immunoblotting and N-terminal sequencing suggested that the two proteins were different variants of SBEIc, a 152-kD isoform of wheat starch-branching enzyme. Both SGP-140 and SGP-145 were localized to the endosperm starch granules but were not found in the endosperm soluble fraction or pericarp starch granules younger than 15 d post anthesis (DPA). Small-size starch granules (<10 μm) initiated before 15 DPA incorporated SGP-140 and SGP-145 throughout endosperm development and grew into full-size A-type starch granules (>10 μm). In contrast, small-size starch granules harvested after 15 DPA contained only low amounts of SGP-140 and SGP-145 and developed mainly into B-type starch granules (<10 μm). Polypeptides of similar mass and immunologically related to SGP-140 and/or SGP-145 were also preferentially incorporated into A-type starch granules of barley (Hordeum vulgare), rye (Secale cereale), and triticale (× Triticosecale Wittmack) endosperm, which like wheat endosperm have a bimodal starch granule size distribution. PMID:10982441

  16. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    Here, by employing a neutral gas shielding (NGS) model to characterize impurity granule injection, the ablation rates for three different species of granule: lithium, boron, and carbon, are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model, we quantify the ablation rate with respect to the plasma density profile. The species-specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m s –1 are presented for NSTX-U L-mode type plasmas, as well as H-mode dischargesmore » with low natural ELM frequency. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50–150 m s –1. In H-mode discharges these simulations show that the majority of the injected granule is ablated within or just past the edge steep gradient region. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of ELM crashes.« less

  17. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2017-05-16

    Here, by employing a neutral gas shielding (NGS) model to characterize impurity granule injection, the ablation rates for three different species of granule: lithium, boron, and carbon, are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model, we quantify the ablation rate with respect to the plasma density profile. The species-specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m s –1 are presented for NSTX-U L-mode type plasmas, as well as H-mode dischargesmore » with low natural ELM frequency. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50–150 m s –1. In H-mode discharges these simulations show that the majority of the injected granule is ablated within or just past the edge steep gradient region. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of ELM crashes.« less

  18. Formation of tRNA granules in the nucleus of heat-induced human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagawa, Ryu; Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654; Mizuno, Rie

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules.more » Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.« less

  19. Fluidized Bed Hot-Melt Granulation as a Tool to Improve Curcuminoid Solubility.

    PubMed

    Teixeira, Cristiane C C; de Paiva Junior, Elias; de Freitas, Luis Alexandre Pedro

    2018-04-01

    Curcumin is the main bioactive component of Curcuma longa L. and has recently aroused growing interest from the scientific community. Unfortunately, the medicinal properties attributed to curcuminoids are impaired by their low oral bioavailability or low solubility in aqueous solutions. Many strategies have been studied to improve curcumin solubility; however, the preparation of granules using hydrophilic materials has never been attempted. The aim of this work was to develop curcumin granules by fluidized bed hot-melt granulation using the hydrophilic carrier Gelucire® 50:13. A two-level factorial design was used to verify the influence of Gelucire® 50:13 and lactose contents found in the granules on their size, morphology, bulk and tapped densities, flow, moisture content, and water activity. The granules obtained were also evaluated by differential scanning calorimetry, thermogravimetric analysis, X-ray powder diffraction, and infrared spectrometry. The curcumin solubility and dissolution rates in water were determined by liquid chromatography. The best formulation provides an increase of curcumin solubility of 4642-fold and 3.8-fold compared to the physical mixture. The dissolution tests showed a maximum drug release from granules after 45 min of 70% at pH 1.2 and 80% at pH 5.8 and 7.4, while for non-granulated curcumin, the release was below 20% in all pH. The solid-state characterization and solubility measurement showed good stability of granules over 9 months. The results attest that the fluidized bed hot-melt granulation with hydrophilic binders is an attractive and promising alternative to obtain solid forms of curcumin with enhanced bioavailability.

  20. [Experiment research of Jiajian Yunvjian granules on hyperthyroidism graves].

    PubMed

    Guo, Juan; Chen, Changxun; Li, Xin

    2009-09-01

    To investigate the effects and the related mechanisms of Jiajian Yunujian (JJYNJ) granules, which were made from traditional Chinese medicinal prescription, on hyperthyroidism graves. Except that in the normal group, all mice were injected 350 mcirog x kg x d(-1) L-Thyroxin sodium to establish the hyperthyroidism graves model. The model mice were divided randomly into model control group, 3 different groups of JJYNJ granules at oral dosage of 2.17, 4.33, 8.66 g x kg(-1), every day and thiamazole group at oral dosage of 10 mg x kg(-1) every day, respectively. The body weight, heart/body weight index, heart rate (HR), spontaneous activity and oxygen consumption of all the mice were measured. The serum T3, T4 levels were evaluated with the method of RIA. Meanwhile, the effect of JJYNJ granules and thiamazole on iodine uptake by thyroid was determined by radio-assay. JJYNJ granules could improve the symptoms caused by thyroxin, increase body weight (P < 0.05), reduce heart/body weight index, spontaneous activity and oxygen consumption (P < 0.05). The HR of model group was (794.5 +/- 47.8) beats x min(-1), significantly faster than that of normal group (682.5 +/- 116.4) beats x min(-1). Those of low, middle and high JJYNJ granule group were (736.9 +/- 66.6), (742.1 +/- 62.3), (715.8 +/- 102.8) beats x min(-1) respectively, obviously slower than that of model group (P < 0.05). The serum T3, T4 levels of model group were (3.85 +/- 0.960), (234.46 +/- 58.11) microg x L(-1), significantly higher than those of normal group (0.99 +/- 0.30), (65.94 +/- 13.94) microg x L(-1), P < 0.01). Those of middle, high of JJYNJ granule group were (2.57 +/- 0.81), (164.27 +/- 72.63) microg x L(-1) and (2.70 +/- 0.55), (157.26 +/- 35.03) microg x L(-1). Those of thiamazole group were (2.88 +/- 0.59), (172.65 +/- 39.73) miicrog x L(-1). These values were significantly lower than those of model group. Thiamazole could significantly inhibit the iodine uptake in thyroid (P < 0.01), but JJYNJ

  1. High resolution of heterogeneity among human neutrophil granules: physical, biochemical, and ultrastructural properties of isolated fractions.

    PubMed

    Rice, W G; Kinkade, J M; Parmley, R T

    1986-08-01

    Previous studies on the fractionation of human neutrophil granules have identified two major populations: myeloperoxidase (MPO)-containing azurophil, or primary, granules and MPO-deficient specific, or secondary, granules. Peripheral blood neutrophils from individual donors were lysed in sucrose-free media by either hypotonic shock or nitrogen cavitation. Using a novel two-gradient Percoll density centrifugation system, the granule-rich postnuclear supernatant was rapidly (ten minutes) and reproducibly resolved into 13 granule fractions (L1 through L8 and H1 through H5). Granule flotation and recentrifugation experiments on both continuous, self-generated and multiple-step gradients using individual and mixed isolated fractions demonstrated that the banding patterns were isopycnic and nonartifactual. Isolated granules were intact based on the findings that biochemical latency of several granule enzymes was greater than 95%, and thin-sectioned electron micrographs demonstrated intact granule profiles. Biochemical analyses of the granule marker proteins MPO, beta-glucuronidase, lysozyme, and lactoferrin indicated that a number of the fractions were related to the major azurophil and specific granule populations. Lactoferrin was found in ten of 13 fractions (L1 through L8, H1 to H2), whereas MPO was found in every fraction. Consistent with these biochemical data, all fractions exhibited varying degrees of heterogeneity based on ultrastructural morphology and cytochemistry, including diaminobenzidine (DAB) reactivity for peroxidase and periodate-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining for complex glycoconjugates. A variable but significant percentage (23% to 70%) of the granules in fractions L1 through L8 and H1 and H2 showed DAB reactivity, while about 90% of the granules in fractions H3 through H5 were peroxidase positive. These results demonstrated that DAB-reactive granules spanned the entire range of granule size and density. Ultrastructural PA

  2. A CASE OF ACUTE ENDOCARDITIS CAUSED BY MICROCOCCUS ZYMOGENES (NOV. SPEC.), WITH A DESCRIPTION OF THE MICROORGANISM

    PubMed Central

    MacCallum, William G.; Hastings, Thomas W.

    1899-01-01

    , soil and other sources, and have been unable to find a description of a micrococcus identical in all particulars with that here described. Such points as staining by Gram, liquefaction of gelatine, coagulation and peptonization of milk, served singly or in combination to distinguish our micrococcus from other forms which in some respects might resemble it. We feel justified, therefore, in recognizing this organism as a new species and from its fermentative properties propose for it the name "Micrococcus zymogenes." Micrococcus zymogenes must be added to the already considerable list of bacteria which have been found as the specific infective agents in endocarditis. That it was the cause of this affection in our case was conclusively demonstrated by its repeated isolation in pure culture from the blood during life, by its presence in pure culture and large numbers after death in the cardiac vegetations, the infarctions, and other parts of the body, and by the experimental proof of its pathogenic properties, and notably its capacity to produce vegetative endocarditis by intravenous inoculation in animals. PMID:19866921

  3. A CASE OF ACUTE ENDOCARDITIS CAUSED BY MICROCOCCUS ZYMOGENES (NOV. SPEC.), WITH A DESCRIPTION OF THE MICROORGANISM.

    PubMed

    Maccallum, W G; Hastings, T W

    1899-09-01

    , soil and other sources, and have been unable to find a description of a micrococcus identical in all particulars with that here described. Such points as staining by Gram, liquefaction of gelatine, coagulation and peptonization of milk, served singly or in combination to distinguish our micrococcus from other forms which in some respects might resemble it. We feel justified, therefore, in recognizing this organism as a new species and from its fermentative properties propose for it the name "Micrococcus zymogenes." Micrococcus zymogenes must be added to the already considerable list of bacteria which have been found as the specific infective agents in endocarditis. That it was the cause of this affection in our case was conclusively demonstrated by its repeated isolation in pure culture from the blood during life, by its presence in pure culture and large numbers after death in the cardiac vegetations, the infarctions, and other parts of the body, and by the experimental proof of its pathogenic properties, and notably its capacity to produce vegetative endocarditis by intravenous inoculation in animals.

  4. Porosome: The Universal Secretory Portal in Cells

    NASA Astrophysics Data System (ADS)

    Jena, Bhanu

    2012-10-01

    , and only 20-45% increase in porosome diameter is demonstrated following the docking and fusion of 0.2-1.2 μm in diameter secretory vesicles, it is concluded that secretory vesicles ``transiently'' dock and fuse, rather than completely merge at the base of the porosome complex to release their contents to the outside. In agreement, it has been demonstrated that ``secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells''; that ``single synaptic vesicles fuse transiently and successively without loss of identity''; and that``zymogen granule (the secretory vesicle in exocrine pancreas) exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity.'' In this presentation, the discovery of the porosome, resulting in a paradigm shift in our understanding of cell secretion will be briefly discussed.

  5. Physical, electrochemical, and thermal properties of granulated natural graphite as anodes for Li-ion batteries.

    PubMed

    Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun

    2013-05-01

    Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.

  6. Detection of Vortex Tubes in Solar Granulation from Observations SUNRISE

    NASA Astrophysics Data System (ADS)

    Steiner, O.; Franz, M.; González, N. B.; Nutto, C.; Rezaei, R.; Pillet, V. M.; Bonet, J. A.; Iniesta, J. C. d. T.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A.

    2012-05-01

    We investigated a time series of continuum intensity maps and Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. We conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. This paper is a summary and update of the results previously presented in Steiner et al. (2010).

  7. α-SNAP Interferes with the Zippering of the SNARE Protein Membrane Fusion Machinery

    PubMed Central

    Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M.; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard

    2014-01-01

    Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. PMID:24778182

  8. The converse magnetoelectric coupling in asymmetric granule/matrix composite film with Ni/PZT component

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Su, Ning-Ning; Cui, Wen-Li; Yan, Shi-Nong

    2018-04-01

    In this work, a type of asymmetric granule/matrix composite film is designed, where the Ni granule is dispersed in PZT matrix, meanwhile the top and bottom electrode is constituted by Au and SRO respectively. Predicted through the electrostatic screening model and mean field approximation, considerable electrostatic charge is induced on Ni granule surface by ferroelectric PZT polarization. Predicted through the spin splitting model and spherical shell approximation, both the magnetization and magnetic anisotropy of Ni granule are modulated by ferroelectric PZT polarization. As the volume fraction of Ni granule is increased, the electric modulation of magnetization and magnetic anisotropy is reduced and enhanced respectively. As the dimension of granule/matrix composite is varied, such modulation is retained. Due to the large area-volume ratio of nano-granule, this work benefits to realize the converse magnetoelectric coupling in nanoscale.

  9. Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Sherman, D. M.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    Cyanothece sp. strain ATCC 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that temporally separates O2-sensitive N2 fixation from oxygenic photosynthesis. The energy and reducing power needed for N2 fixation appears to be generated by an active respiratory apparatus that utilizes the contents of large interthylakoidal carbohydrate granules. We report here on the carbohydrate and protein composition of the granules of Cyanothece sp. strain ATCC 51142. The carbohydrate component is a glucose homopolymer with branches every nine residues and is chemically identical to glycogen. Granule-associated protein fractions showed temporal changes in the number of proteins and their abundance during the metabolic oscillations observed under diazotrophic conditions. There also were temporal changes in the protein pattern of the granule-depleted supernatant fractions from diazotrophic cultures. None of the granule-associated proteins crossreacted with antisera directed against several glycogen-metabolizing enzymes or nitrogenase, although these proteins were tentatively identified in supernatant fractions. It is suggested that the granule-associated proteins are structural proteins required to maintain a complex granule architecture.

  10. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  11. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules

    PubMed Central

    Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon

    2015-01-01

    RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190

  12. Novel insights into RNP granules by employing the trypanosome's microtubule skeleton as a molecular sieve.

    PubMed

    Fritz, Melanie; Vanselow, Jens; Sauer, Nadja; Lamer, Stephanie; Goos, Carina; Siegel, T Nicolai; Subota, Ines; Schlosser, Andreas; Carrington, Mark; Kramer, Susanne

    2015-09-18

    RNP granules are ribonucleoprotein assemblies that regulate the post-transcriptional fate of mRNAs in all eukaryotes. Their exact function remains poorly understood, one reason for this is that RNP granule purification has not yet been achieved. We have exploited a unique feature of trypanosomes to prepare a cellular fraction highly enriched in starvation stress granules. First, granules remain trapped within the cage-like, subpellicular microtubule array of the trypanosome cytoskeleton while soluble proteins are washed away. Second, the microtubules are depolymerized and the granules are released. RNA sequencing combined with single molecule mRNA FISH identified the short and highly abundant mRNAs encoding ribosomal mRNAs as being excluded from granules. By mass spectrometry we have identified 463 stress granule candidate proteins. For 17/49 proteins tested by eYFP tagging we have confirmed the localization to granules, including one phosphatase, one methyltransferase and two proteins with a function in trypanosome life-cycle regulation. The novel method presented here enables the unbiased identification of novel RNP granule components, paving the way towards an understanding of RNP granule function. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate.

    PubMed

    Amaral, Míriam C S; Gomes, Rosimeire F; Brasil, Yara L; Oliveira, Sílvia M A; Moravia, Wagner G

    2017-12-06

    The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH 3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.

  14. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.

    PubMed

    Mosig, Johanna; Kleinebudde, Peter

    2015-03-01

    The influence of lubrication and particle size on the reduced compactability after dry granulation was investigated. Powder cellulose, lactose, magnesium carbonate, and two types of microcrystalline cellulose were roll compacted, granulated, and sieved into particle fractions. Particle fractions were compressed into tablets using internal and external lubrication. Internal lubrication resulted in an overlubrication of the granule material compared with the powder material. This resulted in extraordinary high reduction of compactability after dry granulation for lubricant-sensitive materials. The granule size can cause differences in strength, whereby the degree of this effect was material dependent. The loss in strength with increasing compaction force was comparable for different particles sizes of one material, suggesting a change in material properties independently of the size. Granule hardening could be one reason as for higher compaction forces the integrity of the granule structure survived the compression step. The results demonstrated that granule lubrication mainly influence the degree of the reduced compactability after dry granulation and must be considered for the evaluation of mechanism for this phenomenon. Hardening of the material as well as size enlargement will cause the loss in strength after recompression, but the influence of both depends strongly on the material. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Abnormal UP/DOWN Membrane Potential Dynamics Coupled with the Neocortical Slow Oscillation in Dentate Granule Cells during the Latent Phase of Temporal Lobe Epilepsy.

    PubMed

    Ouedraogo, David W; Lenck-Santini, Pierre-Pascal; Marti, Geoffrey; Robbe, David; Crépel, Valérie; Epsztein, Jérôme

    2016-01-01

    The dentate gyrus, a major entry point to the hippocampus, gates (or filters) incoming information from the cortex. During sleep or anesthesia, the slow-wave oscillation (SWO) orchestrates hippocampus-neocortex communication, which is important for memory formation. The dentate gate is altered in temporal lobe epilepsy (TLE) early during epileptogenesis, which favors the propagation of pathological activities. Yet, whether the gating of physiological SWO by dentate granule cells (DGCs) is altered in TLE has remained unexplored. We combined intracellular recordings of membrane potential (V m) of DGCs and local field potential recordings of the SWO in parietal cortex in anesthetized rats early during epileptogenesis [post-status epilepticus (SE) rats]. As expected, in control rats, the V m of DGCs weakly and rarely oscillated in the SWO frequency range. In contrast, in post-SE rats, the V m of DGCs displayed strong and long-lasting SWO. In these cells, clear UP and DOWN states, in phase with the neocortical SWO, led to a bimodal V m distribution. In post-SE rats, the firing of DGCs was increased and more temporally modulated by the neocortical SWO. We conclude that UP/DOWN state dynamics dominate the V m of DGCs and firing early during epileptogenesis. This abnormally strong neocortical influence on the dynamics of DGCs may profoundly modify the hippocampus-neocortex dialogue during sleep and associated cognitive functions.

  16. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST

    NASA Astrophysics Data System (ADS)

    Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J. S.; Mansfield, D.; Xu, W.; Zuo, G. Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X. C.; Gong, X. Z.; Wan, B. N.; Li, J. G.; the EAST Team

    2018-03-01

    The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1 mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter  >600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~80 m s-1 into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.

  17. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors.

    PubMed

    Tay, J H; Liu, Q S; Liu, Y

    2002-08-01

    Aerobic granules were cultivated in two column-type sequential aerobic sludge blanket reactors fed with glucose and acetate, respectively. The characteristics of aerobic granules were investigated. Results indicated that the glucose- and acetate-fed granules have comparable characteristics in terms of settling velocity, size, shape, biomass density, hydrophobicity, physical strength, microbial activity and storage stability. Substrate component does not seem to be a key factor on the formation of aerobic granules. However, microbial diversity of the granules is closely associated with the carbon sources supplied to the reactors. Compared with the conventional activated sludge flocs, aerobic granules exhibit excellent physical characteristics that would be essential for industrial application. This research provides a complete set of characteristics data of aerobic granules grown on glucose and acetate, which would be useful for further development of aerobic granules-based compact bioreactor for handling high strength organic wastewater.

  18. Fabrication and cytocompatibility of spherical magnesium ammonium phosphate granules.

    PubMed

    Christel, Theresa; Geffers, Martha; Klammert, Uwe; Nies, Berthold; Höß, Andreas; Groll, Jürgen; Kübler, Alexander C; Gbureck, Uwe

    2014-09-01

    Magnesium phosphate compounds, as for example struvite (MgNH4PO4·6H2O), have comparable characteristics to calcium phosphate bone substitutes, but degrade faster under physiological conditions. In the present work, we used a struvite forming calcium doped magnesium phosphate cement with the formulation Ca0.75Mg2.25(PO4)2 and an ammonium phosphate containing aqueous solution to produce round-shaped granules. For the fabrication of spherical granules, the cement paste was dispersed in a lipophilic liquid and stabilized by surfactants. The granules were characterized with respect to morphology, size distribution, phase composition, compressive strength, biocompatibility and solubility. In general, it was seen that small granules can hardly be produced by means of emulsification, when the raw material is a hydraulic paste, because long setting times promote coalescence of initially small unhardened cement droplets. Here, this problem was solved by using an aqueous solution containing both the secondary (NH4)2HPO4 and primary ammonium phosphates NH4H2PO4 to accelerate the setting reaction. This resulted in granules with 97 wt.% having a size in the range between 200 and 1,000 μm. The novel solution composition doubled the compressive strength of the cement to 37 ± 5 MPa without affecting either the conversion to struvite or the cytocompatibility using human fetal osteoblasts. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Titan and Triton: two large satellites with fine tectonic granulation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    There is a strict relationship between orbital frequencies and tectonic granulations of celestial bodies: higher frequency - finer granules, lower frequency ,larger granules. These wave induced granules are a consequence of an interference of standing waves of 4 directions occurring in rotating celestial bodies due to their movements in non- round (elliptical, parabolic) orbits with periodically changing accelerations. These changing accelerations arouse in bodies warping inertia-gravity waves having a stationary character. A direct viewing of them now is possible due to excellent "Cassini SC" images of saturnian satellites. Ubiquity of these wave induced granules allowed to formulate the 3rd theorem of the wave planetary tectonics [1]: "Celestial bodies are granular". At first, this law was illustrated by a row of terrestrial planets starting from Sun: Solar photosphere orbiting the center of the solar system has the granule size πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. This granulation in Sun is known long ago as famous solar supergranulation with the characteristic size ˜30 000 km. At Earth it was observed with help of geological and deeper geophysical data as eight superstructures about 5000 km in diameter in a great planetary circle. But now one can observe them directly due to a "lucky" image of Earth from a distance 1 170 000 km (Image PIA04159 taken by MRO). Four large granules of Mars make its figure elongated ellipsoidal what was known long enough but not explained. Two waves long πR inscribed in the great circle must produce this oblong figure. One wave long 2πR in the great circle makes all asteroids oblong and convexo-concave. "Orbits make structures"- but satellites have two orbits in our solar system. This only means that to 2 main waves and corresponding to them granules one has to add 2 side waves and corresponding to them granules. The side waves are modulated (calculated) by division and multiplication of

  20. [Study on optimization of formulation of Danggui Liuhuang effervescent granules].

    PubMed

    Zheng, Ping; Meng, Li-Juan; Sun, Guo-Ping; Wang, Wen-Zhong

    2011-03-01

    To optimize the formulation of Danggui Liuhuang effervescent granules. By means of quadratic regression rotation-orthogonal combination design, the effect of the proper proportion between citric acid and sodium bicarbonate, as well as the proper quantity of polyethylene glycol 6000 and sodium cyclamate on the dissolubility and pH of effervescent granules was studied. The best formulation was as follows: citric acid: sodium bicarbonate = 0.75: 1, the percentage of polyethylene glycol 6000 and cyclamate was 3.25% and 0.89%, respectively. The dissolubility and pH of the effervescent granules are better and the taste is satisfactory.

  1. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianotti, A.J.; Clark, D.T.; Dash, J.

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  2. [Molecular authentication of Jinyinhua formula granule by using allele-specific PCR].

    PubMed

    Jiang, Chao; Tu, Li-Chan; Yuan, Yuan; Huang, Lu-Qi; Gao, Wei; Jin, Yan

    2017-07-01

    Traditional authentication method is hard to identify herb's authenticity of traditional Chinese medicine(TCM) formula granules because they have lost all their morphological characteristics. In this study, a new allele-specific PCR method was established for identifying the authentication of Jinyinhua formula granule (made from Lonicerae Japonicae Flos) based on an SNP site in trnL-trnF fragment. Genomic DNA was successfully extracted from Lonicerae Japonicae Flos and its formula granules by using an improved spin column method and then PCR was performed with the designed primer. Approximately 110 bp specific bands was obtained only in the authentic Lonicerae Japonicae Flos and its formula granules, while no bands were found in fake mixed products. In addition, the PCR product sequence was proved from Lonicerae Japonicae Flos trnL-trnF sequence by using BLAST method. Therefore, DNA molecular authentication method could make up the limitations of character identification method and microscopic identification, and quickly identify herb's authenticity of TCM formula granules, with enormous potential for market supervision and quality control. Copyright© by the Chinese Pharmaceutical Association.

  3. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation

    PubMed Central

    Xu, Fengwen; Mei, Shan; Le Duff, Yann; Yin, Lijuan; Pang, Xiaojing; Cen, Shan; Jin, Qi; Liang, Chen; Guo, Fei

    2015-01-01

    The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway. PMID:26134849

  4. Mathematical Model of Heat Transfer in the Catalyst Granule with Point Reaction Centers

    NASA Astrophysics Data System (ADS)

    Derevich, I. V.; Fokina, A. Yu.

    2018-01-01

    This paper considers a catalyst granule with a porous ceramic chemically inert base and active point centers, at which an exothermic reaction of synthesis takes place. The rate of a chemical reaction depends on temperature by the Arrhenius law. The heat is removed from the catalyst granule surface to the synthesis products by heat transfer. Based on the idea of self-consistent field, a closed system of equations is constructed for calculating the temperatures of the active centers. As an example, a catalyst granule of the Fischer-Tropsch synthesis with active metallic cobalt particles is considered. The stationary temperatures of the active centers are calculated by the timedependent technique by solving a system of ordinary differential equations. The temperature distribution inside the granule has been found for the local centers located on one diameter of the granule and distributed randomly in the granule's volume. The existence of the critical temperature inside the reactor has been established, the excess of which leads to substantial superheating of local centers. The temperature distribution with local reaction centers differs qualitatively from the granule temperature calculated in the homogeneous approximation. The results of calculations are given.

  5. Physicochemical and tablet properties of Cyperus alulatus rhizomes starch granules.

    PubMed

    Paramakrishnan, N; Jha, S; Kumar, K Jayaram

    2015-05-01

    The starch extracted from rhizomes of Cyperus alulatus (CA) was characterized for its physicochemical, morphological and tableting properties. Rhizomes of CA yield a significant quantity of starch granules (CASG) i.e., 11.93%. CASG was characterized in terms of moisture, ash and amylose contents, solubility and swelling power, paste clarity and water retention capacity. The swelling power was found to be significantly improved with the increase in temperature. Scanning electron micrographs revealed that the granule's surface was smooth, the granules were spherical, mostly round, disc like, and the size range was 6.65-12.13 μm. Finger print region in FTIR spectra confirmed its carbohydrate nature. The evaluated micromeritic properties of extracted granule's bulk density, tapped density, Carr's index, Hausner ratio, true density and porosity render unique practicability of CASG being used as an adjuvant in pharmaceutical solid dosage forms. Tablets prepared by using CASG showed higher mechanical strength and more disintegration time, which depicted the characteristic binding nature of the starch granules. As CASG is imparting better binding properties in less concentration and also it can be used in combination with the established starches to get the synergistic effect; this starch can be used commercially in the tablet preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Identification of a Novel Splice Variant Isoform of TREM-1 in Human Neutrophil Granules.

    PubMed

    Baruah, Sankar; Keck, Kathy; Vrenios, Michelle; Pope, Marshall R; Pearl, Merideth; Doerschug, Kevin; Klesney-Tait, Julia

    2015-12-15

    Triggering receptor expressed on myeloid cells-1 (TREM-1) is critical for inflammatory signal amplification. Humans have two forms of TREM-1: a membrane receptor, associated with the adaptor DAP12, and a soluble receptor detected at times of infection. The membrane receptor isoform acts synergistically with the TLR pathway to promote cytokine secretion and neutrophil migration, whereas the soluble receptor functions as a counterregulatory molecule. In multiple models of sepsis, exogenous administration of soluble forms of TREM-1 attenuates inflammation and markedly improves survival. Despite intense interest in soluble TREM-1, both as a clinical predictor of survival and as a therapeutic tool, the origin of native soluble TREM-1 remains controversial. Using human neutrophils, we identified a 15-kDa TREM-1 isoform in primary (azurophilic) and secondary (specific) granules. Mass spectrometric analysis, ELISA, and immunoblot confirm that the 15-kDa protein is a novel splice variant form of TREM-1 (TREM-1sv). Neutrophil stimulation with Pseudomonas aeruginosa, LPS, or PAM(3)Cys4 resulted in degranulation and release of TREM-1sv. The addition of exogenous TREM-1sv inhibited TREM-1 receptor-mediated proinflammatory cytokine production. Thus, these data reveal that TREM-1 isoforms simultaneously activate and inhibit inflammation via the canonical membrane TREM-1 molecule and this newly discovered granular isoform, TREM-1sv. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Kinetic analysis of glucoamylase-catalyzed hydrolysis of starch granules from various botanical sources.

    PubMed

    Tatsumi, Hirosuke; Katano, Hajime; Ikeda, Tokuji

    2007-04-01

    The kinetics of glucoamylase-catalyzed hydrolysis of starch granules from six different botanical sources (rice, wheat, maize, cassava, sweet potato, and potato) was studied by the use of an electrochemical glucose sensor. A higher rate of hydrolysis was obtained as a smaller size of starch granules was used. The adsorbed amount of glucoamylase on the granule surface per unit area did not vary very much with the type of starch granules examined, while the catalytic constants of the adsorbed enzyme (k(0)) were determined to be 23.3+/-4.4, 14.8+/-6.0, 6.2+/-1.8, 7.1+/-4.1, 4.6+/-3.0, and 1.6+/-0.6 s(-1) for rice, wheat, maize, cassava, sweet potato, and potato respectively, showing that k(0) was largely influenced by the type of starch granules. A comparison of the k(0)-values in relation to the crystalline structure of the starch granules suggested that k(0) increases as the crystalline structure becomes dense.

  8. Upgrading of automobile shredder residue via innovative granulation process 'ReGran'.

    PubMed

    Holthaus, Philip; Kappes, Moritz; Krumm, Wolfgang

    2017-01-01

    Stricter regulatory requirements concerning end-of-life vehicles and rising disposal costs necessitate new ways for automobile shredder residue utilisation. The shredder granulate and fibres, produced by the VW-SICON-Process, have a high energy content of more than 20 MJ kg -1 , which makes energy recovery an interesting possibility. Shredder fibres have a low bulk density of 60 kg m -3 , which prevents efficient storing and utilisation as a refuse-derived fuel. By mixing fibres with plastic-rich shredder granulate and heating the mixture, defined granules can be produced. With this 'ReGran' process, the bulk density can be enhanced by a factor of seven by embedding shredder fibres in the partially melted plastic mass. A minimum of 26-33 wt% granulate is necessary to create enough melted plastic. The process temperature should be between 240 °C and 250 °C to assure fast melting while preventing extensive outgassing. A rotational frequency of the mixing tool of 1000 r min -1 during heating and mixing ensures a homogenous composition of the granules. During cooling, lower rotational frequencies generate bigger granules with particles sizes of up to 60 mm at 300 r min -1 . To keep outgassing to a minimum, it is suggested to melt shredder granulate first and then add shredder fibres. Adding coal, wood or tyre fluff as a third component reduces chlorine levels to less than 1 wt%. The best results can be achieved with tyre fluff. In combination with the VW-SICON-Process, ReGran produces a solid recovered fuel or 'design fuel' tailored to the requirements of specific thermal processes.

  9. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  10. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.

    PubMed

    Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin

    2017-01-26

    Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.

  11. In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules

    NASA Astrophysics Data System (ADS)

    Jeon, Jae-Hyung; Tejedor, Vincent; Burov, Stas; Barkai, Eli; Selhuber-Unkel, Christine; Berg-Sørensen, Kirstine; Oddershede, Lene; Metzler, Ralf

    2011-01-01

    Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.

  12. Registering parameters and granules of wave observations: IMAGE RPI success story

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.

    2015-12-01

    Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science

  13. GRANULATION IN THE PHOTOSPHERE OF {zeta} CYGNI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F., E-mail: dfgray@uwo.ca

    2012-05-15

    A series of 35 high-resolution spectra are used to measure the third-signature plot of the G8 III star, {zeta} Cygni, which shows convective velocities only 8% larger than the Sun. Bisector mapping yields a flux deficit, a measure of granulation contrast, typical of other giants. The observations also give radial velocities with errors {approx}30 m s{sup -1} and allow the orbit to be refined. Velocity excursions relative to the smooth orbital motion, possibly from the granulation, have values exceeding 200 m s{sup -1}. Temperature variations were looked for using line-depth ratios, but none were found.

  14. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, J.T.; Smid, J.; Hsiau, S.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zonesmore » history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.« less

  16. Characterization of Pu-238 Heat Source Granule Containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah

    The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO 2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO 2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in thismore » 238PuO 2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).« less

  17. Bioequivalence of the 4-mg Oral Granules and Chewable Tablet Formulations of Montelukast.

    PubMed

    Knorr, Barbara; Hartford, Alan; Li, Xiujiang Susie; Yang, Amy Yifan; Noonan, Gertrude; Migoya, Elizabeth

    2010-06-01

    PURPOSE: The primary objective of the studies was to demonstrate bioequivalence between the oral granules formulation and chewable tablet of montelukast in the fasted state. Effect of food on the pharmacokinetics of the oral granules was also evaluated. METHODS: The Formulation Biocomparison Study (Study 1) and the Final Market Image Study (Study 2) each used an open-label, randomized, 3-period crossover design where healthy adult subjects (N = 24 and 30, respectively) received montelukast as a single 4-mg dose of the oral granules formulation and a 4-mg chewable tablet fasted, and a single 4-mg dose of the oral granules formulation with food (on 2 teaspoons of applesauce [Study 1] or after consumption of a high-fat breakfast [Study 2]). The formulations were to be considered bioequivalent if the 90% confidence intervals (CIs) for geometric mean ratios (GMRs) (oral granules/chewable tablet) for the AUC(0-infinity) and C(max) of montelukast were within the prespecified comparability bounds of (0.80, 1.25). For the food-effect assessment in Study 1, comparability bounds were prespecified as (0.50, 2.00) only for the 90% CI of the GMR (oral granules fed/oral granules fasted) for the AUC(0-infinity) of montelukast; the 90% CI of the GMR for the C(max) of montelukast, however, also was computed. In Study 2, 90% CIs of the GMRs (oral granules fed/oral granules fasted) for the AUC(0-infinity) and C(max) of montelukast were computed; comparability bounds were not prespecified. RESULTS: Comparing the exposure of the formulations, the 90% CIs of the GMRs for AUC(0-infinity) and C(max) were within the prespecified bound of (0.80, 1.25). For AUC(0-infinity), the GMRs (90% CI) for Study 1 and Study 2 were 1.01 (0.92, 1.11) and 0.95 (0.91, 0.99), respectively. For C(max), respective values were 0.99 (0.86, 1.13) and 0.92 (0.84, 1.01). When the oral granules formulation was administered with food, 90% CIs of the GMRs for both AUC(0-infinity) and C(max) in both studies were

  18. Bioequivalence of the 4-mg Oral Granules and Chewable Tablet Formulations of Montelukast

    PubMed Central

    Knorr, Barbara; Hartford, Alan; Li, Xiujiang (Susie); Yang, Amy Yifan; Noonan, Gertrude; Migoya, Elizabeth

    2010-01-01

    Purpose The primary objective of the studies was to demonstrate bioequivalence between the oral granules formulation and chewable tablet of montelukast in the fasted state. Effect of food on the pharmacokinetics of the oral granules was also evaluated. Methods The Formulation Biocomparison Study (Study 1) and the Final Market Image Study (Study 2) each used an open-label, randomized, 3-period crossover design where healthy adult subjects (N = 24 and 30, respectively) received montelukast as a single 4-mg dose of the oral granules formulation and a 4-mg chewable tablet fasted, and a single 4-mg dose of the oral granules formulation with food (on 2 teaspoons of applesauce [Study 1] or after consumption of a high-fat breakfast [Study 2]). The formulations were to be considered bioequivalent if the 90% confidence intervals (CIs) for geometric mean ratios (GMRs) (oral granules/chewable tablet) for the AUC0-∞ and Cmax of montelukast were within the prespecified comparability bounds of (0.80, 1.25). For the food-effect assessment in Study 1, comparability bounds were prespecified as (0.50, 2.00) only for the 90% CI of the GMR (oral granules fed/oral granules fasted) for the AUC0-∞ of montelukast; the 90% CI of the GMR for the Cmax of montelukast, however, also was computed. In Study 2, 90% CIs of the GMRs (oral granules fed/oral granules fasted) for the AUC0-∞ and Cmax of montelukast were computed; comparability bounds were not prespecified. Results Comparing the exposure of the formulations, the 90% CIs of the GMRs for AUC0-∞ and Cmax were within the prespecified bound of (0.80, 1.25). For AUC0-∞, the GMRs (90% CI) for Study 1 and Study 2 were 1.01 (0.92, 1.11) and 0.95 (0.91, 0.99), respectively. For Cmax, respective values were 0.99 (0.86, 1.13) and 0.92 (0.84, 1.01). When the oral granules formulation was administered with food, 90% CIs of the GMRs for both AUC0-∞ and Cmax in both studies were contained within the interval of (0.50, 2.00). Conclusions The

  19. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  20. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Sun, Zhen; Maingi, Rajesh

    The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper-single null discharges with an ITER like tungsten monoblock divertor. ELM triggering was a prompt response to granule injection, andmore » for granules of a sufficient size there was no evidence of a "trigger lag" phenomenon as observed in full metal machines. We also demonstrated that the triggering efficiency decreased with granule size during dynamic size scans. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. Furthermore, by simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined. Simulated 900 micron granules capable of triggering an ELM show a peaked mass deposition of 3.9 x 10 17 atoms per mm of penetration at a depth of approximately 5 cm past the separatrix.« less

  1. Impact of functionalized particle structure on roll compaction/dry granulation and tableting of calcium carbonate.

    PubMed

    Grote, Simon; Kleinebudde, Peter

    2018-06-10

    The influence of a functionalized raw material particle structure on the granulation behavior and tabletabilty of calcium carbonate (CaCO 3 ) was investigated. Therefore, a milled grade of CaCO 3 was compared to different binary mixtures of milled and functionalized CaCO 3 . Relevant properties of raw materials, ribbons and granules were measured. The starting materials and two fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force and granule size on tablet tensile strength was evaluated. Adding functionalized particles drastically influenced the granulation and tableting behavior of CaCO 3 . Increasing proportions increased the ribbon porosity and granule size. Tensile strength of tablets from powder mixtures and granules was increased as well. Nevertheless, adding functionalized CaCO 3 led to a loss in tabletability induced by a previous compaction step to an extent depending on its proportion in the formulation. A clear influence of the particle morphology on granulation and tableting behavior was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. Adding functionalized CaCO 3 to a mixture, even in small amounts, seemed to be beneficial to increase granule size and tablet strength. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST

    DOE PAGES

    Lunsford, R.; Sun, Zhen; Maingi, Rajesh; ...

    2017-12-19

    The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper-single null discharges with an ITER like tungsten monoblock divertor. ELM triggering was a prompt response to granule injection, andmore » for granules of a sufficient size there was no evidence of a "trigger lag" phenomenon as observed in full metal machines. We also demonstrated that the triggering efficiency decreased with granule size during dynamic size scans. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. Furthermore, by simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined. Simulated 900 micron granules capable of triggering an ELM show a peaked mass deposition of 3.9 x 10 17 atoms per mm of penetration at a depth of approximately 5 cm past the separatrix.« less

  3. Influence of substrate surface loading on the kinetic behaviour of aerobic granules.

    PubMed

    Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa

    2005-06-01

    In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.

  4. Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment.

    PubMed

    Inizan, M; Freval, A; Cigana, J; Meinhold, J

    2005-01-01

    Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.

  5. Granulation tissue of chronic pressure ulcers as a predictive indicator of wound closure.

    PubMed

    Wyffels, Jennifer T; Edsberg, Laura E

    2011-10-01

    : To describe the temporal relationship between the quantity of granulation tissue in a chronic pressure ulcer (PrU) and its clinical outcome. : Study participants were seen on days 0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 21, 28, 35, and 42. On each visit, the wounds were digitally photographed with a 3-cm calibration target. Images were analyzed using VeV MD (version 1.1.14; VERG Inc, Winnipeg, Manitoba, Canada) and Adobe Photoshop CS3 Extended (version 10.0.1; Adobe Systems Inc, San Jose, California). Granulation tissue was selected from calibrated digital images by 1 of 2 methods: manual selection and automated selection. Granulation tissue area was expressed as a percentage of total wound area. : Academic research laboratory. : Thirty-one chronic PrUs were observed in 27 subjects. : Quantitative measure of granulation tissue area. : There was no relationship between the amount of granulation tissue expressed as a percentage of the total PrU area and wound outcome. : This study is the first to both quantitatively measure the amount of granulation tissue in a chronic PrU and attempt to correlate it to wound outcome. Although counterintuitive, the amount of granulation tissue was not predictive of outcome, and no temporal trends could be described.

  6. Biodegradation of o-nitrophenol by aerobic granules with glucose as co-substrate.

    PubMed

    Basheer, Farrukh; Isa, M H; Farooqi, I H

    2012-01-01

    Aerobic granules to treat wastewater containing o-nitrophenol were successfully developed in a sequencing batch reactor (SBR) using activated sludge as inoculum. Stable aerobic granules were obtained with a clearly defined shape and diameters ranging from 2 to 6 mm after 122 days of operation. The integrity coefficient (IC) and granules density was found to be 98% and 1,054 kg m(-3) respectively. After development of aerobic granules, o-nitrophenols were successfully degraded to an efficiency of 78% at a concentration of 70 mg L(-1). GC-MS study revealed that the biodegradation of o-nitrophenol occurred via catechol via nitrobenzene pathway. Specific o-nitrophenol biodegradation rates followed the Haldane model and the associated kinetic parameters were found as follows: V(max) = 3.96 g o-nitrophenol g(-1)VSS(-1)d(-1), K(s) = 198.12 mg L(-1), and K(i) = 31.16 mg L(-1). The aerobic granules proved to be a feasible and effective way to degrade o-nitrophenol containing wastewater.

  7. Effect of famine-phase reduced aeration on polyhydroxyalkanoate accumulation in aerobic granules.

    PubMed

    Vjayan, T; Vadivelu, V M

    2017-12-01

    The effects of variable aeration in the famine period on polyhydroxyalkanoate (PHA) accumulation in aerobic granules were investigated. Results showed that regardless of the aeration rates used during famine period, all aerobic granules achieved a similar chemical oxygen demand removal and PHA content. The decrease in famine-period aeration rates accelerated the maximum PHA accumulation together with increase in granular size and settling ability. The PHA-accumulating microorganisms were found to have shifted closer to the surface of the granules when the aeration rate was reduced. Moreover, PHA compositional changes occurred, where the hydroxyvalerate content had increased with the reduction in aeration rate. Ultimately, the results indicate that the requirement of aeration for PHA accumulation in aerobic granules is highly insignificant in the famine phase. PHA production in aerobic granules under zero aeration in the famine period may result in an energy input reduction of up to 74%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. PGL germ granule assembly protein is a base-specific, single-stranded RNase

    PubMed Central

    Aoki, Scott T.; Kershner, Aaron M.; Bingman, Craig A.; Wickens, Marvin; Kimble, Judith

    2016-01-01

    Cellular RNA-protein (RNP) granules are ubiquitous and have fundamental roles in biology and RNA metabolism, but the molecular basis of their structure, assembly, and function is poorly understood. Using nematode “P-granules” as a paradigm, we focus on the PGL granule scaffold protein to gain molecular insights into RNP granule structure and assembly. We first identify a PGL dimerization domain (DD) and determine its crystal structure. PGL-1 DD has a novel 13 α-helix fold that creates a positively charged channel as a homodimer. We investigate its capacity to bind RNA and discover unexpectedly that PGL-1 DD is a guanosine-specific, single-stranded endonuclease. Discovery of the PGL homodimer, together with previous results, suggests a model in which the PGL DD dimer forms a fundamental building block for P-granule assembly. Discovery of the PGL RNase activity expands the role of RNP granule assembly proteins to include enzymatic activity in addition to their job as structural scaffolds. PMID:26787882

  9. NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing

    PubMed Central

    Hsu, Hsiang-Ting; Viswanath, Dixita I.; Önfelt, Björn

    2016-01-01

    Natural killer (NK) cell activation triggers sequential cellular events leading to destruction of diseased cells. We previously identified lytic granule convergence, a dynein- and integrin signal–dependent movement of lysosome-related organelles to the microtubule-organizing center, as an early step in the cell biological process underlying NK cell cytotoxicity. Why lytic granules converge during NK cell cytotoxicity, however, remains unclear. We experimentally controlled the availability of human ligands to regulate NK cell signaling and promote granule convergence with either directed or nondirected degranulation. By the use of acoustic trap microscopy, we generated specific effector–target cell arrangements to define the impact of the two modes of degranulation. NK cells with converged granules had greater targeted and less nonspecific “bystander” killing. Additionally, NK cells in which dynein was inhibited or integrin blocked under physiological conditions demonstrated increased nondirected degranulation and bystander killing. Thus, NK cells converge lytic granules and thereby improve the efficiency of targeted killing and prevent collateral damage to neighboring healthy cells. PMID:27903610

  10. Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers

    PubMed Central

    Bustos, Regla; Fahy, Brendan; Hylton, Christopher M.; Seale, Robert; Nebane, N. Miranda; Edwards, Anne; Martin, Cathie; Smith, Alison M.

    2004-01-01

    Starch granule initiation is not understood, but recent evidence implicates a starch debranching enzyme, isoamylase, in the control of this process. Potato tubers contain isoamylase activity attributable to a heteromultimeric protein containing Stisa1 and Stisa2, the products of two of the three isoamylase genes of potato. To discover whether this enzyme is involved in starch granule initiation, activity was reduced by expression of antisense RNA for Stisa1 or Stisa2. Transgenic tubers accumulated a small amount of a soluble glucan, similar in structure to the phytoglycogen of cereal, Arabidopsis, and Chlamydomonas mutants lacking isoamylase. The major effect, however, was on the number of starch granules. Transgenic tubers accumulated large numbers of tiny granules not seen in normal tubers. These data indicate that the heteromultimeric isoamylase functions during starch synthesis to suppress the initiation of glucan molecules in the plastid stroma that would otherwise crystallize to nucleate new starch granules. PMID:14766984

  11. Application of grey system theory on the influencing parameters of aerobic granulation in SBR.

    PubMed

    Bindhu, B K; Madhu, G

    2017-09-01

    Aerobic granulation is a promising technology for wastewater treatment. Four operational parameters were selected as influencing factors for this study. Aerobic granulation was experimented with three different values of organic loading rate (3, 6 and 9 kg COD m -3  d -1 ), superficial upflow air velocity (SUAV) (2, 3 and 4 cm s -1 ), settling time (3, 5 and 10 min) and volume exchange ratio (25%, 50% and 75%) in sequencing batch reactor in nine trials for the optimal performance of aerobic granulation. The influence of compared parameters on five reference parameters (sludge volume index (SVI), time taken for the appearance of granules, size and specific gravity of granules and chemical oxygen demand (COD) removal) was analyzed using grey system theory. The grey relational coefficients and grey entropy relational grade of each parameter were calculated. Hydrodynamic shear force in terms of SUAV was found to have the greatest influence on granule appearance, specific gravity of granules and COD removal efficiency. SVI is greatly affected by settling time. The optimal scopes of all the compared parameters were found.

  12. Qiwei granules alleviates podocyte lesion in kidney of diabetic KK-Ay mice.

    PubMed

    Zhou, Jingxin; Sun, Wen; Yoshitomi, Hisae; Li, Linyi; Qin, Lingling; Guo, Xiangyu; Wu, Lili; Zhang, Yan; Wu, Xinli; Xu, Tunhai; Gao, Ming; Liu, Tonghua

    2015-03-31

    Chinese medicine comprised of all natural herbs is widespread used in the treatment of diabetic nephropathy (DN). Podocyte contributes to the integrity of glomerular filtration barrier whose injury plays an important role in the initiation and progression of DN. Our study aimed to investigate the effect of Qiwei granules on podocyte lesion in diabetic KK-A(y) mice kidney and its underlying mechanism. Twelve-week-old male KK-A(y) mice were randomly divided in vehicle group and Qiwei granules group, while C57BL/6J mice were used as normal control. The mice were gavage with 1.37 g/kg/day Qiwei granules or water for 10 weeks. We measured water, food intake and body weight (BW) and fasting blood glucose (FBG) every 2 weeks, and urine protein every 4 weeks. At the end of the experiment, all surviving mice were sacrificed. The kidney weight and serum renal parameters were measured, and the renal morphology was observed. To search the underlying mechanism, we examined the podocyte positive marker, slit diaphragm protein expression and some involved cell signal pathway. Qiwei granules treatment significantly improved the metabolic parameters, alleviated the urinary protein, and protected renal function in KK-A(y) mice. In addition, the glomerular injuries and podocyte lesions were mitigated with Qiwei granules treatment. Furthermore, Qiwei granules increased expression of nephrin, CD2AP, and integrin alpha3beta1 in the podocytes of KK-A(y) mice. Qiwei granules improved the phosphoration of Akt and inhibited cleaved caspase-3 protein expression. These finding suggest that Qiwei granules protects the podocyte from the development of DN via improving slit diaphragm (SD) molecules expression and likely activating Akt signaling pathway in KK-A(y) mice.

  13. An improved approach for the segmentation of starch granules in microscopic images

    PubMed Central

    2010-01-01

    Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380

  14. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    PubMed Central

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  15. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  16. Enterovirus Control of Translation and RNA Granule Stress Responses.

    PubMed

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  17. Improvement of enalapril maleate chemical stability by high shear melting granulation.

    PubMed

    de Oliveira, Ana Paula Montandon; Cunha, Talita Amorim; Serpa, Raphael Caixeta; Taveira, Stephânia Fleury; Lima, Eliana Martins; Almeida Diniz, Danielle Guimarães; de Freitas, Luis Alexandre Pedro; Marreto, Ricardo Neves

    2014-09-18

    Abstract Enalapril maleate is a widely used drug, which is chemically unstable when mixed with excipients resulting in enalaprilat and diketopiperazine as the main degradation products. The preparation of enalapril sodium salt has been used to improve drug stability in solid dosage forms; however, product rejection is observed when the chemical reaction for obtaining the sodium salt is not completely finished before packaging. In this study, granules were prepared by melting granulation using stearic acid or glyceryl monostearate, with a view to developing more stable enalapril maleate solid dosage forms. The granules were prepared in a laboratory-scale high shear mixer and compressed in a rotary machine. Size distribution, flow properties, in vitro drug release and enalapril maleate chemical stability were evaluated and compared with data obtained from tablets prepared without hydrophobic binders. All formulations showed good physical properties and immediate drug release. The greatest improvement in the enalapril maleate stability was observed in formulations containing stearic acid. This study showed that hot melting granulation could be successfully used to prepare enalapril maleate granules which could substitute the in situ formation of enalapril sodium salt, since they provided better enalapril stability in solid dosage forms.

  18. Quinoa starch granules as stabilizing particles for production of Pickering emulsions.

    PubMed

    Rayner, Marilyn; Sjöö, Malin; Timgren, Anna; Dejmek, Petr

    2012-01-01

    Intact starch granules isolated from quinoa (Chenopodium quinoa Willd.) were used to stabilize emulsion drops in so-called Pickering emulsions. Miglyol 812 was used as dispersed phase and a phosphate buffer (pH7) with different salt (NaCl) concentrations was used as the continuous phase. The starch granules were hydrophobically modified to different degrees by octenyl succinic anhydride (OSA) or by dry heat treatment at 120 degrees C in order to study the effect on the resulting emulsion drop size. The degree of OSA-modification had a low to moderate impact on drop size. The highest level of modification (4.66%) showed the largest mean drop size, and lowest amount of free starch, which could be an effect of a higher degree of aggregation of the starch granules and, thereby, also the emulsion drops stabilized by them. The heat treated starch granules had a poor stabilizing ability and only the starch heated for the longest time (150 min at 120 degrees C) had a better emulsifying capacity than the un-modified native starch granules. The effect of salt concentration was rather limited. However, an increased concentration of salt slightly increased the mean drop size and the elastic modulus.

  19. Audible acoustics in high-shear wet granulation: application of frequency filtering.

    PubMed

    Hansuld, Erin M; Briens, Lauren; McCann, Joe A B; Sayani, Amyn

    2009-08-13

    Previous work has shown analysis of audible acoustic emissions from high-shear wet granulation has potential as a technique for end-point detection. In this research, audible acoustic emissions (AEs) from three different formulations were studied to further develop this technique as a process analytical technology. Condenser microphones were attached to three different locations on a PMA-10 high-shear granulator (air exhaust, bowl and motor) to target different sound sources. Size, flowability and tablet break load data was collected to support formulator end-point ranges and interpretation of AE analysis. Each formulation had a unique total power spectral density (PSD) profile that was sensitive to granule formation and end-point. Analyzing total PSD in 10 Hz segments identified profiles with reduced run variability and distinct maxima and minima suitable for routine granulation monitoring and end-point control. A partial least squares discriminant analysis method was developed to automate selection of key 10 Hz frequency groups using variable importance to projection. The results support use of frequency refinement as a way forward in the development of acoustic emission analysis for granulation monitoring and end-point control.

  20. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules.

    PubMed

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2002-11-01

    The release properties of phenylpropanolamine hydrochloride (PPA) from ethylcellulose (EC, ethylcellulose 10 cps (EC#10) and/or 100 cps (EC#100)) matrix granules prepared by the extrusion granulation method were examined. The release process could be divided into two parts, and was well analyzed by applying square-root time law and cube root law equations, respectively. The validity of the treatments was confirmed by the fitness of the simulation curve with the measured curve. At the initial stage, PPA was released from the gel layer of swollen EC in the matrix granules. At the second stage, the drug existing below the gel layer dissolved, and was released through the gel layer. Also, the time and release ratio at the connection point of the simulation curves was examined to determine the validity of the analysis. Comparing the release properties of PPA from the two types of EC matrix granules, EC#100 showed more effective sustained release than EC#10. On the other hand, changes in the release property of the EC#10 matrix granule were relatively more clear than that of the EC#100 matrix granule. Thus, it was supposed that EC#10 is more available for controlled and sustained release formulations than EC#100.

  1. Real-time assessment of critical quality attributes of a continuous granulation process.

    PubMed

    Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-02-01

    There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.

  2. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    PubMed

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  3. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors.

    PubMed

    Zhang, D; Wang, X; Wang, B; Garza, J C; Fang, X; Wang, J; Scherer, P E; Brenner, R; Zhang, W; Lu, X-Y

    2017-07-01

    Post-traumatic stress disorder (PTSD) is characterized by exaggerated fear expression and impaired fear extinction. The underlying molecular and cellular mechanisms of PTSD are largely unknown. The current pharmacological and non-pharmacological treatments for PTSD are either ineffective or temporary with high relapse rates. Here we report that adiponectin-deficient mice exhibited normal contextual fear conditioning but displayed slower extinction learning. Infusions of adiponectin into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. Whole-cell patch-clamp recordings in brain slices revealed that intrinsic excitability of DG granule neurons was enhanced by adiponectin deficiency and suppressed after treatment with the adiponectin mimetic AdipoRon, which were associated with increased input resistance and hyperpolarized resting membrane potential, respectively. Moreover, deletion of AdipoR2, but not AdipoR1 in the DG, resulted in augmented fear expression and reduced extinction, accompanied by intrinsic hyperexcitability of DG granule neurons. Adiponectin and AdipoRon failed to induce facilitation of fear extinction and elicit inhibition of intrinsic excitability of DG neurons in AdipoR2 knockout mice. These results indicated that adiponectin action via AdipoR2 was both necessary and sufficient for extinction of contextual fear and intrinsic excitability of DG granule neurons, implying that enhancing or dampening DG neuronal excitability may cause resistance to or facilitation of extinction. Therefore, our findings provide a functional link between adiponectin/AdipoR2 activation, DG neuronal excitability and contextual fear extinction, and suggest that targeting adiponectin/AdipoR2 may be used to strengthen extinction-based exposure therapies for PTSD.

  4. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  5. The functional morphology of color changing in a spider: development of ommochrome pigment granules.

    PubMed

    Insausti, Teresita C; Casas, Jérôme

    2008-03-01

    Studies on the formation of ommochrome pigment granules are very few, despite their generalized occurrence as screening pigments in insect eyes. This is particularly true for ommochrome granules responsible for epidermal coloration. The aims of this study were to characterize the localization of major body pigments in a color changing mimetic spider, Misumena vatia (Thomisidae), and to describe the formation and location of ommochrome pigment granules responsible for the spider's color change from white to yellow. The unpigmented cuticula of this spider is transparent. Both the guanine localized in guanine cells in the opisthosoma and the uric acid localized in epidermis cells in the prosoma are responsible for the white coloration. The bright yellow color is due to the combination of ommochrome pigment granules and the white reflectance from coincident guanine and/or uric acid. The formation of ommochrome pigment granules in epidermis cells proceeds via three distinctive steps. Translucent, UV fluorescent, progranules (type I) are produced by a dense network of endoplasmic reticulum associated with numerous mitochondria and glycogen rosettes. These progranules are present in white spiders only, and regularly distributed in the cytoplasm. The merging of several progranules of type I into a transient state (progranule type II) leads to the formation of granules (type III) characterized by their lack of fluorescence, their spherical sections and their osmophilic-electron-dense contents. They are found in yellow spiders and in the red stripes on the body sides. Their color varies from yellow to red. Thus, white spiders contain only type I granules, yellow tinted spiders contain type II and III granules and bright yellow spiders contain only type III granules. We present a synthetic view of the ontogeny of ommochrome granules. We discuss the physiology of color changing and the nature of the chemical compounds in the different types of granules. Extended studies on the

  6. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline

    PubMed Central

    Campbell, Anne C.; Updike, Dustin L.

    2015-01-01

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. PMID:25968310

  7. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.

    PubMed

    Campbell, Anne C; Updike, Dustin L

    2015-05-15

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription. © 2015. Published by The Company of Biologists Ltd.

  8. New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16

    PubMed Central

    Bresan, Stephanie

    2017-01-01

    ABSTRACT The formation and localization of polyhydroxybutyrate (PHB) granules in Ralstonia eutropha are controlled by PhaM, which interacts both with the PHB synthase (PhaC) and with the bacterial nucleoid. Here, we studied the importance of proline and lysine residues of two C-terminal PAKKA motifs in PhaM for their importance in attaching PHB granules to DNA by in vitro and in vivo methods. Substitution of the lysine residues but not of the proline residues resulted in detachment of formed PHB granules from the nucleoid. Instead, formation of PHB granule clusters at polar regions of the rod-shaped cells and an unequal distribution of PHB granules to daughter cells were observed. The formation of PHB granules was studied by the expression of chromosomally anchored gene fusions of fluorescent proteins with PhaM and PhaC in different backgrounds. PhaM and PhaC fusions showed a distinct colocalization at formed PHB granules in the nucleoid region of the wild type. In a ΔphaC background, PhaM and the catalytically inactive PhaCC319A protein were not able to form fluorescent foci, indicating that correct positioning requires the formation of PHB. Furthermore, time-lapse experiments revealed that PhaC and PhaM proteins detach from formed PHB granules at later stages, resulting in a nonhomogeneous population of PHB granules. This could explain why growth of individual PHB granules stops under PHB-permissive conditions at a certain size. IMPORTANCE PHB granules are storage compounds for carbon and energy in many prokaryotes. Equal distribution of accumulated PHB granules during cell division is therefore important for optimal fitness of the daughter cells. In R. eutropha, PhaM is responsible for maximal activity of PHB synthase, for initiation of PHB granule formation at discrete regions in the cells, and for association of formed PHB granules with the nucleoid. Here we found that four lysine residues of C-terminal PhaM sequence motifs are essential for association of

  9. α-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery.

    PubMed

    Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard

    2014-06-06

    Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valérie; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2015-04-25

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells.

    PubMed

    Insausti, T C; Casas, J

    2009-12-01

    Ommochromes are end products of the tryptophan metabolism in arthropods. While the anabolism of ommochromes has been well studied, the catabolism is totally unknown. In order to study it, we used the crab-spider Misumena vatia, which is able to change color reversibly in a few days, from yellow to white and back. Ommochromes is the only pigment class responsible for the body coloration in this animal. The aim of this study was to analyze the fine structure of the epidermal cells in bleaching spiders, in an attempt to correlate morphological changes with the fate of the pigment granules. Central to the process of bleaching is the lysis of the ommochrome granules. In the same cell, intact granules and granules in different degradation stages are found. The degradation begins with granule autolysis. Some components are extruded in the extracellular space and others are recycled via autophagy. Abundant glycogen appears associated to granulolysis. In a later stage of bleaching, ommochrome progranules, typical of white spiders, appear in the distal zone of the same epidermal cell. Catabolism and anabolism of pigment granules thus take place simultaneously in spider epidermal cells. A cyclic pathway of pigment granules formation and degradation, throughout a complete cycle of color change is proposed, together with an explanation for this turnover, involving photoprotection against UV by ommochromes metabolites. The presence of this turnover for melanins is discussed.

  12. Surface Modification of Porous Titanium Granules for Improving Bioactivity.

    PubMed

    Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab

    The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.

  13. PROTEIN TARGETING TO STARCH Is Required for Localising GRANULE-BOUND STARCH SYNTHASE to Starch Granules and for Normal Amylose Synthesis in Arabidopsis

    PubMed Central

    Seung, David; Soyk, Sebastian; Coiro, Mario; Maier, Benjamin A.; Eicke, Simona; Zeeman, Samuel C.

    2015-01-01

    The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved

  14. Identification of a novel splice variant isoform of TREM-1 in human neutrophil granules1

    PubMed Central

    Baruah, Sankar; Keck, Kathy; Vrenios, Michelle; Pope, Marshall; Pearl, Merideth; Doerschug, Kevin; Klesney-Tait, Julia

    2015-01-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) is critical for inflammatory signal amplification. Humans have two forms of TREM-1: a membrane receptor (mbTREM-1), associated with the adaptor DAP12, and a soluble receptor detected at times of infection. The membrane receptor isoform acts synergistically with the TLR pathway to promote cytokine secretion and neutrophil migration while the soluble receptor functions as a counter regulatory molecule. In multiple models of sepsis, exogenous administration of soluble forms of TREM-1 attenuates inflammation and markedly improves survival. Despite intense interest in soluble TREM-1 both as a clinical predictor of survival and as a therapeutic tool, the origin of native soluble TREM-1 remains controversial. Utilizing human neutrophils, we identified a 15 kDa TREM-1 isoform in primary (azurophilic) and secondary (specific) granules. Mass spectrometric analysis, ELISA, and immunoblot confirm that the 15 kD protein is a novel splice variant of TREM-1 (TREM-1sv). Neutrophil stimulation with P. aeruginosa, LPS, or PAM(3)Cys4 resulted in degranulation and release of TREM-1sv. The addition of exogenous TREM-1sv inhibited TREM-1 receptor mediated proinflammatory cytokine production. Thus these data reveal that TREM-1 isoforms simultaneously activate and inhibit inflammation via the canonical membrane TREM-1 molecule and this newly discovered granular isoform, TREM-1sv. PMID:26561551

  15. Olfactory granule cell development in normal and hyperthyroid rats.

    PubMed

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  16. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.

    PubMed

    Liu, Yong-Qiang; Tay, Joo-Hwa

    2015-09-01

    The combined strong hydraulic selection pressure (HSP) with overstressed organic loading rate (OLR) as a fast granulation strategy was used to enhance aerobic granulation. To investigate the wide applicability of this strategy to different scenarios and its relevant mechanism, different settling times, different inoculums, different exchange ratios, different reactor configurations, and different shear force were used in this study. It was found that clear granules were formed within 24 h and steady state reached within three days when the fast granulation strategy was used in a lab-scale reactor seeded with well settled activated sludge (Reactor 2). However, granules appeared after 2-week operation and reached steady state after one month at the traditional step-wise decreased settling time from 20 to 2 min with OLR of 6 g COD/L·d (Reactor 1). With the fast granulation strategy, granules appeared within 24 h even with bulking sludge as seed to start up Reactor 3, but 6-day lag phase was observed compared with Reactor 2. Both Reactor 2 and Reactor 3 experienced sigmoidal growth curve in terms of biomass accumulation and granule size increase after granulation. In addition, the reproducible results in pilot-scale reactors (Reactor 5 and Reactor 6) with diameter of 20 cm and height/diameter ratio (H/D) of 4 further proved that reactor configuration and fluid flow pattern had no effect on the aerobic granulation when the fast granulation strategy was employed, but biomass accumulation experienced a short lag phase too in Reactor 5 and Reactor 6. Although overstressed OLR was favorable for fast granulation, it also led to the fluffy granules after around two-week operation. However, the stable 6-month operation of Reactor 3 demonstrated that the rapidly formed granules were able to maintain long-term stability by reducing OLR from 12 g COD/L·d to 6 g COD/L·d. A mechanism of fast granulation with the strategy of combined strong HSP and OLR was proposed to explain

  17. Isolation of Cytoplasmic Pituitary Granules with Gonadotropic Activity

    PubMed Central

    Hartley, Marshall W.; McShan, W. H.; Ris, Hans

    1960-01-01

    A fraction isolated from the anterior pituitary glands of rats castrate for 8 weeks contained essentially a single cytoplasmic constituent with which the major portion of the gonadotropic hormone activity was associated. The glands were homogenized in an 0.25 M sucrose + 7.3 per cent polyvinylpyrrolidone (PVP) solution and fractionated by differential centrifugation to give a heterogeneous small granule fraction which contained almost all the gonadotropic hormone activity. The active supernatant containing this small granule fraction was separated into layers by isopycnic gradient centrifugation on a continuous 6 to 45 per cent sucrose + 17.5 per cent "diodrast" + 5 x 10-4 M "versene" gradient at 100,000 g for 2 hours. Three layers were obtained and the pellet from the active bottom layer was sectioned, examined with the electron microscope, and found to contain 200 mµ granules, mitochondria, ergastoplasm, and other cellular debris. This layer was fractionated further by isopycnic and differential centrifugation to obtain a pellet which contained the major portion of the gonadotropic hormone activity. Because of the heterogeneity of this fraction, due to the contamination of the 200 mµ granules with mitochondria and other cellular debris, the active layer and the resuspended active pellet, obtained by centrifuging this layer first at 17,000 g then diluting the supernatant and centrifuging at 30,000 g for 1 hour, were filtered through Millipore HA paper with a pore size of 0.45 µ. The cytoplasmic material containing the gonadotropic hormone activity passed through the filter paper and this activity was recovered in the pellets obtained by centrifuging at 100,000 g for 1 hour. These active pellets consisted almost entirely of 200 mµ granules with a minimum amount of contamination, and they contained the major portion of the gonadotropic hormone activity with practically none remaining in the supernatant fraction. These results are discussed in view of their

  18. Prompt triggering of edge localized modes through lithium granule injection on EAST

    NASA Astrophysics Data System (ADS)

    Lunsford, Robert; Sun, Z.; Hu, J. S.; Xu, W.; Zuo, G. Z.; Gong, X. Z.; Wan, B. N.; Li, J. G.; Huang, M.; Maingi, R.; Diallo, A.; Tritz, K.; the EAST Team

    2017-10-01

    We report successful triggering of edge localized mode (ELMs) in EAST with Lithium (Li) micropellets, and the observed dependence of ELM triggering efficiency on granule size. ELM control is essential for successful ITER operation throughout the entire campaign, relying on magnetic perturbations for ELM suppression and ELM frequency enhancement via pellet injection. To separate the task of fueling from ELM pacing, we initiate the prompt generation of ELMs via impurity granule injection. Lithium granules ranging in size from 200 - 1000 microns are mechanically injected into upper-single null EAST long pulse H-mode discharges. The injections are monitored for their effect on high Z impurity accumulation and to assess the pressure perturbation required for reliable ELM triggering. We have determined that granules of diameter larger than 600 microns (corresponding to 5.2 x 1018 Li atoms) are successful at triggering ELMs more than 90% of the time. The triggering efficiency drops precipitously to less than 40% as the granule size is reduced to 400 microns (1.5 x 1018 Li atoms), indicating a triggering threshold has been crossed. Using this information an optimal impurity granule size which will regularly trigger a prompt ELM in these EAST discharges is determined. Coupling these results with alternate discharge scenarios on EAST and similar experiments performed on DIII-D provides the possibility of extrapolation to future devices.

  19. THE THIRD SIGNATURE OF GRANULATION IN BRIGHT-GIANT AND SUPERGIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, David F.; Pugh, Teznie, E-mail: dfgray@uwo.ca

    2012-04-15

    We investigated third-signature granulation plots for 18 bright giants and supergiants and one giant of spectral classes G0 to M3. These plots reveal the net granulation velocities, averaged over the stellar disk, as a function of depth. Supergiants show significant differences from the 'standard' shape seen for lower-luminosity stars. Most notable is a striking reversal of slope seen for three of the nine supergiants, i.e., stronger lines are more blueshifted than weaker lines, opposite the solar case. Changes in the third-signature plot of {alpha} Sco (M1.5 Iab) with time imply granulation cells that penetrate only the lower portion of themore » photosphere. For those stars showing the standard shape, we derive scaling factors relative to the Sun that serve as a first-order measure of the strength of the granulation relative to the Sun. For G-type stars, the third-signature scale of the bright giants and supergiants is approximately 1.5 times as strong as in dwarfs, but for K stars, there in no discernible difference between higher-luminosity stars and dwarfs. Classical macroturbulence, a measure of the velocity dispersion of the granulation, increases with the third-signature-plot scale factors, but at different rates for different luminosity classes.« less

  20. Serum antibody-negative Goodpasture syndrome with delta granule pool storage deficiency and eosinophilia

    PubMed Central

    Kussman, Ashleigh; Gohara, Amira

    2012-01-01

    Goodpasture syndrome is a rare, life-threatening autoimmune disease characterized by a triad of rapidly progressive glomerulonephritis, a hemorrhagic pulmonary condition and the presence of anti-glomerular basement membrane (anti-GBM) antibodies. The antibodies initiate destruction of the kidney glomeruli, resulting in a focal necrotizing glomerulitis, which may progress rapidly to renal failure. Autoantibody-mediated damage of alveolar basement membranes leads to diffuse pulmonary hemorrhage, which in some cases may be severe enough to cause respiratory failure. Many clinicians use a variety of assays to detect serum anti-GBM antibodies; however, these tests may be falsely negative in up to 15% of patients with Goodpasture syndrome. Here, we report an unusual case of a 40-year-old man with clinical evidence of Goodpasture syndrome, a negative anti-GBM antibody serum result, eosinophilia and delta granule pool storage deficiency. After a 14-day hospital stay and extensive workup, as well as treatment with antibiotics, steroids and ventilator support for respiratory failure, the patient continued to deteriorate and entered multisystem organ failure. The family decided to withdraw ventilator support, and the patient expired. Immunofluorescence testing for anti-GBM autoantibodies on lung and kidney tissues during an autopsy confirmed the diagnosis of Goodpasture syndrome. PMID:26069804

  1. Serum antibody-negative Goodpasture syndrome with delta granule pool storage deficiency and eosinophilia.

    PubMed

    Kussman, Ashleigh; Gohara, Amira

    2012-12-01

    Goodpasture syndrome is a rare, life-threatening autoimmune disease characterized by a triad of rapidly progressive glomerulonephritis, a hemorrhagic pulmonary condition and the presence of anti-glomerular basement membrane (anti-GBM) antibodies. The antibodies initiate destruction of the kidney glomeruli, resulting in a focal necrotizing glomerulitis, which may progress rapidly to renal failure. Autoantibody-mediated damage of alveolar basement membranes leads to diffuse pulmonary hemorrhage, which in some cases may be severe enough to cause respiratory failure. Many clinicians use a variety of assays to detect serum anti-GBM antibodies; however, these tests may be falsely negative in up to 15% of patients with Goodpasture syndrome. Here, we report an unusual case of a 40-year-old man with clinical evidence of Goodpasture syndrome, a negative anti-GBM antibody serum result, eosinophilia and delta granule pool storage deficiency. After a 14-day hospital stay and extensive workup, as well as treatment with antibiotics, steroids and ventilator support for respiratory failure, the patient continued to deteriorate and entered multisystem organ failure. The family decided to withdraw ventilator support, and the patient expired. Immunofluorescence testing for anti-GBM autoantibodies on lung and kidney tissues during an autopsy confirmed the diagnosis of Goodpasture syndrome.

  2. A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β cells

    PubMed Central

    Kalwat, Michael A.; Yoder, Stephanie M.; Wang, Zhanxiang; Thurmond, Debbie C.

    2012-01-01

    Human islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ~80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release. PMID:23246867

  3. Characteristics of aerobic granules grown on glucose a sequential batch shaking reactor.

    PubMed

    Cai, Chun-guang; Zhu, Nan-wen; Liu, Jun-shen; Wang, Zhen-peng; Cai, Wei-min

    2004-01-01

    Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor (SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength. Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaped and coccoid bacteria were the dominant microorganisms.

  4. Effect of roll-compaction and milling conditions on granules and tablet properties.

    PubMed

    Perez-Gandarillas, Lucia; Perez-Gago, Ana; Mazor, Alon; Kleinebudde, Peter; Lecoq, Olivier; Michrafy, Abderrahim

    2016-09-01

    Dry granulation is an agglomeration process used to produce size-enlarged particles (granules), improving the handling properties of powders such as flowability. In this process, powders are compacted using a roll press to produce ribbons, which are milled in granules used further in the tableting process. The granule and tablet properties are influenced by the existence of different designs of the roll compactors, milling systems and the interaction between process parameters and raw material properties. The main objective of this work was to investigate how different roll-compaction conditions and milling process parameters impact on ribbons, granules and tablet properties, highlighting the role of the sealing system (cheek plates and rimmed roll). In this context, two common excipients differing in their mechanical behaviour (MCC and mannitol) are used. The study is based on the analysis of granule size distribution together with the characterization of loss of compactability during die compaction. Results show that the tensile strength of tablets is lower when using granules than when the raw materials are compressed. Moreover, the plastic material (MCC) is more sensitive than the brittle one (mannitol). Regarding the roll-force, it is observed that the higher the roll force, the lower the tensile strength of tablets from granulated material is. These findings are in agreement with the literature. The comparison of sealing systems shows that the rimmed-roll system leads to slightly stronger tablets than the use of cheek plates. In addition, the use of the rimmed-roll system reduces the amount of fines, in particular when high roll force is applied. Overall, it can be concluded that roll-compaction effect is predominant over the milling effect on the production of fines but less significant on the tablet properties. This study points out that the balance between a good flowability by reducing the amount of fines and appropriate tablet strength is achieved with

  5. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolobova, Elena; Efimov, Andrey; Kaverina, Irina

    Recent investigations have highlighted the importance of subcellular localization of mRNAs to cell function. While AKAP350A, a multifunctional scaffolding protein, localizes to the Golgi apparatus and centrosomes, we have now identified a cytosolic pool of AKAP350A. Analysis of AKAP350A scaffolded complexes revealed two novel interacting proteins, CCAR1 and caprin-1. CCAR1, caprin-1 and AKAP350A along with G3BP, a stress granule marker, relocate to RNA stress granules after arsenite treatment. Stress also caused loss of AKAP350 from the Golgi and fragmentation of the Golgi apparatus. Disruption of microtubules with nocodazole altered stress granule formation and changed their morphology by preventing fusion ofmore » stress granules. In the presence of nocodazole, arsenite induced smaller granules with the vast majority of AKAP350A and CCAR1 separated from G3BP-containing granules. Similar to nocodazole treatment, reduction of AKAP350A or CCAR1 expression also altered the size and number of G3BP-containing stress granules induced by arsenite treatment. A limited set of 69 mRNA transcripts was immunoisolated with AKAP350A even in the absence of stress, suggesting the association of AKAP350A with mRNA transcripts. These results provide the first evidence for the microtubule dependent association of AKAP350A and CCAR1 with RNA stress granules.« less

  6. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.

    2010-11-10

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computationalmore » domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.« less

  7. Recreating the synthesis of starch granules in yeast

    PubMed Central

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  8. Convergent evolution of germ granule nucleators: A hypothesis.

    PubMed

    Kulkarni, Arpita; Extavour, Cassandra G

    2017-10-01

    Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. [Comparative analysis between origin of cooked traditional Chinese medicine powder and modern formula granules].

    PubMed

    Li, Rui; Zhai, Hua-Qiang; Tian, Wei-Lan; Hou, Ji-Ru; Jin, Shi-Yuan; Wang, Yong-Yan

    2016-03-01

    In this study, the origin and causes of cooked traditional Chinese medicine powder were reviewed, and a comprehensive analysis was made for the time background of modern traditional Chinese medicine formula granules and the future development trend, in order to provide reference for application and promotion of traditional Chinese medicine formula granules. By reference to ancient medical books of previous dynasties, a system review was conducted for infancy, formation, maturity and transition of cooked traditional Chinese medicine powder, and a comprehensive analysis was made for the six factors of cooked traditional Chinese medicine powder's maturity in the Song Dynasty. Efforts were made to collect domestic and foreign research literatures of modern formula granules, understand the detailed development, and conduct an objective analysis of the current clinical application of modern formula granules. According to the comparative analysis for the application characteristics of cooked traditional Chinese medicine powder and modern formula granules, ①the popularity of cooked traditional Chinese medicine powder in the Song Dynasty has six factors: soaring numbers of medical students and medical practitioners, high medical expenses due to huge army, rapid population growth, frequent epidemics and increasing diseases, and insufficient finances of central and local governments. ②On the basis of clinical application characteristics of traditional Chinese medicine formula granules, traditional Chinese medicine formula granules contain extracted and concentrated effective components, which guarantee the curative effect, meet modern people's demands for "quick, simple and convenience" traditional Chinese medicine decoctions, show a relatively high cost performance; however, formula granules are restricted by their varieties and lack unified quality control standards, and single-extract formula granules have not synergy and attenuation effects of combined traditional

  10. Toxoplasma gondii: biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6.

    PubMed

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6-8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8-15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Polymorphic Transformation of Indomethacin during Hot Melt Extrusion Granulation: Process and Dissolution Control.

    PubMed

    Xu, Ting; Nahar, Kajalajit; Dave, Rutesh; Bates, Simon; Morris, Kenneth

    2018-05-10

    To study and elucidate the effect of the intensity and duration of processing stresses on the possible solid-state changes during a hot melt extrusion granulation process. Blends of α-indomethacin and PEG 3350 (w/w 4:1) were granulated using various screw sizes/designs on the melt extruder under different temperature regimes. Differential Scanning Calorimetry and X-ray Powder Diffraction were employed for characterization. The dissolution behavior of the pure polymorphs and the resulting granules was determined using in-situ fiber optic UV testing system. An XRPD quantitation method using Excel full pattern fitting was developed to determine the concentration of each constituent (amorphous, α and γ indomethacin and PEG) in samples collected from each functioning zone and in granules. Analysis of in-process samples and granules revealed that higher temperature (≥130°C) and shear stress accelerated the process induced phase transitions from amorphous and/or the α form to γ indomethacin during heating stage. However, rapid cooling resulted in an increased percentage of the α form allowing isolation of the meta-stable form. By determining the conditions that either prevent or facilitate process induced transformations of IMC polymorphs during melt granulation, a design space was developed to control the polymorph present in the resulting granules. This represents the conditions necessary to balance the thermodynamic relationships between the polymorphs of the IMC system and the kinetics of the possible transformations as a function of the processing stresses.

  12. Influence of in line monitored fluid bed granulation process parameters on the stability of Ethinylestradiol.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2015-12-30

    Ethinylestradiol (EE) as a highly active and low dosed compound is prone to oxidative degradation. The stability of the drug substance is therefore a critical parameter that has to be considered during drug formulation. Beside the stability of the drug substance, granule particle size and moisture are critical quality attributes (CQA) of the fluid bed granulation process which influence the tableting ability of the resulting granules. Both CQA should therefore be monitored during the production process by process analytic technology (PAT) according to ICH Q8. This work focusses on the effects of drying conditions on the stability of EE in a fluid-bed granulation process. We quantified EE degradation products 6-alpha-hydroxy-EE, 6-beta-hydroxy-EE, 9(11)-dehydro-EE and 6-oxo-EE during long time storage and accelerated conditions. PAT-tools that monitor granule particle size (Spatial filtering technology) and granule moisture (Microwave resonance technology) were applied and compared with off-line methods. We found a relevant influence of residual granule moisture and thermic stress applied during granulation on the storage stability of EE, whereas no degradation was found immediately after processing. Hence we conclude that drying parameters have a relevant influence on long term EE stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Studies on the compressibility of wax matrix granules of acetaminophen and their admixtures with various tableting bases.

    PubMed

    Uhumwangho, M U; Okor, R S

    2006-04-01

    Matrix granules of acetaminophen have been formed by a melt granulation process whereby the acetaminophen powder was triturated with the melted wax--goat wax, glyceryl monostearate or carnuba wax. The compressibility of the matrix granules and their admixture, with diluent granules (lactose, alpha-cellulose or microcrystalline cellulose) was investigated. The granules were compressed to tablets at a constant load (30 arbitrary units on the load scale) of a manesty single punch machine. Resulting tablets were evaluated for tensile strength (T) and disintegration times (DT). Granule flow was determined by measuring their angle of repose when allowed to fall freely on a level surface. Matrix granules prepared by melt granulation with goat wax or glyceryl monostearate were too sticky and therefore did not flow at all. They were also poorly compressible (T values = 0.20MN/m2). Inclusion of the diluent remarkably improved granule flow property and compressibility. The T values of the tablets (measure of compressibility) increased from about 0.24 to 0.65 MN/m2 during increase in diluent (lactose) content from 20 to 80 %w/w. Microcrystalline cellulose and alpha-cellulose were more effective than lactose in promoting compressibility of the granules. By contrast the matrix granules formed with carnuba wax were free flowing (angle of repose, 18.60). Addition of the diluent further improved flowability slightly. The matrix granules (without a diluent) were readily compressible (T value, 1.79MN/m2). Addition of the diluent (80%w/w) reduced T values (MN/m2) slightly to 1.32 (lactose), 1.48 (alpha-cellulose) and 1.74 (microcrystalline cellulose). Tablets of the matrix granules only, disintegrated rapidly within 3 minutes. DT was further reduced to <30 s by addition of any of the diluents. The indication is that the inclusion of the diluents studied can be used to improve the compressibility of the otherwise poorly compressible matrix granules. Based on the flowability

  14. Effects of artemisinin sustained-release granules on mixed alga growth and microcystins production and release.

    PubMed

    Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-12-01

    To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.

  15. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules.

    PubMed

    Pijuan, Maite; Werner, Ursula; Yuan, Zhiguo

    2011-10-15

    One of the main challenging issues for the aerobic granular sludge technology is the long startup time when dealing with real wastewaters. This study presents a novel strategy to reduce the time required for granulation while ensuring a high level of nutrient removal. This new approach consists of seeding the reactor with a mixture of crushed aerobic granules and floccular sludge. The effectiveness of the strategy was demonstrated using abattoir wastewater, containing nitrogen and phosphorus at approximately 250 mgN/L and 30 mgP/L, respectively. Seven different mixtures of crushed granules and floccular sludge at granular sludge fractions (w/w in dry mass) of 0%, 5%, 10%, 15%, 25%, 30% and 50% were used to start eight granulation processes. The granulation time (defined as the time when the 10th percentile bacterial aggregate size is larger than 200 μm) displayed a strong dependency on the fraction of granular sludge. The shortest granulation time of 18 days was obtained with 50% crushed granules, in comparison with 133 days with 5% crushed granules. Full granulation was not achieved in the two trials without seeding with crushed granules. In contrast to the 100% floccular sludge cases, where a substantial loss of biomass occurred during granulation, the biomass concentration in all other trails did not decrease during granulation. This allowed that good nitrogen removal was maintained in all the reactors during the granulation process. However, enhanced biological phosphorus removal was achieved in only one of the eight trials. This was likely due to the temporary accumulation of nitrite, a strong inhibitor of polyphosphate accumulating organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor.

    PubMed

    Dewey, Colleen M; Cenik, Basar; Sephton, Chantelle F; Dries, Daniel R; Mayer, Paul; Good, Shannon K; Johnson, Brett A; Herz, Joachim; Yu, Gang

    2011-03-01

    TDP-43, or TAR DNA-binding protein 43, is a pathological marker of a spectrum of neurodegenerative disorders, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. TDP-43 is an RNA/DNA-binding protein implicated in transcriptional and posttranscriptional regulation. Recent work also suggests that TDP-43 associates with cytoplasmic stress granules, which are transient structures that form in response to stress. In this study, we establish sorbitol as a novel physiological stressor that directs TDP-43 to stress granules in Hek293T cells and primary cultured glia. We quantify the association of TDP-43 with stress granules over time and show that stress granule association and size are dependent on the glycine-rich region of TDP-43, which harbors the majority of pathogenic mutations. Moreover, we establish that cells harboring wild-type and mutant TDP-43 have distinct stress responses: mutant TDP-43 forms significantly larger stress granules, and is incorporated into stress granules earlier, than wild-type TDP-43; in striking contrast, wild-type TDP-43 forms more stress granules over time, but the granule size remains relatively unchanged. We propose that mutant TDP-43 alters stress granule dynamics, which may contribute to the progression of TDP-43 proteinopathies.

  17. Formulation design for optimal high-shear wet granulation using on-line torque measurements.

    PubMed

    Cavinato, Mauro; Bresciani, Massimo; Machin, Marianna; Bellazzi, Guido; Canu, Paolo; Santomaso, Andrea C

    2010-03-15

    An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system. 2009 Elsevier B.V. All rights reserved.

  18. Characterization of Pu-238 heat source granule containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson Ii, P D; Thronas, D L; Romero, J P

    2008-01-01

    The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. Themore » T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.« less

  19. EVIDENCE FOR GRANULATION IN EARLY A-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinger, Thomas; Matthews, Jaymie M.

    2010-03-01

    Stars with spectral types earlier than about F0 on (or close) to the main sequence have long been believed to lack observable surface convection, although evolutionary models of A-type stars do predict very thin surface convective zones. We present evidence for granulation in two {delta} Scuti stars of spectral type A2: HD 174936 and HD 50844. Recent analyses of space-based CoRoT data revealed up to some 1000 frequencies in the photometry of these stars. The frequencies were interpreted as individual pulsation modes. If true, there must be large numbers of nonradial modes of very high degree l which should suffermore » cancellation effects in disk-integrated photometry (even of high space-based precision). The p-mode interpretation of all the frequencies in HD 174936 and HD 50844 depends on the assumption of white (frequency-independent) noise. Our independent analyses of the data provide an alternative explanation: most of the peaks in the Fourier spectra are the signature of non-white granulation background noise, and less than about 100 of the frequencies are actual stellar p-modes in each star. We find granulation timescales which are consistent with scaling relations that describe cooler stars with known surface convection. If the granulation interpretation is correct, the hundreds of low-amplitude Fourier peaks reported in recent studies are falsely interpreted as independent pulsation modes and a significantly lower number of frequencies are associated with pulsation, consistent with only modes of low degree.« less

  20. Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welkie, David G.; Sherman, Debra M.; Chrisler, William B.

    The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H 2 production when grown under 12h light-12h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culturemore » synchronicity, and intracellular storage content. Reduction in NaNO3 and K 2HPO 4 concentrations from 17.6 and 0.23 mM to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria.« less

  1. Starch granule evidence for the earliest potato use in North America

    PubMed Central

    Louderback, Lisbeth A.; Pavlik, Bruce M.

    2017-01-01

    The prehistory of wild potato use, leading to its domestication and diversification, has been well-documented in, and confined to, South America. At least 20 tuber-bearing, wild species of Solanum are known from North and Central America, yet their importance in ancient diets has never been assessed from the archaeological record. Here, we report the earliest evidence of wild potato use in North America at 10,900–10,100 calendar years (cal) B.P. in the form of well-preserved starch granules extracted from ground stone tools at North Creek Shelter, southern Utah. These granules have been identified as those of Solanum jamesii Torr. (Four Corners potato), a tuber-bearing species native to the American Southwest. Identification was based on applying five strictly defined diagnostic characteristics (eccentric hilum, longitudinal fissure, lack of fissure branching, fissure ratio, and maximum granule size) to each of 323 archaeological granules. Of those, nine were definitively assigned to S. jamesii based on possession of all characteristics, and another 61 were either likely or possibly S. jamesii depending on the number of characteristics they possessed. The oldest granules were found in substratum 4k (10,900–10,100 cal B.P.). Younger deposits, dating to ∼6,900 cal B.P., also contained tools with S. jamesii granules, indicating at least 4,000 y of intermittent use. Ethnographic and historical accounts extend the period of use to more than 10,000 y. The question then arises as to whether some S. jamesii populations could have undergone transport, cultivation, and eventual domestication over such a long period of time. PMID:28673982

  2. Biofilm formation and granule properties in anaerobic digestion at high salinity.

    PubMed

    Gagliano, M C; Ismail, S B; Stams, A J M; Plugge, C M; Temmink, H; Van Lier, J B

    2017-09-15

    For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    PubMed

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. High shear mixing granulation of ibuprofen and beta-cyclodextrin: effects of process variables on ibuprofen dissolution.

    PubMed

    Ghorab, Mohamed K; Adeyeye, Moji Christianah

    2007-10-19

    The aims of the study were to evaluate the effect of high shear mixer (HSM) granulation process parameters and scale-up on wet mass consistency and granulation characteristics. A mixer torque rheometer (MTR) was employed to evaluate the granulating solvents used (water, isopropanol, and 1:1 vol/vol mixture of both) based on the wet mass consistency. Gral 25 and mini-HSM were used for the granulation. The MTR study showed that the water significantly enhanced the beta-cyclodextrin (beta CD) binding tendency and the strength of liquid bridges formed between the particles, whereas the isopropanol/water mixture yielded more suitable agglomerates. Mini-HSM granulation with the isopropanol/water mixture (1:1 vol/vol) showed a reduction in the extent of torque value rise by increasing the impeller speed as a result of more breakdown of agglomerates than coalescence. In contrast, increasing the impeller speed of the Gral 25 resulted in higher torque readings, larger granule size, and consequently, slower dissolution. This was due to a remarkable rise in temperature during Gral granulation that reduced the isopropanol/water ratio in the granulating solvent as a result of evaporation and consequently increased the beta CD binding strength. In general, the HSM granulation retarded ibuprofen dissolution compared with the physical mixture because of densification and agglomeration. However, a successful HSM granulation scale-up was not achieved due to the difference in the solvent mixture's effect from 1 scale to the other.

  5. A murine retrovirus co-Opts YB-1, a translational regulator and stress granule-associated protein, to facilitate virus assembly.

    PubMed

    Bann, Darrin V; Beyer, Andrea R; Parent, Leslie J

    2014-04-01

    The Gag protein of the murine retrovirus mouse mammary tumor virus (MMTV) orchestrates the assembly of immature virus particles in the cytoplasm which are subsequently transported to the plasma membrane for release from the cell. The morphogenetic pathway of MMTV assembly is similar to that of Saccharomyces cerevisiae retrotransposons Ty1 and Ty3, which assemble virus-like particles (VLPs) in intracytoplasmic ribonucleoprotein (RNP) complexes. Assembly of Ty1 and Ty3 VLPs depends upon cellular mRNA processing factors, prompting us to examine whether MMTV utilizes a similar set of host proteins to facilitate viral capsid assembly. Our data revealed that MMTV Gag colocalized with YB-1, a translational regulator found in stress granules and P bodies, in intracytoplasmic foci. The association of MMTV Gag and YB-1 in cytoplasmic granules was not disrupted by cycloheximide treatment, suggesting that these sites were not typical stress granules. However, the association of MMTV Gag and YB-1 was RNA dependent, and an MMTV RNA reporter construct colocalized with Gag and YB-1 in cytoplasmic RNP complexes. Knockdown of YB-1 resulted in a significant decrease in MMTV particle production, indicating that YB-1 plays a role in MMTV capsid formation. Analysis by live-cell imaging with fluorescence recovery after photobleaching (FRAP) revealed that the population of Gag proteins localized within YB-1 complexes was relatively immobile, suggesting that Gag forms stable complexes in association with YB-1. Together, our data imply that the formation of intracytoplasmic Gag-RNA complexes is facilitated by YB-1, which promotes MMTV virus assembly. Cellular mRNA processing factors regulate the posttranscriptional fates of mRNAs, affecting localization and utilization of mRNAs under normal conditions and in response to stress. RNA viruses such as retroviruses interact with cellular mRNA processing factors that accumulate in ribonucleoprotein complexes known as P bodies and stress granules

  6. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  7. Lunar gravity pattern: two modes of granulation

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    The Lunar Prospector's lunar gravity map [1] clearly shows two prevailing modes of granulation. Most abundant one evenly covering the whole surface is represented by even-sized shoulder-to-shoulder grains about 100 km in diameter (πR/60 -πR/48). This background is interrupted by a few much greater grains with a characteristic diameter about or less than πR/4 (hundreds to thousand km). Haw to explain this pattern? We now know that "orbits make structures"[2 & others]. This follows from the facts that all celestial bodies move in non-round (elliptical, parabolic) orbits and rotate. Cyclic movements in non-round orbits with periodically changing accelerations arouse inertia-gravity forces exiting warping waves of stationary character and 4 ortho- and diagonal directions. Interferences of these waves produce tectonic blocks of various sizes depending on wavelengths. Along with the fundamental wave1making ubiquitous dichotomy and its overtones (mainly the first one wave2) making tectonic sectors, every body is subjected to a warping action of waves whose lengths are strictly proportional to bodies orbital periods or inversely proportional to their orbital frequencies. These individual waves are responsible for ubiquitous tectonic granulation. Most known from the thirties of the 20th century is the solar supergranulation with the characteristic granule size about 30000 km (πR/60) corresponding to its orbital frequency around the center of the solar system about 1/1 month. But the same orbital frequency has the Moon around Earth. So, one might expect to find similar granulation in the lunar crust. This theoretical assumption was perfectly confirmed when a lunar gravity map was created [1]. Thus, the Sun's 30000 km supergranules are the same as the Moon's 100 km granules. Farther from Sun, the terrestrial planets orbital frequencies diminish and concordantly granule sizes increase: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. This sizes are

  8. Observing secretory granules with a multiangle evanescent wave microscope.

    PubMed Central

    Rohrbach, A

    2000-01-01

    In total internal reflection fluorescence microscopy (TIRFM), fluorophores near a surface can be excited with evanescent waves, which decay exponentially with distance from the interface. Penetration depths of evanescent waves from 60 nm to 300 nm were generated by varying the angle of incidence of a laser beam. With a novel telecentric multiangle evanescent wave microscope, we monitored and investigated both single secretory granules and pools of granules in bovine chromaffin cells. By measuring the fluorescence intensity as a function of penetration depth, it is possible through a Laplace transform to obtain the fluorophore distribution as a function of axial position. We discuss the extent to which it is possible to determine distances and diameters of granules with this microscopy technique by modeling the fluorescent volumes of spheres in evanescent fields. The anisotropic near-field detection of fluorophores and the influence of the detection point-spread function are considered. The diameters of isolated granules between 70 nm and 300 nm have been reconstructed, which is clearly beyond the resolution limit of a confocal microscope. Furthermore, the paper demonstrates how evanescent waves propagate along surfaces and scatter at objects with a higher refractive index. TIRFM will have a limited applicability for quantitative measurements when the parameters used to define evanescent waves are not optimally selected. PMID:10777760

  9. Regular tracheostomy tube changes to prevent formation of granulation tissue.

    PubMed

    Yaremchuk, Kathleen

    2003-01-01

    Tracheostomy is a commonly performed operative procedure that has been described since 2000 B.C. The early indications for tracheostomy were for upper airway obstruction, usually occurring in young people as a result of an infectious process. Recently, tracheostomies are more commonly performed in the critically ill patient to assist in long-term ventilatory support. Granulation tissue at the stoma and the trachea has been described as a late complication resulting in bleeding, drainage, and difficulty with maintaining mechanical ventilatory support. The present report is of an observational study of a newly implemented policy that required regular changing of tracheostomy tubes. Comparable groups of patients were compared before and after this procedural change to document complications. Data collection consisted of chart reviews of all admissions for 1 year before the policy change and the subsequent 2 years. Complication rates were compared using standard statistical techniques. A policy change was instituted that required all tracheostomy tubes to be changed every 2 weeks in conjunction with a detailed evaluation of the tracheostomy stoma. Charts were reviewed the year before the change in policy and in the subsequent 2 years to determine the incidence of granulation tissue requiring operative intervention. The number of patients requiring surgical intervention secondary to granulation tissue showed a statistically significant decrease (P =.02). A review of policies and procedures from the six largest hospitals in southeastern Michigan had no recommendations for routine tracheostomy tube changes. A policy requiring a routine change of tracheostomy tubes results in fewer complications from granulation tissue. Tracheostomy tube changes to prevent granulation tissue and its complications.

  10. Simplified formulations with high drug loads for continuous twin-screw granulation.

    PubMed

    Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P

    2015-12-30

    As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pten Knockdown in vivo Increases Excitatory Drive onto Dentate Granule Cells

    PubMed Central

    Luikart, Bryan W.; Schnell, Eric; Washburn, Eric K.; Bensen, AeSoon L.; Tovar, Kenneth R.; Westbrook, Gary L.

    2011-01-01

    Some cases of autism spectrum disorder (ASD) have mutations in the lipid phosphatase, Pten (phosphatase and tensin homolog on chromosome 10). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored. We used in vivo stereotaxic injections of lentivirus expressing an shRNA to knockdown Pten in mouse neonatal and young adult dentate granule cells. We then assessed the morphology and synaptic physiology between two weeks and four months later. Confocal imaging of the hippocampus revealed a marked increase in granule cell size and an increase in dendritic spine density. The onset of morphological changes occurred earlier in neonatal mice than in young adults. We used whole-cell recordings from granule cells in acute slices to assess synaptic function following Pten knockdown. Consistent with the increase in dendritic spines, the frequency of excitatory miniature and spontaneous postsynaptic currents increased. However, there was little or no effect on inhibitory postsynaptic currents. Thus Pten knockdown results in an imbalance between excitatory and inhibitory synaptic activity. Because reductions in Pten affected mature granule cells as well as developing granule cells, we suggest that the disruption of circuit function by Pten hypofunction may be ongoing well beyond early development. PMID:21411674

  12. Stress granule formation via ATP depletion-triggered phase separation

    NASA Astrophysics Data System (ADS)

    Wurtz, Jean David; Lee, Chiu Fan

    2018-04-01

    Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactions. Motivated by experimental observations, we identify a minimal model of SG formation triggered by ATP depletion. Our analysis indicates that ATP is continuously hydrolysed to deter SG formation under normal conditions, and we provide specific predictions that can be tested experimentally.

  13. Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors

    PubMed Central

    Zhang, D; Wang, X; Wang, B; Garza, J C; Fang, X; Wang, J; Scherer, P E; Brenner, R; Zhang, W; Lu, X-Y

    2017-01-01

    Post-traumatic stress disorder (PTSD) is characterized by exaggerated fear expression and impaired fear extinction. The underlying molecular and cellular mechanisms of PTSD are largely unknown. The current pharmacological and non-pharmacological treatments for PTSD are either ineffective or temporary with high relapse rates. Here we report that adiponectin-deficient mice exhibited normal contextual fear conditioning but displayed slower extinction learning. Infusions of adiponectin into the dentate gyrus (DG) of the hippocampus in fear-conditioned mice facilitated extinction of contextual fear. Whole-cell patch-clamp recordings in brain slices revealed that intrinsic excitability of DG granule neurons was enhanced by adiponectin deficiency and suppressed after treatment with the adiponectin mimetic AdipoRon, which were associated with increased input resistance and hyperpolarized resting membrane potential, respectively. Moreover, deletion of AdipoR2, but not AdipoR1 in the DG, resulted in augmented fear expression and reduced extinction, accompanied by intrinsic hyperexcitability of DG granule neurons. Adiponectin and AdipoRon failed to induce facilitation of fear extinction and elicit inhibition of intrinsic excitability of DG neurons in AdipoR2 knockout mice. These results indicated that adiponectin action via AdipoR2 was both necessary and sufficient for extinction of contextual fear and intrinsic excitability of DG granule neurons, implying that enhancing or dampening DG neuronal excitability may cause resistance to or facilitation of extinction. Therefore, our findings provide a functional link between adiponectin/AdipoR2 activation, DG neuronal excitability and contextual fear extinction, and suggest that targeting adiponectin/AdipoR2 may be used to strengthen extinction-based exposure therapies for PTSD. PMID:27137743

  14. Deficiency of Starch Synthase IIIa and IVb Alters Starch Granule Morphology from Polyhedral to Spherical in Rice Endosperm1

    PubMed Central

    Toyosawa, Yoshiko; Kawagoe, Yasushi; Matsushima, Ryo; Ogawa, Masahiro; Fukuda, Masako; Kumamaru, Toshihiro; Okazaki, Yozo; Kusano, Miyako; Saito, Kazuki; Toyooka, Kiminori; Sato, Mayuko; Ai, Yongfeng; Fujita, Naoko

    2016-01-01

    Starch granule morphology differs markedly among plant species. However, the mechanisms controlling starch granule morphology have not been elucidated. Rice (Oryza sativa) endosperm produces characteristic compound-type granules containing dozens of polyhedral starch granules within an amyloplast. Some other cereal species produce simple-type granules, in which only one starch granule is present per amyloplast. A double mutant rice deficient in the starch synthase (SS) genes SSIIIa and SSIVb (ss3a ss4b) produced spherical starch granules, whereas the parental single mutants produced polyhedral starch granules similar to the wild type. The ss3a ss4b amyloplasts contained compound-type starch granules during early developmental stages, and spherical granules were separated from each other during subsequent amyloplast development and seed dehydration. Analysis of glucan chain length distribution identified overlapping roles for SSIIIa and SSIVb in amylopectin chain synthesis, with a degree of polymerization of 42 or greater. Confocal fluorescence microscopy and immunoelectron microscopy of wild-type developing rice seeds revealed that the majority of SSIVb was localized between starch granules. Therefore, we propose that SSIIIa and SSIVb have crucial roles in determining starch granule morphology and in maintaining the amyloplast envelope structure. We present a model of spherical starch granule production. PMID:26747287

  15. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Mei, Ran; Narihiro, Takashi; Bocher, Benjamin T. W.; Yamaguchi, Takashi; Liu, Wen-Tso

    2016-01-01

    Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach. PMID:27936088

  16. Odontogenic Differentiation of Human Dental Pulp Stem Cells Stimulated by the Calcium Phosphate Porous Granules

    PubMed Central

    Nam, Sunyoung; Won, Jong-Eun; Kim, Cheol-Hwan; Kim, Hae-Won

    2011-01-01

    Effects of three-dimensional (3D) calcium phosphate (CaP) porous granules on the growth and odontogenic differentiation of human dental pulp stem cells (hDPSCs) were examined for dental tissue engineering. hDPSCs isolated from adult human dental pulps were cultured for 3-4 passages, and populated on porous granules. Cell growth on the culture dish showed an ongoing increase for up to 21 days, whereas the growth on the 3D granules decreased after 14 days. This reduction in proliferative potential on the 3D granules was more conspicuous under the osteogenic medium conditions, indicating that the 3D granules may induce the odontogenic differentiation of hDPSCs. Differentiation behavior on the 3D granules was confirmed by the increased alkaline phosphatase activity, up-regulation of odontoblast-specific genes, including dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) by quantitative polymerase chain reaction, and greater level of dentin sialoprotein synthesis by western blot. Moreover, the cellular mineralization, as assessed by Alizarin red S and calcium quantification, was significantly higher in the 3D CaP granules than in the culture dish. Taken all, the 3D CaP porous granules should be useful for dental tissue engineering in combination with hDPSCs by providing favorable 3D substrate conditions for cell growth and odontogenic development. PMID:21772958

  17. Summary of Granulation Matrix Testing for the Plutonium Immobilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, C.C.

    2001-10-19

    In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testingmore » were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.« less

  18. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets.

    PubMed

    Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas

    2014-07-01

    Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Particle size distribution of wheat starch granules in relation to baking properties of frozen dough.

    PubMed

    Tao, Han; Wang, Pei; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-02-10

    The impact of freezing on the wheat starches with different particle size was studied using a range of characterization methods including X-ray diffraction, differential scanning calorimetry, the Rapid Visco Analyser and a reconstitution dough system. Wheat starches were fractionated into A- and B-type granules, and then subjected to freezing/thawing treatment for 3 cycles. The freezing treatment did not cause apparent damage on A-type granular surface but induced cracked structure on B-type granules. It facilitated materials such as amylose, proteins, and lipids leaching from starch granule and an increase in gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from freezing-treated B-granules while the crumb firmness significantly increased (p>0.05). No marked differences were observed in the counterparts of A-granules after freezing treatment. It seemed that the B-type granules were more sensitive to the freezing/thawing treatment, thus facilitating structural transformations from dough to bread. Results indicated that the deterioration in frozen bread quality derived from starch could be minimized by increasing the A-granules content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. To determine the end point of wet granulation by measuring powder energies and thermal properties.

    PubMed

    Dave, Rutesh H; Wu, Stephen H; Contractor, Labdhi D

    2012-04-01

    Wet granulation has been widely used in pharmaceutical industry as a tablet manufacturing process. However, end-point determination of wet granulation process has always remained a challenge. Many traditional methods are available for end-point determination, yet accuracy and reproducibility still remain a challenge. Microcrystalline cellulose, widely used as an excipient in pharmaceutical industry, was granulated using water. Wet mass was passed through sieve # 12 and dried till constant percentage loss on drying was obtained and dried granules were obtained. Wet and dried granules collected were subjected to basic flow energy, specific energy, bulk density, pressure drop, differential scanning calorimetry and effusivity measurements. Analysis of data revealed various stages of granule growth from initial seed formation by adding 200-400 g of water, granule growth was observed by adding 600-800 g of water and over wetting was observed at 1155 g of water. In this work, we have justified our work to properly identify and utilize this technique for practical purpose to correctly identify the end-point determination of microcrystalline cellulose and explain various principles underlying energies associated with powder and thermal measurements.

  1. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  2. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    PubMed

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N 2 O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N 2 O model, which incorporated two N 2 O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH 2 OH) oxidation). The two-pathway model was used to describe N 2 O production from a granule-based partial nitritation (PN) reactor and provide insights into the N 2 O distribution inside granules. The model was evaluated by comparing simulation results with N 2 O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N 2 O dynamics and provided useful information about the shift of N 2 O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N 2 O production. The results further revealed a linear relationship between N 2 O production and ammonia oxidation rate (AOR) (R 2  = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N 2 O production by causing a change in AOR.

  3. Dextrose monohydrate as a non-animal sourced alternative diluent in high shear wet granulation tablet formulations.

    PubMed

    Mitra, Biplob; Wolfe, Chad; Wu, Sy-Juen

    2018-05-01

    The feasibility of dextrose monohydrate as a non-animal sourced diluent in high shear wet granulation (HSWG) tablet formulations was determined. Impacts of granulation solution amount and addition time, wet massing time, impeller speed, powder and solution binder, and dry milling speed and screen opening size on granule size, friability and density, and tablet solid fraction (SF) and tensile strength (TS) were evaluated. The stability of theophylline tablets TS, disintegration time (DT) and in vitro dissolution were also studied. Following post-granulation drying at 60 °C, dextrose monohydrate lost 9% water and converted into the anhydrate form. Higher granulation solution amounts and faster addition, faster impeller speeds, and solution binder produced larger, denser and stronger (less friable) granules. All granules were compressed into tablets with acceptable TS. Contrary to what is normally observed, denser and larger granules (at ≥21% water level) produced tablets with a higher TS. The TS of the weakest tablets increased the most after storage at both 25 °C/60% RH and 40 °C/75% RH. Tablet DT was higher for stronger granules and after storage. Tablet dissolution profiles for 21% or less water were comparable and did not change on stability. However, the dissolution profile for tablets prepared with 24% water was slower initially and continued to decrease on stability. The results indicate a granulation water amount of not more than 21% is required to achieve acceptable tablet properties. This study clearly demonstrated the utility of dextrose monohydrate as a non-animal sourced diluent in a HSWG tablet formulation.

  4. In vitro and in vivo evaluation of medicinal carbon granules and tablet on the adsorption of acetaminophen.

    PubMed

    Yamamoto, Kenta; Onishi, Hiraku; Ito, Akihiko; Machida, Yoshiharu

    2007-01-10

    Medicinal carbon (MC) granules were prepared by wet granulation using maltitol (MT), and the MC tablet was produced by compression of the granules. The physical properties and the in vitro adsorption capacity for AA of the formulations were examined. Further, the effects of MC alone and the granules on gastrointestinal absorption of AA were examined in rats when they were administered intragastrically at 15 or 45 min after the intragastrical administration of AA. AA was rapidly adsorbed by MC, and the maximum adsorption capacity of MC was 0.329g AA per gram MC. The granules and tablet exhibited adequate strength, and the tablet disintegrated rapidly. The granules and tablet showed similar adsorption profiles, but somewhat lower adsorption capacity than MC alone. MC alone and granules administered at 15 min reduced the AUC(0-infinity) significantly against the control (no treatment); however, the suppression effect on the plasma concentration was lower with the granules than with MC alone. Thus, granules and tablet are useful as a compact dosage form of MC; though the reduced adsorption capacity must be taken into account in order to expect efficacy equivalent to that of MC alone.

  5. Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins

    PubMed Central

    Thomson, Travis; Liu, Niankun; Arkov, Alexey; Lehmann, Ruth; Lasko, Paul

    2008-01-01

    Germ plasm, a specialized cytoplasm present at the posterior of the early Drosophila embryo, is necessary and sufficient for germ cell formation. Germ plasm is rich in mitochondria and contains electron dense structures called polar granules. To identify novel polar granule components we isolated proteins that associate in early embryos with Vasa (VAS) and Tudor (TUD), two known polar granule associated molecules. We identified Maternal expression at 31B (ME31B), eIF4A, Aubergine (AUB) and Transitional Endoplasmic Reticulum 94 (TER94) as components of both VAS and TUD complexes and confirmed their localization to polar granules by immuno-electron microscopy. ME31B, eIF4A and AUB are also present in processing (P) bodies, suggesting that polar granules, which are necessary for germ line formation, might be related to P bodies. Our recovery of ER associated proteins TER94 and ME31B confirms that polar granules are closely linked to the translational machinery and to mRNP assembly. PMID:18590813

  6. Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus.

    PubMed

    Lu, Yuwen; Yan, Fei; Guo, Wei; Zheng, Hongying; Lin, Lin; Peng, Jiejun; Adams, Michael J; Chen, Jianping

    2011-09-01

    The subcellular localization of the 11-kDa protein (p11) encoded by ORF3 of Garlic virus X (GarVX; genus Allexivirus, family Alphaflexiviridae) was examined by confocal microscopy. Granules with intense fluorescence were visible on the endoplasmic reticulum when p11 fused with green or red fluorescent protein (GFP or RFP) was expressed in epidermal cells of Nicotiana benthamiana. Moreover, the p11-RFP granules moved in the cytoplasm, along the cell periphery and through the cell membranes to adjacent cells. A 17-kDa protein (p17) of garlic interacting with p11 was identified by yeast two-hybridization and bimolecular fluorescence complementation assay. When p17 fused to GFP was expressed in epidermal cells of N. benthamiana, it localized to the nucleolus. However, in the presence of GarVX p11, the distribution of p17 changed to that of p11, but did not appear to affect the pattern of movement of p11. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD. NO CLAIM TO ORIGINAL US GOVERNMENT WORKS.

  7. Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi.

    PubMed

    Huang, Hsiang-Ting; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2013-01-01

    Stress granules are a type of cytoplasmic messenger ribonucleoprotein (mRNP) granule formed in response to the inhibition of translation initiation, which typically occurs when cells are exposed to stress. Stress granules are conserved in eukaryotes; however, in filamentous fungi, including Aspergillus oryzae, stress granules have not yet been defined. For this reason, here we investigated the formation and localization of stress granules in A. oryzae cells exposed to various stresses using an EGFP fusion protein of AoPab1, a homolog of Saccharomyces cerevisiae Pab1p, as a stress granule marker. Localization analysis showed that AoPab1 was evenly distributed throughout the cytoplasm under normal growth conditions, and accumulated as cytoplasmic foci mainly at the hyphal tip in response to stress. AoSO, a homolog of Neurospora crassa SO, which is necessary for hyphal fusion, colocalized with stress granules in cells exposed to heat stress. The formation of cytoplasmic foci of AoSO was blocked by treatment with cycloheximide, a known inhibitor of stress granule formation. Deletion of the Aoso gene had effects on the formation and localization of stress granules in response to heat stress. Our results suggest that AoSO is a novel component of stress granules specific to filamentous fungi. The authors would specially like to thank Hiroyuki Nakano and Kei Saeki for generously providing experimental and insightful opinions.

  8. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells

    PubMed Central

    Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W

    2013-01-01

    Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508

  9. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: pasting behavior and surface morphology.

    PubMed

    Huang, Junrong; Chen, Zhenghong; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, Henk A

    2014-02-15

    To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. RESPONSE OF GRANULATION TO SMALL-SCALE BRIGHT FEATURES IN THE QUIET SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andic, A.; Chae, J.; Goode, P. R.

    2011-04-10

    We detected 2.8 bright points (BPs) per Mm{sup 2} in the quiet Sun with the New Solar Telescope at Big Bear Solar Observatory, using the TiO 705.68 nm spectral line at an angular resolution {approx}0.''1 to obtain a 30 minute data sequence. Some BPs formed knots that were stable in time and influenced the properties of the granulation pattern around them. The observed granulation pattern within {approx}3'' of knots presents smaller granules than those observed in a normal granulation pattern, i.e., around the knots a suppressed convection is detected. Observed BPs covered {approx}5% of the solar surface and were notmore » homogeneously distributed. BPs had an average size of 0.''22, they were detectable for 4.28 minutes on average, and had an averaged contrast of 0.1% in the deep red TiO spectral line.« less

  11. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme.

  12. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater.

    PubMed

    Díaz, Emiliano E; Stams, Alfons J M; Amils, Ricardo; Sanz, José L

    2006-07-01

    Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors.

  13. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrino, Sandrine; Jorand, Yves, E-mail: yves.jorand@insa-lyon.fr; Maire, Eric

    2013-07-15

    Compaction process, the aim of which being to obtain green bodies with low porosity and small size, is often used before sintering treatment. Prior to die filling, the ceramic powder is generally granulated to improve flowability. However during compaction, density heterogeneity and critical size defects may appear due to intergranule and granule-die wall frictions. In this work, the influence of granule formulation on the compact morphology has been studied. To do so, a compaction setup was installed inside an X-ray tomography equipment so that the evolution of the compact morphology could be analysed during the whole compaction process. We havemore » demonstrated that high humidity rate and the addition of binder in the granule formulation increase density heterogeneity and generate larger defects. - Highlights: • An original compaction set up was installed inside an X-Ray tomography equipment. • The compaction process of granulated ceramic powder is imaged. • The compact green microstructure is quantified and related to the compaction stages. • The most detrimental defects of dry-pressed parts are caused by hollow granules. • Formulations without binder allow a reduction of the number of large defects.« less

  14. An innovative method for the preparation of high API-loaded hollow spherical granules for use in controlled-release formulation.

    PubMed

    Asada, Takumi; Kobiki, Mitsuaki; Ochiai, Yasushi; Iwao, Yasunori; Itai, Shigeru

    2017-05-15

    The aim of this study was to prepare controlled-release (CR) granules with suitable particle strength, flowability, particle size distribution (PSD) and density characteristics for blending with other excipients. We also wanted these CR granules to contain large quantities of active pharmaceutical ingredient (API). A high shear mixer was used to mix an API with various polymers at various feed ratios, and the resulting granulated materials were sprayed with solvent. The wet granules were dried using a fluidized bed dryer to give CR granules. The API content of the granules was determined to be 95wt%. The granules were found to be spherical in shape with smooth surfaces by scanning electron microscopy. The inner structure of each granule was determined to be hollow by X-ray computed tomography, highlighting the unusual mechanism of this granulation process. The PSD of the granules was found to be dependent on that of the constituent polymer, and a narrow PSD was obtained by adjusting the PSD of the polymer. The dissolution profile of the granules was also dependent on the constituent polymer. Taken together, these results show that we have successfully developed a new manufacturing technology for the simple and low-cost preparation of ideal CR granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dissolved oxygen as a key parameter to aerobic granule formation.

    PubMed

    Sturm, B S McSwain; Irvine, R L

    2008-01-01

    Much research has asserted that high shear forces are necessary for the formation of aerobic granular sludge in Sequencing Batch Reactors (SBRs). In order to distinguish the role of shear and dissolved oxygen on granule formation, two separate experiments were conducted with three bench-scale SBRs. In the first experiment, an SBR was operated with five sequentially decreasing superficial upflow gas velocities ranging from 1.2 to 0.4 cm s(-1). When less than 1 cm s(-1) shear was applied to the reactor, aerobic granules disintegrated into flocs, with corresponding increases in SVI and effluent suspended solids. However, the dissolved oxygen also decreased from 8 mg L(-1) to 5 mg L(-1), affecting the Feast/Famine regime in the SBR and the substrate removal kinetics. A second experiment operated two SBRs with an identical shear force of 1.2 cm s(-1), but two dissolved oxygen concentrations. Even when supplied a high shear force, aerobic granules could not form at a dissolved oxygen less than 5 mg L(-1), with a Static Fill. These results indicate that the substrate removal kinetics and dissolved oxygen are more significant to granule formation than shear force. Copyright IWA Publishing 2008.

  16. Investigation of polymorphic transitions of piracetam induced during wet granulation.

    PubMed

    Potter, Catherine B; Kollamaram, Gayathri; Zeglinski, Jacek; Whitaker, Darren A; Croker, Denise M; Walker, Gavin M

    2017-10-01

    Piracetam was investigated as a model API which is known to exhibit a number of different polymorphic forms. It is freely soluble in water so the possibility exists for polymorphic transformations to occur during wet granulation. Analysis of the polymorphic form present during lab-scale wet granulation, using water as a granulation liquid, was studied with powder X-ray diffraction and Raman spectroscopy as off-line and inline analysis tools respectively. Different excipients with a range of hydrophilicities, aqueous solubilities and molecular weights were investigated to examine their influence on these solution-mediated polymorphic transitions and experimental results were rationalised using molecular modelling. Our results indicated that as an increasing amount of water was added to the as-received piracetam FIII, a greater amount of the API dissolved which recrystallised upon drying to the metastable FII(6.403) via a monohydrate intermediary. Molecular level analysis revealed that the observed preferential transformation of monohydrate to FII is linked with a greater structural similarity between the monohydrate and FII polymorph in comparison to FIII. The application of Raman spectroscopy as a process analytical technology (PAT) tool to monitor the granulation process for the production of the monohydrate intermediate as a precursor to the undesirable metastable form was demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP.

    PubMed

    Liu, Jun; Li, Jun; Wang, Xiaodong; Zhang, Qi; Littleton, Helen

    2017-01-01

    Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor (SBR) using piggery wastewater. Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2mm and SVI 30 of 20.3mL/g formed in SBR on day 18. High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation, even though the seed sludge was from a municipal wastewater treatment plant (WWTP). Alpha diversity analysis revealed Operational Taxonomic Units, Shannon, ACE and Chao 1 indexes in aerobic granules were 2013, 5.51, 4665.5 and 3734.5, which were obviously lower compared to seed sludge. The percentages of major microbial communities, such as Proteobacteria, Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge. Chloroflexi, Planctomycetes, Actinobacteria, TM7 and Acidobacteria showed much higher abundances in the inoculum. The main reasons might be the characteristics of raw piggery wastewater and granule structure. Copyright © 2016. Published by Elsevier B.V.

  18. Novel FT-IR Microspectroscopic Census of Simple Starch Granules for Octenyl Succinate Ester Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Y.; Shi, Y; Wetzel, D

    Fourier transform infrared (FT-IR) microspectroscopy was used to investigate reaction homogeneity of octenyl succinic anhydride modification on waxy maize starch and detect uniformity of blends of modified and native starches. For the first time, the level and uniformity of chemical substitution on individual starch granules were analyzed by FT-IR microspectroscopy. More than 100 starch granules of each sample were analyzed one by one by FT-IR microspectroscopy. In comparison to the native starch, modified starch had two additional bands at 1723 and 1563 cm{sup -1}, indicative of ester formation in the modified starch. For the 3% modification level, the degree ofmore » substitution (DS) was low (0.019) and the distribution of the ester group was not uniform among starch granules. For the modified starch with DS of 0.073, 99% of individual starch granules had a large carbonyl band area, indicating that most granules were modified to a sufficient extent that the presence of their carbonyl ester classified them individually as being modified. However, the octenyl succinate concentration varied between granules, suggesting that the reaction was not uniform. When modified starch (DS = 0.073) was blended with native starch (3:7, w/w) to achieve a mixture with an average DS of 0.019, FT-IR microspectroscopy was able to detect heterogeneity of octenyl succinate in the blend and determine the ratio of the modified starch to the native starch granules.« less

  19. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules

    PubMed Central

    Shamri, Revital; Melo, Rossana C. N.; Young, Kristen M.; Bivas-Benita, Maytal; Xenakis, Jason J.; Spencer, Lisa A.; Weller, Peter F.

    2012-01-01

    Rapid secretion of eosinophil-associated RNases (EARs), such as the human eosinophilic cationic protein (ECP), from intracellular granules is central to the role of eosinophils in allergic diseases and host immunity. Our knowledge regarding allergic inflammation has advanced based on mouse experimental models. However, unlike human eosinophils, capacities of mouse eosinophils to secrete granule proteins have been controversial. To study mechanisms of mouse eosinophil secretion and EAR release, we combined an RNase assay of mouse EARs with ultrastructural studies. In vitro, mouse eosinophils stimulated with the chemokine eotaxin-1 (CCL11) secreted enzymatically active EARs (EC50 5 nM) by piecemeal degranulation. In vivo, in a mouse model of allergic airway inflammation, increased airway eosinophil infiltration (24-fold) correlated with secretion of active RNases (3-fold). Moreover, we found that eosinophilic inflammation in mice can involve eosinophil cytolysis and release of cell-free granules. Cell-free mouse eosinophil granules expressed functional CCR3 receptors and secreted their granule proteins, including EAR and eosinophil peroxidase in response to CCL11. Collectively, these data demonstrate chemokine-dependent secretion of EARs from both intact mouse eosinophils and their cell-free granules, findings pertinent to understanding the pathogenesis of eosinophil-associated diseases, in which EARs are key factors.—Shamri, R., Melo, R. C. N., Young, K. M., B.-B, M., Xenakis, J. J., Spencer, L. A., Weller, P. F. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. PMID:22294786

  20. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    PubMed Central

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-01-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR. PMID:28367960

  1. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation.

    PubMed

    Slaninova, Eva; Sedlacek, Petr; Mravec, Filip; Mullerova, Lucie; Samek, Ota; Koller, Martin; Hesko, Ondrej; Kucera, Dan; Marova, Ivana; Obruca, Stanislav

    2018-02-01

    Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.

  2. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... musculoskeletal system of the horse. (2)(i) For oral maintenance therapy following initial intravenous dosage...

  3. Characterization and taste-masking evaluation of acetaminophen granules: comparison between different preparation methods in a high-shear mixer.

    PubMed

    Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; Voinovich, Dario; González-Rodríguez, Marisa L; Magarotto, Lorenzo; Rodriguez, Lorenzo

    2004-02-01

    The aim of this study was to prepare and to investigate acetaminophen taste-masked granules obtained in a high-shear mixer using three different wet granulation methods (method A: water granulation, method B: granulation with a polyvinylpyrrolidone (PVP) binding solution and method C: steam granulation). The studied formulation was: acetaminophen 15%, alpha-lactose monohydrate 30%, cornstarch 45%, polyvinylpyrrolidone K30 5% and orange flavour 5% (w/w). In vitro dissolution studies, performed at pH 6.8, showed that steam granules enabled the lower dissolution rate in comparison to the water and binding solution granules; these results were then confirmed by their lower surface reactivity (D(R)) during the dissolution process. Moreover, the results of the gustatory sensation test performed by six volunteers confirmed the taste-masking effects of the granules, especially steam granules (P<0.001). Morphological, fractal and porosity analysis were then performed to explain the dissolution profiles and the results of the gustatory sensation test. Scanning electron microscopy (SEM) analysis revealed the smoother and the more regular surface of steam granules with respect to the samples obtained using methods A and B; these results were also confirmed by their lower fractal dimension (D(s)) and porosity values. Finally, differential scanning calorimetry (DSC) results showed a shift of the melting point of the drug, which was due to the simple mixing of the components and not to the granulation processes. In conclusion, the steam granulation technique resulted a suitable method to comply the purpose of this work, without modifying the availability of the drug.

  4. Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors

    PubMed Central

    Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.

    2017-01-01

    Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814

  5. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong

    2008-06-15

    Extracellular polymeric substances (EPS) were extracted from aerobic granules of compact interior structure using seven extraction methods. Ultrasound followed by the chemical reagents formamide and NaOH outperformed other methods in extracting EPS from aerobic granules of compact interior. The collected EPS revealed no contamination by intracellular substances and consisted mainly of proteins, polysaccharides, humic substances and lipids. The quantity of extracted proteins exhibited a weak correlation with quantity of extracted carbohydrates but no correlation with quantity of extracted humic substances. The total polysaccharides/total proteins (PN/PS) ratios for sludge flocs were approximately 0.9 regardless of extraction method. Protein content was significantly enriched in the granules, producing a PN/PS ratio of 3.4-6.2. This experimental result correlated with observations using excitation-emission matrix (EEM) and confocal laser scanning microscope technique. However, detailed study disproved the use of EEM results as a quantitative index of extracted EPS from sludge flocs or from granules.

  6. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.

    PubMed

    Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B

    2017-09-05

    The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Solar granulation and statistical crystallography: A modeling approach using size-shape relations

    NASA Technical Reports Server (NTRS)

    Noever, D. A.

    1994-01-01

    The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.

  8. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG).

    PubMed

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone-vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance.

  9. [Clinical study on treatment of 405 cases of irregular menstruation by tiaojing zhixue granules].

    PubMed

    Ma, Kun; Sun, Li-hua; Wang, Qing-hua

    2003-01-01

    To provide scientific and objective basis for Tiaojing zhixue granules treating irregular menstruation of clinical effect. Choose 405 cases suffering from irregular menstruation and make a systematic study 304 patients were treated with Tiaojing Zhixue granules, 101 patients received Fuxuening treatment. After treatment, the obvious effective rate of Tiaojing Zhixue granules was 78.3% and the total effective rate 97.4%, granule cure rate of Fuxuening was 38.6% and the total effective rate 87.1%. Comparison showed significant difference (P < 0.001). Safety spithetical observation did not discover harmful effects and toxicity and side effects antagonize common symptoms 26 entries of clinical studying, the 7 entry are: weary and tired, short breaths, sore loins, weak knees, insomnia and eccessive dreaming, rapid and thready pulse, colliquative, distending pain in the lower abdomen and hypochondria. Among them, the comparison showed significant difference about treatments(P < 0.01-0.001). Tiaojing Zhixue granules treatment irregular menstruation are scientific and effective.

  10. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process.

    PubMed

    Wei, Benxi; Cai, Canxin; Xu, Baoguo; Jin, Zhengyu; Tian, Yaoqi

    2018-02-01

    The mechanism underlying the fragmentation of waxy maize starch (WMS) granules during high-pressure homogenization (HPH) was studied and the results were interpreted in terms of granular and molecular aspects. The diameter of disrupted starch granules decreased exponentially with increasing HPH pressure, but decreased linearly with increasing of HPH cycles. Scanning electron microscopy revealed a cone-like inside-out disruption pattern through the channels that resulted in separation of blocklets fragments or starch fragments. The M w of amylopectin was reduced by ∼half following treatment at 150MPa with two cycles, or at 100MPa for eight cycles, and the decrease was in accordance with the disruption of starch granules. This indicated that amylopectin was "protected" by blocklets, and the disruption of WMS granules mainly occurred close to the linkage among blocklets. Increasing the HPH pressure appeared to be more effective for breaking starch granules than increasing the number of HPH cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Reduction of the immunostainable length of the hippocampal dentate granule cells' primary cilia in 3xAD-transgenic mice producing human A{beta}{sub 1-42} and tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less

  12. Preliminary report of the discovery of a new pharmaceutical granulation process using foamed aqueous binders.

    PubMed

    Keary, Colin M; Sheskey, Paul J

    2004-09-01

    Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.

  13. Intracisternal granules in the adipokinetic cells of locusts are not degraded and apparently function as supplementary stores of secretory material.

    PubMed

    Harthoorn, L F; Diederen, J H; Oudejans, R C; Verstegen, M M; Vullings, H G; Van der Horst, D J

    2000-01-01

    The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.

  14. Freeze drying of orally disintegrating tablets containing taste masked naproxen sodium granules in blisters.

    PubMed

    Stange, Ulrike; Führling, Christian; Gieseler, Henning

    2014-09-15

    Abstract Orally disintegrating tablets (ODTs) were freeze dried in blisters using the Lyostar® II SMART™ Freeze Dryer Technology. ODT formulations either without non-water soluble particles (placebo) or containing large fractions (717 mg) of taste-masked naproxen sodium (NaS) granules were freeze dried. The process data revealed differences between ODTs with and without embedded granules in the pressure rise curves as well as in the shelf (inlet) temperature adjustments during freeze-drying. Pressure rise curves of the placebo ODTs from eight hours process time showed no distinct temperature-dominated part, and the last optimization step of the shelf temperature to achieve -24.4 °C might be prone to errors. The final shelf temperature of ODTs containing granules was -23.3 °C. The detection of primary drying endpoints using SMART™ Technology or comparative pressure measurements was reliable for both ODT formulations, whereas the application of thermocouples resulted in premature endpoint indication. Product resistance of ODTs containing granules was generally elevated in comparison to ODTs without granules, but increased only slightly over the course of the drying process. In summary, the developed freeze-drying cycle was found applicable for production of elegant ODTs with incorporated taste masked NaS granules.

  15. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells

    PubMed Central

    Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-01-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720

  16. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.

    PubMed

    Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-03-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).

  17. Microbial granulation for lactic acid production.

    PubMed

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon; Im, Wan-Taek; Yun, Yeo-Myeong; Park, Chul; Kim, Mi-Sun

    2016-01-01

    This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L(-1) d(-1) . As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L(-1) with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter (-1) h(-1) at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cm s(-1) and 0.39-0.92, respectively. © 2015 Wiley Periodicals, Inc.

  18. [Multi-mathematical modelings for compatibility optimization of Jiangzhi granules].

    PubMed

    Yang, Ming; Zhang, Li; Ge, Yingli; Lu, Yanliu; Ji, Guang

    2011-12-01

    To investigate into the method of "multi activity index evaluation and combination optimized of mult-component" for Chinese herbal formulas. According to the scheme of uniform experimental design, efficacy experiment, multi index evaluation, least absolute shrinkage, selection operator (LASSO) modeling, evolutionary optimization algorithm, validation experiment, we optimized the combination of Jiangzhi granules based on the activity indexes of blood serum ALT, ALT, AST, TG, TC, HDL, LDL and TG level of liver tissues, ratio of liver tissue to body. Analytic hierarchy process (AHP) combining with criteria importance through intercriteria correlation (CRITIC) for multi activity index evaluation was more reasonable and objective, it reflected the information of activity index's order and objective sample data. LASSO algorithm modeling could accurately reflect the relationship between different combination of Jiangzhi granule and the activity comprehensive indexes. The optimized combination of Jiangzhi granule showed better values of the activity comprehensive indexed than the original formula after the validation experiment. AHP combining with CRITIC can be used for multi activity index evaluation and LASSO algorithm, it is suitable for combination optimized of Chinese herbal formulas.

  19. Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion

    PubMed Central

    Crumpton-Taylor, Matilda; Pike, Marilyn; Lu, Kuan-Jen; Hylton, Christopher M; Feil, Regina; Eicke, Simona; Lunn, John E; Zeeman, Samuel C; Smith, Alison M

    2013-01-01

    Arabidopsis thaliana mutants lacking the SS4 isoform of starch synthase have strongly reduced numbers of starch granules per chloroplast, suggesting that SS4 is necessary for the normal generation of starch granules. To establish whether it plays a direct role in this process, we investigated the circumstances in which granules are formed in ss4 mutants. Starch granule numbers and distribution and the accumulation of starch synthase substrates and products were investigated during ss4 leaf development, and in ss4 mutants carrying mutations or transgenes that affect starch turnover or chloroplast volume. We found that immature ss4 leaves have no starch granules, but accumulate high concentrations of the starch synthase substrate ADPglucose. Granule numbers are partially restored by elevating the capacity for glucan synthesis (via expression of bacterial glycogen synthase) or by increasing the volumes of individual chloroplasts (via introduction of arc mutations). However, these granules are abnormal in distribution, size and shape. SS4 is an essential component of a mechanism that coordinates granule formation with chloroplast division during leaf expansion and determines the abundance and the flattened, discoid shape of leaf starch granules. PMID:23952675

  20. Degradation of Glucan Primers in the Absence of Starch Synthase 4 Disrupts Starch Granule Initiation in Arabidopsis*

    PubMed Central

    Lu, Kuan-Jen; Stettler, Michaela; Streb, Sebastian

    2016-01-01

    Arabidopsis leaf chloroplasts typically contain five to seven semicrystalline starch granules. It is not understood how the synthesis of each granule is initiated or how starch granule number is determined within each chloroplast. An Arabidopsis mutant lacking the glucosyl-transferase, STARCH SYNTHASE 4 (SS4) is impaired in its ability to initiate starch granules; its chloroplasts rarely contain more than one large granule, and the plants have a pale appearance and reduced growth. Here we report that the chloroplastic α-amylase AMY3, a starch-degrading enzyme, interferes with granule initiation in the ss4 mutant background. The amy3 single mutant is similar in phenotype to the wild type under normal growth conditions, with comparable numbers of starch granules per chloroplast. Interestingly, the ss4 mutant displays a pleiotropic reduction in the activity of AMY3. Remarkably, complete abolition of AMY3 (in the amy3 ss4 double mutant) increases the number of starch granules produced in each chloroplast, suppresses the pale phenotype of ss4, and nearly restores normal growth. The amy3 mutation also restores starch synthesis in the ss3 ss4 double mutant, which lacks STARCH SYNTHASE 3 (SS3) in addition to SS4. The ss3 ss4 line is unable to initiate any starch granules and is thus starchless. We suggest that SS4 plays a key role in granule initiation, allowing it to proceed in a way that avoids premature degradation of primers by starch hydrolases, such as AMY3. PMID:27458017

  1. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane.

    PubMed

    Brown, R M; Montezinos, D

    1976-01-01

    Cellulose microfibril biosynthesis, assembly, and orientation in the unicellular green alga, Oocystis, is visualized in association with a linear enzyme complex embedded in the B face of the plasma membrane. Granule bands of the A face and complementary ridges of the B face are postulated to assist in the orientation of recently synthesized microfibrils. A model for microfibril synthesis and orientation is proposed and correlated with current hypotheses regarding cellulose biosynthesis in higher plants.

  2. Determination of hydrophobicity of dry-heated wheat starch granules using sucrose fatty acid esters (SFAE).

    PubMed

    Tabara, Aya; Oneda, Hiroshi; Murayama, Ryuji; Matsui, Yuko; Hirano, Akira; Seguchi, Masaharu

    2014-01-01

    Sucrose fatty acid esters (SFAE) were adsorbed onto dry-heated (120 °C for 10, 20, 40, 60, and 120 min) wheat starch granules and extracted with ethyl ether in a Soxhlet apparatus without gelatinization of the starch granules. The amount of sucrose in the extracted SFAE was determined by the phenol sulfate method. A gradual increase of the sucrose from 159 to 712 μg, in SFAE per gram of starch, occurred with increasing dry-heating time and demonstrated the increased hydrophobicity of the starch granules. Increase of the SFAE was highly correlated (r = 0.9816) to increase of the oil-binding capacity of the dry-heated wheat starch granules. Non-waxy rice, waxy rice, sweet potato, and potato starch granules also showed higher hydrophobicity after dry-heating by this method.

  3. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG)

    PubMed Central

    Takasaki, Hiroshi; Yonemochi, Etsuo; Ito, Masanori; Wada, Koichi; Terada, Katsuhide

    2015-01-01

    The aim of this study was to evaluate binders to improve the flowability of granulates and compactibility of Metformin HCL (Met) using the moist aqueous granulation (MAG) process. The effect of the binder moisture content on granulate and tablet quality was also evaluated. Vinylpyrrolidone–vinyl acetate copolymer (Kollidon VA64 fine: VA64), polyvidone (Povidone K12: PVP), hydroxypropyl cellulose (HPC SSL SF: HPC) and hydroxypropyl methylcellulose (Methocel E5 LV: HPMC) were evaluated as binders. These granulates, except for HPMC, had a lower yield pressure than Met active pharmaceutical ingredient (API). HPMC Met was not sufficiently granulated with low water volume. No problems were observed with the VA64 Met granulates during the tableting process. However, HPC Met granulates had a bowl-forming tendency, and PVP Met granulates had the tendency to stick during the tableting process. These bowl-forming and sticking tendencies may have been due to the low moisture absorbency of HPC and the high volume of bound water of PVP, respectively. VA64 Met granulates had the highest ambient moisture content (bulk water, bound water) and moisture absorbency. It was concluded that the type of binder used for the Met MAG process has an impact on granulate flow and compactibility, as well as moisture absorbency and maintenance of moisture balance. PMID:26779418

  4. Somato-synaptic variation of GABA(A) receptors in cultured murine cerebellar granule cells: investigation of the role of the alpha6 subunit.

    PubMed

    Mellor, J R; Wisden, W; Randall, A D

    2000-07-10

    Electrophysiological investigation of cultured cerebellar murine granule cells revealed differences between the GABA(A) receptors at inhibitory synapses and those on the cell body. Specifically, mIPSCs decayed more rapidly than cell body receptors deactivated, the mean single channel conductance at the synapse (32 pS) was greater than that at cell body (21 pS) and only cell body receptors were sensitive to Zn(2+) (150 microM), which depressed response amplitude by 82+/-5% and almost doubled the rate of channel deactivation. The GABA(A) receptor alpha6 subunit is selectively expressed in cerebellar granule cells. Although concentrated at synapses, it is also found on extrasynaptic membranes. Using a mouse line (Deltaalpha6lacZ) lacking this subunit, we investigated its role in the somato-synaptic differences in GABA(A) receptor function. All differences between cell body and synaptic GABA(A) receptors observed in wild-type (WT) granule cells persisted in Deltaalpha6lacZ cells, thus demonstrating that they are not specifically due to the cellular distribution of the alpha6 subunit. However, mIPSCs from WT and Deltaalpha6lacZ cells differed in both their kinetics (faster decay in WT cells) and underlying single channel conductance (32 pS WT, 25 pS Deltaalpha6lacZ). This provides good evidence for a functional contribution of the alpha6 subunit to postsynaptic GABA(A) receptors in these cells. Despite this, deactivation kinetics of mIPSCs in WT and Deltaalpha6lacZ granule cells exhibited similar benzodiazepene (BDZ) sensitivity. This suggests that the enhanced BDZ-induced ataxia seen in Deltaalpha6lacZ mice may reflect physiological activity at extrasynaptic receptors which, unlike those at synapses, display differential BDZ-sensitivity in WT and Deltaalpha6lacZ granule cells (Jones, A.M., Korpi, E.R., McKernan, R.M., Nusser, Z., Pelz, R., Makela, R., Mellor, J.R., Pollard, S., Bahn, S., Stephenson, F.A., Randall, A.D., Sieghart, W., Somogyi, P., Smith, A.J.H., Wisden

  5. Formation and dissociation of proteasome storage granules are regulated by cytosolic pH.

    PubMed

    Peters, Lee Zeev; Hazan, Rotem; Breker, Michal; Schuldiner, Maya; Ben-Aroya, Shay

    2013-05-27

    The 26S proteasome is the major protein degradation machinery of the cell and is regulated at many levels. One mode of regulation involves accumulation of proteasomes in proteasome storage granules (PSGs) upon glucose depletion. Using a systematic robotic screening approach in yeast, we identify trans-acting proteins that regulate the accumulation of proteasomes in PSGs. Our dataset was enriched for subunits of the vacuolar adenosine triphosphatase (V-ATPase) complex, a proton pump required for vacuole acidification. We show that the impaired ability of V-ATPase mutants to properly govern intracellular pH affects the kinetics of PSG formation. We further show that formation of other protein aggregates upon carbon depletion also is triggered in mutants with impaired activity of the plasma membrane proton pump and the V-ATPase complex. We thus identify cytosolic pH as a specific cellular signal involved both in the glucose sensing that mediates PSG formation and in a more general mechanism for signaling carbon source exhaustion.

  6. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.

    PubMed

    Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won

    2014-08-01

    Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.

  7. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells.

    PubMed

    Peng, L A; Schousboe, A; Hertz, L

    1991-01-01

    Alpha-ketoglutarate together with an amino group donor (alanine) was shown to be able to serve as a precursor for the glutamate pool which is released by potassium-induced depolarization (i.e., transmitter glutamate) in cerebellar granule cells. However, these compounds could not be utilized as precursors for intracellular glutamate or for release of transmitter aspartate. The formation of transmitter glutamate was inhibited by the transamination inhibitor aminooxyacetic acid but not by phenylsuccinate, an inhibitor of the dicarboxylate carrier in the mitochondrial membrane. Both of these inhibitors have previously been found to inhibit synthesis of transmitter glutamate from glutamine. The results support the hypothesis that alpha-ketoglutarate and alanine undergo transmination in the cytosol to form pyruvate and glutamate, and that this glutamate pool is available for transmitter release of glutamate but does not constitute the major intracellular pool of glutamate.

  8. Crystallization and initial X-ray analysis of polyhydroxyalkanoate granule-associated protein from Aeromonas hydrophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Minglian; Li, Zhenguo; Zheng, Wei

    The phasin PhaP{sub Ah} from A. hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were discovered in PHA-accumulating bacteria. They play a crucial role as a structural protein during initial PHA-granule formation and granule growth and also serve as interfaces for granule stabilization in vivo. The phasin PhaP{sub Ah} from Aeromonas hydrophila strain 4AK4 was crystallized using the hanging-drop vapour-diffusion method. Single crystals were cryocooled for X-ray diffraction analysis. The phasin crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 80.8, b = 108.9, c = 134.4 Å.

  9. Microstructure of anammox granules and mechanisms endowing their intensity revealed by microscopic inspection and rheometry.

    PubMed

    Lin, Ximao; Wang, Yayi

    2017-09-01

    The anammox process represents a sustainable and cost-effective technique for nitrogen removal from wastewater, where granulation of anammox bacteria could be of great benefit to the system performance. However, knowledge of the specific properties of anammox granules is currently unsatisfactory. In this study, the organization of anammox granules was comprehensively studied from macro to micro scale with a range of microscale techniques. Scanning and transmission electron microscopy and multiple fluorescence labeling combined with confocal laser scanning microscopy were included. Simultaneously, the associated mechanical properties were studied in-depth by rheometry in combination with selective enzymatic hydrolysis. Anammox granules follow a tertiary organization regime, where interactions between individual anammox bacteria made up the primary base, then, the grouping of anammox bacterial cells encapsulated within a thin extracellular polymeric substance (EPS) layer comprised a second arrangement level, and, finally, the cementing of these groups together with other bacteria and polymers gave rise to compact aggregates. α-Polysaccharides and proteins were considered the backbones of anammox granules, contributing greatly to their excellent intensity. β-Polysaccharides concentrated at the outer rims of anammox granules and combined with other macromolecules to form a buffer zone or protective barrier, beneath which anammox bacteria proliferated. Divalent cationic bridging for EPS binding was prevalent and of great significance within the dense anammox granules, while there was also much weak monovalent ionic interaction. The specific organization and composition of anammox granules endows them with excellent intensity and integrity, which can be of importance for full-scale reactor operations where diverse shocks can be expected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Suppression of starch synthase I expression affects the granule morphology and granule size and fine structure of starch in wheat endosperm

    PubMed Central

    2014-01-01

    Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8–12), and more intermediate chains (dp 13–20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis. PMID:24634486

  11. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats.

    PubMed

    Shariff, Khairul Anuar; Tsuru, Kanji; Ishikawa, Kunio

    2017-06-01

    β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.

  13. Enterovirus 71 induces anti-viral stress granule-like structures in RD cells.

    PubMed

    Zhu, Yuanmei; Wang, Bei; Huang, He; Zhao, Zhendong

    2016-08-05

    Stress granules (SGs) are dynamic cytoplasmic granules formed in response to a variety of stresses, including viral infection. Several viruses can modulate the formation of SG with different effects, but the relationship between SG formation and EV71 infection is poorly understood. In this study, we report that EV71 inhibits canonical SGs formation in infected cells and induces the formation of novel RNA granules that were distinguished from canonical SGs in composition and morphology, which we termed 'SG like structures'. Our results also demonstrated that EV71 triggered formation of SG-like structures is dependent on PKR and eIF2α phosphorylation and requires ongoing cellular mRNA synthesis. Finally, we found that SG-like structures are antiviral RNA granules that promote cellular apoptosis and suppress EV71 propagation. Taken together, our findings explain the formation mechanism of SG-like structures induced by EV71 and shed light on virus-host interaction and molecular mechanism underlying EV71 pathogenesis. Copyright © 2016. Published by Elsevier Inc.

  14. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. NMDA-receptor dependent synaptic activation of TRPC channels in olfactory bulb granule cells

    PubMed Central

    Stroh, Olga; Freichel, Marc; Kretz, Oliver; Birnbaumer, Lutz; Hartmann, Jana; Egger, Veronica

    2012-01-01

    TRPC channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell - granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine. PMID:22539836

  16. Latent structure analysis in the pharmaceutical process of tablets prepared by wet granulation.

    PubMed

    Uehara, Naoto; Hayashi, Yoshihiro; Mochida, Hiroshi; Otoguro, Saori; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo

    2016-01-01

    Granule characteristics are some of the important intermediate qualities that determine tablet properties. However, the relationships between granule and tablet characteristics are poorly understood. The aim of this study was to elucidate relationships among formulation factors, granule characteristics, and tablet properties using a non-linear response surface method (RSM) incorporating a thin-plate spline interpolation (RSM-S) and a Bayesian network (BN). Tablets containing lactose (Lac), cornstarch (CS), and microcrystalline cellulose (MCC) were prepared by wet granulation. Ten formulations were prepared by an extreme vertices design. The angle of repose (Y 1 ), compressibility (Y 2 ), cohesion force (Y 3 ), internal friction angle (Y 4 ), and mean particle size (Y 5 ) were measured as granule characteristics. Tensile strength (TS) and disintegration time (DT) were measured as tablet properties. RSM-S results showed that TS increased with increasing amounts of MCC and Lac. DT decreased with increasing amounts of MCC and CS. The optimal BN models were predicted using four evaluation indices -Y 3 was shown to be the most important factor for TS, whereas Y 2 , Y 3 , and Y 4 were relatively important for predicting DT. Moreover, tablets with excellent tablet properties (i.e. high TS and low DT) were produced by relatively high Y 1 , low Y 2 , high Y 3 , high Y 4 , and middle Y 5 values, and resulted from the middle of MCC, middle-to-low CS, low Lac, and middle-to-low magnesium stearate (Mg-St) amounts. The RSM-S and BN techniques are useful for revealing complex relationships among formulation factors, granule characteristics, and tablet properties.

  17. Application of quality by design concepts in the development of fluidized bed granulation and tableting processes.

    PubMed

    Djuris, Jelena; Medarevic, Djordje; Krstic, Marko; Djuric, Zorica; Ibric, Svetlana

    2013-06-01

    This study illustrates the application of experimental design and multivariate data analysis in defining design space for granulation and tableting processes. According to the quality by design concepts, critical quality attributes (CQAs) of granules and tablets, as well as critical parameters of granulation and tableting processes, were identified and evaluated. Acetaminophen was used as the model drug, and one of the study aims was to investigate the possibility of the development of immediate- or extended-release acetaminophen tablets. Granulation experiments were performed in the fluid bed processor using polyethylene oxide polymer as a binder in the direct granulation method. Tablets were compressed in the laboratory excenter tablet press. The first set of experiments was organized according to Plackett-Burman design, followed by the full factorial experimental design. Principal component analysis and partial least squares regression were applied as the multivariate analysis techniques. By using these different methods, CQAs and process parameters were identified and quantified. Furthermore, an in-line method was developed to monitor the temperature during the fluidized bed granulation process, to foresee possible defects in granules CQAs. Various control strategies that are based on the process understanding and assure desired quality attributes of the product are proposed. Copyright © 2013 Wiley Periodicals, Inc.

  18. [Quality evaluation of rhubarb dispensing granules based on multi-component simultaneous quantitative analysis and bioassay].

    PubMed

    Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He

    2017-07-01

    This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (P<0.01), and the intensity of blood activating biopotency was significantly correlated with the content of free anthraquinone (P<0.01). In summary, the combined use of multi-component simultaneous quantitative analysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.

  19. Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus.

    PubMed

    Kelly, Tony; Beck, Heinz

    2017-01-01

    The maturation of adult-born granule cells and their functional integration into the network is thought to play a key role in the proper functioning of the dentate gyrus. In temporal lobe epilepsy, adult-born granule cells in the dentate gyrus develop abnormally and possess a hilar basal dendrite (HBD). Although morphological studies have shown that these HBDs have synapses, little is known about the functional properties of these HBDs or the intrinsic and network properties of the granule cells that possess these aberrant dendrites. We performed patch-clamp recordings of granule cells within the granule cell layer "normotopic" from sham-control and status epilepticus (SE) animals. Normotopic granule cells from SE animals possessed an HBD (SE + HBD + cells) or not (SE + HBD - cells). Apical and basal dendrites were stimulated using multiphoton uncaging of glutamate. Two-photon Ca 2+ imaging was used to measure Ca 2+ transients associated with back-propagating action potentials (bAPs). Near-synchronous synaptic input integrated linearly in apical dendrites from sham-control animals and was not significantly different in apical dendrites of SE + HBD - cells. The majority of HBDs integrated input linearly, similar to apical dendrites. However, 2 of 11 HBDs were capable of supralinear integration mediated by a dendritic spike. Furthermore, the bAP-evoked Ca 2+ transients were relatively well maintained along HBDs, compared with apical dendrites. This further suggests an enhanced electrogenesis in HBDs. In addition, the output of granule cells from epileptic tissue was enhanced, with both SE + HBD - and SE + HBD + cells displaying increased high-frequency (>100 Hz) burst-firing. Finally, both SE + HBD - and SE + HBD + cells received recurrent excitatory input that was capable of generating APs, especially in the absence of feedback inhibition. Taken together, these data suggest that the enhanced excitability of HBDs combined with the altered intrinsic and network

  20. West nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response.

    PubMed

    Courtney, S C; Scherbik, S V; Stockman, B M; Brinton, M A

    2012-04-01

    West Nile virus (WNV) recently became endemic in the United States and is a significant cause of human morbidity and mortality. Natural WNV strain infections do not induce stress granules (SGs), while W956IC (a lineage 2/1 chimeric WNV infectious clone) virus infections produce high levels of early viral RNA and efficiently induce SGs through protein kinase R (PKR) activation. Additional WNV chimeric viruses made by replacing one or more W956IC genes with the lineage 1 Eg101 equivalent in the W956IC backbone were analyzed. The Eg-NS4b+5, Eg-NS1+3+4a, and Eg-NS1+4b+5 chimeras produced low levels of viral RNA at early times of infection and inefficiently induced SGs, suggesting the possibility that interactions between viral nonstructural proteins and/or between viral nonstructural proteins and cell proteins are involved in suppressing early viral RNA synthesis and membrane remodeling during natural WNV strain infections. Detection of exposed viral double-stranded RNA (dsRNA) in W956IC-infected cells suggested that the enhanced early viral RNA synthesis surpassed the available virus-induced membrane protection and allowed viral dsRNA to activate PKR.

  1. The effects of exercise and stress on the survival and maturation of adult-generated granule cells

    PubMed Central

    Snyder, Jason S.; Glover, Lucas R.; Sanzone, Kaitlin M.; Kamhi, J. Frances; Cameron, Heather A.

    2009-01-01

    Stress strongly inhibits proliferation of granule cell precursors in the dentate gyrus, while voluntary running has the opposite effect. Few studies, however, have examined the possible effects of these environmental manipulations on the maturation and survival of young granule cells. We examined number of surviving granule cells and the proportion of young neurons that were functionally mature, as defined by seizure-induced immediate-early gene expression, in 14 and 21 day-old granule cells in mice that were given access to a running wheel, restrained daily for 2 hours, or given no treatment during this period. Importantly, treatments began two days after BrdU injection, to isolate effects on survival from those on cell proliferation. We found a large increase in granule cell survival in running mice compared with controls at both time points. In addition, running increased the proportion of granule cells expressing the immediate-early gene Arc in response to seizures, suggesting that it speeds incorporation into circuits, i.e., functional maturation. Stressed mice showed no change in Arc expression, compared to control animals, but, surprisingly, showed a transient increase in survival of 14-day-old granule cells, which was gone 7 days later. Examination of cell proliferation, using the endogenous mitotic marker proliferating cell nuclear antigen (PCNA) showed an increase in cell proliferation after 12 days of running but not after 19 days of running. The number of proliferating cells was unchanged 24 hours after the 12th or 19th episode of daily restraint stress. These findings demonstrate that running has strong effects on survival and maturation of young granule cells as well as their birth and that stress can have positive but short-lived effects on granule cell survival. PMID:19156854

  2. Bioequivalence among three methods of administering pantoprazole granules in healthy subjects.

    PubMed

    Tammara, Brinda; Weisel, Kathy; Katz, Arie; Meng, Xu

    2009-11-01

    The bioequivalence among three methods of administering pantoprazole granules was studied in healthy subjects. In this randomized, open-label, three-period, crossover study, 25 healthy adults received a single 40-mg dose of pantoprazole granules with applesauce orally, with apple juice orally, and with apple juice administered via a nasogastric tube. Subjects were randomly assigned to one of six treatment sequences. Blood samples were collected within 2 hours before treatment administration on study day 1 and at 0.33, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, and 24 hours after treatment administration. Plasma pantoprazole concentrations were analyzed by a validated liquid chromatography-tandem mass spectrometry method. The plasma pantoprazole concentration-time data for each subject were analyzed using noncompartmental methods. The 90% confidence intervals (CIs) for the test:reference geometric mean ratio were calculated for the peak pantoprazole concentration (C(max) ) and area under the concentration-time curve (AUC). Of the 25 subjects enrolled, 100% completed the study. The mean C(max) and AUC values were similar for the three administration methods. The 90% CIs for the ratios of the geometric means of the granules in apple juice orally (92.4-112.5%) and in apple juice administered through a nasogastric tube (102.7-125.2%), relative to the granules administered with applesauce orally, were essentially within the bioequivalent limits of 80-125%. No serious adverse events or study discontinuations occurred. Three methods of administering pantoprazole delayed-release granules for oral suspension-with apple juice orally, with applesauce orally, and with apple juice through a nasogastric tube--were bioequivalent in healthy subjects.

  3. Native granule associated short chain length polyhydroxyalkanoate synthase from a marine derived Bacillus sp. NQ-11/A2.

    PubMed

    Prabhu, Nimali N; Santimano, Maria Celisa; Mavinkurve, Suneela; Bhosle, Saroj N; Garg, Sandeep

    2010-01-01

    A rapidly growing marine derived Bacillus sp. strain NQ-11/A2, identified as Bacillus megaterium, accumulated 61% polyhydroxyalkanoate by weight. Diverse carbon sources served as substrates for the accumulation of short chain length polyhydroxyalkanoate. Three to nine granules either single or attached as buds could be isolated intact from each cell. Maximum activity of polyhydroxyalkanoate synthase was associated with the granules. Granule-bound polyhydroxyalkanoate synthase had a K(m) of 7.1 x 10(-5) M for DL-beta-hydroxybutyryl-CoA. Temperature and pH optima for maximum activity were 30 degrees C and 7.0, respectively. Sodium ions were required for granule-bound polyhydroxyalkanoate synthase activity and inhibited by potassium. Granule-bound polyhydroxyalkanoate synthase was apparently covalently bound to the polyhydroxyalkanoate-core of the granules and affected by the chaotropic reagent urea. Detergents inhibited the granule-bound polyhydroxyalkanoate synthase drastically whilst glycerol and bovine serum albumin stabilized the synthase.

  4. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans

    PubMed Central

    Wang, Jennifer T; Smith, Jarrett; Chen, Bi-Chang; Schmidt, Helen; Rasoloson, Dominique; Paix, Alexandre; Lambrus, Bramwell G; Calidas, Deepika; Betzig, Eric; Seydoux, Geraldine

    2014-01-01

    RNA granules have been likened to liquid droplets whose dynamics depend on the controlled dissolution and condensation of internal components. The molecules and reactions that drive these dynamics in vivo are not well understood. In this study, we present evidence that a group of intrinsically disordered, serine-rich proteins regulate the dynamics of P granules in C. elegans embryos. The MEG (maternal-effect germline defective) proteins are germ plasm components that are required redundantly for fertility. We demonstrate that MEG-1 and MEG-3 are substrates of the kinase MBK-2/DYRK and the phosphatase PP2APPTR−½. Phosphorylation of the MEGs promotes granule disassembly and dephosphorylation promotes granule assembly. Using lattice light sheet microscopy on live embryos, we show that GFP-tagged MEG-3 localizes to a dynamic domain that surrounds and penetrates each granule. We conclude that, despite their liquid-like behavior, P granules are non-homogeneous structures whose assembly in embryos is regulated by phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.04591.001 PMID:25535836

  5. Granules harboring translationally active mRNAs provide a platform for P-body formation following stress.

    PubMed

    Lui, Jennifer; Castelli, Lydia M; Pizzinga, Mariavittoria; Simpson, Clare E; Hoyle, Nathaniel P; Bailey, Kathryn L; Campbell, Susan G; Ashe, Mark P

    2014-11-06

    The localization of mRNA to defined cytoplasmic sites in eukaryotic cells not only allows localized protein production but also determines the fate of mRNAs. For instance, translationally repressed mRNAs localize to P-bodies and stress granules where their decay and storage, respectively, are directed. Here, we find that several mRNAs are localized to granules in unstressed, actively growing cells. These granules play a key role in the stress-dependent formation of P-bodies. Specific glycolytic mRNAs are colocalized in multiple granules per cell, which aggregate during P-body formation. Such aggregation is still observed under conditions or in mutants where P-bodies do not form. In unstressed cells, the mRNA granules appear associated with active translation; this might enable a coregulation of protein expression from the same pathways or complexes. Parallels can be drawn between this coregulation and the advantage of operons in prokaryotic systems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  7. Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons.

    PubMed

    Fritzsche, Renate; Karra, Daniela; Bennett, Keiryn L; Ang, Foong Yee; Heraud-Farlow, Jacki E; Tolino, Marco; Doyle, Michael; Bauer, Karl E; Thomas, Sabine; Planyavsky, Melanie; Arn, Eric; Bakosova, Anetta; Jungwirth, Kerstin; Hörmann, Alexandra; Palfi, Zsofia; Sandholzer, Julia; Schwarz, Martina; Macchi, Paolo; Colinge, Jacques; Superti-Furga, Giulio; Kiebler, Michael A

    2013-12-26

    Transport of RNAs to dendrites occurs in neuronal RNA granules, which allows local synthesis of specific proteins at active synapses on demand, thereby contributing to learning and memory. To gain insight into the machinery controlling dendritic mRNA localization and translation, we established a stringent protocol to biochemically purify RNA granules from rat brain. Here, we identified a specific set of interactors for two RNA-binding proteins that are known components of neuronal RNA granules, Barentsz and Staufen2. First, neuronal RNA granules are much more heterogeneous than previously anticipated, sharing only a third of the identified proteins. Second, dendritically localized mRNAs, e.g., Arc and CaMKIIα, associate selectively with distinct RNA granules. Third, our work identifies a series of factors with known roles in RNA localization, translational control, and RNA quality control that are likely to keep localized transcripts in a translationally repressed state, often in distinct types of RNPs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Environmental enrichment alters dentate granule cell morphology in oldest-old rat.

    PubMed

    Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad

    2009-08-01

    The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.

  9. MicroRNAs Promote Granule Cell Expansion in the Cerebellum Through Gli2.

    PubMed

    Constantin, Lena; Wainwright, Brandon J

    2015-12-01

    MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.

  10. First results on quiet and magnetic granulation from SOUP

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-01-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  11. First results on quiet and magnetic granulation from SOUP

    NASA Astrophysics Data System (ADS)

    Title, A. M.; Tarbell, T. D.; Acton, L.; Duncan, D.; Ferguson, S. H.; Finch, M.; Frank, Z.; Kelly, G.; Lindgren, R.; Morrill, M.

    1987-09-01

    The flight of Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 allowed the collection of time sequences of diffraction limited (0.5 arc sec) granulation images with excellent pointing (0.003 arc sec) and completely free of the distortion that plagues groundbased images. The p-mode oscillations are clearly seen in the data. Using Fourier transforms in the temporal and spatial domain, it was shown that the p-modes dominate the autocorrelation lifetime in magnetic regions. When these oscillations are removed the autocorrelation lifetime is found to be 500 sec in quiet and 950 sec in magnetic regions. In quiet areas exploding granules are seen to be common. It is speculated that a significant fraction of granule lifetimes are terminated by nearby explosions. Using local correlation tracking techniques it was able to measure horizontal displacements, and thus transverse velocities, in the magnetic field. In quiet sun it is possible to detect both super and mesogranulation. Horizontal velocities are as great as 1000 m/s and the average velocity is 400 m/s. In magnetic regions horizontal velocities are much less, about 100 m/s.

  12. Investigating the Use of Polymeric Binders in Twin Screw Melt Granulation Process for Improving Compactibility of Drugs.

    PubMed

    Batra, Amol; Desai, Dipen; Serajuddin, Abu T M

    2017-01-01

    Traditionally, the melt granulation for pharmaceutical products was performed at low temperature (<90°C) with high-shear granulators using low-melting waxy binders, and tablets produced using such granules were not amenable to large-scale manufacturing. The situation has changed in recent years by the use of twin screw extruder where the processing temperature could be increased to as high as 180°C and polymers with high T g could be used as binders. In this study, different polymeric binders were screened for their suitability in improving compactibility of 2 drugs, metformin hydrochloride and acetaminophen, by twin screw melt granulation. Processing temperatures for the 2 drugs were set at 180°C and 130°C, respectively. Screw configuration, screw speed, and feed rate were optimized such that all polymeric binders used produced granules. Several hydroxypropyl cellulose, hydroxypropyl methylcellulose, polyvinylpyrrolidone, and methacrylate-based polymers, including Klucel ® EXF, Eudragit ® EPO, and Soluplus ® , demonstrated good tablet tensile strength (>2 MPa) when granules were produced using only 10% wt/wt polymer concentration. Certain polymers provided acceptable compactibility even at 5% wt/wt. Thus, twin screw melt granulation process may be used with different polymers at a wide range of temperature. Due to low excipient concentration, this granulation method is especially suitable for high-dose tablets. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review.

    PubMed

    Mortier, Séverine Thérèse F C; De Beer, Thomas; Gernaey, Krist V; Remon, Jean Paul; Vervaet, Chris; Nopens, Ingmar

    2011-10-01

    Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet granules is given. This review provides a basis for future mechanistic model development for the drying process of wet granules in pharmaceutical processes. It is intended for a broad audience with a varying level of knowledge on pharmaceutical processes and mathematical modelling. Mathematical models are powerful tools to gain process insight and eventually develop well-controlled processes. The level of detail embedded in such a model depends on the goal of the model. Several models have therefore been proposed in the literature and are reviewed here. The drying behaviour of one single granule, a porous particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern depending on the geometry of the gas inlet, the gas velocity, characteristics of the particles, the dryer design, etc. Computational Fluid Dynamics (CFD) allows to model this behaviour. Moreover, turbulence can be modelled using several approaches: Reynolds-averaged Navier-Stokes Equations (RANS) or Large Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian-Lagrangian and the Eulerian-Eulerian approach. Finally, the PBM and CFD frameworks

  14. Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 are required for Respiratory Burst Priming

    PubMed Central

    McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.

    2013-01-01

    This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774

  15. Biogenesis of the Secretory Granule: Chromogranin a Coiled-Coil Structure Results in Unusual Physical Properties And Suggests a Mechanism for Granule Core Condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosley, C.A.; Taupenot, L.; Biswas, N.

    2009-06-03

    The secretory pro-hormone chromogranin A (CHGA) is densely packed into storage granules along with catecholamines, playing a catalytic role in granule biogenesis. 3-Dimensional structural data on CHGA are lacking. We found a superfamily structural homology for CHGA in the tropomyosin family of alpha-helical coiled-coils, even in mid-molecule regions where primary sequence identity is only modest. The assignment was confirmed by an independent algorithm, suggesting approximately 6-7 such domains spanning CHGA. We provide additional physiochemical evidence (chromatographic, spectral, microscopic) consistent with this unusual structure. Alpha-helical secondary structure (at up to approximately 45%) was confirmed by circular dichroism. CHGA molecular mass wasmore » estimated by MALDI-TOF mass spectrometry at approximately 50 kDa and by denaturing gel filtration at approximately 50-61 kDa, while its native Stokes radius was approximately 84.8 A, as compared to an expected approximately 30 A; the increase gave rise to an apparent native molecular weight of approximately 578 kDa, also consistent with the extended conformation of a coiled-coil. Small-angle X-ray scattering (SAXS) on CHGA in solution best fit an elongated cylindrical conformation in the monodisperse region with a radius of gyration of the rod cross-section (Rt) of approximately 52 A, compatible with a coiled-coil in the hydrated, aqueous state, or a multimeric coiled-coil. Electron microscopy with negative staining revealed an extended, filamentous CHGA structure with a diameter of approximately 94 +/- 4.5 A. Extended, coiled-coil conformation is likely to permit protein 'packing' in the secretory granule at approximately 50% higher density than a globular/spherical conformation. Natural allelic variation in the catestatin region was predicted to disrupt the coiled-coil. Chromaffin granule ultrastructure revealed a approximately 108 +/- 6.3 A periodicity of electron density, suggesting nucleation of a

  16. The role of two isoenzymes of alpha-amylase of Araucaria araucana (Araucariaceae) on the digestion of starch granules during germination.

    PubMed

    Waghorn, Juana J; del Pozo, Talía; Acevedo, Elba A; Cardemil, Liliana A

    2003-03-01

    Starch is the principal reserve of Araucaria araucana seeds, and it is hydrolysed during germination mainly by alpha-amylase. There are several alpha-amylase isoenzymes whose patterns change in the embryo and in the megagametophyte from the one observed in quiescent seeds (T(0)) to a different one observed 90 h after imbibition (T(90)). The objective of this research was to study the roles of two purified alpha-amylase isoenzymes by in vitro digestion of starch granules extracted from the tissues at two times of imbibition: one is abundant in quiescent seeds and the other is abundant after 90 h of imbibition. The isoenzymes digested the starch granules of their own stage of germination better, since the isoenzyme T(0) digested starch granules mainly from quiescent seeds, while the isoenzyme T(90) digested starch mainly at 90 h of imbibition. The sizes of the starch granule and the tissue from which these granules originated make a difference to digestion by the isoenzymes. Embryonic isoenzyme T(0) digested large embryonic starch granules better than small and medium-sized granules, and better than those isolated from megagametophytes. Similarly isoenzyme T(90) digested small embryonic starch granules better than medium-sized and large granules, and better than those isolated from megagametophytes. However, a mixture of partially purified megagametophytic isoenzymes T(0) and T(90) digested the megagametophytic granules better than those isolated from embryos. Studies of in vitro sequential digestion of starch granules with these isoenzymes corroborated their specificity. The isoenzyme T(90) digested starch granules previously digested by the isoenzyme T(0). This suggests that in vivo these two isoenzymes may act sequentially in starch granule digestion.

  17. GRANULATION IN RED GIANTS: OBSERVATIONS BY THE KEPLER MISSION AND THREE-DIMENSIONAL CONVECTION SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; Hekker, S.; Trampedach, R.

    2011-11-10

    The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones than the Sun, we cannot a priori assume that their granulation is a scaled version of solar granulation. Until now, neither observations nor one-dimensional analytical convection models could put constraints on granulation in red giants. With asteroseismology, this studymore » can now be performed. We analyze {approx}1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (timescale {tau}{sub gran} and power P{sub gran}). We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, {nu}{sub max}) as well as with stellar parameters (mass, radius, surface gravity (log g), and effective temperature (T{sub eff})). We show that {tau}{sub eff}{proportional_to}{nu}{sup -0.89}{sub max} and P{sub gran}{proportional_to}{nu}{sup -1.90}{sub max}, which is consistent with the theoretical predictions. We find that the granulation timescales of stars that belong to the red clump have similar values while the timescales of stars in the red giant branch are spread in a wider range. Finally, we show that realistic three-dimensional simulations of the surface convection in stars, spanning the (T{sub eff}, log g) range of our sample of red giants, match the Kepler observations well in terms of trends.« less

  18. Synchrotron Infrared Confocal Microspectroscopical Detection of Heterogeneity Within Chemically Modified Single Starch Granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, D.; Shi, Y; Reffner, J

    This reports the first detection of chemical heterogeneity in octenyl succinic anhydride modified single starch granules using a Fourier transform infrared (FT-IR) microspectroscopical technique that combines diffraction-limited infrared microspectroscopy with a step size that is less than the mask projected spot size focused on the plane of the sample. The high spatial resolution was achieved with the combination of the application of a synchrotron infrared source and the confocal image plane masking system of the double-pass single-mask Continuum{reg_sign} infrared microscope. Starch from grains such as corn and wheat exists in granules. The size of the granules depends on the plantmore » producing the starch. Granules used in this study typically had a median size of 15 {micro}m. In the production of modified starch, an acid anhydride typically is reacted with OH groups of the starch polymer. The resulting esterification adds the ester carbonyl (1723 cm{sup -1}) organic functional group to the polymer and the hydrocarbon chain of the ester contributes to the CH{sub 2} stretching vibration to enhance the intensity of the 2927 cm{sup -1} band. Detection of the relative modifying population on a single granule was accomplished by ratioing the baseline adjusted peak area of the carbonyl functional group to that of a carbohydrate band. By stepping a confocally defined infrared beam as small as 5 {micro}m x 5 {micro}m across a starch granule 1 {micro}m at a time in both the x and y directions, the heterogeneity is detected with the highest possible spatial resolution.« less

  19. Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium.

    PubMed

    Hailei, Wang; Ping, Li; Qianlong, Jin; Ge, Qin

    2014-03-01

    Aerobic granules were firstly developed in a completely mixed tank reactor (CMTR) by seeding micro-mycelial pellets (MMPs) of Phanerochaete chrysosporium. During phenol wastewater treatment, sludge granulation rate reached 67 % after 15-day operation. The granules in CMTR are different from aerobic granules described in literature in morphology, and a majority of them are rod-shaped or rodlike sludge besides spherical granules. The polymorphic granules, having no essential difference with aerobic granules previously reported, achieve advantages over conventional activated sludge in settling ability, biomass concentration, density, integrity coefficient and removal ability to phenol wastewater. The optimized parameters for sludge granulation in CMTR including temperature, inoculum quantity, rotary speed and superficial air upflow velocity are 30 °C, 5–7 g/l, 150 rpm, and 0.5 cm/s, respectively. Analysis on sludge granulation mechanism indicates that MMPs not only result in the formation of aerobic granules containing MMPs as nuclei, but also induce the formation of biogranules which do not have MMP at their cores. The work challenges the general belief that the homogenous circular flow pattern of microbial aggregates is necessary for aerobic sludge granulation.

  20. Development of a discriminative biphasic in vitro dissolution test and correlation with in vivo pharmacokinetic studies for differently formulated racecadotril granules.

    PubMed

    Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland

    2017-06-10

    The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.